51
|
Cho HE, Kang MH. pH gradient-liquid chromatography tandem mass spectrometric assay for determination of underivatized polyamines in cancer cells. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1085:21-29. [DOI: 10.1016/j.jchromb.2018.03.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/18/2018] [Accepted: 03/26/2018] [Indexed: 10/17/2022]
|
52
|
Neuroblastoma: clinical and biological approach to risk stratification and treatment. Cell Tissue Res 2018; 372:195-209. [PMID: 29572647 DOI: 10.1007/s00441-018-2821-2] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/28/2018] [Indexed: 01/15/2023]
Abstract
Neuroblastoma is the most common extra-cranial solid tumor of childhood and the most common in the first year of life. It is a unique malignancy in that infants often present with either localized or metastatic disease that can spontaneously regress without intervention while older children can succumb to the disease after months to years of arduous therapy. Given this wide range of outcomes, the International Neuroblastoma Risk Group was created to stratify patients based on presenting characteristics and tumor biology in order to guide intensity of treatment strategies. The goal has been to decrease therapy for low-risk patients to avoid long-term complications while augmenting and targeting therapies for high-risk patients to improve overall survival. The international risk stratification depends on age, stage, histology, MYCN gene amplification status, tumor cell ploidy and segmental chromosomal abnormalities. Treatment for asymptomatic low-risk patients with an estimated survival of > 98% is often observation or surgical resection alone, whereas intermediate-risk patients with an estimated survival of > 90% require moderate doses of response-adjusted chemotherapy along with resection. High-risk patients undergo multiple cycles of combination chemotherapy before surgery, followed by consolidation with myeloablative autologous hematopoietic stem cell transplantation and local radiation and finally immunotherapy with differentiation therapy as maintenance phase. With this approach, outcome for patients with neuroblastoma has improved, as the field continues to expand efforts in more targeted therapies for high-risk patients.
Collapse
|
53
|
MYCN drives glutaminolysis in neuroblastoma and confers sensitivity to an ROS augmenting agent. Cell Death Dis 2018; 9:220. [PMID: 29445162 PMCID: PMC5833827 DOI: 10.1038/s41419-018-0295-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/01/2018] [Accepted: 01/04/2018] [Indexed: 12/25/2022]
Abstract
Heightened aerobic glycolysis and glutaminolysis are characteristic metabolic phenotypes in cancer cells. Neuroblastoma (NBL), a devastating pediatric cancer, is featured by frequent genomic amplification of MYCN, a member of the Myc oncogene family that is primarily expressed in the early stage of embryonic development and required for neural crest development. Here we report that an enriched glutaminolysis gene signature is associated with MYCN amplification in children with NBL. The partial knockdown of MYCN suppresses glutaminolysis in NBL cells. Conversely, forced overexpression of MYCN in neural crest progenitor cells enhances glutaminolysis. Importantly, glutaminolysis induces oxidative stress by producing reactive oxygen species (ROS), rendering NBL cells sensitive to ROS augmentation. Through a small-scale metabolic-modulator screening, we have found that dimethyl fumarate (DMF), a Food and Drug Administration-approved drug for multiple sclerosis, suppresses NBL cell proliferation in vitro and tumor growth in vivo. DMF suppresses NBL cell proliferation through inducing ROS and subsequently suppressing MYCN expression, which is rescued by an ROS scavenger. Our findings suggest that the metabolic modulation and ROS augmentation could be used as novel strategies in treating NBL and other MYC-driven cancers.
Collapse
|
54
|
Alpha-Difluoromethylornithine, an Irreversible Inhibitor of Polyamine Biosynthesis, as a Therapeutic Strategy against Hyperproliferative and Infectious Diseases. Med Sci (Basel) 2018; 6:medsci6010012. [PMID: 29419804 PMCID: PMC5872169 DOI: 10.3390/medsci6010012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/18/2022] Open
Abstract
The fluorinated ornithine analog α-difluoromethylornithine (DFMO, eflornithine, ornidyl) is an irreversible suicide inhibitor of ornithine decarboxylase (ODC), the first and rate-limiting enzyme of polyamine biosynthesis. The ubiquitous and essential polyamines have many functions, but are primarily important for rapidly proliferating cells. Thus, ODC is potentially a drug target for any disease state where rapid growth is a key process leading to pathology. The compound was originally discovered as an anticancer drug, but its effectiveness was disappointing. However, DFMO was successfully developed to treat African sleeping sickness and is currently one of few clinically used drugs to combat this neglected tropical disease. The other Food and Drug Administration (FDA) approved application for DFMO is as an active ingredient in the hair removal cream Vaniqa. In recent years, renewed interest in DFMO for hyperproliferative diseases has led to increased research and promising preclinical and clinical trials. This review explores the use of DFMO for the treatment of African sleeping sickness and hirsutism, as well as its potential as a chemopreventive and chemotherapeutic agent against colorectal cancer and neuroblastoma.
Collapse
|
55
|
Schultz CR, Geerts D, Mooney M, El-Khawaja R, Koster J, Bachmann AS. Synergistic drug combination GC7/DFMO suppresses hypusine/spermidine-dependent eIF5A activation and induces apoptotic cell death in neuroblastoma. Biochem J 2018; 475:531-545. [PMID: 29295892 DOI: 10.1042/bcj20170597] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/19/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2023]
Abstract
The eukaryotic initiation factor 5A (eIF5A), which contributes to several crucial processes during protein translation, is the only protein that requires activation by a unique post-translational hypusine modification. eIF5A hypusination controls cell proliferation and has been linked to cancer. eIF5A hypusination requires the enzymes deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase and uniquely depends on the polyamine (PA) spermidine as the sole substrate. Ornithine decarboxylase (ODC) is the rate-limiting enzyme in PA biosynthesis. Both ODC and PAs control cell proliferation and are frequently dysregulated in cancer. Since only spermidine can activate eIF5A, we chose the hypusine-PA nexus as a rational target to identify new drug combinations with synergistic antiproliferative effects. We show that elevated mRNA levels of the two target enzymes DHPS and ODC correlate with poor prognosis in a large cohort of neuroblastoma (NB) tumors. The DHPS inhibitor GC7 (N1-guanyl-1,7-diaminoheptane) and the ODC inhibitor α-difluoromethylornithine (DFMO) are target-specific and in combination induced synergistic effects in NB at concentrations that were not individually cytotoxic. Strikingly, while each drug alone at higher concentrations is known to induce p21/Rb- or p27/Rb-mediated G1 cell cycle arrest, we found that the drug combination induced caspase 3/7/9, but not caspase 8-mediated apoptosis, in NB cells. Hypusinated eIF5A levels and intracellular spermidine levels correlated directly with drug treatments, signifying specific drug targeting effects. This two-pronged GC7/DFMO combination approach specifically inhibits both spermidine biosynthesis and post-translational, spermidine-dependent hypusine-eIF5A activation, offering an exciting clue for improved NB drug therapy.
Collapse
Affiliation(s)
- Chad R Schultz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, U.S.A
| | - Dirk Geerts
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marie Mooney
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, U.S.A
| | | | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, U.S.A.
| |
Collapse
|
56
|
Chen L, Esfandiari A, Reaves W, Vu A, Hogarty MD, Lunec J, Tweddle DA. Characterisation of the p53 pathway in cell lines established from TH-MYCN transgenic mouse tumours. Int J Oncol 2018; 52:967-977. [PMID: 29393340 DOI: 10.3892/ijo.2018.4261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/12/2017] [Indexed: 11/06/2022] Open
Abstract
Cell lines established from the TH-MYCN transgenic murine model of neuroblastoma are a valuable preclinical, immunocompetent, syngeneic model of neuroblastoma, for which knowledge of their p53 pathway status is important. In this study, the Trp53 status and functional response to Nutlin-3 and ionising radiation (IR) were determined in 6 adherent TH-MYCN transgenic cell lines using Sanger sequencing, western blot analysis and flow cytometry. Sensitivity to structurally diverse MDM2 inhibitors (Nutlin-3, MI-63, RG7388 and NDD0005) was determined using XTT proliferation assays. In total, 2/6 cell lines were Trp53 homozygous mutant (NHO2A and 844MYCN+/+) and 1/6 (282MYCN+/-) was Trp53 heterozygous mutant. For 1/6 cell lines (NHO2A), DNA from the corresponding primary tumour was found to be Trp53 wt. In all cases, the presence of a mutation was consistent with aberrant p53 signalling in response to Nutlin-3 and IR. In comparison to TP53 wt human neuroblastoma cells, Trp53 wt murine control and TH-MYCN cell lines were significantly less sensitive to growth inhibition mediated by MI-63 and RG7388. These murine Trp53 wt and mutant TH-MYCN cell lines are useful syngeneic, immunocompetent neuroblastoma models, the former to test p53-dependent therapies in combination with immunotherapies, such as anti-GD2, and the latter as models of chemoresistant relapsed neuroblastoma when aberrations in the p53 pathway are more common. The spontaneous development of Trp53 mutations in 3 cell lines from TH-MYCN mice may have arisen from MYCN oncogenic driven and/or ex vivo selection. The identified species-dependent selectivity of MI-63 and RG7388 should be considered when interpreting in vivo toxicity studies of MDM2 inhibitors.
Collapse
Affiliation(s)
- Lindi Chen
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Arman Esfandiari
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - William Reaves
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Annette Vu
- The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael D Hogarty
- The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - John Lunec
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Deborah A Tweddle
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
57
|
Raniga K, Liang C. Interferons: Reprogramming the Metabolic Network against Viral Infection. Viruses 2018; 10:E36. [PMID: 29342871 PMCID: PMC5795449 DOI: 10.3390/v10010036] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 12/12/2022] Open
Abstract
Viruses exploit the host and induce drastic metabolic changes to ensure an optimal environment for replication and the production of viral progenies. In response, the host has developed diverse countermeasures to sense and limit these alterations to combat viral infection. One such host mechanism is through interferon signaling. Interferons are cytokines that enhances the transcription of hundreds of interferon-stimulated genes (ISGs) whose products are key players in the innate immune response to viral infection. In addition to their direct targeting of viral components, interferons and ISGs exert profound effects on cellular metabolism. Recent studies have started to illuminate on the specific role of interferon in rewiring cellular metabolism to activate immune cells and limit viral infection. This review reflects on our current understanding of the complex networking that occurs between the virus and host at the interface of cellular metabolism, with a focus on the ISGs in particular, cholesterol-25-hydroxylase (CH25H), spermidine/spermine acetyltransferase 1 (SAT1), indoleamine-2,3-dioxygenase (IDO1) and sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1), which were recently discovered to modulate specific metabolic events and consequently deter viral infection.
Collapse
Affiliation(s)
- Kavita Raniga
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Chen Liang
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
- Department of Medicine, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
58
|
Arruabarrena-Aristorena A, Zabala-Letona A, Carracedo A. Oil for the cancer engine: The cross-talk between oncogenic signaling and polyamine metabolism. SCIENCE ADVANCES 2018; 4:eaar2606. [PMID: 29376126 PMCID: PMC5783676 DOI: 10.1126/sciadv.aar2606] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/28/2017] [Indexed: 05/09/2023]
Abstract
The study of metabolism has provided remarkable information about the biological basis and therapeutic weaknesses of cancer cells. Classic biochemistry established the importance of metabolic alterations in tumor biology and revealed the importance of various metabolite families to the tumorigenic process. We have evidence of the central role of polyamines, small polycatonic metabolites, in cell proliferation and cancer growth from these studies. However, how cancer cells activate this metabolic pathway and the molecular cues behind the oncogenic action of polyamines has remained largely obscure. In contrast to the view of metabolites as fuel (anabolic intermediates) for cancer cells, polyamines are better defined as the oil that lubricates the cancer engine because they affect the activity of biological processes. Modern research has brought back to the limelight this metabolic pathway, providing a strong link between genetic, metabolic, and signaling events in cancer. In this review, we enumerate and discuss current views of the regulation and activity of polyamine metabolism in tumor cell biology.
Collapse
Affiliation(s)
| | - Amaia Zabala-Letona
- CIC bioGUNE, Bizkaia Technology Park, 801A Building, 48160 Derio, Bizkaia, Spain
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Avenida Monforte de Lemos, Madrid, Spain
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia Technology Park, 801A Building, 48160 Derio, Bizkaia, Spain
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Avenida Monforte de Lemos, Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain
| |
Collapse
|
59
|
Rigo GV, Trein MR, da Silva Trentin D, Macedo AJ, de Oliveira BA, de Almeida AM, Giordani RB, de Almeida MV, Tasca T. Diamine derivative anti-Trichomonas vaginalis and anti-Tritrichomonas foetus activities by effect on polyamine metabolism. Biomed Pharmacother 2017; 95:847-855. [PMID: 28903180 DOI: 10.1016/j.biopha.2017.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/21/2017] [Accepted: 09/03/2017] [Indexed: 11/26/2022] Open
Abstract
Human and bovine trichomoniasis are sexually transmitted diseases (STD) caused by Trichomonas vaginalis and Tritrichomonas foetus, respectively. Human trichomoniasis is the most common non-viral STD in the world and bovine trichomoniasis causes significant economic losses to breeders. Considering the significant impact of the infections caused by these protozoa and the treatment failures, the search for new therapeutic alternatives becomes crucial. In this study the effect of diamines and amino alcohols in the in vitro viability of trichomonads was evaluated. Screening demonstrated the high activity of diamine 4 against these protozoa. Although cytotoxicity against HMVII cell line and slight hemolysis were observed in vitro, the compound showed no toxic effect on the Galleria mellonella in vivo model. Importantly, diamine 4 was active against both trichomonads species at 6h and 24h of incubation, and these effects was reverted by putrescine, a polyamine, suggesting competition for the same metabolic pathway. These findings indicate that the mechanism of action of diamine 4 is through the polyamine metabolism, a pathway distinct from that presented by metronidazole, the drug usually used to treat trichomoniasis and to which resistance is widely reported. These data demonstrate the importance of diamines as potential novel candidates as anti-T. vaginalis and anti-T. foetus agents.
Collapse
Affiliation(s)
- Graziela Vargas Rigo
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Márcia Rodrigues Trein
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Danielle da Silva Trentin
- Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre/RS, 90610-000, Brazil; Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre/RS, 90050-170, Brazil
| | - Alexandre José Macedo
- Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre/RS, 90610-000, Brazil
| | - Bruno Assis de Oliveira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Cidade Universitária, Campos Martelos, 36036-900 Juiz de Fora, MG, Brazil
| | - Angelina Maria de Almeida
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Cidade Universitária, Campos Martelos, 36036-900 Juiz de Fora, MG, Brazil
| | - Raquel Brandt Giordani
- Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Gustavo Cordeiro de Faria, SN, 59010-180, Natal-RN, Brazil
| | - Mauro Vieira de Almeida
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Cidade Universitária, Campos Martelos, 36036-900 Juiz de Fora, MG, Brazil
| | - Tiana Tasca
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
60
|
Vardon A, Dandapani M, Cheng D, Cheng P, De Santo C, Mussai F. Arginine auxotrophic gene signature in paediatric sarcomas and brain tumours provides a viable target for arginine depletion therapies. Oncotarget 2017; 8:63506-63517. [PMID: 28969007 PMCID: PMC5609939 DOI: 10.18632/oncotarget.18843] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 06/05/2017] [Indexed: 01/11/2023] Open
Abstract
Paediatric sarcomas and brain tumours, remain cancers of significant unmet need, with a poor prognosis for patients with high risk disease or those who relapse, and significant morbidities from treatment for those that survive using standard treatment approaches. Novel treatment strategies, based on the underlying tumour biology, are needed to improve outcomes. Arginine is a semi-essential amino acid that is imported from the extracellular microenvironment or recycled from intracellular precursors through the combined expression of the enzymes ornithine transcarbamylase (OTC), argininosuccinate synthase (ASS) and argininosuccinate lyase (ASL) enzymes. The failure to express at least one of these recycling enzymes makes cells reliant on extracellular arginine - a state known as arginine auxotrophism. Here we show in large in silico patient cohorts that paediatric sarcomas and brain tumours express predominately the arginine transporter SLC7A1 and the arginine metabolising enzyme Arginase 2 (ARG2), but have low-absent expression of OTC. The arginine metabolic pathway correlated with the expression of genes associated with tumour pathogenesis, and overall survival in paediatric sarcomas. This gene signature of arginine auxotrophism indicates paediatric sarcomas and brain tumours are a viable target for therapeutic arginase drugs under current clinical trial development.
Collapse
Affiliation(s)
- Ashley Vardon
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Madhumita Dandapani
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Daryl Cheng
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Paul Cheng
- Bio-Cancer Treatment International Ltd, Hong Kong, China
| | - Carmela De Santo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Francis Mussai
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
61
|
Applebaum MA, Desai AV, Glade Bender JL, Cohn SL. Emerging and investigational therapies for neuroblastoma. Expert Opin Orphan Drugs 2017; 5:355-368. [PMID: 29062613 PMCID: PMC5649635 DOI: 10.1080/21678707.2017.1304212] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/06/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Treatment for children with clinically aggressive, high-risk neuroblastoma remains challenging. Less than 50% of patients with high-risk neuroblastoma will survive long-term with current therapies, and survivors are at risk for serious treatment-related late toxicities. Here, we review new and evolving treatments that may ultimately improve outcome for children with high-risk neuroblastoma with decreased potential for late adverse events. AREAS COVERED New strategies for treating high-risk neuroblastoma are reviewed including: radiotherapy, targeted cytotoxics, biologics, immunotherapy, and molecularly targeted agents. Recently completed and ongoing neuroblastoma clinical trials testing these novel treatments are highlighted. In addition, we discuss ongoing clinical trials designed to evaluate precision medicine approaches that target actionable somatic mutations and oncogenic cellular pathways. EXPERT OPINION Advances in genomic medicine and molecular biology have led to the development of early phase studies testing biologically rational therapies targeting aberrantly activated cellular pathways. Because many of these drugs have a wider therapeutic index than standard chemotherapeutic agents, these treatments may be more effective and less toxic than current strategies. However, to effectively integrate these targeted strategies, robust predictive biomarkers must be developed that will identify patients who will benefit from these approaches and rapidly match treatments to patients at diagnosis.
Collapse
Affiliation(s)
- Mark A. Applebaum
- Department of Pediatrics, University of Chicago, Chicago, Illinois, 60637, United States of America
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Ami V. Desai
- Department of Pediatrics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Julia L. Glade Bender
- Department of Pediatrics, Columbia University Medical Center, New York, New York, 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, 10032
| | - Susan L. Cohn
- Department of Pediatrics, University of Chicago, Chicago, Illinois, 60637, United States of America
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois, 60637, United States of America
| |
Collapse
|
62
|
Alexiou GA, Lianos GD, Ragos V, Galani V, Kyritsis AP. Difluoromethylornithine in cancer: new advances. Future Oncol 2017; 13:809-819. [PMID: 28125906 DOI: 10.2217/fon-2016-0266] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Difluoromethylornithine (DFMO; eflornithine) is an irreversible suicide inhibitor of the enzyme ornithine decarboxylase which is involved in polyamine synthesis. Polyamines are important for cell survival, thus DFMO was studied as an anticancer agent and as a chemoprevention agent. DFMO exhibited mainly cytostatic activity and had single agent efficacy as well as activity in combination with other chemotherapeutic drugs for some cancers and leukemias. Herewith, we summarize the current knowledge of the anticancer and chemopreventive properties of DFMO and assess the status of clinical trials.
Collapse
Affiliation(s)
- George A Alexiou
- Neurosurgical Institute, Ioannina University School of Medicine, Ioannina, GR 451 10, Greece
| | - Georgios D Lianos
- Neurosurgical Institute, Ioannina University School of Medicine, Ioannina, GR 451 10, Greece
| | - Vassileios Ragos
- Neurosurgical Institute, Ioannina University School of Medicine, Ioannina, GR 451 10, Greece
| | - Vasiliki Galani
- Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Athanassios P Kyritsis
- Neurosurgical Institute, Ioannina University School of Medicine, Ioannina, GR 451 10, Greece
| |
Collapse
|
63
|
Abstract
Neuroblastoma is the most common extracranial solid tumour occurring in childhood and has a diverse clinical presentation and course depending on the tumour biology. Unique features of these neuroendocrine tumours are the early age of onset, the high frequency of metastatic disease at diagnosis and the tendency for spontaneous regression of tumours in infancy. The most malignant tumours have amplification of the MYCN oncogene (encoding a transcription factor), which is usually associated with poor survival, even in localized disease. Although transgenic mouse models have shown that MYCN overexpression can be a tumour-initiating factor, many other cooperating genes and tumour suppressor genes are still under investigation and might also have a role in tumour development. Segmental chromosome alterations are frequent in neuroblastoma and are associated with worse outcome. The rare familial neuroblastomas are usually associated with germline mutations in ALK, which is mutated in 10-15% of primary tumours, and provides a potential therapeutic target. Risk-stratified therapy has facilitated the reduction of therapy for children with low-risk and intermediate-risk disease. Advances in therapy for patients with high-risk disease include intensive induction chemotherapy and myeloablative chemotherapy, followed by the treatment of minimal residual disease using differentiation therapy and immunotherapy; these have improved 5-year overall survival to 50%. Currently, new approaches targeting the noradrenaline transporter, genetic pathways and the tumour microenvironment hold promise for further improvements in survival and long-term quality of life.
Collapse
|
64
|
Zhang X, Chen Y, Hao L, Hou A, Chen X, Li Y, Wang R, Luo P, Ruan Z, Ou J, Shi C, Miao H, Liang H. Macrophages induce resistance to 5-fluorouracil chemotherapy in colorectal cancer through the release of putrescine. Cancer Lett 2016; 381:305-13. [PMID: 27514455 DOI: 10.1016/j.canlet.2016.08.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/30/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
The development of chemoresistance to 5-fluorouracil (5-FU) is a major obstacle for sustained effective treatment of colorectal cancer (CRC), with the mechanisms being not fully understood. Here we demonstrated that tumor associated macrophages (TAMs) became activated during treatment with 5-FU and secreted factors that protected the CRC cells against chemotherapy with 5-FU. By performing metabolomics analysis, we identified putrescine, a member of polyamines, inducing resistance to 5-FU-triggered CRC apoptosis and tumor suppression via JNK-caspase-3 pathway. Noteworthily, either pharmacological or genetic blockage of ornithine decarboxylase (ODC) prevented TAMs-induced chemoresistance to 5-FU in vitro and in vivo. Our findings show that TAMs are potent mediators of resistance to 5-FU chemotherapy and uncover potential targets to enhance chemotherapy sensitivity in patients with CRC.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yujuan Chen
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lijun Hao
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Along Hou
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| | - Xiaozhen Chen
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yifei Li
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Rui Wang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| | - Peng Luo
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Zhihua Ruan
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Juanjuan Ou
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Hongming Miao
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China.
| | - Houjie Liang
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|