51
|
Pre-Existing and Acquired Resistance to PARP Inhibitor-Induced Synthetic Lethality. Cancers (Basel) 2022; 14:cancers14235795. [PMID: 36497275 PMCID: PMC9741207 DOI: 10.3390/cancers14235795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
The advanced development of synthetic lethality has opened the doors for specific anti-cancer medications of personalized medicine and efficient therapies against cancers. One of the most popular approaches being investigated is targeting DNA repair pathways as the implementation of the PARP inhibitor (PARPi) into individual or combinational therapeutic schemes. Such treatment has been effectively employed against homologous recombination-defective solid tumors as well as hematopoietic malignancies. However, the resistance to PARPi has been observed in both preclinical research and clinical treatment. Therefore, elucidating the mechanisms responsible for the resistance to PARPi is pivotal for the further success of this intervention. Apart from mechanisms of acquired resistance, the bone marrow microenvironment provides a pre-existing mechanism to induce the inefficiency of PARPi in leukemic cells. Here, we describe the pre-existing and acquired mechanisms of the resistance to PARPi-induced synthetic lethality. We also discuss the potential rationales for developing effective therapies to prevent/repress the PARPi resistance in cancer cells.
Collapse
|
52
|
Pulmonary cancers across different histotypes share hybrid tuft cell/ionocyte-like molecular features and potentially druggable vulnerabilities. Cell Death Dis 2022; 13:979. [PMID: 36402755 PMCID: PMC9675833 DOI: 10.1038/s41419-022-05428-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022]
Abstract
Tuft cells are chemosensory epithelial cells in the respiratory tract and several other organs. Recent studies revealed tuft cell-like gene expression signatures in some pulmonary adenocarcinomas, squamous cell carcinomas (SQCC), small cell carcinomas (SCLC), and large cell neuroendocrine carcinomas (LCNEC). Identification of their similarities could inform shared druggable vulnerabilities. Clinicopathological features of tuft cell-like (tcl) subsets in various lung cancer histotypes were studied in two independent tumor cohorts using immunohistochemistry (n = 674 and 70). Findings were confirmed, and additional characteristics were explored using public datasets (RNA seq and immunohistochemical data) (n = 555). Drug susceptibilities of tuft cell-like SCLC cell lines were also investigated. By immunohistochemistry, 10-20% of SCLC and LCNEC, and approximately 2% of SQCC expressed POU2F3, the master regulator of tuft cells. These tuft cell-like tumors exhibited "lineage ambiguity" as they co-expressed NCAM1, a marker for neuroendocrine differentiation, and KRT5, a marker for squamous differentiation. In addition, tuft cell-like tumors co-expressed BCL2 and KIT, and tuft cell-like SCLC and LCNEC, but not SQCC, also highly expressed MYC. Data from public datasets confirmed these features and revealed that tuft cell-like SCLC and LCNEC co-clustered on hierarchical clustering. Furthermore, only tuft cell-like subsets among pulmonary cancers significantly expressed FOXI1, the master regulator of ionocytes, suggesting their bidirectional but immature differentiation status. Clinically, tuft cell-like SCLC and LCNEC had a similar prognosis. Experimentally, tuft cell-like SCLC cell lines were susceptible to PARP and BCL2 co-inhibition, indicating synergistic effects. Taken together, pulmonary tuft cell-like cancers maintain histotype-related clinicopathologic characteristics despite overlapping unique molecular features. From a therapeutic perspective, identification of tuft cell-like LCNECs might be crucial given their close kinship with tuft cell-like SCLC.
Collapse
|
53
|
Sabet Z, Vagiannis D, Budagaga Y, Zhang Y, Novotná E, Hanke I, Rozkoš T, Hofman J. Talazoparib Does Not Interact with ABCB1 Transporter or Cytochrome P450s, but Modulates Multidrug Resistance Mediated by ABCC1 and ABCG2: An in Vitro and Ex Vivo Study. Int J Mol Sci 2022; 23:ijms232214338. [PMID: 36430819 PMCID: PMC9697930 DOI: 10.3390/ijms232214338] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Talazoparib (Talzenna) is a novel poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitor that is clinically used for the therapy of breast cancer. Furthermore, the drug has shown antitumor activity against different cancer types, including non-small cell lung cancer (NSCLC). In this work, we investigated the possible inhibitory interactions of talazoparib toward selected ATP-binding cassette (ABC) drug efflux transporters and cytochrome P450 biotransformation enzymes (CYPs) and evaluated its position in multidrug resistance (MDR). In accumulation studies, talazoparib interacted with the ABCC1 and ABCG2 transporters, but there were no significant effects on ABCB1. Furthermore, incubation assays revealed a negligible capacity of the tested drug to inhibit clinically relevant CYPs. In in vitro drug combination experiments, talazoparib synergistically reversed daunorubicin and mitoxantrone resistance in cells with ABCC1 and ABCG2 expression, respectively. Importantly, the position of an effective MDR modulator was further confirmed in drug combinations performed in ex vivo NSCLC patients-derived explants, whereas the possible victim role was refuted in comparative proliferation experiments. In addition, talazoparib had no significant effects on the mRNA-level expressions of MDR-related ABC transporters in the MCF-7 cellular model. In summary, our study presents a comprehensive overview on the pharmacokinetic drug-drug interactions (DDI) profile of talazoparib. Moreover, we introduced talazoparib as an efficient MDR antagonist.
Collapse
Affiliation(s)
- Ziba Sabet
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Králové, Czech Republic
| | - Dimitrios Vagiannis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Králové, Czech Republic
| | - Youssif Budagaga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Králové, Czech Republic
| | - Yu Zhang
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Králové, Czech Republic
| | - Eva Novotná
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Králové, Czech Republic
| | - Ivo Hanke
- Department of Cardiac Surgery, Faculty of Medicine, Charles University in Hradec Králové and University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
| | - Tomáš Rozkoš
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine and University Hospital in Hradec Králové, Czech Republic, Sokolská 581, 500 05 Hradec Králové, Czech Republic
| | - Jakub Hofman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Králové, Czech Republic
- Correspondence: ; Tel.: +420-495-067-593
| |
Collapse
|
54
|
Yamada Y, Bohnenberger H, Kriegsmann M, Kriegsmann K, Sinn P, Goto N, Nakanishi Y, Seno H, Chigusa Y, Fujimoto M, Minamiguchi S, Haga H, Simon R, Sauter G, Ströbel P, Marx A. Tuft cell-like carcinomas: novel cancer subsets present in multiple organs sharing a unique gene expression signature. Br J Cancer 2022; 127:1876-1885. [PMID: 35999270 PMCID: PMC9643388 DOI: 10.1038/s41416-022-01957-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Tuft cells are chemosensory epithelial cells playing a role in innate immunity. Recent studies revealed cancers with a tuft cell-like gene expression signature in the thorax. We wondered whether this signature might also occur in extrathoracic cancers. METHODS We examined mRNA expression of tuft cell markers (POU2F3, GFI1B, TRPM5, SOX9, CHAT, and AVIL) in 19 different types of cancers in multiple extrathoracic organs with The Cancer Genome Atlas (TCGA) (N = 6322). Four different extrathoracic cancers in our local archives (N = 909) were analysed by immunohistochemistry. RESULTS Twenty-two (0.35%) extrathoracic tumours with co-expression of POU2F3 and other tuft cell markers were identified in various TCGA datasets. Twelve of the 22 "tuft cell-like tumours" shared poor differentiation and a gene expression pattern, including KIT, anti-apoptotic BCL2, and ionocyte-associated genes. In our archival cases, eleven (1.21%) tumours co-expressing POU2F3, KIT, and BCL2 on immunohistochemistry, i.e., were presumable tuft cell-like cancers. In three among five TCGA cohorts, the tuft cell-like cancer subsets expressed SLFN11, a promising biomarker of PARP inhibitor susceptibility. CONCLUSIONS Tuft cell-like carcinomas form distinct subsets in cancers of many organs. It appears warranted to investigate their shared gene expression signature as a predictive biomarker for novel therapeutic strategies.
Collapse
Affiliation(s)
- Yosuke Yamada
- Institute of Pathology, University Medical Centre Mannheim and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan.
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Mark Kriegsmann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Lung Cancer Research (DZL), Heidelberg, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Sinn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Norihiro Goto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshitsugu Chigusa
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | - Hironori Haga
- Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
55
|
Baxter JS, Zatreanu D, Pettitt SJ, Lord CJ. Resistance to DNA repair inhibitors in cancer. Mol Oncol 2022; 16:3811-3827. [PMID: 35567571 PMCID: PMC9627783 DOI: 10.1002/1878-0261.13224] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
The DNA damage response (DDR) represents a complex network of proteins which detect and repair DNA damage, thereby maintaining the integrity of the genome and preventing the transmission of mutations and rearranged chromosomes to daughter cells. Faults in the DDR are a known driver and hallmark of cancer. Furthermore, inhibition of DDR enzymes can be used to treat the disease. This is exemplified by PARP inhibitors (PARPi) used to treat cancers with defects in the homologous recombination DDR pathway. A series of novel DDR targets are now also under pre-clinical or clinical investigation, including inhibitors of ATR kinase, WRN helicase or the DNA polymerase/helicase Polθ (Pol-Theta). Drug resistance is a common phenomenon that impairs the overall effectiveness of cancer treatments and there is already some understanding of how resistance to PARPi occurs. Here, we discuss how an understanding of PARPi resistance could inform how resistance to new drugs targeting the DDR emerges. We also discuss potential strategies that could limit the impact of these therapy resistance mechanisms in cancer.
Collapse
Affiliation(s)
- Joseph S. Baxter
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Diana Zatreanu
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
56
|
The Prognostic and Therapeutic Potential of DNA Damage Repair Pathway Alterations and Homologous Recombination Deficiency in Lung Cancer. Cancers (Basel) 2022; 14:cancers14215305. [DOI: 10.3390/cancers14215305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer remains the second most commonly diagnosed cancer worldwide and the leading cause of cancer-related mortality. The mapping of genomic alterations and their role in lung-cancer progression has been followed by the development of new therapeutic options. Several novel drugs, such as targeted therapy and immunotherapy, have significantly improved outcomes. However, many patients with lung cancer do not benefit from existing therapies or develop progressive disease, leading to increased morbidity and mortality despite initial responses to treatment. Alterations in DNA-damage repair (DDR) genes represent a cancer hallmark that impairs a cell’s ability to prevent deleterious mutation accumulation and repair. These alterations have recently emerged as a therapeutic target in breast, ovarian, prostate, and pancreatic cancers. The role of DDR alterations remains largely unknown in lung cancer. Nevertheless, recent research efforts have highlighted a potential role of some DDR alterations as predictive biomarkers of response to treatment. Despite the failure of PARP inhibitors (main class of DDR targeting agents) to improve outcomes in lung cancer patients, there is some evidence suggesting a role of PARP inhibitors and other DDR targeting agents in benefiting a distinct subset of lung cancer patients. In this review, we will discuss the existing literature on DDR alterations and homologous recombination deficiency (HRD) state as predictive biomarkers and therapeutic targets in both non-small cell lung and small cell lung cancer.
Collapse
|
57
|
Ashrafi A, Akter Z, Modareszadeh P, Modareszadeh P, Berisha E, Alemi PS, Chacon Castro MDC, Deese AR, Zhang L. Current Landscape of Therapeutic Resistance in Lung Cancer and Promising Strategies to Overcome Resistance. Cancers (Basel) 2022; 14:4562. [PMID: 36230484 PMCID: PMC9558974 DOI: 10.3390/cancers14194562] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide with a 5-year survival rate of less than 18%. Current treatment modalities include surgery, chemotherapy, radiation therapy, targeted therapy, and immunotherapy. Despite advances in therapeutic options, resistance to therapy remains a major obstacle to the effectiveness of long-term treatment, eventually leading to therapeutic insensitivity, poor progression-free survival, and disease relapse. Resistance mechanisms stem from genetic mutations and/or epigenetic changes, unregulated drug efflux, tumor hypoxia, alterations in the tumor microenvironment, and several other cellular and molecular alterations. A better understanding of these mechanisms is crucial for targeting factors involved in therapeutic resistance, establishing novel antitumor targets, and developing therapeutic strategies to resensitize cancer cells towards treatment. In this review, we summarize diverse mechanisms driving resistance to chemotherapy, radiotherapy, targeted therapy, and immunotherapy, and promising strategies to help overcome this therapeutic resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
58
|
Metzner FJ, Wenzl SJ, Kugler M, Krebs S, Hopfner KP, Lammens K. Mechanistic understanding of human SLFN11. Nat Commun 2022; 13:5464. [PMID: 36115853 PMCID: PMC9482658 DOI: 10.1038/s41467-022-33123-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/01/2022] [Indexed: 11/12/2022] Open
Abstract
Schlafen 11 (SLFN11) is an interferon-inducible antiviral restriction factor with tRNA endoribonuclease and DNA binding functions. It is recruited to stalled replication forks in response to replication stress and inhibits replication of certain viruses such as the human immunodeficiency virus 1 (HIV-1) by modulating the tRNA pool. SLFN11 has been identified as a predictive biomarker in cancer, as its expression correlates with a beneficial response to DNA damage inducing anticancer drugs. However, the mechanism and interdependence of these two functions are largely unknown. Here, we present cryo-electron microscopy (cryo-EM) structures of human SLFN11 in its dimeric apoenzyme state, bound to tRNA and in complex with single-strand DNA. Full-length SLFN11 neither hydrolyses nor binds ATP and the helicase domain appears in an autoinhibited state. Together with biochemical and structure guided mutagenesis studies, our data give detailed insights into the mechanism of endoribonuclease activity as well as suggestions on how SLFN11 may block stressed replication forks. Schlafen 11 serves as an antiviral restriction factor and a predictive biomarker in cancer. Here, the authors use cryoelectron microscopy and biochemical assays to understand tRNA endoribonuclease and DNA binding functions of human Schlafen 11.
Collapse
|
59
|
Chaudhary M, Sharma P, Mukherjee TK. Applications of CRISPR/Cas technology against drug-resistant lung cancers: an update. Mol Biol Rep 2022; 49:11491-11502. [PMID: 36097111 DOI: 10.1007/s11033-022-07766-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022]
Abstract
Out of all the cancer types, the most prevalent one is lung cancer. Multiple genes and signaling pathways play role in the progression of lung cancer. Considering the wider prevalence and fatality of lung cancer it has become the focus of current cancer research. Though currently used approaches have shown positive results against lung cancer but success against non-small cell lung cancer (NSCLC) still looms as an enigma for the entire research fraternity. The development of resistance against inhibitors within a short span is one of the reasons responsible for the failure and relapse of lung cancer. Under these prevailing conditions genome/gene-editing technology using clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR associated proteins (Cas), popularly known as CRISPR/Cas technology offers a convenient and flexible method for inducing precise changes within the lung cancer cell. Additionally, CRISPR-barcoding and CRISPR knockout screens at the genome-wide level can help in the functional investigation of specific mutations and identification of novel cancer drivers respectively. Several variants of the CRISPR/Cas system are being developed to limit off-targeting with enhanced precision. The present review article updates the usefulness of CRISPR/Cas technology against various types of lung cancers.
Collapse
Affiliation(s)
- Mayank Chaudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Pooja Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Tapan Kumar Mukherjee
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India.
| |
Collapse
|
60
|
Zhang C, Wang H. Accurate treatment of small cell lung cancer: Current progress, new challenges and expectations. Biochim Biophys Acta Rev Cancer 2022; 1877:188798. [PMID: 36096336 DOI: 10.1016/j.bbcan.2022.188798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022]
Abstract
Small cell lung cancer (SCLC) is a deadly disease with poor prognosis. Fast growing speed, inclination to metastasis, enrichment in cancer stem cells altogether constitute its aggressive nature. In stark contrast to non-small cell lung cancer (NSCLC) that strides vigorously on the road to precision oncology, SCLC has been on the embryonic path to achieve effective personalized treatments. The survival of patients with SCLC have not been improved greatly, which could be possibly due to our inadequate understanding of genetic alterations of SCLC. Recently, encouraging effects have been observed in patients with SCLC undergoing immunotherapy. However, exciting results have only been observed in a small fraction of patients with SCLC, warranting biomarkers predictive of responses as well as novel therapeutic strategies. In addition, SCLC has previously been viewed to be homogeneous. However, perspectives have been changed thanks to the advances in sequencing techniques and platforms, which unfolds the complex heterogeneity of SCLC both genetically and non-genetically, rendering the treatment of SCLC a further step forward into the precision era. To outline the road of SCLC towards precision oncology, we summarize the progresses and achievements made in precision treatment in SCLC in genomic, transcriptomic, epigenetic, proteomic and metabolic dimensions. Moreover, we conclude relevant therapeutic vulnerabilities in SCLC. Clinically tested drugs and clinical trials have also been demonstrated. Ultimately, we look into the opportunities and challenges ahead to advance the individualized treatment in pursuit of improved survival for patients with SCLC.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
61
|
PARP inhibitors in small cell lung cancer: The underlying mechanisms and clinical implications. Biomed Pharmacother 2022; 153:113458. [DOI: 10.1016/j.biopha.2022.113458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022] Open
|
62
|
Ban X, Mo S, Lu Z, Jia C, Shao H, Chang X, Mao X, Zhang Y, Pang J, Zhang Y, Yu S, Chen J. Expression and methylation status of MMR and MGMT in well-differentiated pancreatic neuroendocrine tumors and potential clinical applications. Endocrine 2022; 77:538-545. [PMID: 35708896 DOI: 10.1007/s12020-022-03102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Recent studies claim that immune checkpoint inhibitors are effective in defective mismatch repair (dMMR) cancers. This raises the question of whether similar therapies are effective in PanNETs (pancreatic neuroendocrine tumors); however, in general, assessment of MMR status in PanNETs has been inconsistent in previous studies. MGMT (O6-methylguanine-DNA methyltransferase) is potentially important for guiding temozolomide (TMZ) therapy in glioblastoma. The number of reports on MGMT expression and promoter methylation in PanNETs are limited. METHODS In this study we assessed the expression of MGMT and MMR proteins MSH2, MSH6, MLH1 and PMS2 in a series of PanNETs by IHC. The methylation status of MGMT and MMR genes in a subset of PanNETs was further assessed by MS-MLPA analysis. Survival curves were constructed using the Kaplan-Meier method, and differences were assessed using the log-rank test. Multivariate Cox proportional hazards regression models were used to determine the prognostic value of the variables. RESULTS According to evaluation criteria for mismatch repair defects, none of PanNETs shown nuclear staining loss for MSH2, MSH6, MLH1, and PMS2. MGMT low-intensity PanNETs were more commonly found in higher grade, higher Ki67 index and non-functional tumors (P < 0.05). In multivariate analysis, stage III-IV and low-intensity MGMT were shown to be independent risk factors for progression of PanNETs in the entire cohort, non-functioning subgroup and G2 subgroup (P < 0.05 for all). MGMT promoter methylation tended to be higher in the group with low expression of MGMT, However, methylation of MGMT did not statistically correlate with low expression of MGMT (P = 0.153). CONCLUSIONS In conclusion, our study suggests that decreased expression of MGMT but not MMR is associated with a higher risk of progression of pancreatic neuroendocrine tumors.
Collapse
Affiliation(s)
- Xinchao Ban
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Pathology, Tianjin Medical University, Tianjin, China
- Department of Pathology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shengwei Mo
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhaohui Lu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Congwei Jia
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huilin Shao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyan Chang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinxin Mao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Zhang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Junyi Pang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuhan Zhang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuangni Yu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
63
|
Woll P, Gaunt P, Danson S, Steele N, Ahmed S, Mulatero C, Shah R, Bhosle J, Hodgkinson E, Watkins B, Billingham L. Olaparib as maintenance treatment in patients with chemosensitive small cell lung cancer (STOMP): A randomised, double-blind, placebo-controlled phase II trial. Lung Cancer 2022; 171:26-33. [PMID: 35872530 DOI: 10.1016/j.lungcan.2022.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Small cell lung cancer (SCLC) responds well to chemoradiotherapy but frequently relapses. Here, we evaluate activity and safety of the poly (adenosine diphosphate (ADP)-ribose) polymerase (PARP) inhibitor olaparib as maintenance treatment for patients with chemoresponsive SCLC. MATERIALS AND METHODS Eligible patients had complete or partial response to first line chemotherapy or chemoradiotherapy for SCLC. Patients were randomised 2:2:1:1 to olaparib 300 mg twice a day (BD), olaparib 200 mg three times a day (TDS), placebo BD or placebo TDS. The primary outcome was progression-free survival time (PFS). The trial design had 80% power to detect a 3-month difference in median PFS based on a one-sided 5% significance level. Secondary outcome measures included overall survival time (OS), adverse events and quality of life. ISRCTN 73164486, EudraCT 2010-021165-76. RESULTS 220 patients were randomised: 74 placebo, 73 olaparib BD, 73 olaparib TDS. Median PFS (90% confidence interval (CI)) was 2·5 (1·8, 3·7), 3·7 (3·1, 4·6) and 3·6 (2·8, 4·7) months in the placebo, olaparib BD and TDS arms, respectively. There was no significant difference in PFS between olaparib and placebo for either BD (Hazard Ratio (HR) (90%CI) 0·76 (0·57, 1·02), P = 0·125 or TDS 0·86, (0·64, 1·15), P = 0·402. Common adverse events on olaparib were fatigue, nausea, anaemia, vomiting and anorexia. Of 214 patients who discontinued treatment before 24 months, toxicity was the reason cited for 66 (18 placebo, 24 olaparib BD, 24 olaparib TDS). CONCLUSION This trial does not provide sufficient evidence that either the BD or TDS regimen for maintenance olaparib monotherapy improves PFS or OS in an unselected SCLC population to warrant further research. Toxicity for olaparib was similar to other studies.
Collapse
Affiliation(s)
- Penella Woll
- University of Sheffield, Sheffield, United Kingdom; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Piers Gaunt
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | - Sarah Danson
- University of Sheffield, Sheffield, United Kingdom; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom.
| | - Nicola Steele
- Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Samreen Ahmed
- University Hospitals of Leicester, Leicester, United Kingdom
| | | | - Riyaz Shah
- Maidstone Hospital, Maidstone, United Kingdom
| | | | | | - Ben Watkins
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | - Lucinda Billingham
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
64
|
Merlini A, Centomo ML, Ferrero G, Chiabotto G, Miglio U, Berrino E, Giordano G, Brusco S, Pisacane A, Maldi E, Sarotto I, Capozzi F, Lano C, Isella C, Crisafulli G, Aglietta M, Dei Tos AP, Sbaraglia M, Sangiolo D, D’Ambrosio L, Bardelli A, Pignochino Y, Grignani G. DNA damage response and repair genes in advanced bone and soft tissue sarcomas: An 8-gene signature as a candidate predictive biomarker of response to trabectedin and olaparib combination. Front Oncol 2022; 12:844250. [PMID: 36110934 PMCID: PMC9469659 DOI: 10.3389/fonc.2022.844250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Background Advanced and unresectable bone and soft tissue sarcomas (BSTS) still represent an unmet medical need. We demonstrated that the alkylating agent trabectedin and the PARP1-inhibitor olaparib display antitumor activity in BSTS preclinical models. Moreover, in a phase Ib clinical trial (NCT02398058), feasibility, tolerability and encouraging results have been observed and the treatment combination is currently under study in a phase II trial (NCT03838744). Methods Differential expression of genes involved in DNA Damage Response and Repair was evaluated by Nanostring® technology, extracting RNA from pre-treatment tumor samples of 16 responder (≥6-month progression free survival) and 16 non-responder patients. Data validation was performed by quantitative real-time PCR, RNA in situ hybridization, and immunohistochemistry. The correlation between the identified candidate genes and both progression-free survival and overall survival was investigated in the publicly available dataset “Sarcoma (TCGA, The Cancer Genome Atlas)”. Results Differential RNA expression analysis revealed an 8-gene signature (CDKN2A, PIK3R1, SLFN11, ATM, APEX2, BLM, XRCC2, MAD2L2) defining patients with better outcome upon trabectedin+olaparib treatment. In responder vs. non-responder patients, a significant differential expression of these genes was further confirmed by RNA in situ hybridization and by qRT-PCR and immunohistochemistry in selected experiments. Correlation between survival outcomes and genetic alterations in the identified genes was shown in the TCGA sarcoma dataset. Conclusions This work identified an 8-gene expression signature to improve prediction of response to trabectedin+olaparib combination in BSTS. The predictive role of these potential biomarkers warrants further investigation.
Collapse
Affiliation(s)
- Alessandra Merlini
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Maria Laura Centomo
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
- Department of Computer Science, University of Torino, Turin, Italy
| | - Giulia Chiabotto
- Department of Medical Sciences, University of Torino, Turin, Italy
| | | | - Enrico Berrino
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Giorgia Giordano
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Silvia Brusco
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | | | - Elena Maldi
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | | | | | - Cristina Lano
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Claudio Isella
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Giovanni Crisafulli
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Massimo Aglietta
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Angelo Paolo Dei Tos
- Department of Pathology, Azienda Ospedale-Università Padova, Padua, Italy
- Department of Medicine (DIMED), University of Padua School of Medicine, Padua, Italy
| | - Marta Sbaraglia
- Department of Pathology, Azienda Ospedale-Università Padova, Padua, Italy
| | - Dario Sangiolo
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Lorenzo D’Ambrosio
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
- Medical Oncology, AOU San Luigi Gonzaga, Orbassano (TO), Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Ymera Pignochino
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
- *Correspondence: Ymera Pignochino, ; Giovanni Grignani,
| | - Giovanni Grignani
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- *Correspondence: Ymera Pignochino, ; Giovanni Grignani,
| |
Collapse
|
65
|
Wang N, Yang Y, Jin D, Zhang Z, Shen K, Yang J, Chen H, Zhao X, Yang L, Lu H. PARP inhibitor resistance in breast and gynecological cancer: Resistance mechanisms and combination therapy strategies. Front Pharmacol 2022; 13:967633. [PMID: 36091750 PMCID: PMC9455597 DOI: 10.3389/fphar.2022.967633] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
Breast cancer and gynecological tumors seriously endanger women’s physical and mental health, fertility, and quality of life. Due to standardized surgical treatment, chemotherapy, and radiotherapy, the prognosis and overall survival of cancer patients have improved compared to earlier, but the management of advanced disease still faces great challenges. Recently, poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) have been clinically approved for breast and gynecological cancer patients, significantly improving their quality of life, especially of patients with BRCA1/2 mutations. However, drug resistance faced by PARPi therapy has hindered its clinical promotion. Therefore, developing new drug strategies to resensitize cancers affecting women to PARPi therapy is the direction of our future research. Currently, the effects of PARPi in combination with other drugs to overcome drug resistance are being studied. In this article, we review the mechanisms of PARPi resistance and summarize the current combination of clinical trials that can improve its resistance, with a view to identify the best clinical treatment to save the lives of patients.
Collapse
Affiliation(s)
- Nannan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Dongdong Jin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment, Zhengzhou, China
| | - Zhenan Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanhuan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyue Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment, Zhengzhou, China
- *Correspondence: Li Yang, ; Huaiwu Lu,
| | - Huaiwu Lu
- Department of Gynaecological Oncology, Sun Yat Sen Memorial Hospital, Guangzhou, China
- *Correspondence: Li Yang, ; Huaiwu Lu,
| |
Collapse
|
66
|
Predictive biomarkers for molecularly targeted therapies and immunotherapies in breast cancer. Arch Pharm Res 2022; 45:597-617. [PMID: 35982262 DOI: 10.1007/s12272-022-01402-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Globally, breast cancer is the most common malignancy in women. Substantial efforts have been made to develop novel therapies, including targeted therapies and immunotherapies, for patients with breast cancer who do not respond to standard therapies. Consequently, new targeted therapies, such as cyclin-dependent kinase 4 and 6 inhibitors, poly (ADP-ribose) polymerase inhibitors, phosphoinositide 3-kinase inhibitor, and antibody-drug conjugates targeting human epidermal growth factor receptor 2 or trophoblast cell surface antigen-2, and immune checkpoint inhibitor targeting programmed cell death-1, have been developed and are now in clinical use. However, only some patients have benefited from these novel therapies; therefore, the identification and validation of reliable or more accurate biomarkers for predicting responses to these agents remain a major challenge. This review summarizes the currently available predictive biomarkers for breast cancer and describes recent efforts undertaken to identify potential predictive markers for molecularly targeted therapies and immune checkpoint inhibitors.
Collapse
|
67
|
Burgess EF, Sanders JA, Livasy C, Symanowski J, Gatalica Z, Steuerwald NM, Arguello D, Brouwer CR, Korn WM, Grigg CM, Zhu J, Matulay JT, Clark PE, Heath EI, Raghavan D. Identification of potential biomarkers and novel therapeutic targets through genomic analysis of small cell bladder carcinoma and associated clinical outcomes. Urol Oncol 2022; 40:383.e1-383.e10. [DOI: 10.1016/j.urolonc.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/09/2022] [Accepted: 04/28/2022] [Indexed: 11/27/2022]
|
68
|
Xiong J, Barayan R, Louie AV, Lok BH. Novel therapeutic combinations with PARP inhibitors for small cell lung cancer: A bench-to-bedside review. Semin Cancer Biol 2022; 86:521-542. [PMID: 35917883 DOI: 10.1016/j.semcancer.2022.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/02/2022] [Accepted: 07/29/2022] [Indexed: 10/31/2022]
Abstract
Small cell lung cancer (SCLC) is treated as a monolithic disease despite the evident intra- and intertumoral heterogeneity. Non-specific DNA-damaging agents have remained the first-line treatment for decades. Recently, emerging transcriptomic and genomic profiling of SCLC tumors identified distinct SCLC subtypes and vulnerabilities towards targeted therapeutics, including inhibitors of the nuclear enzyme poly (ADP-ribose) polymerase (PARPi). SCLC cell lines and tumors exhibited an elevated level of PARP1 protein and mRNA compared to healthy lung tissues and other subtypes of lung tumors. Notable responses to PARPi were also observed in preclinical SCLC models. Clinically, PARPi monotherapy exerted variable benefits for SCLC patients. To date, research is being vigorously conducted to examine predictive biomarkers of PARPi response and various PARPi combination strategies to maximize the clinical utility of PARPi. This narrative review summarizes existing preclinical evidence supporting PARPi monotherapy, combination therapy, and respective translation to the clinic. Specifically, we covered the combination of PARPi with DNA-damaging chemotherapy (cisplatin, etoposide, temozolomide), thoracic radiotherapy, immunotherapy (immune checkpoint inhibitors), and many other novel therapeutic agents that target DNA damage response, tumor microenvironment, epigenetic modulation, angiogenesis, the ubiquitin-proteasome system, or autophagy. Putative biomarkers, such as SLFN11 expression, MGMT methylation, E2F1 expression, and platinum sensitivity, which may be predictive of response to distinct therapeutic combinations, were also discussed. The future of SCLC treatment is undergoing rapid change with a focus on tailored and personalized treatment strategies. Further development of cancer therapy with PARPi will immensely benefit at least a subset of biomarker-defined SCLC patients.
Collapse
Affiliation(s)
- Jiaqi Xiong
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ranya Barayan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Alexander V Louie
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Odette Cancer Centre - Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| | - Benjamin H Lok
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
69
|
Expression of DNA Helicase Genes Was Correlated with Homologous Recombination Deficiency in Breast Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5508301. [PMID: 35855837 PMCID: PMC9288330 DOI: 10.1155/2022/5508301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/22/2022] [Indexed: 01/01/2023]
Abstract
Homologous recombination deficiency which is currently measured by the homologous recombination deficiency (HRD) score including score of telomeric allelic imbalance (TAI), large-scale transition (LST), and loss of heterozygosity (LOH) is highly related with sensitivity to platinum-containing drug and PARP inhibitors. DNA helicases are essential components for the homologous recombination repair process in which DNA helicases unwind double-strand DNA utilizing ATP hydrolysis. In our study, the correlation between the expression of DNA helicase genes and HRD score in breast cancer was analyzed. The overexpression in half of the DNA helicase genes was found to be highly correlated with a high HRD score both in BRCA-mutated and BRCA wild-type breast cancer. Moreover, HRD score can be predicted by a linear function contributed by five DNA helicase genes. In conclusion, our study revealed a close relation between the overexpression of certain DNA helicase genes and the deficiency of homologous recombination repair in breast cancer.
Collapse
|
70
|
Onji H, Murai J. Reconsidering the mechanisms of action of PARP inhibitors based on clinical outcomes. Cancer Sci 2022; 113:2943-2951. [PMID: 35766436 PMCID: PMC9459283 DOI: 10.1111/cas.15477] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/19/2022] [Accepted: 06/25/2022] [Indexed: 11/30/2022] Open
Abstract
PARP inhibitors (PARPis) were initially developed as DNA repair inhibitors that inhibit the catalytic activity of PARP1 and PARP2 and are expected to induce synthetic lethality in BRCA‐ or homologous recombination (HR)‐deficient tumors. However, the clinical indications for PARPis are not necessarily limited to BRCA mutations or HR deficiency; BRCA wild‐type and HR‐proficient cancers can also derive some benefit from PARPis. These facts are interpretable by an additional primary antitumor mechanism of PARPis named PARP trapping, resulting from the stabilization of PARP‐DNA complexes. Favorable response to platinum derivatives (cisplatin and carboplatin) in preceding treatment is used as a clinical biomarker for some PARPis, implying that sensitivity factors for platinum derivatives and PARPis are mainly common. Such common sensitivity factors include not only HR defects (HRD) but also additional factors. One of them is Schlafen 11 (SLFN11), a putative DNA/RNA helicase, that sensitizes cancer cells to a broad type of DNA‐damaging agents, including platinum and topoisomerase inhibitors. Mechanistically, SLFN11 induces a lethal replication block in response to replication stress (ie, DNA damage). As SLFN11 acts upon replication stress, trapping PARPis can activate SLFN11. Preclinical models show the importance of SLFN11 in PARPi sensitivity. However, the relevance of SLFN11 in PARPi response is less evident in clinical data compared with the significance of SLFN11 for platinum sensitivity. In this review, we consider the reasons for variable indications of PARPis resulting from clinical outcomes and review the mechanisms of action for PARPis as anticancer agents.
Collapse
Affiliation(s)
- Hiroshi Onji
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Japan.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Japan
| | - Junko Murai
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| |
Collapse
|
71
|
Emran TB, Shahriar A, Mahmud AR, Rahman T, Abir MH, Siddiquee MFR, Ahmed H, Rahman N, Nainu F, Wahyudin E, Mitra S, Dhama K, Habiballah MM, Haque S, Islam A, Hassan MM. Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Front Oncol 2022; 12:891652. [PMID: 35814435 PMCID: PMC9262248 DOI: 10.3389/fonc.2022.891652] [Citation(s) in RCA: 156] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. Several treatments are available for cancer treatment, but many treatment methods are ineffective against multidrug-resistant cancer. Multidrug resistance (MDR) represents a major obstacle to effective therapeutic interventions against cancer. This review describes the known MDR mechanisms in cancer cells and discusses ongoing laboratory approaches and novel therapeutic strategies that aim to inhibit, circumvent, or reverse MDR development in various cancer types. In this review, we discuss both intrinsic and acquired drug resistance, in addition to highlighting hypoxia- and autophagy-mediated drug resistance mechanisms. Several factors, including individual genetic differences, such as mutations, altered epigenetics, enhanced drug efflux, cell death inhibition, and various other molecular and cellular mechanisms, are responsible for the development of resistance against anticancer agents. Drug resistance can also depend on cellular autophagic and hypoxic status. The expression of drug-resistant genes and the regulatory mechanisms that determine drug resistance are also discussed. Methods to circumvent MDR, including immunoprevention, the use of microparticles and nanomedicine might result in better strategies for fighting cancer.
Collapse
Affiliation(s)
- Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Asif Shahriar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, United States
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | | | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Elly Wahyudin
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mahmoud M Habiballah
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Bursa Uludağ University Faculty of Medicine, Bursa, Turkey
| | | | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
72
|
张 琳, 孟 凡, 钟 殿. [DNA Damage Repair System and Antineoplastic Agents in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:434-442. [PMID: 35747923 PMCID: PMC9244503 DOI: 10.3779/j.issn.1009-3419.2022.101.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
Abstract
DNA damage repair (DDR) system plays an important role in maintaining of genomic stability. Accumulation of DNA lesions or deficiency of DDR system could drive tumorigenesis as well as promote tumor progression; meanwhile, they could also provide therapeutic opportunities and targets. Of all the antineoplastic agents of lung cancers, many of them targeted or were associated with DNA damage and repair pathways, such as chemotherapies and antibody-drug conjugates which were designed directly causing DNA damages, targeted drugs inhibiting DNA repair pathways, and immune-checkpoint inhibitors. In this review, we described the role of DNA damage and repair pathways in antitumor activity of the above agents, as well as summarized the application and clinical investigations of these antineoplastic agents in lung cancers, in order to provide more information for exploring precision and effective strategies for the treatment of lung cancer based on the mechanism of DNA damage and repair.
.
Collapse
Affiliation(s)
- 琳琳 张
- />300052 天津,天津医科大学总医院肿瘤科Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - 凡路 孟
- />300052 天津,天津医科大学总医院肿瘤科Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - 殿胜 钟
- />300052 天津,天津医科大学总医院肿瘤科Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
73
|
Mekonnen N, Yang H, Shin YK. Homologous Recombination Deficiency in Ovarian, Breast, Colorectal, Pancreatic, Non-Small Cell Lung and Prostate Cancers, and the Mechanisms of Resistance to PARP Inhibitors. Front Oncol 2022; 12:880643. [PMID: 35785170 PMCID: PMC9247200 DOI: 10.3389/fonc.2022.880643] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
Homologous recombination (HR) is a highly conserved DNA repair mechanism that protects cells from exogenous and endogenous DNA damage. Breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) play an important role in the HR repair pathway by interacting with other DNA repair proteins such as Fanconi anemia (FA) proteins, ATM, RAD51, PALB2, MRE11A, RAD50, and NBN. These pathways are frequently aberrant in cancer, leading to the accumulation of DNA damage and genomic instability known as homologous recombination deficiency (HRD). HRD can be caused by chromosomal and subchromosomal aberrations, as well as by epigenetic inactivation of tumor suppressor gene promoters. Deficiency in one or more HR genes increases the risk of many malignancies. Another conserved mechanism involved in the repair of DNA single-strand breaks (SSBs) is base excision repair, in which poly (ADP-ribose) polymerase (PARP) enzymes play an important role. PARP inhibitors (PARPIs) convert SSBs to more cytotoxic double-strand breaks, which are repaired in HR-proficient cells, but remain unrepaired in HRD. The blockade of both HR and base excision repair pathways is the basis of PARPI therapy. The use of PARPIs can be expanded to sporadic cancers displaying the “BRCAness” phenotype. Although PARPIs are effective in many cancers, their efficacy is limited by the development of resistance. In this review, we summarize the prevalence of HRD due to mutation, loss of heterozygosity, and promoter hypermethylation of 35 DNA repair genes in ovarian, breast, colorectal, pancreatic, non-small cell lung cancer, and prostate cancer. The underlying mechanisms and strategies to overcome PARPI resistance are also discussed.
Collapse
Affiliation(s)
- Negesse Mekonnen
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
- Department of Veterinary Science, School of Animal Science and Veterinary Medicine, Bahir Dar University, Bahir Dar, Ethiopia
| | - Hobin Yang
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
| | - Young Kee Shin
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
- Bio-MAX/N-Bio, Seoul National University, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University Graduate School of Convergence Science and Technology, Seoul, South Korea
- LOGONE Bio Convergence Research Foundation, Center for Companion Diagnostics, Seoul, South Korea
- *Correspondence: Young Kee Shin,
| |
Collapse
|
74
|
Vaghari-Tabari M, Hassanpour P, Sadeghsoltani F, Malakoti F, Alemi F, Qujeq D, Asemi Z, Yousefi B. CRISPR/Cas9 gene editing: a new approach for overcoming drug resistance in cancer. Cell Mol Biol Lett 2022; 27:49. [PMID: 35715750 PMCID: PMC9204876 DOI: 10.1186/s11658-022-00348-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/24/2022] [Indexed: 12/18/2022] Open
Abstract
The CRISPR/Cas9 system is an RNA-based adaptive immune system in bacteria and archaea. Various studies have shown that it is possible to target a wide range of human genes and treat some human diseases, including cancers, by the CRISPR/Cas9 system. In fact, CRISPR/Cas9 gene editing is one of the most efficient genome manipulation techniques. Studies have shown that CRISPR/Cas9 technology, in addition to having the potential to be used as a new therapeutic approach in the treatment of cancers, can also be used to enhance the effectiveness of existing treatments. Undoubtedly, the issue of drug resistance is one of the main obstacles in the treatment of cancers. Cancer cells resist anticancer drugs by a variety of mechanisms, such as enhancing anticancer drugs efflux, enhancing DNA repair, enhancing stemness, and attenuating apoptosis. Mutations in some proteins of different cellular signaling pathways are associated with these events and drug resistance. Recent studies have shown that the CRISPR/Cas9 technique can be used to target important genes involved in these mechanisms, thereby increasing the effectiveness of anticancer drugs. In this review article, studies related to the applications of this technique in overcoming drug resistance in cancer cells will be reviewed. In addition, we will give a brief overview of the limitations of the CRISP/Cas9 gene-editing technique.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
75
|
Tayoun T, Faugeroux V, Oulhen M, Déas O, Michels J, Brulle-Soumare L, Cairo S, Scoazec JY, Marty V, Aberlenc A, Planchard D, Remon J, Ponce S, Besse B, Kannouche PL, Judde JG, Pawlikowska P, Farace F. Targeting genome integrity dysfunctions impedes metastatic potency in non-small cell lung cancer circulating tumor cell-derived explants. JCI Insight 2022; 7:e155804. [PMID: 35511434 PMCID: PMC9220846 DOI: 10.1172/jci.insight.155804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/27/2022] [Indexed: 11/27/2022] Open
Abstract
DNA damage and genomic instability contribute to non-small cell lung cancer (NSCLC) etiology and progression. However, their therapeutic exploitation is disappointing. CTC-derived explants (CDX) offer systems for mechanistic investigation of CTC metastatic potency and may provide rationale for biology-driven therapeutics. Four CDX models and 3 CDX-derived cell lines were established from NSCLC CTCs and recapitulated patient tumor histology and response to platinum-based chemotherapy. CDX (GR-CDXL1, GR-CDXL2, GR-CDXL3, GR-CDXL4) demonstrated considerable mutational landscape similarity with patient tumor biopsy and/or single CTCs. Truncal alterations in key DNA damage response (DDR) and genome integrity-related genes were prevalent across models and assessed as therapeutic targets in vitro, in ovo, and in vivo. GR-CDXL1 presented homologous recombination deficiency linked to biallelic BRCA2 mutation and FANCA deletion, unrepaired DNA lesions after mitosis, and olaparib sensitivity, despite resistance to chemotherapy. SLFN11 overexpression in GR-CDXL4 led to olaparib sensitivity and was in coherence with neuroendocrine marker expression in patient tumor biopsy, suggesting a predictive value of SLFN11 in NSCLC histological transformation into small cell lung cancer (SCLC). Centrosome clustering promoted targetable chromosomal instability in GR-CDXL3 cells. These CDX unravel DDR and genome integrity-related defects as a central mechanism underpinning metastatic potency of CTCs and provide rationale for their therapeutic targeting in metastatic NSCLC.
Collapse
Affiliation(s)
- Tala Tayoun
- Gustave Roussy, Paris-Saclay University, “Circulating Tumor Cells” Translational Platform, CNRS UMS3655 – INSERM US23 AMMICA, Villejuif, France
- INSERM, U981 “Identification of Molecular Predictors and new Targets for Cancer Treatment”, Villejuif, France
| | - Vincent Faugeroux
- Gustave Roussy, Paris-Saclay University, “Circulating Tumor Cells” Translational Platform, CNRS UMS3655 – INSERM US23 AMMICA, Villejuif, France
- INSERM, U981 “Identification of Molecular Predictors and new Targets for Cancer Treatment”, Villejuif, France
| | - Marianne Oulhen
- Gustave Roussy, Paris-Saclay University, “Circulating Tumor Cells” Translational Platform, CNRS UMS3655 – INSERM US23 AMMICA, Villejuif, France
- INSERM, U981 “Identification of Molecular Predictors and new Targets for Cancer Treatment”, Villejuif, France
| | | | - Judith Michels
- Gustave Roussy, Paris-Saclay University, Department of Cancer Medicine, Villejuif, France
| | | | | | - Jean-Yves Scoazec
- Gustave Roussy, Paris-Saclay University, “Histo-Cytopathology” Translational Platform, CNRS UMS3655 – INSERM US23 AMMICA, Villejuif, France
| | - Virginie Marty
- Gustave Roussy, Paris-Saclay University, “Histo-Cytopathology” Translational Platform, CNRS UMS3655 – INSERM US23 AMMICA, Villejuif, France
| | - Agathe Aberlenc
- Gustave Roussy, Paris-Saclay University, “Circulating Tumor Cells” Translational Platform, CNRS UMS3655 – INSERM US23 AMMICA, Villejuif, France
- INSERM, U981 “Identification of Molecular Predictors and new Targets for Cancer Treatment”, Villejuif, France
| | - David Planchard
- Gustave Roussy, Paris-Saclay University, Department of Cancer Medicine, Villejuif, France
| | - Jordi Remon
- Department of Medical Oncology, Clara Campal Comprehensive Oncology Center (HM-CIOCC), Hospital HM New Delphi, HM Hospitals, Barcelona, Spain
| | - Santiago Ponce
- INSERM, U981 “Identification of Molecular Predictors and new Targets for Cancer Treatment”, Villejuif, France
- Gustave Roussy, Paris-Saclay University, Department of Cancer Medicine, Villejuif, France
| | - Benjamin Besse
- Gustave Roussy, Paris-Saclay University, Department of Cancer Medicine, Villejuif, France
| | - Patricia L. Kannouche
- Paris-Saclay University, CNRS UMR9019 “Genome Integrity and Cancers”, Gustave Roussy, Villejuif, France
| | | | - Patrycja Pawlikowska
- INSERM, U981 “Identification of Molecular Predictors and new Targets for Cancer Treatment”, Villejuif, France
| | - Françoise Farace
- Gustave Roussy, Paris-Saclay University, “Circulating Tumor Cells” Translational Platform, CNRS UMS3655 – INSERM US23 AMMICA, Villejuif, France
- INSERM, U981 “Identification of Molecular Predictors and new Targets for Cancer Treatment”, Villejuif, France
| |
Collapse
|
76
|
Mitra S, Sarker J, Mojumder A, Shibbir TB, Das R, Emran TB, Tallei TE, Nainu F, Alshahrani AM, Chidambaram K, Simal-Gandara J. Genome editing and cancer: How far has research moved forward on CRISPR/Cas9? Biomed Pharmacother 2022; 150:113011. [PMID: 35483191 DOI: 10.1016/j.biopha.2022.113011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/02/2022] Open
Abstract
Cancer accounted for almost ten million deaths worldwide in 2020. Metastasis, characterized by cancer cell invasion to other parts of the body, is the main cause of cancer morbidity and mortality. Therefore, understanding the molecular mechanisms of tumor formation and discovery of potential drug targets are of great importance. Gene editing techniques can be used to find novel drug targets and study molecular mechanisms. In this review, we describe how popular gene-editing methods such as CRISPR/Cas9, TALEN and ZFNs work, and, by comparing them, we demonstrate that CRISPR/Cas9 has superior efficiency and precision. We further provide an overview of the recent applications of CRISPR/Cas9 to cancer research, focusing on the most common cancers such as breast cancer, lung cancer, colorectal cancer, and prostate cancer. We describe how these applications will shape future research and treatment of cancer, and propose new ways to overcome current challenges.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Joyatry Sarker
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Anik Mojumder
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tasmim Bintae Shibbir
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh.
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| |
Collapse
|
77
|
Structural, molecular, and functional insights into Schlafen proteins. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:730-738. [PMID: 35768579 PMCID: PMC9256597 DOI: 10.1038/s12276-022-00794-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022]
Abstract
Schlafen (SLFN) genes belong to a vertebrate gene family encoding proteins with high sequence homology. However, each SLFN is functionally divergent and differentially expressed in various tissues and species, showing a wide range of expression in cancer and normal cells. SLFNs are involved in various cellular and tissue-specific processes, including DNA replication, proliferation, immune and interferon responses, viral infections, and sensitivity to DNA-targeted anticancer agents. The fundamental molecular characteristics of SLFNs and their structures are beginning to be elucidated. Here, we review recent structural insights into the N-terminal, middle and C-terminal domains (N-, M-, and C-domains, respectively) of human SLFNs and discuss the current understanding of their biological roles. We review the distinct molecular activities of SLFN11, SLFN5, and SLFN12 and the relevance of SLFN11 as a predictive biomarker in oncology. The diverse roles that Schlafen family proteins play in cell proliferation, immune modulation, and other biological processes make them promising targets for treating and tracking diseases, especially cancer. Ukhyun Jo and Yves Pommier from the National Cancer Institute in Bethesda, USA, review the molecular characteristics and structural features of Schlafen proteins. These proteins take their name from the German word for “sleep”, as the first described Schlafen proteins caused cells to stop dividing, although later reports found that related members of the same protein family serve myriad cellular functions, including in the regulation of DNA replication. A better understanding of Schlafen proteins could open up new avenues in cancer management, for instance, diagnostics that monitor activity levels of one such protein, SLFN11, could help oncologists predict how well patients might respond to anti-cancer therapies.
Collapse
|
78
|
Abbotts R, Dellomo AJ, Rassool FV. Pharmacologic Induction of BRCAness in BRCA-Proficient Cancers: Expanding PARP Inhibitor Use. Cancers (Basel) 2022; 14:2640. [PMID: 35681619 PMCID: PMC9179544 DOI: 10.3390/cancers14112640] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/17/2022] Open
Abstract
The poly(ADP-ribose) polymerase (PARP) family of proteins has been implicated in numerous cellular processes, including DNA repair, translation, transcription, telomere maintenance, and chromatin remodeling. Best characterized is PARP1, which plays a central role in the repair of single strand DNA damage, thus prompting the development of small molecule PARP inhibitors (PARPi) with the intent of potentiating the genotoxic effects of DNA damaging agents such as chemo- and radiotherapy. However, preclinical studies rapidly uncovered tumor-specific cytotoxicity of PARPi in a subset of cancers carrying mutations in the BReast CAncer 1 and 2 genes (BRCA1/2), which are defective in the homologous recombination (HR) DNA repair pathway, and several PARPi are now FDA-approved for single agent treatment in BRCA-mutated tumors. This phenomenon, termed synthetic lethality, has now been demonstrated in tumors harboring a number of repair gene mutations that produce a BRCA-like impairment of HR (also known as a 'BRCAness' phenotype). However, BRCA mutations or BRCAness is present in only a small subset of cancers, limiting PARPi therapeutic utility. Fortunately, it is now increasingly recognized that many small molecule agents, targeting a variety of molecular pathways, can induce therapeutic BRCAness as a downstream effect of activity. This review will discuss the potential for targeting a broad range of molecular pathways to therapeutically induce BRCAness and PARPi synthetic lethality.
Collapse
Affiliation(s)
- Rachel Abbotts
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.J.D.); (F.V.R.)
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Anna J. Dellomo
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.J.D.); (F.V.R.)
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Feyruz V. Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.J.D.); (F.V.R.)
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
79
|
Liu J, Zhao Z, Wei S, Li B, Zhao Z. Genomic features of Chinese small cell lung cancer. BMC Med Genomics 2022; 15:117. [PMID: 35596192 PMCID: PMC9123817 DOI: 10.1186/s12920-022-01255-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/22/2022] [Indexed: 11/12/2022] Open
Abstract
Background Small cell lung cancer (SCLC) is an aggressive disease with poor survival. Although molecular and clinical characteristics have been established for SCLC in western patients, limited investigation has been performed for Chinese SCLC patients. Objective In this study, we investigated the genomic features of Chinese SCLC patients. Methods A total of 75 SCLC patients were enrolled. Genomic alterations in 618 selected genes were analyzed by targeted next-generation sequencing. Results Here, we showed that TP53 (77.30%) and RB1 (30.70%) were the most prevalent genes alterations, followed by KMT2D, ALK, LRP1B, EGFR, NOTCH3, AR, CREBBP, ROS1, and BRCA2. And the most common genetic alterations were enriched in the cell cycle signaling pathway (84.00%) of Chinese SCLC patients. DNA damage repair (DDR) pathway analysis showed that the most frequently enriched DDR pathways were fanconi anaemia (FA, 29.41%) and homology recombination (HR, 21.57%). Notably, 9.33% SCLC patients in our cohort had pathogenic or likely pathogenic germline gene variants. Compared with the U Cologne cohort, a higher prevalence in EGFR, AR, BRCA2, TSC1, ATXN3, MET, MSH2, ERBB3 and FOXA1 were found in our cohort; while compared to the data from the Johns Hopkins cohort, a higher mutated frequency in TP53, KMT2D, ALK, and EGFR were found in our cohort. Moreover, a significant association was found between high tumor mutation burden (TMB) and mutations involved in TP53, CREBBP, EPHA3, KMT2D, ALK and RB1. Approximately 33.33% of patients with SCLC harbored at least one actionable alteration annotated by OncoKB, of which one patient had alterations of level 1; seventeen patients had level 3; fifteen patients possessed level 4. Conclusion Our data might provide an insightful meaning in targeted therapy for Chinese SCLC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01255-3.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510000, China
| | - Zhuxiang Zhao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510000, China
| | - Shuquan Wei
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510000, China
| | - Binkai Li
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510000, China
| | - Ziwen Zhao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510000, China.
| |
Collapse
|
80
|
Stanzione M, Zhong J, Wong E, LaSalle TJ, Wise JF, Simoneau A, Myers DT, Phat S, Sade-Feldman M, Lawrence MS, Hadden MK, Zou L, Farago AF, Dyson NJ, Drapkin BJ. Translesion DNA synthesis mediates acquired resistance to olaparib plus temozolomide in small cell lung cancer. SCIENCE ADVANCES 2022; 8:eabn1229. [PMID: 35559669 PMCID: PMC9106301 DOI: 10.1126/sciadv.abn1229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
In small cell lung cancer (SCLC), acquired resistance to DNA-damaging therapy is challenging to study because rebiopsy is rarely performed. We used patient-derived xenograft models, established before therapy and after progression, to dissect acquired resistance to olaparib plus temozolomide (OT), a promising experimental therapy for relapsed SCLC. These pairs of serial models reveal alterations in both cell cycle kinetics and DNA replication and demonstrate both inter- and intratumoral heterogeneity in mechanisms of resistance. In one model pair, up-regulation of translesion DNA synthesis (TLS) enabled tolerance of OT-induced damage during DNA replication. TLS inhibitors restored sensitivity to OT both in vitro and in vivo, and similar synergistic effects were seen in additional SCLC cell lines. This represents the first described mechanism of acquired resistance to DNA damage in a patient with SCLC and highlights the potential of the serial model approach to investigate and overcome resistance to therapy in SCLC.
Collapse
Affiliation(s)
| | - Jun Zhong
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Edmond Wong
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Thomas J. LaSalle
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jillian F. Wise
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - David T. Myers
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Sarah Phat
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Moshe Sade-Feldman
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael S. Lawrence
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana-Farber Cancer Center, Boston, MA, USA
| | - M. Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna F. Farago
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Nicholas J. Dyson
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Dana-Farber Cancer Center, Boston, MA, USA
| | - Benjamin J. Drapkin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
81
|
Can Schlafen 11 Help to Stratify Ovarian Cancer Patients Treated with DNA-Damaging Agents? Cancers (Basel) 2022; 14:cancers14102353. [PMID: 35625957 PMCID: PMC9139752 DOI: 10.3390/cancers14102353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Platinum-based chemotherapy has been the cornerstone of systemic treatment in ovarian cancer. Since no validated molecular predictive markers have been identified yet, the response to platinum-based chemotherapy has been evaluated clinically, based on platinum-free interval. The new promising marker Schlafen 11 seems to correlate with sensitivity or resistance to DNA-damaging agents, including platinum compounds or PARP inhibitors in various types of cancer. We provide background information about the function of Schlafen 11, its evaluation in tumor tissue, and its prevalence in ovarian cancer. We discuss the current evidence of the correlation of Schlafen 11 expression in ovarian cancer with treatment outcomes and the potential use of Schlafen 11 as the key predictive and prognostic marker that could help to better stratify ovarian cancer patients treated with platinum-based chemotherapy or PARP inhibitors. We also provide perspectives on future directions in the research on this promising marker.
Collapse
|
82
|
Moyret-Lalle C, Prodhomme MK, Burlet D, Kashiwagi A, Petrilli V, Puisieux A, Seimiya H, Tissier A. Role of EMT in the DNA damage response, double-strand break repair pathway choice and its implications in cancer treatment. Cancer Sci 2022; 113:2214-2223. [PMID: 35534984 PMCID: PMC9277259 DOI: 10.1111/cas.15389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
Numerous epithelial–mesenchymal transition (EMT) characteristics have now been demonstrated to participate in tumor development. Indeed, EMT is involved in invasion, acquisition of stem cell properties, and therapy‐associated resistance of cancer cells. Together, these mechanisms offer advantages in adapting to changes in the tumor microenvironment. However, recent findings have shown that EMT‐associated transcription factors (EMT‐TFs) may also be involved in DNA repair. A better understanding of the coordination between the DNA repair pathways and the role played by some EMT‐TFs in the DNA damage response (DDR) should pave the way for new treatments targeting tumor‐specific molecular vulnerabilities, which result in selective destruction of cancer cells. Here we review recent advances, providing novel insights into the role of EMT in the DDR and repair pathways, with a particular focus on the influence of EMT on cellular sensitivity to damage, as well as the implications of these relationships for improving the efficacy of cancer treatments.
Collapse
Affiliation(s)
- Caroline Moyret-Lalle
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Centre of Lyon, Lyon, France.,LabEx DEVweCAN, Université de Lyon, Lyon, France
| | - Mélanie K Prodhomme
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Delphine Burlet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Centre of Lyon, Lyon, France
| | - Ayaka Kashiwagi
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Virginie Petrilli
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Centre of Lyon, Lyon, France
| | - Alain Puisieux
- Institut Curie, Versailles Saint-Quentin-en-Yvelines University, PSL Research University, Paris, France
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Agnès Tissier
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Centre of Lyon, Lyon, France
| |
Collapse
|
83
|
Majeed S, Aparnathi MK, Nixon KC, Venkatasubramanian V, Rahman F, Song L, Weiss J, Barayan R, Sugumar V, Barghout SH, Pearson JD, Bremner R, Schimmer AD, Tsao MS, Liu G, Lok BH. Targeting the Ubiquitin-Proteasome System Using the UBA1 Inhibitor TAK-243 is a Potential Therapeutic Strategy for Small-Cell Lung Cancer. Clin Cancer Res 2022; 28:1966-1978. [PMID: 35165102 PMCID: PMC9365348 DOI: 10.1158/1078-0432.ccr-21-0344] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 10/29/2021] [Accepted: 02/09/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Small cell lung cancer (SCLC) is an aggressive disease with an overall 5-year survival rate of less than 10%. Treatment for SCLC with cisplatin/etoposide chemotherapy (C/E) ± radiotherapy has changed modestly over several decades. The ubiquitin-proteasome system is an underexplored therapeutic target for SCLC. We preclinically evaluated TAK-243, a first-in-class small molecule E1 inhibitor against UBA1. EXPERIMENTAL DESIGN We assessed TAK-243 in 26 SCLC cell-lines as monotherapy and combined with C/E, the PARP-inhibitor, olaparib, and with radiation using cell viability assays. We interrogated TAK-243 response with gene expression to identify candidate biomarkers. We evaluated TAK-243 alone and in combination with olaparib or radiotherapy with SCLC patient-derived xenografts (PDX). RESULTS Most SCLC cell lines were sensitive to TAK-243 monotherapy (EC50 median 15.8 nmol/L; range 10.2 nmol/L-367.3 nmol/L). TAK-243 sensitivity was associated with gene-sets involving the cell cycle, DNA and chromatin organization, and DNA damage repair, while resistance associated with cellular respiration, translation, and neurodevelopment. These associations were also observed in SCLC PDXs. TAK-243 synergized with C/E and olaparib in vitro across sensitive and resistant SCLC cell lines. Considerable TAK-243-olaparib synergy was observed in an SCLC PDX resistant to both drugs individually. TAK-243 radiosensitization was also observed in an SCLC PDX. CONCLUSIONS TAK-243 displays efficacy in SCLC preclinical models. Enrichment of gene sets is associated with TAK-243 sensitivity and resistance. TAK-243 exhibits synergy when combined with genotoxic therapies in cell lines and PDXs. TAK-243 is a potential therapeutic strategy to improve SCLC patient outcomes, both as a single agent and in combination with existing therapies.
Collapse
Affiliation(s)
- Safa Majeed
- University of Toronto, Toronto, Ontario, Canada
| | - Mansi K. Aparnathi
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Kevin C.J. Nixon
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - Fariha Rahman
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Lifang Song
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Weiss
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - Vijithan Sugumar
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Samir H. Barghout
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Joel D. Pearson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - Rod Bremner
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - Aaron D. Schimmer
- University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ming S. Tsao
- University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Geoffrey Liu
- University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin H. Lok
- University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
84
|
Liang J, Guan X, Bao G, Yao Y, Zhong X. Molecular subtyping of small cell lung cancer. Semin Cancer Biol 2022; 86:450-462. [DOI: 10.1016/j.semcancer.2022.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/12/2023]
|
85
|
The PARP1 Inhibitor Niraparib Represses DNA Damage Repair and Synergizes with Temozolomide for Antimyeloma Effects. JOURNAL OF ONCOLOGY 2022; 2022:2800488. [PMID: 35422863 PMCID: PMC9005285 DOI: 10.1155/2022/2800488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/15/2022] [Accepted: 03/09/2022] [Indexed: 11/18/2022]
Abstract
Purpose Poly(ADP-ribose) polymerase 1 (PARP1) is necessary for single-strand break (SSB) repair by sensing DNA breaks and facilitating DNA repair through poly ADP-ribosylation of several DNA-binding and repair proteins. Inhibition of PARP1 results in collapsed DNA replication fork and double-strand breaks (DSBs). Accumulation of DSBs goes beyond the capacity of DNA repair response, ultimately resulting in cell death. This work is aimed at assessing the synergistic effects of the DNA-damaging agent temozolomide (TMZ) and the PARP inhibitor niraparib (Nira) in human multiple myeloma (MM) cells. Materials and Methods MM RPMI8226 and NCI-H929 cells were administered TMZ and/or Nira for 48 hours. CCK-8 was utilized for cell viability assessment. Cell proliferation and apoptosis were detected flow-cytometrically. Immunofluorescence was performed for detecting γH2A.X expression. Soft-agar colony formation assay was applied to evaluate the antiproliferative effect. The amounts of related proteins were obtained by immunoblot. The combination index was calculated with the CompuSyn software. A human plasmacytoma xenograft model was established to assess the anti-MM effects in vivo. The anti-MM activities of TMZ and/or Nira were evaluated by H&E staining, IHC, and the TUNEL assay. Results The results demonstrated that cotreatment with TMZ and Nira promoted DNA damage, cell cycle arrest, and apoptotic death in cultured cells but also reduced MM xenograft growth in nude mice, yielding highly synergistic effects. Immunoblot revealed that TMZ and Nira cotreatment markedly increased the expression of p-ATM, p-CHK2, RAD51, and γH2A.X, indicating the suppression of DNA damage response (DDR) and elevated DSB accumulation. Conclusion Inhibition of PARP1 sensitizes genotoxic agents and represents an important therapeutic approach for MM. These findings provide preliminary evidence for combining PARP1 inhibitors with TMZ for MM treatment.
Collapse
|
86
|
Alemi F, Malakoti F, Vaghari-Tabari M, Soleimanpour J, Shabestani N, Sadigh AR, Khelghati N, Asemi Z, Ahmadi Y, Yousefi B. DNA damage response signaling pathways as important targets for combination therapy and chemotherapy sensitization in osteosarcoma. J Cell Physiol 2022; 237:2374-2386. [PMID: 35383920 DOI: 10.1002/jcp.30721] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 11/08/2022]
Abstract
Osteosarcoma (OS) is the most common bone malignancy that occurs most often in young adults, and adolescents with a survival rate of 20% in its advanced stages. Nowadays, increasing the effectiveness of common treatments used in OS has become one of the main problems for clinicians due to cancer cells becoming resistant to chemotherapy. One of the most important mechanisms of resistance to chemotherapy is through increasing the ability of DNA repair because most chemotherapy drugs damage the DNA of cancer cells. DNA damage response (DDR) is a signal transduction pathway involved in preserving the genome stability upon exposure to endogenous and exogenous DNA-damaging factors such as chemotherapy agents. There is evidence that the suppression of DDR may reduce chemoresistance and increase the effectiveness of chemotherapy in OS. In this review, we aim to summarize these studies to better understand the role of DDR in OS chemoresistance in pursuit of overcoming the obstacles to the success of chemotherapy.
Collapse
Affiliation(s)
- Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Vaghari-Tabari
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimanpour
- Department of Orthopedics Surgery, Shohada Teaching Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Shabestani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aydin R Sadigh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nafiseh Khelghati
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Yasin Ahmadi
- Department of Medical Laboratory Sciences, Faculty of Science, Komar University of Science and Technology, Soleimania, Kurdistan Region, Iraq
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
87
|
Wang WZ, Shulman A, Amann JM, Carbone DP, Tsichlis PN. Small cell lung cancer: Subtypes and therapeutic implications. Semin Cancer Biol 2022; 86:543-554. [DOI: 10.1016/j.semcancer.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022]
|
88
|
Qi X, Li Q, Che X, Wang Q, Wu G. Application of Regulatory Cell Death in Cancer: Based on Targeted Therapy and Immunotherapy. Front Immunol 2022; 13:837293. [PMID: 35359956 PMCID: PMC8960167 DOI: 10.3389/fimmu.2022.837293] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
The development of cancer treatment methods is constantly changing. For common cancers, our treatment methods are still based on conventional treatment methods, such as chemotherapy, radiotherapy, and targeted drug therapy. Nevertheless, the emergence of tumor resistance has a negative impact on treatment. Regulated cell death is a gene-regulated mode of programmed cell death. After receiving specific signal transduction, cells change their physical and chemical properties and the extracellular microenvironment, resulting in structural destruction and decomposition. As research accumulates, we now know that by precisely inducing specific cell death patterns, we can treat cancer with less collateral damage than other treatments. Many newly discovered types of RCD are thought to be useful for cancer treatment. However, some experimental results suggest that some RCDs are not sensitive to cancer cell death, and some may even promote cancer progression. This review summarizes the discovered types of RCDs, reviews their clinical efficacy in cancer treatment, explores their anticancer mechanisms, and discusses the feasibility of some newly discovered RCDs for cancer treatment in combination with the immune and tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | - Qifei Wang
- *Correspondence: Guangzhen Wu, ; Qifei Wang,
| | | |
Collapse
|
89
|
Tang X, Lin Y, He J, Luo X, Liang J, Zhu X, Li T. Establishment and validation of a prognostic model based on HRR-related lncRNAs in colon adenocarcinoma. World J Surg Oncol 2022; 20:74. [PMID: 35264195 PMCID: PMC8905762 DOI: 10.1186/s12957-022-02534-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colon cancer (CRC) is the second leading cause of cancer-related death, and its 5-year survival rate is very low. Homologous recombination repair (HRR) is deficient in most colon cancer. Some long non-coding RNAs (lncRNAs) participate in tumorigenesis of colon cancer through the HRR pathway. We aim to establish a prognostic model based on the HRR-related lncRNAs, expecting to provide a new strategy for precision treatment development in colon cancer. METHODS Pearson's correlation was used to identify the HRR-related prognostic lncRNAs in the TCGA-COAD cohort. The TCGA-COAD cohort was randomized into the training set and the testing set. LASSO Cox regression was used to establish the model which was analyzed in the training set and validated in the testing set and the entire TCGA-COAD cohort. Finally, we explored the potential biological function of our model. RESULTS A prognostic model was established based on nineteen HRR-related lncRNAs in the training set. COAD patients were scored by the uniform formula and divided into high-risk and low-risk groups based on the median risk score. Patients with high-risk scores indicated poor prognosis in the training set, and the result was confirmed in the testing set and the entire TCGA-COAD cohort (all p < 0.01). Multivariable analysis suggested that our model was an independent factor for overall survival in COAD. The area under the curve (AUC) and C-index indicated that our model had better predictive efficiency than other indicators in the TCGA-COAD cohort. Functional enrichment analysis suggested that our model was associated with the MAPK pathway in COAD. Besides, our model was positively correlated with the HRD scores. CONCLUSION A new prognostic model was established based on nineteen HRR-related lncRNAs which had excellent predictive efficiency on the prognosis of COAD. This prognostic model may provide a new strategy for prognostic prediction of COAD patients.
Collapse
Affiliation(s)
- Xingkui Tang
- Department of General Surgery, Guangzhou Panyu Central Hospital, Guangzhou, China.
| | - Yukun Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Jialin He
- Department of General Surgery, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Xijun Luo
- Department of General Surgery, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Junjie Liang
- Department of General Surgery, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Xianjun Zhu
- Department of General Surgery, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Tao Li
- Department of General Surgery, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
90
|
Abstract
DNA repair and DNA damage signaling pathways are critical for the maintenance of genomic stability. Defects of DNA repair and damage signaling contribute to tumorigenesis, but also render cancer cells vulnerable to DNA damage and reliant on remaining repair and signaling activities. Here, we review the major classes of DNA repair and damage signaling defects in cancer, the genomic instability that they give rise to, and therapeutic strategies to exploit the resulting vulnerabilities. Furthermore, we discuss the impacts of DNA repair defects on both targeted therapy and immunotherapy, and highlight emerging principles for targeting DNA repair defects in cancer therapy.
Collapse
Affiliation(s)
- Jessica L Hopkins
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
91
|
O’Sullivan Coyne G, Karlovich C, Wilsker D, Voth AR, Parchment RE, Chen AP, Doroshow JH. PARP Inhibitor Applicability: Detailed Assays for Homologous Recombination Repair Pathway Components. Onco Targets Ther 2022; 15:165-180. [PMID: 35237050 PMCID: PMC8885121 DOI: 10.2147/ott.s278092] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPi) have been in clinical use since 2014 for certain patients with germline BRCA1/2 mutations, but as evidence and approvals for their use in a wider range of patients grow, the question of how best to identify patients who would benefit from PARPi becomes ever more complex. Here, we discuss the development and current state of approved selection testing for PARPi therapy and the ongoing efforts to define a broader range of homologous recombination repair deficiencies that are susceptible to PARP inhibition.
Collapse
Affiliation(s)
- Geraldine O’Sullivan Coyne
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chris Karlovich
- Leidos Biomedical Research Inc, Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Deborah Wilsker
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Andrea Regier Voth
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ralph E Parchment
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Alice P Chen
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
92
|
Wang T, Zhang D, Guoc C, Zhu W. Novel PARP inhibitor DDPF-20 induces DNA damage and inhibits angiogenesis through the PI3K/Akt/VEGF pathway. Anticancer Agents Med Chem 2022; 22:2468-2476. [PMID: 35189801 DOI: 10.2174/1871520622666220221115007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Poly (ADP-ribose) polymerase (PARP) plays a key role in DNA damage repair. A novel compound (E)-N'-(2,3-dibromo-4,5-dihydroxyphenyl)-N-(phenylcarbamothioyl)formimidamide (DDPF-20) with excellent PARP inhibitory activity was synthesized. OBJECTIVE In this study, we aimed to clarify the mechanism of the novel PARP inhibitor DDPF-20 against lung cancer by inducing DNA damage and inhibiting angiogenesis. METHOD The cytotoxic effect of DDPF-20 on A549 cell line was determined with an MTT assay. Cell cycle and apoptosis was determined by flow cytometer. The γH2AX foci was detected by immunofluorescence. Capillary-like tube formation assay and chick chorioallantoic membrane (CAM) assay was used to detect angiogenesis inhibitory effect of DDPF-20. The expressions of related proteins were detected by western blot. The anticancer activity of DDPF-20 in vivo was also detected. RESULTS With an IC50 value of 52.42 ± 15.13 nM, DDPF-20 inhibited the proliferation, induced G2/M cycle arrest and induced apoptosis of human lung cancer A549 cells. Further research showed that DDPF-20 induced DNA double-strand breaks (DSBs). Interestingly, DDPF-20 inhibited the tube formation of HUVEC cells, as well as inhibited the neovascularization of CAM, proving the angiogenesis inhibitory ability of DDPF-20. Mechanism studies proved that DDPF-20 inhibited the PI3K/Akt/VEGF signaling pathway. In an in vivo study, DDPF-20 inhibited tumor growth of an A549 xenograft. Analysis of the molecular mechanism underlying this effect revealed that the PI3K/Akt/VEGF pathway was involved in DDPF-20-induced cell death and inhibited angiogenesis in vivo. CONCLUSION This study suggested that the novel PARP inhibitor DDPF-20 may have therapeutic potential in treating lung cancer.
Collapse
Affiliation(s)
- Tian Wang
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Dong Zhang
- Department of Thoracic Surgery, Pingdu People\'s Hospital, Pingdu, Shandong, 266700, China
| | - Chuanlong Guoc
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Wenyong Zhu
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| |
Collapse
|
93
|
Palve V, Knezevic CE, Bejan DS, Luo Y, Li X, Novakova S, Welsh EA, Fang B, Kinose F, Haura EB, Monteiro AN, Koomen JM, Cohen MS, Lawrence HR, Rix U. The non-canonical target PARP16 contributes to polypharmacology of the PARP inhibitor talazoparib and its synergy with WEE1 inhibitors. Cell Chem Biol 2022; 29:202-214.e7. [PMID: 34329582 PMCID: PMC8782927 DOI: 10.1016/j.chembiol.2021.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 04/08/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
PARP inhibitors (PARPis) display single-agent anticancer activity in small cell lung cancer (SCLC) and other neuroendocrine tumors independent of BRCA1/2 mutations. Here, we determine the differential efficacy of multiple clinical PARPis in SCLC cells. Compared with the other PARPis rucaparib, olaparib, and niraparib, talazoparib displays the highest potency across SCLC, including SLFN11-negative cells. Chemical proteomics identifies PARP16 as a unique talazoparib target in addition to PARP1. Silencing PARP16 significantly reduces cell survival, particularly in combination with PARP1 inhibition. Drug combination screening reveals talazoparib synergy with the WEE1/PLK1 inhibitor adavosertib. Global phosphoproteomics identifies disparate effects on cell-cycle and DNA damage signaling thereby illustrating underlying mechanisms of synergy, which is more pronounced for talazoparib than olaparib. Notably, silencing PARP16 further reduces cell survival in combination with olaparib and adavosertib. Together, these data suggest that PARP16 contributes to talazoparib's overall mechanism of action and constitutes an actionable target in SCLC.
Collapse
Affiliation(s)
- Vinayak Palve
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Claire E. Knezevic
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Daniel S. Bejan
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yunting Luo
- Chemical Biology Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Xueli Li
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Silvia Novakova
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eric A. Welsh
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Alvaro N. Monteiro
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John M. Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA,Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Michael S. Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Harshani R. Lawrence
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA,Chemical Biology Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA,Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
94
|
Prisciandaro M, Antista M, Raimondi A, Corti F, Morano F, Centonze G, Sabella G, Mangogna A, Randon G, Pagani F, Prinzi N, Niger M, Corallo S, Castiglioni di Caronno E, Massafra M, Bartolomeo MD, de Braud F, Milione M, Pusceddu S. Biomarker Landscape in Neuroendocrine Tumors With High-Grade Features: Current Knowledge and Future Perspective. Front Oncol 2022; 12:780716. [PMID: 35186729 PMCID: PMC8856722 DOI: 10.3389/fonc.2022.780716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/10/2022] [Indexed: 11/26/2022] Open
Abstract
Neuroendocrine tumors (NETs) are classified based on morphology and are graded based on their proliferation rate as either well-differentiated low-grade (G1) to intermediate (G2–G3) or poorly differentiated high-grade neuroendocrine carcinomas (NEC G3). Recently, in gastroenteropancreatic (GEP) NETs, a new subgroup of well-differentiated high-grade tumors (NET G3) has been divided from NEC by WHO due to its different clinical–pathologic features. Although several mutational analyses have been performed, a molecular classification of NET is an unmet need in particular for G3, which tends to be more aggressive and have less benefit to the available therapies. Specifically, new possible prognostic and, above all, predictive factors are highly awaited, giving the basis for new treatments. Alteration of KRAS, TP53, and RB1 is mainly reported, but also druggable alterations, including BRAF and high microsatellite instability (MSI-H), have been documented in subsets of patients. In addition, PD-L1 demonstrated to be highly expressed in G3 NETs, probably becoming a new biomarker for G3 neuroendocrine neoplasm (NEN) discrimination and a predictive one for immunotherapy response. In this review, we describe the current knowledge available on a high-grade NET molecular landscape with a specific focus on those harboring potentially therapeutic targets in the advanced setting.
Collapse
Affiliation(s)
- Michele Prisciandaro
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- *Correspondence: Michele Prisciandaro,
| | - Maria Antista
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Raimondi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Corti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Morano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Centonze
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Sabella
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy
| | - Giovanni Randon
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo Pagani
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Natalie Prinzi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Corallo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Marco Massafra
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Di Bartolomeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Massimo Milione
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Pusceddu
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
95
|
Recent advances in DDR (DNA damage response) inhibitors for cancer therapy. Eur J Med Chem 2022; 230:114109. [DOI: 10.1016/j.ejmech.2022.114109] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/15/2022]
|
96
|
Metzner FJ, Huber E, Hopfner KP, Lammens K. Structural and biochemical characterization of human Schlafen 5. Nucleic Acids Res 2022; 50:1147-1161. [PMID: 35037067 PMCID: PMC8789055 DOI: 10.1093/nar/gkab1278] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 11/15/2022] Open
Abstract
The Schlafen family belongs to the interferon-stimulated genes and its members are involved in cell cycle regulation, T cell quiescence, inhibition of viral replication, DNA-repair and tRNA processing. Here, we present the cryo-EM structure of full-length human Schlafen 5 (SLFN5) and the high-resolution crystal structure of the highly conserved N-terminal core domain. We show that the core domain does not resemble an ATPase-like fold and neither binds nor hydrolyzes ATP. SLFN5 binds tRNA as well as single- and double-stranded DNA, suggesting a potential role in transcriptional regulation. Unlike rat Slfn13 or human SLFN11, human SLFN5 did not cleave tRNA. Based on the structure, we identified two residues in proximity to the zinc finger motif that decreased DNA binding when mutated. These results indicate that Schlafen proteins have divergent enzymatic functions and provide a structural platform for future biochemical and genetic studies.
Collapse
Affiliation(s)
- Felix J Metzner
- Department of Biochemistry, Gene Center, Feodor-Lynen-Straße 25, 81377 München, Germany
| | - Elisabeth Huber
- Department of Biochemistry, Gene Center, Feodor-Lynen-Straße 25, 81377 München, Germany
| | - Karl-Peter Hopfner
- Department of Biochemistry, Gene Center, Feodor-Lynen-Straße 25, 81377 München, Germany
| | - Katja Lammens
- Department of Biochemistry, Gene Center, Feodor-Lynen-Straße 25, 81377 München, Germany
| |
Collapse
|
97
|
Kundu K, Cardnell RJ, Zhang B, Shen L, Stewart CA, Ramkumar K, Cargill KR, Wang J, Gay CM, Byers LA. SLFN11 biomarker status predicts response to lurbinectedin as a single agent and in combination with ATR inhibition in small cell lung cancer. Transl Lung Cancer Res 2022; 10:4095-4105. [PMID: 35004241 PMCID: PMC8674596 DOI: 10.21037/tlcr-21-437] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022]
Abstract
Background Lurbinectedin recently received FDA accelerated approval as a second line treatment option for metastatic small cell lung cancer (SCLC). However, there are currently no established biomarkers to predict SCLC sensitivity or resistance to lurbinectedin or preclinical studies to guide rational combinations. Methods Drug sensitivity was assayed in proliferation assays and xenograft models. Baseline proteomic profiling was performed by reverse-phase protein array. Lurbinectedin-induced changes in intracellular signaling pathways were assayed by Western blot. Results Among 21 human SCLC cell lines, cytotoxicity was observed following lurbinectedin treatment at a low dose (median IC50 0.46 nM, range, 0.06–1.83 nM). Notably, cell lines with high expression of Schlafen-11 (SLFN11) protein, a promising biomarker of response to other DNA damaging agents (e.g., chemotherapy, PARP inhibitors), were more sensitive to single-agent lurbinectedin (FC =3.2, P=0.005). SLFN11 was validated as a biomarker of sensitivity to lurbinectedin using siRNA knockdown and in xenografts representing SLFN11 high and low SCLC. Replication stress and DNA damage markers (e.g., γH2AX, phosphorylated CHK1, phosphorylated RPA32) increased in SCLC cell lines following treatment with lurbinectedin. Lurbinectedin also induced PD-L1 expression via cGAS-STING pathway activation. Finally, the combination of lurbinectedin with the ataxia telangiectasia and Rad3-related protein (ATR) inhibitors ceralasertib and berzosertib showed a greater than additive effect in SLFN11-low models. Conclusions Together our data confirm the activity of lurbinectedin across a large cohort of SCLC models and identify SLFN11 as a top candidate biomarker for lurbinectedin sensitivity. In SLFN11-low SCLC cell lines which are relatively resistance to lurbinectedin, the addition of an ATR inhibitor to lurbinectedin re-sensitized otherwise resistant cells, confirming previous observations that SLFN11 is a master regulator of DNA damage response independent of ATR, and the absence of SLFN11 leads to synthetic lethality with ATR inhibition. This study provides a rationale for lurbinectedin in combination with ATR inhibitors to overcome resistance in SCLC with low SLFN11 expression.
Collapse
Affiliation(s)
- Kiran Kundu
- Department of Thoracic/Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Robert J Cardnell
- Department of Thoracic/Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Bingnan Zhang
- Division of Cancer Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Li Shen
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - C Allison Stewart
- Department of Thoracic/Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Kavya Ramkumar
- Department of Thoracic/Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Kasey R Cargill
- Department of Thoracic/Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren A Byers
- Department of Thoracic/Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
98
|
Qu S, Fetsch P, Thomas A, Pommier Y, Schrump DS, Miettinen MM, Chen H. Molecular Subtypes of Primary SCLC Tumors and Their Associations With Neuroendocrine and Therapeutic Markers. J Thorac Oncol 2022; 17:141-153. [PMID: 34534680 PMCID: PMC8692365 DOI: 10.1016/j.jtho.2021.08.763] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION A new molecular subtype classification was recently proposed for SCLC. It is necessary to validate it in primary SCLC tumors by immunohistochemical (IHC) staining and define its clinical relevance. METHODS We used IHC to assess four subtype markers (ASCL1, NEUROD1, POU2F3, and YAP1) in 194 cores from 146 primary SCLC tumors. The profiles of tumor-associated CD3+ and CD8+ T-cells, MYC paralogs, SLFN11, and SYP were compared among different subtypes. Validation was performed using publicly available RNA sequencing data of SCLC. RESULTS ASCL1, NEUROD1, POU2F3, and YAP1 were the dominant molecular subtypes in 78.2%, 5.6%, 7%, and 2.8% of the tumors, respectively; 6.3% of the tumors were negative for all four subtype markers. Notably, three cases were uniquely positive for YAP1. Substantial intratumoral heterogeneity was observed, with 17.6% and 2.8% of the tumors being positive for two and three subtype markers, respectively. The non-ASCL1/NEUROD1 tumors had more CD8+ T-cells and manifested more frequently an "inflamed" immunophenotype. L-MYC and MYC were more often associated with ASCL1/NEUROD1 subtypes and non-ASCL1/NEUROD1 subtypes, respectively. SLFN11 expression was absent in 40% of the tumors, especially those negative for the four subtype markers. SYP was often expressed in the ASCL1 and NEUROD1 subtypes and was associated with less tumor-associated CD8+ T-cells and a "desert" immunophenotype. CONCLUSIONS We validated the new molecular subtype classification in primary SCLC tumors by IHC and identified several intriguing associations between subtypes and therapeutic markers. The new subtype classification may potentially assist treatment decisions in SCLC.
Collapse
Affiliation(s)
- Song Qu
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Patricia Fetsch
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David S Schrump
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Markku M Miettinen
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Haobin Chen
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
99
|
Dihydroartemisinin Induces Ferroptosis in HCC by Promoting the Formation of PEBP1/15-LO. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3456725. [PMID: 34925691 PMCID: PMC8683180 DOI: 10.1155/2021/3456725] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022]
Abstract
Relevant researches have recognized the vital role of inducing ferroptosis in the treatment of tumor. The latest findings indicate that PEBP1/15-LO can play an essential role in the process of cell death. However, its role in regulating ferroptosis in hepatocellular carcinoma (simplified by HCC) remains unclear. The previous research of our team has proved that DHA can induce ferroptosis of hepatic stellate cells. In this study, we found that DHA could also induce ferroptosis in HCC cells. Interestingly, DHA induced ferroptosis by promoting the formation of PEBP1/15-LO and promoting cell membrane lipid peroxidation. In addition, we also found that DHA had no obvious regulatory effect on 15-LO, but it could promote PEBP1 protein expression. Importantly, we discovered the upregulation of PEBP1 induced by DHA was related to the inhibition of its ubiquitination degradation. In vivo experiments have also obtained consistent results that DHA can inhibit tumor growth and affect the expression of ferroptosis markers in tumor tissues, which would be partially offset by interference with PEBP1.
Collapse
|
100
|
Poly(ADP-Ribose) Polymerase Inhibition in Small Cell Lung Cancer: A Review. Cancer J 2021; 27:476-481. [PMID: 34904810 DOI: 10.1097/ppo.0000000000000555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Small cell lung cancer (SCLC) is a highly aggressive neuroendocrine malignancy with high and rapid relapse rates and poor outcomes. Treatment for SCLC has historically been limited by the lack of targetable driver genomic lesions, however recent developments in the underpinnings of genomic instability in SCLC and understanding of its transcriptional subtypes have led to increased interest in the use of poly(ADP-ribose) polymerase (PARP) inhibitors as a rationale therapy. Poly(ADP-ribose) polymerase inhibitors, historically designed to target BRCA1/2-mutated malignancies, capitalize on synthetic lethality in homologous recombination-deficient tumors. In this review, we outline the mechanistic rationale for the use of PARP inhibitors in treating SCLC and detail key clinical trials investigating their use in combination with chemotherapy and immunotherapy. We describe developments in the understanding of biomarkers for sensitivity to therapy and highlight further investigational directions for the use of PARP inhibitors in treating SCLC.
Collapse
|