51
|
Shafi I, Ansari S, Din S, Ashraf I. Cancer detection and classification using a simplified binary state vector machine. Med Biol Eng Comput 2024; 62:1491-1501. [PMID: 38300437 DOI: 10.1007/s11517-023-03012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/27/2023] [Indexed: 02/02/2024]
Abstract
Cancer is an invasive and malignant growth of cells and is known to be one of the most fatal diseases. Its early detection is essential for decreasing the mortality rate and increasing the probability of survival. This study presents an efficient machine learning approach based on the state vector machine (SVM) to diagnose and classify tumors into malignant or benign cancer using the online lymphographic data. Further, two types of neural network architectures are also implemented to evaluate the performance of the proposed SVM-based approach. The optimal structures of the classifiers are obtained by varying the architecture, topology, learning rate, and kernel function and recording the results' accuracy. The classifiers are trained with the preprocessed data examples after noise removal and tested on the unknown cases to diagnose each example as positive or negative. Further, the positive cases are classified into different stages including metastases, malign lymph, and fibrosis. The results are evaluated against the feed-forward and generalized regression neural networks. It is found that the proposed SVM-based approach significantly improves the early detection and classification accuracy in comparison to the experienced physicians and the other machine learning approaches. The proposed approach is robust and can perform sub-class divisions for multipurpose tasks. Experimental results demonstrate that the two-class SVM gives the best results and can effectively be used for the classification of cancer. It has outperformed all other classifiers with an average accuracy of 94.90%.
Collapse
Affiliation(s)
- Imran Shafi
- College of Electrical & Mechanical Engineering, National University of Science and Technology, Islamabad, Pakistan
| | - Sana Ansari
- College of Electrical & Mechanical Engineering, National University of Science and Technology, Islamabad, Pakistan
| | - Sadia Din
- Department of Information & Communication Engineering, Yeungnam University, Gyeongsan, Korea.
| | - Imran Ashraf
- Department of Information & Communication Engineering, Yeungnam University, Gyeongsan, Korea.
| |
Collapse
|
52
|
Ni S, Liang Q, Jiang X, Ge Y, Jiang Y, Liu L. Prognostic models for immunotherapy in non-small cell lung cancer: A comprehensive review. Heliyon 2024; 10:e29840. [PMID: 38681577 PMCID: PMC11053285 DOI: 10.1016/j.heliyon.2024.e29840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
The introduction of immune checkpoint inhibitors (ICIs) has revolutionized the treatment of lung cancer. Given the limited clinical benefits of immunotherapy in patients with non-small cell lung cancer (NSCLC), various predictors have been shown to significantly influence prognosis. However, no single predictor is adequate to forecast patients' survival benefit. Therefore, it's imperative to develop a prognostic model that integrates multiple predictors. This model would be instrumental in identifying patients who might benefit from ICIs. Retrospective analysis and small case series have demonstrated the potential role of these models in prognostic prediction, though further prospective investigation is required to evaluate more rigorously their application in these contexts. This article presents and summarizes the latest research advancements on immunotherapy prognostic models for NSCLC from multiple omics perspectives and discuss emerging strategies being developed to enhance the domain.
Collapse
Affiliation(s)
- Siqi Ni
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qi Liang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xingyu Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yinping Ge
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili & Jiangsu Joint Institute of Health, Yining 835000, Xinjiang Uygur Autonomous Regio, China
| | - Yali Jiang
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili & Jiangsu Joint Institute of Health, Yining 835000, Xinjiang Uygur Autonomous Regio, China
| | - Lingxiang Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
53
|
胡 伦, 夏 威, 李 琼, 高 欣. [Prediction of recurrence-free survival in lung adenocarcinoma based on self-supervised pre-training and multi-task learning]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:205-212. [PMID: 38686399 PMCID: PMC11058493 DOI: 10.7507/1001-5515.202309060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/08/2024] [Indexed: 05/02/2024]
Abstract
Computed tomography (CT) imaging is a vital tool for the diagnosis and assessment of lung adenocarcinoma, and using CT images to predict the recurrence-free survival (RFS) of lung adenocarcinoma patients post-surgery is of paramount importance in tailoring postoperative treatment plans. Addressing the challenging task of accurate RFS prediction using CT images, this paper introduces an innovative approach based on self-supervised pre-training and multi-task learning. We employed a self-supervised learning strategy known as "image transformation to image restoration" to pretrain a 3D-UNet network on publicly available lung CT datasets to extract generic visual features from lung images. Subsequently, we enhanced the network's feature extraction capability through multi-task learning involving segmentation and classification tasks, guiding the network to extract image features relevant to RFS. Additionally, we designed a multi-scale feature aggregation module to comprehensively amalgamate multi-scale image features, and ultimately predicted the RFS risk score for lung adenocarcinoma with the aid of a feed-forward neural network. The predictive performance of the proposed method was assessed by ten-fold cross-validation. The results showed that the consistency index (C-index) of the proposed method for predicting RFS and the area under curve (AUC) for predicting whether recurrence occurs within three years reached 0.691 ± 0.076 and 0.707 ± 0.082, respectively, and the predictive performance was superior to that of existing methods. This study confirms that the proposed method has the potential of RFS prediction in lung adenocarcinoma patients, which is expected to provide a reliable basis for the development of individualized treatment plans.
Collapse
Affiliation(s)
- 伦瑜 胡
- 中国科学技术大学 生命科学与医学部 生物医学工程学院(苏州)(合肥 230026)School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China
- 中国科学院苏州生物医学工程技术研究所(江苏苏州 215163)Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, P. R. China
| | - 威 夏
- 中国科学技术大学 生命科学与医学部 生物医学工程学院(苏州)(合肥 230026)School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China
- 中国科学院苏州生物医学工程技术研究所(江苏苏州 215163)Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, P. R. China
| | - 琼 李
- 中国科学技术大学 生命科学与医学部 生物医学工程学院(苏州)(合肥 230026)School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China
| | - 欣 高
- 中国科学技术大学 生命科学与医学部 生物医学工程学院(苏州)(合肥 230026)School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China
- 中国科学院苏州生物医学工程技术研究所(江苏苏州 215163)Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, P. R. China
| |
Collapse
|
54
|
Lin L, Li C, Zhang T, Xia C, Bai Q, Jin L, Shen Y. An in silico scheme for optimizing the enzymatic acquisition of natural biologically active peptides based on machine learning and virtual digestion. Anal Chim Acta 2024; 1298:342419. [PMID: 38462343 DOI: 10.1016/j.aca.2024.342419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/23/2023] [Accepted: 02/26/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND As a potential natural active substance, natural biologically active peptides (NBAPs) are recently attracting increasing attention. The traditional proteolysis methods of obtaining effective NBAPs are considerably vexing, especially since multiple proteases can be used, which blocks the exploration of available NBAPs. Although the development of virtual digesting brings some degree of convenience, the activity of the obtained peptides remains unclear, which would still not allow efficient access to the NBAPs. It is necessary to develop an efficient and accurate strategy for acquiring NBAPs. RESULTS A new in silico scheme named SSA-LSTM-VD, which combines a sparrow search algorithm-long short-term memory (SSA-LSTM) deep learning and virtually digested, was presented to optimize the proteolysis acquisition of NBAPs. Therein, SSA-LSTM reached the highest Efficiency value reached 98.00 % compared to traditional machine learning algorithms, and basic LSTM algorithm. SSA-LSTM was trained to predict the activity of peptides in the proteins virtually digested results, obtain the percentage of target active peptide, and select the appropriate protease for the actual experiment. As an application, SSA-LSTM was employed to predict the percentage of neuroprotective peptides in the virtual digested result of walnut protein, and trypsin was ultimately found to possess the highest value (85.29 %). The walnut protein was digested by trypsin (WPTrH) and the peptide sequence obtained was analyzed closely matches the theoretical neuroprotective peptide. More importantly, the neuroprotective effects of WPTrH had been demonstrated in nerve damage mouse models. SIGNIFICANCE The proposed SSA-LSTM-VD in this paper makes the acquisition of NBAPs efficient and accurate. The approach combines deep learning and virtually digested skillfully. Utilizing the SSA-LSTM-VD based strategy holds promise for discovering and developing peptides with neuroprotective properties or other desired biological activities.
Collapse
Affiliation(s)
- Like Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China.
| | - Tianlong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Chaoshuang Xia
- Center for Biomedical Mass Spectrometry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, United States
| | - Qiuhong Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Lihua Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China.
| |
Collapse
|
55
|
Mao B, Ren Y, Yu X, Liang X, Ding X. Preoperative prediction for early recurrence of hepatocellular carcinoma using machine learning-based radiomics. Front Oncol 2024; 14:1346124. [PMID: 38559563 PMCID: PMC10978579 DOI: 10.3389/fonc.2024.1346124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Objective To develop a contrast-enhanced computed tomography (CECT) based radiomics model using machine learning method and assess its ability of preoperative prediction for the early recurrence of hepatocellular carcinoma (HCC). Methods A total of 297 patients confirmed with HCC were assigned to the training dataset and test dataset based on the 8:2 ratio, and the follow-up period of the patients was from May 2012 to July 2017. The lesion sites were manually segmented using ITK-SNAP, and the pyradiomics platform was applied to extract radiomic features. We established the machine learning model to predict the early recurrence of HCC. The accuracy, AUC, standard deviation, specificity, and sensitivity were applied to evaluate the model performance. Results 1,688 features were extracted from the arterial phase and venous phase images, respectively. When arterial phase and venous phase images were employed correlated with clinical factors to train a prediction model, it achieved the best performance (AUC with 95% CI 0.8300(0.7560-0.9040), sensitivity 89.45%, specificity 79.07%, accuracy 82.67%, p value 0.0064). Conclusion The CECT-based radiomics may be helpful to non-invasively reveal the potential connection between CECT images and early recurrence of HCC. The combination of radiomics and clinical factors could boost model performance.
Collapse
Affiliation(s)
- Bing Mao
- Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Yajun Ren
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuan Yu
- Department of Medical Imaging, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinliang Liang
- Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Xiangming Ding
- Department of Gastroenterology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
56
|
Demetriou D, Lockhat Z, Brzozowski L, Saini KS, Dlamini Z, Hull R. The Convergence of Radiology and Genomics: Advancing Breast Cancer Diagnosis with Radiogenomics. Cancers (Basel) 2024; 16:1076. [PMID: 38473432 DOI: 10.3390/cancers16051076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Despite significant progress in the prevention, screening, diagnosis, prognosis, and therapy of breast cancer (BC), it remains a highly prevalent and life-threatening disease affecting millions worldwide. Molecular subtyping of BC is crucial for predictive and prognostic purposes due to the diverse clinical behaviors observed across various types. The molecular heterogeneity of BC poses uncertainties in its impact on diagnosis, prognosis, and treatment. Numerous studies have highlighted genetic and environmental differences between patients from different geographic regions, emphasizing the need for localized research. International studies have revealed that patients with African heritage are often diagnosed at a more advanced stage and exhibit poorer responses to treatment and lower survival rates. Despite these global findings, there is a dearth of in-depth studies focusing on communities in the African region. Early diagnosis and timely treatment are paramount to improving survival rates. In this context, radiogenomics emerges as a promising field within precision medicine. By associating genetic patterns with image attributes or features, radiogenomics has the potential to significantly improve early detection, prognosis, and diagnosis. It can provide valuable insights into potential treatment options and predict the likelihood of survival, progression, and relapse. Radiogenomics allows for visual features and genetic marker linkage that promises to eliminate the need for biopsy and sequencing. The application of radiogenomics not only contributes to advancing precision oncology and individualized patient treatment but also streamlines clinical workflows. This review aims to delve into the theoretical underpinnings of radiogenomics and explore its practical applications in the diagnosis, management, and treatment of BC and to put radiogenomics on a path towards fully integrated diagnostics.
Collapse
Affiliation(s)
- Demetra Demetriou
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Zarina Lockhat
- Department of Radiology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Luke Brzozowski
- Translational Research and Core Facilities, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Kamal S Saini
- Fortrea Inc., 8 Moore Drive, Durham, NC 27709, USA
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
57
|
Greene C, Fujima N, Sakai O, Andreu-Arasa VC. Comparing accuracy of machine learning approaches to identifying parathyroid adenomas: Lessons and new directions. Am J Otolaryngol 2024; 45:104155. [PMID: 38141567 DOI: 10.1016/j.amjoto.2023.104155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 12/25/2023]
Abstract
PURPOSE The purpose of this investigation is to understand the accuracy of machine learning techniques to detect biopsy-proven adenomas from similar appearing lymph nodes and factors that influence accuracy by comparing support vector machine (SVM) and bidirectional Long short-term memory (Bi-LSTM) analyses. This will provide greater insight into how these tools could integrate multidimensional data and aid the detection of parathyroid adenomas consistently and accurately. METHODS Ninety-nine patients were identified; 93 4D-CTs of patients with pathology-proven parathyroid adenomas were reviewed; 94 parathyroid adenomas and 112 lymph nodes were analyzed. A 2D slice through the lesions in each phase was used to perform sequence classification with ResNet50 as the pre-trained network to construct the Bi-LSTM model, and the mean enhancement curves were used to form an SVM model. The model characteristics and accuracy were calculated for the training and validation data sets. RESULTS On the training data, the area under the curve (AUC) of the Bi-LSTM was 0.99, while the SVM was 0.95 and statistically significant on the DeLong test. The overall accuracy of the Bi-LSTM on the validation data set was 92 %, while the SVM was 88 %. The accuracy for parathyroid adenomas specifically was 93 % for the Bi-LSTM and 83 % for the SVM model. CONCLUSION Enhancement characteristics are a distinguishing feature that accurately identifies parathyroid adenomas alone. The Bi-LSTM performs statistically better in identifying parathyroid adenomas than the SVM analysis when using both morphologic and enhancement information to distinguish between parathyroid adenomas and lymph nodes. SUMMARY STATEMENT The Bi-LSTM more accurately identifies parathyroid adenomas than the SVM analysis, which uses both morphologic and enhancement information to distinguish between parathyroid adenomas and lymph nodes, performs statistically better.
Collapse
Affiliation(s)
- Cynthia Greene
- Department of Radiology, Boston Medical Center, Boston University School of Medicine One Boton Medical Center Place, Boston, MA 02118, USA
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, 5 Chome Kita 14, Jonishhi, Sapporo, Hokkaido, Japan
| | - Osamu Sakai
- Department of Radiology, Boston Medical Center, Boston University School of Medicine One Boton Medical Center Place, Boston, MA 02118, USA
| | - V Carlota Andreu-Arasa
- Department of Radiology, Boston Medical Center, Boston University School of Medicine One Boton Medical Center Place, Boston, MA 02118, USA.
| |
Collapse
|
58
|
He M, Chen ZF, Liu S, Chen Y, Zhang H, Zhang L, Zhao J, Yang J, Zhang XT, Shen L, Gao JB, Dong B, Tang L. Deep learning model based on multi-lesion and time series CT images for predicting the benefits from anti-HER2 targeted therapy in stage IV gastric cancer. Insights Imaging 2024; 15:59. [PMID: 38411839 PMCID: PMC10899559 DOI: 10.1186/s13244-024-01639-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024] Open
Abstract
OBJECTIVE To develop and validate a deep learning model based on multi-lesion and time series CT images in predicting overall survival (OS) in patients with stage IV gastric cancer (GC) receiving anti-HER2 targeted therapy. METHODS A total of 207 patients were enrolled in this multicenter study, with 137 patients for retrospective training and internal validation, 33 patients for prospective validation, and 37 patients for external validation. All patients received anti-HER2 targeted therapy and underwent pre- and post-treatment CT scans (baseline and at least one follow-up). The proposed deep learning model evaluated the multiple lesions in time series CT images to predict risk probabilities. We further evaluated and validated the risk score of the nomogram combining a two-follow-up lesion-based deep learning model (LDLM-2F), tumor markers, and clinical information for predicting the benefits from treatment (Nomo-LDLM-2F). RESULTS In the internal validation and prospective cohorts, the one-year AUCs for Nomo-LDLM-2F using the time series medical images and tumor markers were 0.894 (0.728-1.000) and 0.809 (0.561-1.000), respectively. In the external validation cohort, the one-year AUC of Nomo-LDLM-2F without tumor markers was 0.771 (0.510-1.000). Patients with a low Nomo-LDLM-2F score derived survival benefits from anti-HER2 targeted therapy significantly compared to those with a high Nomo-LDLM-2F score (all p < 0.05). CONCLUSION The Nomo-LDLM-2F score derived from multi-lesion and time series CT images holds promise for the effective readout of OS probability in patients with HER2-positive stage IV GC receiving anti-HER2 therapy. CRITICAL RELEVANCE STATEMENT The deep learning model using baseline and early follow-up CT images aims to predict OS in patients with stage IV gastric cancer receiving anti-HER2 targeted therapy. This model highlights the spatiotemporal heterogeneity of stage IV GC, assisting clinicians in the early evaluation of the efficacy of anti-HER2 therapy. KEY POINTS • Multi-lesion and time series model revealed the spatiotemporal heterogeneity in anti-HER2 therapy. • The Nomo-LDLM-2F score was a valuable prognostic marker for anti-HER2 therapy. • CT-based deep learning model incorporating time-series tumor markers improved performance.
Collapse
Affiliation(s)
- Meng He
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zi-Fan Chen
- Center for Data Science, Peking University, Beijing, China
| | - Song Liu
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321, Zhongshan Road, Nanjing CityJiangsu Province, 210008, China
| | - Yang Chen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Zhang
- Center for Data Science, Peking University, Beijing, China
| | - Jie Zhao
- National Engineering Laboratory for Big Data Analysis and Applications, Peking University, Beijing, China
- Peking University Changsha Institute for Computing and Digital Economy, Changsha, China
| | - Jie Yang
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiao-Tian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China.
| | - Jian-Bo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Bin Dong
- Peking University Changsha Institute for Computing and Digital Economy, Changsha, China.
- Beijing International Center for Mathematical Research, Peking University, Beijing, China.
- Center for Machine Learning Research, Peking University, Beijing, China.
| | - Lei Tang
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
59
|
Zhong R, Gao T, Li J, Li Z, Tian X, Zhang C, Lin X, Wang Y, Gao L, Hu K. The global research of artificial intelligence in lung cancer: a 20-year bibliometric analysis. Front Oncol 2024; 14:1346010. [PMID: 38371616 PMCID: PMC10869611 DOI: 10.3389/fonc.2024.1346010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Background Lung cancer (LC) is the second-highest incidence and the first-highest mortality cancer worldwide. Early screening and precise treatment of LC have been the research hotspots in this field. Artificial intelligence (AI) technology has advantages in many aspects of LC and widely used such as LC early diagnosis, LC differential classification, treatment and prognosis prediction. Objective This study aims to analyze and visualize the research history, current status, current hotspots, and development trends of artificial intelligence in the field of lung cancer using bibliometric methods, and predict future research directions and cutting-edge hotspots. Results A total of 2931 articles published between 2003 and 2023 were included, contributed by 15,848 authors from 92 countries/regions. Among them, China (40%) with 1173 papers,USA (24.80%) with 727 papers and the India(10.2%) with 299 papers have made outstanding contributions in this field, accounting for 75% of the total publications. The primary research institutions were Shanghai Jiaotong University(n=66),Chinese Academy of Sciences (n=63) and Harvard Medical School (n=52).Professor Qian Wei(n=20) from Northeastern University in China were ranked first in the top 10 authors while Armato SG(n=458 citations) was the most co-cited authors. Frontiers in Oncology(121 publications; IF 2022,4.7; Q2) was the most published journal. while Radiology (3003 citations; IF 2022, 19.7; Q1) was the most co-cited journal. different countries and institutions should further strengthen cooperation between each other. The most common keywords were lung cancer, classification, cancer, machine learning and deep learning. Meanwhile, The most cited papers was Nicolas Coudray et al.2018.NAT MED(1196 Total Citations). Conclusions Research related to AI in lung cancer has significant application prospects, and the number of scholars dedicated to AI-related research on lung cancer is continually growing. It is foreseeable that non-invasive diagnosis and precise minimally invasive treatment through deep learning and machine learning will remain a central focus in the future. Simultaneously, there is a need to enhance collaboration not only among various countries and institutions but also between high-quality medical and industrial entities.
Collapse
Affiliation(s)
- Ruikang Zhong
- Beijing University of Chinese Medicine, Beijing, China
| | - Tangke Gao
- Beijing University of Chinese Medicine, Beijing, China
| | - Jinghua Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Zexing Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Xue Tian
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chi Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Ximing Lin
- Beijing University of Chinese Medicine, Beijing, China
| | - Yuehui Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Lei Gao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kaiwen Hu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
60
|
Grenier PA, Brun AL, Mellot F. [The contribution of artificial intelligence (AI) subsequent to the processing of thoracic imaging]. Rev Mal Respir 2024; 41:110-126. [PMID: 38129269 DOI: 10.1016/j.rmr.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The contribution of artificial intelligence (AI) to medical imaging is currently the object of widespread experimentation. The development of deep learning (DL) methods, particularly convolution neural networks (CNNs), has led to performance gains often superior to those achieved by conventional methods such as machine learning. Radiomics is an approach aimed at extracting quantitative data not accessible to the human eye from images expressing a disease. The data subsequently feed machine learning models and produce diagnostic or prognostic probabilities. As for the multiple applications of AI methods in thoracic imaging, they are undergoing evaluation. Chest radiography is a practically ideal field for the development of DL algorithms able to automatically interpret X-rays. Current algorithms can detect up to 14 different abnormalities present either in isolation or in combination. Chest CT is another area offering numerous AI applications. Various algorithms have been specifically formed and validated for the detection and characterization of pulmonary nodules and pulmonary embolism, as well as segmentation and quantitative analysis of the extent of diffuse lung diseases (emphysema, infectious pneumonias, interstitial lung disease). In addition, the analysis of medical images can be associated with clinical, biological, and functional data (multi-omics analysis), the objective being to construct predictive approaches regarding disease prognosis and response to treatment.
Collapse
Affiliation(s)
- P A Grenier
- Délégation à la recherche clinique et l'innovation, hôpital Foch, Suresnes, France.
| | - A L Brun
- Service de radiologie, hôpital Foch, Suresnes, France
| | - F Mellot
- Service de radiologie, hôpital Foch, Suresnes, France
| |
Collapse
|
61
|
Zheng L, Shi S, Lu M, Fang P, Pan Z, Zhang H, Zhou Z, Zhang H, Mou M, Huang S, Tao L, Xia W, Li H, Zeng Z, Zhang S, Chen Y, Li Z, Zhu F. AnnoPRO: a strategy for protein function annotation based on multi-scale protein representation and a hybrid deep learning of dual-path encoding. Genome Biol 2024; 25:41. [PMID: 38303023 PMCID: PMC10832132 DOI: 10.1186/s13059-024-03166-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Protein function annotation has been one of the longstanding issues in biological sciences, and various computational methods have been developed. However, the existing methods suffer from a serious long-tail problem, with a large number of GO families containing few annotated proteins. Herein, an innovative strategy named AnnoPRO was therefore constructed by enabling sequence-based multi-scale protein representation, dual-path protein encoding using pre-training, and function annotation by long short-term memory-based decoding. A variety of case studies based on different benchmarks were conducted, which confirmed the superior performance of AnnoPRO among available methods. Source code and models have been made freely available at: https://github.com/idrblab/AnnoPRO and https://zenodo.org/records/10012272.
Collapse
Affiliation(s)
- Lingyan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China
| | - Shuiyang Shi
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Mingkun Lu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Pan Fang
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hongning Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhimeng Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shijie Huang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Weiqi Xia
- Pharmaceutical Department, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Honglin Li
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhenyu Zeng
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Shun Zhang
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Yuzong Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Zhaorong Li
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| |
Collapse
|
62
|
Nie T, Chen Z, Cai J, Ai S, Xue X, Yuan M, Li C, Shi L, Liu Y, Verma V, Bi J, Han G, Yuan Z. Integration of dosimetric parameters, clinical factors, and radiomics to predict symptomatic radiation pneumonitis in lung cancer patients undergoing combined immunotherapy and radiotherapy. Radiother Oncol 2024; 190:110047. [PMID: 38070685 DOI: 10.1016/j.radonc.2023.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023]
Abstract
PURPOSE This study aimed to combine clinical/dosimetric factors and handcrafted/deep learning radiomic features to establish a predictive model for symptomatic (grade ≥ 2) radiation pneumonitis (RP) in lung cancer patients who received immunotherapy followed by radiotherapy. MATERIALS AND METHODS This study retrospectively collected data of 73 lung cancer patients with prior receipt of ICIs who underwent thoracic radiotherapy (TRT). Of these 73 patients, 41 (56.2 %) developed symptomatic grade ≥ 2 RP. RP was defined per multidisciplinary clinician consensus using CTCAE v5.0. Regions of interest (ROIs) (from radiotherapy planning CT images) utilized herein were gross tumor volume (GTV), planning tumor volume (PTV), and PTV-GTV. Clinical/dosimetric (mean lung dose and V5-V30) parameters were collected, and 107 handcrafted radiomic (HCR) features were extracted from each ROI. Deep learning-based radiomic (DLR) features were also extracted based on pre-trained 3D residual network models. HCR models, Fusion HCR model, Fusion HCR + ResNet models, and Fusion HCR + ResNet + Clinical models were built and compared using the receiver operating characteristic (ROC) curve with measurement of the area under the curve (AUC). Five-fold cross-validation was performed to avoid model overfitting. RESULTS HCR models across various ROIs and the Fusion HCR model showed good predictive ability with AUCs from 0.740 to 0.808 and 0.740-0.802 in the training and testing cohorts, respectively. The addition of DLR features improved the effectiveness of HCR models (AUCs from 0.826 to 0.898 and 0.821-0.898 in both respective cohorts). The best performing prediction model (HCR + ResNet + Clinical) combined HCR & DLR features with 7 clinical/dosimetric characteristics and achieved an average AUC of 0.936 and 0.946 in both respective cohorts. CONCLUSIONS In patients undergoing combined immunotherapy/RT for lung cancer, integrating clinical/dosimetric factors and handcrafted/deep learning radiomic features can offer a high predictive capacity for RP, and merits further prospective validation.
Collapse
Affiliation(s)
- Tingting Nie
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zien Chen
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; School of Biomedical Engineering, South-Central Minzu University, Wuhan, PR China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Nanhuan Road, Jingzhou, Hubei, PR China
| | - Shuangquan Ai
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; School of Biomedical Engineering, South-Central Minzu University, Wuhan, PR China
| | - Xudong Xue
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Mengting Yuan
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Chao Li
- Department of Oncology, First Affiliated Hospital of Yangtze University, Nanhuan Road, Jingzhou, Hubei, PR China
| | - Liting Shi
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yulin Liu
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Vivek Verma
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Jianping Bi
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Guang Han
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Zilong Yuan
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
63
|
Tai DT, Nhu NT, Tuan PA, Sulieman A, Omer H, Alirezaei Z, Bradley D, Chow JCL. A user-friendly deep learning application for accurate lung cancer diagnosis. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:611-622. [PMID: 38607727 DOI: 10.3233/xst-230255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
BACKGROUND Accurate diagnosis and subsequent delineated treatment planning require the experience of clinicians in the handling of their case numbers. However, applying deep learning in image processing is useful in creating tools that promise faster high-quality diagnoses, but the accuracy and precision of 3-D image processing from 2-D data may be limited by factors such as superposition of organs, distortion and magnification, and detection of new pathologies. The purpose of this research is to use radiomics and deep learning to develop a tool for lung cancer diagnosis. METHODS This study applies radiomics and deep learning in the diagnosis of lung cancer to help clinicians accurately analyze the images and thereby provide the appropriate treatment planning. 86 patients were recruited from Bach Mai Hospital, and 1012 patients were collected from an open-source database. First, deep learning has been applied in the process of segmentation by U-NET and cancer classification via the use of the DenseNet model. Second, the radiomics were applied for measuring and calculating diameter, surface area, and volume. Finally, the hardware also was designed by connecting between Arduino Nano and MFRC522 module for reading data from the tag. In addition, the displayed interface was created on a web platform using Python through Streamlit. RESULTS The applied segmentation model yielded a validation loss of 0.498, a train loss of 0.27, a cancer classification validation loss of 0.78, and a training accuracy of 0.98. The outcomes of the diagnostic capabilities of lung cancer (recognition and classification of lung cancer from chest CT scans) were quite successful. CONCLUSIONS The model provided means for storing and updating patients' data directly on the interface which allowed the results to be readily available for the health care providers. The developed system will improve clinical communication and information exchange. Moreover, it can manage efforts by generating correlated and coherent summaries of cancer diagnoses.
Collapse
Affiliation(s)
- Duong Thanh Tai
- Department of Medical Physics, Faculty of Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Nguyen Tan Nhu
- School of Biomedical Engineering, Ho Chi Minh City International University (VNU-HCM), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Vietnam
| | - Pham Anh Tuan
- Nuclear Medicine and Oncology Centre, Bach Mai Hospital, Ha Noi, Vietnam
| | - Abdelmoneim Sulieman
- Radiology and Medical Imaging Department Prince Sattam Bin Abdulaziz University College of Applied Medical Sciences, Al-Kharj, Saudi Arabia
- Radiological Science Department, College of Applied Medical Sciences, Al Ahsa, Saudi Arabia, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hiba Omer
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Zahra Alirezaei
- Radiology Department, Paramedical School, Bushehr University of Medical Sciences, Bushehr, Iran
| | - David Bradley
- Applied Physics and Radiation Technologies Group, CCDCU, Sunway University, Subang Jaya, PJ, Malaysia
- School of Mathematics and Physics, University of Surrey, Guildford, UK
| | - James C L Chow
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
64
|
Jin Y, Yin H, Zhang H, Wang Y, Liu S, Yang L, Song B. Predicting tumor deposits in rectal cancer: a combined deep learning model using T2-MR imaging and clinical features. Insights Imaging 2023; 14:221. [PMID: 38117396 PMCID: PMC10733230 DOI: 10.1186/s13244-023-01564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/05/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Tumor deposits (TDs) are associated with poor prognosis in rectal cancer (RC). This study aims to develop and validate a deep learning (DL) model incorporating T2-MR image and clinical factors for the preoperative prediction of TDs in RC patients. METHODS AND METHODS A total of 327 RC patients with pathologically confirmed TDs status from January 2016 to December 2019 were retrospectively recruited, and the T2-MR images and clinical variables were collected. Patients were randomly split into a development dataset (n = 246) and an independent testing dataset (n = 81). A single-channel DL model, a multi-channel DL model, a hybrid DL model, and a clinical model were constructed. The performance of these predictive models was assessed by using receiver operating characteristics (ROC) analysis and decision curve analysis (DCA). RESULTS The areas under the curves (AUCs) of the clinical, single-DL, multi-DL, and hybrid-DL models were 0.734 (95% CI, 0.674-0.788), 0.710 (95% CI, 0.649-0.766), 0.767 (95% CI, 0.710-0.819), and 0.857 (95% CI, 0.807-0.898) in the development dataset. The AUC of the hybrid-DL model was significantly higher than the single-DL and multi-DL models (both p < 0.001) in the development dataset, and the single-DL model (p = 0.028) in the testing dataset. Decision curve analysis demonstrated the hybrid-DL model had higher net benefit than other models across the majority range of threshold probabilities. CONCLUSIONS The proposed hybrid-DL model achieved good predictive efficacy and could be used to predict tumor deposits in rectal cancer. CRITICAL RELEVANCE STATEMENT The proposed hybrid-DL model achieved good predictive efficacy and could be used to predict tumor deposits in rectal cancer. KEY POINTS • Preoperative non-invasive identification of TDs is of great clinical significance. • The combined hybrid-DL model achieved good predictive efficacy and could be used to predict tumor deposits in rectal cancer. • A preoperative nomogram provides gastroenterologist with an accurate and effective tool.
Collapse
Affiliation(s)
- Yumei Jin
- Department of Medical Imaging Center, Qujing First People's Hospital, Qujing, 655000, Yunnan Province, China.
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Hongkun Yin
- Beijing Infervision Technology Co.Ltd, Beijing, China
| | - Huiling Zhang
- Beijing Infervision Technology Co.Ltd, Beijing, China
| | - Yewu Wang
- Department of Joint and Sports Medicine, Qujing First People's Hospital, Qujing, 655000, Yunnan Province, China
| | - Shengmei Liu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Ling Yang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Bin Song
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China.
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan Province, 572000, China.
| |
Collapse
|
65
|
Nijiati M, Guo L, Abulizi A, Fan S, Wubuli A, Tuersun A, Nijiati P, Xia L, Hong K, Zou X. Deep learning and radiomics of longitudinal CT scans for early prediction of tuberculosis treatment outcomes. Eur J Radiol 2023; 169:111180. [PMID: 37949023 DOI: 10.1016/j.ejrad.2023.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND To predict tuberculosis (TB) treatment outcomes at an early stage, prevent poor outcomes ofdrug-resistant tuberculosis(DR-TB) and interrupt transmission. METHODS An internal cohort for model development consists of 204 bacteriologically-confirmed TB patients who completed anti-tuberculosis treatment, with one pretreatment and two follow-up CT images (612 scans). Three radiomics feature-based models (RM) with multiple classifiers of Bagging, Random forest and Gradient boosting and two deep-learning-based models (i.e., supervised deep-learning model, SDLM; weakly supervised deep-learning model, WSDLM) are developed independently. Prediction scores of RM and deep-learning models with respectively highest performance are fused to create new fusion models under different fusion strategies. An additional independent validation was conducted on the external cohort comprising 80 patients (160 scans). RESULTS For RM scheme, 16 optimal radiomics features are finally selected using longitudinal scans. The AUCs of RM for Bagging, Random forest and Gradient boosting were 0.789, 0.773 and 0.764 in the internal cohort and 0.840, 0.834 and 0.816 in the external cohort, respectively. For deep learning-based scheme, AUCs of SDLM and WSDLM were 0.767 and 0.661 in the internal cohort, and 0.823 and 0.651 in the external. The fusion model yields AUCs from 0.767 to 0.802 in the internal cohort, and from 0.831 to 0.857 in the external cohort. CONCLUSIONS Fusion of radiomics features and deep-learning model may have the potential to predict early failure outcome of DR-TB, which may be combined to help prevent poor TB treatment outcomes.
Collapse
Affiliation(s)
- Mayidili Nijiati
- Department of Radiology, The First People's Hospital of Kashi (Kashgar) Prefecture, China
| | - Lin Guo
- Shenzhen Zhiying Medical Imaging, Shenzhen, China
| | | | - Shiyu Fan
- Department of Radiology, The First People's Hospital of Kashi (Kashgar) Prefecture, China
| | - Abulikemu Wubuli
- Department of Radiology, Yecheng County People's Hospital, China
| | - Abudouresuli Tuersun
- Department of Radiology, The First People's Hospital of Kashi (Kashgar) Prefecture, China
| | - Pahatijiang Nijiati
- Department of Radiology, The First People's Hospital of Kashi (Kashgar) Prefecture, China
| | - Li Xia
- Shenzhen Zhiying Medical Imaging, Shenzhen, China
| | - Kunlei Hong
- Shenzhen Zhiying Medical Imaging, Shenzhen, China
| | - Xiaoguang Zou
- Clinical Medical Research Center, The First People's Hospital of Kashi (Kashgar) Prefecture, China.
| |
Collapse
|
66
|
Sadeghi MH, Sina S, Alavi M, Giammarile F. The OCDA-Net: a 3D convolutional neural network-based system for classification and staging of ovarian cancer patients using [ 18F]FDG PET/CT examinations. Ann Nucl Med 2023; 37:645-654. [PMID: 37768493 DOI: 10.1007/s12149-023-01867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
OBJECTIVE To create the 3D convolutional neural network (CNN)-based system that can use whole-body [18F]FDG PET for recurrence/post-therapy surveillance in ovarian cancer (OC). METHODS In this study, 1224 image sets from OC patients who underwent whole-body [18F]FDG PET/CT at Kowsar Hospital between April 2019 and May 2022 were investigated. For recurrence/post-therapy surveillance, diagnostic classification as cancerous, and non-cancerous and staging as stage III, and stage IV were determined by pathological diagnosis and specialists' interpretation. New deep neural network algorithms, the OCDAc-Net, and the OCDAs-Net were developed for diagnostic classification and staging of OC patients using [18F]FDG PET/CT images. Examinations were divided into independent training (75%), validation (10%), and testing (15%) subsets. RESULTS This study included 37 women (mean age 56.3 years; age range 36-83 years). Data augmentation techniques were applied to the images in two phases. There were 1224 image sets for diagnostic classification and staging. For the test set, 170 image sets were considered for diagnostic classification and staging. The OCDAc-Net areas under the receiver operating characteristic curve (AUCs) and overall accuracy for diagnostic classification were 0.990 and 0.92, respectively. The OCDAs-Net achieved areas under the receiver operating characteristic curve (AUCs) of 0.995 and overall accuracy of 0.94 for staging. CONCLUSIONS The proposed 3D CNN-based models provide potential tools for recurrence/post-therapy surveillance in OC. The OCDAc-Net and the OCDAs-Net model provide a new prognostic analysis method that can utilize PET images without pathological findings for diagnostic classification and staging.
Collapse
Affiliation(s)
- Mohammad Hossein Sadeghi
- Nuclear Engineering Department, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Sedigheh Sina
- Nuclear Engineering Department, School of Mechanical Engineering, Shiraz University, Shiraz, Iran.
- Radiation Research Center, School of Mechanical Engineering, Shiraz University, Shiraz, Iran.
| | - Mehrosadat Alavi
- Department of Nuclear Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Francesco Giammarile
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
67
|
Ma Y, Li Q. An integrated model combined intra- and peritumoral regions for predicting chemoradiation response of non small cell lung cancers based on radiomics and deep learning. Cancer Radiother 2023; 27:705-711. [PMID: 37932182 DOI: 10.1016/j.canrad.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE The purpose of this study was to develop a model for predicting chemoradiation response in non-small cell lung cancer (NSCLC) patients by integrating radiomics and deep-learning features and combined intra- and peritumoral regions with pre-treated CT images. MATERIALS AND METHODS This study enrolled 462 patients with NSCLC who received chemoradiation. On the basis of pretreated CT images, we developed three models to compare the prediction of chemoradiation: intratumoral, peritumoral and combined regions. To further illustrate each model, we established different feature integration methods: a) radiomics model with 1500 features; b) deep learning model with a multiple instance learning algorithm; c) integrated model by integrating radiomic and deep learning features. For radiomics and integrated models, support vector machine and the least absolute shrinkage and selection operator were used to extract and select features. Transfer learning and max pooling algorithms were used to identify high informative features in deep learning models. We applied ten-fold cross validation in model training and testing. RESULTS The best area under the curve (AUC) of intratumoral, peritumoral and combined models were 0.89 (95% CI, 0.74-0.93), 0.86 (95% CI, 0.75-0.92) and 0.92 (95% CI, 0.81-0.95), respectively. It indicated the importance of the peritumoral region for treatment response prediction and should be used in combination with the intratumoral region. Integrated models gave better results than models with radiomics and deep learning features alone in all regions of interest and radiomics models outperformed deep learning models in any comparative models. CONCLUSIONS The model that integrate radiomic and deep learning features and combined intra- and peritumoral regions provide valuable information in predicting treatment response of chemoradiation. It can help oncologists customize personalized clinical treatment plans for NSCLC patients.
Collapse
Affiliation(s)
- Y Ma
- The First Affiliated Hospital of China Medical University, Department of Pathology, 110001 Shenyang, China.
| | - Q Li
- The First Affiliated Hospital of China Medical University, Department of Pathology, 110001 Shenyang, China.
| |
Collapse
|
68
|
Nijiati M, Guo L, Tuersun A, Damola M, Abulizi A, Dong J, Xia L, Hong K, Zou X. Deep learning on longitudinal CT scans: automated prediction of treatment outcomes in hospitalized tuberculosis patients. iScience 2023; 26:108326. [PMID: 37965132 PMCID: PMC10641748 DOI: 10.1016/j.isci.2023.108326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/17/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Abstract
Three deep learning (DL)-based prediction models (PMs) using longitudinal CT images were developed to predict tuberculosis (TB) treatment outcomes. The internal dataset consists of 493 bacteriologically confirmed TB patients who completed the anti-tuberculosis treatment with three-time CT scans, including a pretreatment CT scan and two follow-up CT scans. PM1 was trained using only pretreatment CT scans, and PM2 and PM3 were developed by adding follow-up scans. An independent testing was performed on external dataset comprising 86 TB patients. The area under the curve for classifying success and drug-resistant (DR)-TB was improved on both internal (0.609 vs. 0.625 vs. 0.815) and external (0.627 vs. 0.705 vs. 0.735) dataset by adding follow-up scans. The accuracy and F1-score also showed an increasing tendency in the external test. Regular follow-up CT scans can aid in the treatment prediction, and special attention should be given to early intensive phase of treatment to identify high-risk DR-TB patients.
Collapse
Affiliation(s)
- Mayidili Nijiati
- Department of Radiology, The First People’s Hospital of Kashi Prefecture, Kashi, China
| | - Lin Guo
- Shenzhen Zhiying Medical Imaging, Shenzhen, China
| | - Abudouresuli Tuersun
- Department of Radiology, The First People’s Hospital of Kashi Prefecture, Kashi, China
| | - Maihemitijiang Damola
- Department of Radiology, The First People’s Hospital of Kashi Prefecture, Kashi, China
| | | | - Jiake Dong
- Department of Radiology, The First People’s Hospital of Kashi Prefecture, Kashi, China
| | - Li Xia
- Shenzhen Zhiying Medical Imaging, Shenzhen, China
| | - Kunlei Hong
- Shenzhen Zhiying Medical Imaging, Shenzhen, China
| | - Xiaoguang Zou
- Clinical Medical Research Center, The First People’s Hospital of Kashi Prefecture, Kashi, China
| |
Collapse
|
69
|
Gandhi Z, Gurram P, Amgai B, Lekkala SP, Lokhandwala A, Manne S, Mohammed A, Koshiya H, Dewaswala N, Desai R, Bhopalwala H, Ganti S, Surani S. Artificial Intelligence and Lung Cancer: Impact on Improving Patient Outcomes. Cancers (Basel) 2023; 15:5236. [PMID: 37958411 PMCID: PMC10650618 DOI: 10.3390/cancers15215236] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Lung cancer remains one of the leading causes of cancer-related deaths worldwide, emphasizing the need for improved diagnostic and treatment approaches. In recent years, the emergence of artificial intelligence (AI) has sparked considerable interest in its potential role in lung cancer. This review aims to provide an overview of the current state of AI applications in lung cancer screening, diagnosis, and treatment. AI algorithms like machine learning, deep learning, and radiomics have shown remarkable capabilities in the detection and characterization of lung nodules, thereby aiding in accurate lung cancer screening and diagnosis. These systems can analyze various imaging modalities, such as low-dose CT scans, PET-CT imaging, and even chest radiographs, accurately identifying suspicious nodules and facilitating timely intervention. AI models have exhibited promise in utilizing biomarkers and tumor markers as supplementary screening tools, effectively enhancing the specificity and accuracy of early detection. These models can accurately distinguish between benign and malignant lung nodules, assisting radiologists in making more accurate and informed diagnostic decisions. Additionally, AI algorithms hold the potential to integrate multiple imaging modalities and clinical data, providing a more comprehensive diagnostic assessment. By utilizing high-quality data, including patient demographics, clinical history, and genetic profiles, AI models can predict treatment responses and guide the selection of optimal therapies. Notably, these models have shown considerable success in predicting the likelihood of response and recurrence following targeted therapies and optimizing radiation therapy for lung cancer patients. Implementing these AI tools in clinical practice can aid in the early diagnosis and timely management of lung cancer and potentially improve outcomes, including the mortality and morbidity of the patients.
Collapse
Affiliation(s)
- Zainab Gandhi
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes Barre, PA 18711, USA
| | - Priyatham Gurram
- Department of Medicine, Mamata Medical College, Khammam 507002, India; (P.G.); (S.P.L.); (S.M.)
| | - Birendra Amgai
- Department of Internal Medicine, Geisinger Community Medical Center, Scranton, PA 18510, USA;
| | - Sai Prasanna Lekkala
- Department of Medicine, Mamata Medical College, Khammam 507002, India; (P.G.); (S.P.L.); (S.M.)
| | - Alifya Lokhandwala
- Department of Medicine, Jawaharlal Nehru Medical College, Wardha 442001, India;
| | - Suvidha Manne
- Department of Medicine, Mamata Medical College, Khammam 507002, India; (P.G.); (S.P.L.); (S.M.)
| | - Adil Mohammed
- Department of Internal Medicine, Central Michigan University College of Medicine, Saginaw, MI 48602, USA;
| | - Hiren Koshiya
- Department of Internal Medicine, Prime West Consortium, Inglewood, CA 92395, USA;
| | - Nakeya Dewaswala
- Department of Cardiology, University of Kentucky, Lexington, KY 40536, USA;
| | - Rupak Desai
- Independent Researcher, Atlanta, GA 30079, USA;
| | - Huzaifa Bhopalwala
- Department of Internal Medicine, Appalachian Regional Hospital, Hazard, KY 41701, USA; (H.B.); (S.G.)
| | - Shyam Ganti
- Department of Internal Medicine, Appalachian Regional Hospital, Hazard, KY 41701, USA; (H.B.); (S.G.)
| | - Salim Surani
- Departmet of Pulmonary, Critical Care Medicine, Texas A&M University, College Station, TX 77845, USA;
| |
Collapse
|
70
|
Zhang L, LaBelle W, Unberath M, Chen H, Hu J, Li G, Dreizin D. A vendor-agnostic, PACS integrated, and DICOM-compatible software-server pipeline for testing segmentation algorithms within the clinical radiology workflow. Front Med (Lausanne) 2023; 10:1241570. [PMID: 37954555 PMCID: PMC10637622 DOI: 10.3389/fmed.2023.1241570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Background Reproducible approaches are needed to bring AI/ML for medical image analysis closer to the bedside. Investigators wishing to shadow test cross-sectional medical imaging segmentation algorithms on new studies in real-time will benefit from simple tools that integrate PACS with on-premises image processing, allowing visualization of DICOM-compatible segmentation results and volumetric data at the radiology workstation. Purpose In this work, we develop and release a simple containerized and easily deployable pipeline for shadow testing of segmentation algorithms within the clinical workflow. Methods Our end-to-end automated pipeline has two major components- 1. A router/listener and anonymizer and an OHIF web viewer backstopped by a DCM4CHEE DICOM query/retrieve archive deployed in the virtual infrastructure of our secure hospital intranet, and 2. An on-premises single GPU workstation host for DICOM/NIfTI conversion steps, and image processing. DICOM images are visualized in OHIF along with their segmentation masks and associated volumetry measurements (in mL) using DICOM SEG and structured report (SR) elements. Since nnU-net has emerged as a widely-used out-of-the-box method for training segmentation models with state-of-the-art performance, feasibility of our pipleine is demonstrated by recording clock times for a traumatic pelvic hematoma nnU-net model. Results Mean total clock time from PACS send by user to completion of transfer to the DCM4CHEE query/retrieve archive was 5 min 32 s (± SD of 1 min 26 s). This compares favorably to the report turnaround times for whole-body CT exams, which often exceed 30 min, and illustrates feasibility in the clinical setting where quantitative results would be expected prior to report sign-off. Inference times accounted for most of the total clock time, ranging from 2 min 41 s to 8 min 27 s. All other virtual and on-premises host steps combined ranged from a minimum of 34 s to a maximum of 48 s. Conclusion The software worked seamlessly with an existing PACS and could be used for deployment of DL models within the radiology workflow for prospective testing on newly scanned patients. Once configured, the pipeline is executed through one command using a single shell script. The code is made publicly available through an open-source license at "https://github.com/vastc/," and includes a readme file providing pipeline config instructions for host names, series filter, other parameters, and citation instructions for this work.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Wayne LaBelle
- School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Mathias Unberath
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Haomin Chen
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Jiazhen Hu
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Guang Li
- School of Medicine, University of Maryland, Baltimore, MD, United States
| | - David Dreizin
- School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
71
|
Li X, Tang Y, Liang P, Sun M, Li T, Shen Z, Sha S. Luteolin inhibits A549 cells proliferation and migration by down-regulating androgen receptors. Eur J Med Res 2023; 28:353. [PMID: 37716981 PMCID: PMC10504720 DOI: 10.1186/s40001-023-01302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/18/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Yi Fei Qing Hua Granules (YQG) is a traditional Chinese herbal medicine with the effects of inhibiting the proliferation of lung cancer cells. Luteolin is one of the active compounds of YQG. Luteolin is a common flavonoid extracted from natural herbs and it can promote cancer cells apoptosis has been reported. However, the underlying molecular mechanism and effects of luteolin on human lung cancer needs to be validated. METHODS Molecular docking, network pharmacology methods and quantitative structure-activity relationship (QSAR) model were used to identify the active components of YQG and their possible mechanisms of action. Western blot analysis was used to measure AR expression in A549 cells. Cell migration assays were used to detect A549 cells proliferation transfected by AR plasmid and AR mutation plasmid, respectively. RESULTS TCMSP search results revealed that there are 182 active compounds in YQG, which correspond to 232 target genes. Sixty-one genes were overlapping genes in the 2 datasets of TCMSP and GeneCards. Through bioinformatics tagging of these overlapping genes, a total of 1,951 GO functional tagging analysis and 133 KEGG pathways were obtained. Through molecular docking technology and QSAR model verification, the multi-target active compound luteolin was screened out as one of the active components of YQG for in vitro verification. Androgen receptor (AR) was the hub protein with the highest docking score of luteolin. Western blot showed that luteolin could inhibit AR protein expression in lung cancer cell line A549. After the phosphorylation site of AR protein 877 was inactivated, the ability of luteolin to inhibit the proliferation of lung cancer cells was weakened. Luteolin significantly inhibited the growth of A549 xenogeneic tumors at day 25 and 28 and inhibited the expression of AR. CONCLUSION In this study, we have explored luteolin as one of the active components of YQG, and may inhibit the proliferation and migration of A549 cells by decreasing the expression of AR and the regulation of phosphorylation at AR-binding sites.
Collapse
Affiliation(s)
- Xu Li
- Tongji University School of Medicine, Shanghai, 200092, China
- General practice, Tongji University School of Medicine Affiliated Anting Community Health Center of Jiading District, Shanghai, 201805, China
| | - Yeling Tang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Pengchen Liang
- School of Microelectronics, Shanghai University, Shanghai, 201800, China
| | - Miaomiao Sun
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Tian Li
- Graduate School, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhiping Shen
- General practice, Tongji University School of Medicine Affiliated Anting Community Health Center of Jiading District, Shanghai, 201805, China.
| | - Shuang Sha
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
72
|
Yang Z, Wang C, Wang Y, Lafata KJ, Zhang H, Ackerson BG, Kelsey C, Tong B, Yin FF. Development of a multi-feature-combined model: proof-of-concept with application to local failure prediction of post-SBRT or surgery early-stage NSCLC patients. Front Oncol 2023; 13:1185771. [PMID: 37781201 PMCID: PMC10534017 DOI: 10.3389/fonc.2023.1185771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Objective To develop a Multi-Feature-Combined (MFC) model for proof-of-concept in predicting local failure (LR) in NSCLC patients after surgery or SBRT using pre-treatment CT images. This MFC model combines handcrafted radiomic features, deep radiomic features, and patient demographic information in an integrated machine learning workflow. Methods The MFC model comprised three key steps. (1) Extraction of 92 handcrafted radiomic features from the GTV segmented on pre-treatment CT images. (2) Extraction of 512 deep radiomic features from pre-trained U-Net encoder. (3) The extracted handcrafted radiomic features, deep radiomic features, along with 4 patient demographic information (i.e., gender, age, tumor volume, and Charlson comorbidity index), were concatenated as a multi-dimensional input to the classifiers for LR prediction. Two NSCLC patient cohorts from our institution were investigated: (1) the surgery cohort includes 83 patients with segmentectomy or wedge resection (7 LR), and (2) the SBRT cohort includes 84 patients with lung SBRT (9 LR). The MFC model was developed and evaluated independently for both cohorts, and was subsequently compared against the prediction models based on only handcrafted radiomic features (R models), patient demographic information (PI models), and deep learning modeling (DL models). ROC with AUC was adopted to evaluate model performance with leave-one-out cross-validation (LOOCV) and 100-fold Monte Carlo random validation (MCRV). The t-test was performed to identify the statistically significant differences. Results In LOOCV, the AUC range (surgery/SBRT) of the MFC model was 0.858-0.895/0.868-0.913, which was higher than the three other models: 0.356-0.480/0.322-0.650 for PI models, 0.559-0.618/0.639-0.682 for R models, and 0.809/0.843 for DL models. In 100-fold MCRV, the MFC model again showed the highest AUC results (surgery/SBRT): 0.742-0.825/0.888-0.920, which were significantly higher than PI models: 0.464-0.564/0.538-0.628, R models: 0.557-0.652/0.551-0.732, and DL models: 0.702/0.791. Conclusion We successfully developed an MFC model that combines feature information from multiple sources for proof-of-concept prediction of LR in patients with surgical and SBRT early-stage NSCLC. Initial results suggested that incorporating pre-treatment patient information from multiple sources improves the ability to predict the risk of local failure.
Collapse
Affiliation(s)
- Zhenyu Yang
- Department of Radiation Oncology, Duke University, Durham, NC, United States
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
- Medical Physics Graduate Program, Duke University, Durham, NC, United States
| | - Chunhao Wang
- Department of Radiation Oncology, Duke University, Durham, NC, United States
| | - Yuqi Wang
- Medical Physics Graduate Program, Duke University, Durham, NC, United States
| | - Kyle J. Lafata
- Department of Radiation Oncology, Duke University, Durham, NC, United States
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States
- Department of Radiology, Duke University, Durham, NC, United States
| | - Haozhao Zhang
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Bradley G. Ackerson
- Department of Radiation Oncology, Duke University, Durham, NC, United States
| | - Christopher Kelsey
- Department of Radiation Oncology, Duke University, Durham, NC, United States
| | - Betty Tong
- Department of Surgery, Duke University, Durham, NC, United States
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University, Durham, NC, United States
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| |
Collapse
|
73
|
Lu N, Guan X, Zhu J, Li Y, Zhang J. A Contrast-Enhanced CT-Based Deep Learning System for Preoperative Prediction of Colorectal Cancer Staging and RAS Mutation. Cancers (Basel) 2023; 15:4497. [PMID: 37760468 PMCID: PMC10526233 DOI: 10.3390/cancers15184497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE This study aimed to build a deep learning system using enhanced computed tomography (CT) portal-phase images for predicting colorectal cancer patients' preoperative staging and RAS gene mutation status. METHODS The contrast-enhanced CT image dataset comprises the CT portal-phase images from a retrospective cohort of 231 colorectal cancer patients. The deep learning system was developed via migration learning for colorectal cancer detection, staging, and RAS gene mutation status prediction. This study used pre-trained Yolov7, vision transformer (VIT), swin transformer (SWT), EfficientNetV2, and ConvNeXt. 4620, and contrast-enhanced CT images and annotated tumor bounding boxes were included in the tumor identification and staging dataset. A total of 19,700 contrast-enhanced CT images comprise the RAS gene mutation status prediction dataset. RESULTS In the validation cohort, the Yolov7-based detection model detected and staged tumors with a mean accuracy precision (IoU = 0.5) (mAP_0.5) of 0.98. The area under the receiver operating characteristic curve (AUC) in the test set and validation set for the VIT-based prediction model in predicting the mutation status of the RAS genes was 0.9591 and 0.9554, respectively. The detection network and prediction network of the deep learning system demonstrated great performance in explaining contrast-enhanced CT images. CONCLUSION In this study, a deep learning system was created based on the foundation of contrast-enhanced CT portal-phase imaging to preoperatively predict the stage and RAS mutation status of colorectal cancer patients. This system will help clinicians choose the best treatment option to increase colorectal cancer patients' chances of survival and quality of life.
Collapse
Affiliation(s)
- Na Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, No. 121, Jiangjiayuan Road, Nanjing 210011, China (X.G.)
| | - Xiao Guan
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, No. 121, Jiangjiayuan Road, Nanjing 210011, China (X.G.)
| | - Jianguo Zhu
- Department of Radiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China;
| | - Yuan Li
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China;
| | - Jianping Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, No. 121, Jiangjiayuan Road, Nanjing 210011, China (X.G.)
| |
Collapse
|
74
|
Liu Y, Han D, Parwani AV, Li Z. Applications of Artificial Intelligence in Breast Pathology. Arch Pathol Lab Med 2023; 147:1003-1013. [PMID: 36800539 DOI: 10.5858/arpa.2022-0457-ra] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 02/19/2023]
Abstract
CONTEXT.— Increasing implementation of whole slide imaging together with digital workflow and advances in computing capacity enable the use of artificial intelligence (AI) in pathology, including breast pathology. Breast pathologists often face a significant workload, with diagnosis complexity, tedious repetitive tasks, and semiquantitative evaluation of biomarkers. Recent advances in developing AI algorithms have provided promising approaches to meet the demand in breast pathology. OBJECTIVE.— To provide an updated review of AI in breast pathology. We examined the success and challenges of current and potential AI applications in diagnosing and grading breast carcinomas and other pathologic changes, detecting lymph node metastasis, quantifying breast cancer biomarkers, predicting prognosis and therapy response, and predicting potential molecular changes. DATA SOURCES.— We obtained data and information by searching and reviewing literature on AI in breast pathology from PubMed and based our own experience. CONCLUSIONS.— With the increasing application in breast pathology, AI not only assists in pathology diagnosis to improve accuracy and reduce pathologists' workload, but also provides new information in predicting prognosis and therapy response.
Collapse
Affiliation(s)
- Yueping Liu
- From the Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China (Liu, Han)
| | - Dandan Han
- From the Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China (Liu, Han)
| | - Anil V Parwani
- The Department of Pathology, The Ohio State University, Columbus (Parwani, Li)
| | - Zaibo Li
- From the Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China (Liu, Han)
| |
Collapse
|
75
|
Chen S, Song D, Chen L, Guo T, Jiang B, Liu A, Pan X, Wang T, Tang H, Chen G, Xue Z, Wang X, Zhang N, Zheng J. Artificial intelligence-based non-invasive tumor segmentation, grade stratification and prognosis prediction for clear-cell renal-cell carcinoma. PRECISION CLINICAL MEDICINE 2023; 6:pbad019. [PMID: 38025974 PMCID: PMC10680020 DOI: 10.1093/pcmedi/pbad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/07/2023] [Indexed: 12/01/2023] Open
Abstract
Due to the complicated histopathological characteristics of clear-cell renal-cell carcinoma (ccRCC), non-invasive prognosis before operative treatment is crucial in selecting the appropriate treatment. A total of 126 345 computerized tomography (CT) images from four independent patient cohorts were included for analysis in this study. We propose a V Bottleneck multi-resolution and focus-organ network (VB-MrFo-Net) using a cascade framework for deep learning analysis. The VB-MrFo-Net achieved better performance than VB-Net in tumor segmentation, with a Dice score of 0.87. The nuclear-grade prediction model performed best in the logistic regression classifier, with area under curve values from 0.782 to 0.746. Survival analysis revealed that our prediction model could significantly distinguish patients with high survival risk, with a hazard ratio (HR) of 2.49 [95% confidence interval (CI): 1.13-5.45, P = 0.023] in the General cohort. Excellent performance had also been verified in the Cancer Genome Atlas cohort, the Clinical Proteomic Tumor Analysis Consortium cohort, and the Kidney Tumor Segmentation Challenge cohort, with HRs of 2.77 (95%CI: 1.58-4.84, P = 0.0019), 3.83 (95%CI: 1.22-11.96, P = 0.029), and 2.80 (95%CI: 1.05-7.47, P = 0.025), respectively. In conclusion, we propose a novel VB-MrFo-Net for the renal tumor segmentation and automatic diagnosis of ccRCC. The risk stratification model could accurately distinguish patients with high tumor grade and high survival risk based on non-invasive CT images before surgical treatments, which could provide practical advice for deciding treatment options.
Collapse
Affiliation(s)
- Siteng Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Dandan Song
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lei Chen
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai 201807, China
| | - Tuanjie Guo
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Beibei Jiang
- Department of Radiology, Erasmus University Medical Center, Rotterdam, P.O. Box 2040, 3000 CA, The Netherlands
| | - Aie Liu
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai 201807, China
| | - Xianpan Pan
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai 201807, China
| | - Tao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Heting Tang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Guihua Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhong Xue
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai 201807, China
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ning Zhang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junhua Zheng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| |
Collapse
|
76
|
Tan D, Mohd Nasir NF, Abdul Manan H, Yahya N. Prediction of toxicity outcomes following radiotherapy using deep learning-based models: A systematic review. Cancer Radiother 2023; 27:398-406. [PMID: 37482464 DOI: 10.1016/j.canrad.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 07/25/2023]
Abstract
PURPOSE This study aims to perform a comprehensive systematic review of deep learning (DL) models in predicting RT-induced toxicity. MATERIALS AND METHODS A literature review was performed following the PRISMA guidelines. Systematic searches were performed in PubMed, Scopus, Cochrane and Embase databases from the earliest record up to September 2022. Related studies on deep learning models for radiotherapy toxicity prediction were selected based on predefined PICOS criteria. RESULTS Fourteen studies of radiotherapy-treated patients on different types of cancer [prostate (n=2), HNC (n=4), liver (n=2), lung (n=4), cervical (n=1), and oesophagus (n=1)] were eligible for inclusion in the systematic review. Information regarding patient characteristics and model development was summarized. Several approaches, such as ensemble learning, data augmentation, and transfer learning, that were utilized by selected studies were discussed. CONCLUSION Deep learning techniques are able to produce a consistent performance for toxicity prediction. Future research using large and diverse datasets and standardization of the study methodologies are required to improve the consistency of the research output.
Collapse
Affiliation(s)
- D Tan
- Centre of Diagnostic, Therapeutic and Investigative Sciences (CODTIS). Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, Kuala Lumpur 50300 Malaysia
| | - N F Mohd Nasir
- Centre of Diagnostic, Therapeutic and Investigative Sciences (CODTIS). Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, Kuala Lumpur 50300 Malaysia
| | - H Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia
| | - N Yahya
- Centre of Diagnostic, Therapeutic and Investigative Sciences (CODTIS). Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, Kuala Lumpur 50300 Malaysia.
| |
Collapse
|
77
|
Xiong Y, Guo W, Liang Z, Wu L, Ye G, Liang YY, Wen C, Yang F, Chen S, Zeng XW, Xu F. Deep learning-based diagnosis of osteoblastic bone metastases and bone islands in computed tomograph images: a multicenter diagnostic study. Eur Radiol 2023; 33:6359-6368. [PMID: 37060446 PMCID: PMC10415522 DOI: 10.1007/s00330-023-09573-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To develop and validate a deep learning (DL) model based on CT for differentiating bone islands and osteoblastic bone metastases. MATERIALS AND METHODS The patients with sclerosing bone lesions (SBLs) were retrospectively included in three hospitals. The images from site 1 were randomly assigned to the training (70%) and intrinsic verification (10%) datasets for developing the two-dimensional (2D) DL model (single-slice input) and "2.5-dimensional" (2.5D) DL model (three-slice input) and to the internal validation dataset (20%) for evaluating the performance of both models. The diagnostic performance was evaluated using the internal validation set from site 1 and additional external validation datasets from site 2 and site 3. And statistically analyze the performance of 2D and 2.5D DL models. RESULTS In total, 1918 SBLs in 728 patients in site 1, 122 SBLs in 71 patients in site 2, and 71 SBLs in 47 patients in site 3 were used to develop and test the 2D and 2.5D DL models. The best performance was obtained using the 2.5D DL model, which achieved an AUC of 0.996 (95% confidence interval [CI], 0.995-0.996), 0.958 (95% CI, 0.958-0.960), and 0.952 (95% CI, 0.951-0.953) and accuracies of 0.950, 0.902, and 0.863 for the internal validation set, the external validation set from site 2 and site 3, respectively. CONCLUSION A DL model based on a three-slice CT image input (2.5D DL model) can improve the prediction of osteoblastic bone metastases, which can facilitate clinical decision-making. KEY POINTS • This study investigated the value of deep learning models in identifying bone islands and osteoblastic bone metastases. • Three-slice CT image input (2.5D DL model) outweighed the 2D model in the classification of sclerosing bone lesions. • The 2.5D deep learning model showed excellent performance using the internal (AUC, 0.996) and two external (AUC, 0.958; AUC, 0.952) validation sets.
Collapse
Affiliation(s)
- Yuchao Xiong
- Department of Radiology, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital, Medical College of Jinan University), 396 Tongfu Road, Guangzhou, 510220, Guangdong Province, China
| | - Wei Guo
- Department of Radiology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, 241 Liuyang Road, Wuhan, 430063, Hubei Province, China
| | - Zhiping Liang
- Department of Radiology, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital, Medical College of Jinan University), 396 Tongfu Road, Guangzhou, 510220, Guangdong Province, China
| | - Li Wu
- Department of Radiology, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital, Medical College of Jinan University), 396 Tongfu Road, Guangzhou, 510220, Guangdong Province, China
| | - Guoxi Ye
- Department of Radiology, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital, Medical College of Jinan University), 396 Tongfu Road, Guangzhou, 510220, Guangdong Province, China
| | - Ying-Ying Liang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 1Panfu Road, Guangzhou, 510180, Guangdong Province, China
| | - Chao Wen
- Department of Radiology, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital, Medical College of Jinan University), 396 Tongfu Road, Guangzhou, 510220, Guangdong Province, China
| | - Feng Yang
- Department of Radiology, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital, Medical College of Jinan University), 396 Tongfu Road, Guangzhou, 510220, Guangdong Province, China
| | - Song Chen
- Department of Radiology, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital, Medical College of Jinan University), 396 Tongfu Road, Guangzhou, 510220, Guangdong Province, China
| | - Xu-Wen Zeng
- Department of Radiology, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital, Medical College of Jinan University), 396 Tongfu Road, Guangzhou, 510220, Guangdong Province, China.
| | - Fan Xu
- Department of Radiology, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital, Medical College of Jinan University), 396 Tongfu Road, Guangzhou, 510220, Guangdong Province, China.
| |
Collapse
|
78
|
Shao J, Feng J, Li J, Liang S, Li W, Wang C. Novel tools for early diagnosis and precision treatment based on artificial intelligence. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:148-160. [PMID: 39171128 PMCID: PMC11332840 DOI: 10.1016/j.pccm.2023.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Indexed: 08/23/2024]
Abstract
Lung cancer has the highest mortality rate among all cancers in the world. Hence, early diagnosis and personalized treatment plans are crucial to improving its 5-year survival rate. Chest computed tomography (CT) serves as an essential tool for lung cancer screening, and pathology images are the gold standard for lung cancer diagnosis. However, medical image evaluation relies on manual labor and suffers from missed diagnosis or misdiagnosis, and physician heterogeneity. The rapid development of artificial intelligence (AI) has brought a whole novel opportunity for medical task processing, demonstrating the potential for clinical application in lung cancer diagnosis and treatment. AI technologies, including machine learning and deep learning, have been deployed extensively for lung nodule detection, benign and malignant classification, and subtype identification based on CT images. Furthermore, AI plays a role in the non-invasive prediction of genetic mutations and molecular status to provide the optimal treatment regimen, and applies to the assessment of therapeutic efficacy and prognosis of lung cancer patients, enabling precision medicine to become a reality. Meanwhile, histology-based AI models assist pathologists in typing, molecular characterization, and prognosis prediction to enhance the efficiency of diagnosis and treatment. However, the leap to extensive clinical application still faces various challenges, such as data sharing, standardized label acquisition, clinical application regulation, and multimodal integration. Nevertheless, AI holds promising potential in the field of lung cancer to improve cancer care.
Collapse
Affiliation(s)
- Jun Shao
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiaming Feng
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingwei Li
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shufan Liang
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
79
|
Kim J, Oh I, Lee YN, Lee JH, Lee YI, Kim J, Lee JH. Predicting the severity of postoperative scars using artificial intelligence based on images and clinical data. Sci Rep 2023; 13:13448. [PMID: 37596459 PMCID: PMC10439171 DOI: 10.1038/s41598-023-40395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
Evaluation of scar severity is crucial for determining proper treatment modalities; however, there is no gold standard for assessing scars. This study aimed to develop and evaluate an artificial intelligence model using images and clinical data to predict the severity of postoperative scars. Deep neural network models were trained and validated using images and clinical data from 1283 patients (main dataset: 1043; external dataset: 240) with post-thyroidectomy scars. Additionally, the performance of the model was tested against 16 dermatologists. In the internal test set, the area under the receiver operating characteristic curve (ROC-AUC) of the image-based model was 0.931 (95% confidence interval 0.910‒0.949), which increased to 0.938 (0.916‒0.955) when combined with clinical data. In the external test set, the ROC-AUC of the image-based and combined prediction models were 0.896 (0.874‒0.916) and 0.912 (0.892‒0.932), respectively. In addition, the performance of the tested algorithm with images from the internal test set was comparable with that of 16 dermatologists. This study revealed that a deep neural network model derived from image and clinical data could predict the severity of postoperative scars. The proposed model may be utilized in clinical practice for scar management, especially for determining severity and treatment initiation.
Collapse
Affiliation(s)
- Jemin Kim
- Department of Dermatology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, Gyeonggi-do, South Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Inrok Oh
- LG Chem Ltd., Seoul, South Korea
| | - Yun Na Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Joo Hee Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Young In Lee
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jihee Kim
- Department of Dermatology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, Gyeonggi-do, South Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Hee Lee
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Yonsei University College of Medicine, Seoul, South Korea.
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
80
|
Li B, Yang L, Zhang H, Li H, Jiang C, Yao Y, Cheng S, Zou B, Fan B, Dong T, Wang L. Outcome-Supervised Deep Learning on Pathologic Whole Slide Images for Survival Prediction of Immunotherapy in Patients with Non-Small Cell Lung Cancer. Mod Pathol 2023; 36:100208. [PMID: 37149222 DOI: 10.1016/j.modpat.2023.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Although programmed death-(ligand) 1 (PD-(L)1) inhibitors are marked by durable efficacy in patients with non-small cell lung cancer (NSCLC), approximately 60% of the patients still suffer from recurrence and metastasis after PD-(L)1 inhibitor treatment. To accurately predict the response to PD-(L)1 inhibitors, we presented a deep learning model using a Vision Transformer (ViT) network based on hematoxylin and eosin (H&E)-stained specimens of patients with NSCLC. Two independent cohorts of patients with NSCLC receiving PD-(L)1 inhibitors from Shandong Cancer Hospital and Institute and Shandong Provincial Hospital were enrolled for model training and external validation, respectively. Whole slide images (WSIs) of H&E-stained histologic specimens were obtained from these patients and patched into 1024 × 1024 pixels. The patch-level model was trained based on ViT to identify the predictive patches, and patch-level probability distribution was performed. Then, we trained a patient-level survival model based on the ViT-Recursive Neural Network framework and externally validated it in the Shandong Provincial Hospital cohort. A total of 291 WSIs of H&E-stained histologic specimens from 198 patients with NSCLC in Shandong Cancer Hospital and 62 WSIs from 30 patients with NSCLC in Shandong Provincial Hospital were included in the model training and validation. The model achieved an accuracy of 88.6% in the internal validation cohort and 81% in the external validation cohort. The survival model also remained a statistically independent predictor of survival from PD-(L)1 inhibitors. In conclusion, the outcome-supervised ViT-Recursive Neural Network survival model based on pathologic WSIs could be used to predict immunotherapy efficacy in patients with NSCLC.
Collapse
Affiliation(s)
- Butuo Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Linlin Yang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Huan Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haoqian Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chao Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University; Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yueyuan Yao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shuping Cheng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bing Zou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bingjie Fan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Taotao Dong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Linlin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
81
|
Du H, Yao MMS, Liu S, Chen L, Chan WP, Feng M. Automatic Calcification Morphology and Distribution Classification for Breast Mammograms With Multi-Task Graph Convolutional Neural Network. IEEE J Biomed Health Inform 2023; 27:3782-3793. [PMID: 37027577 DOI: 10.1109/jbhi.2023.3249404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The morphology and distribution of microcalcifications are the most important descriptors for radiologists to diagnose breast cancer based on mammograms. However, it is very challenging and time-consuming for radiologists to characterize these descriptors manually, and there also lacks of effective and automatic solutions for this problem. We observed that the distribution and morphology descriptors are determined by the radiologists based on the spatial and visual relationships among calcifications. Thus, we hypothesize that this information can be effectively modelled by learning a relationship-aware representation using graph convolutional networks (GCNs). In this study, we propose a multi-task deep GCN method for automatic characterization of both the morphology and distribution of microcalcifications in mammograms. Our proposed method transforms morphology and distribution characterization into node and graph classification problem and learns the representations concurrently. We trained and validated the proposed method in an in-house dataset and public DDSM dataset with 195 and 583 cases,respectively. The proposed method reaches good and stable results with distribution AUC at 0.812 ± 0.043 and 0.873 ± 0.019, morphology AUC at 0.663 ± 0.016 and 0.700 ± 0.044 for both in-house and public datasets. In both datasets, our proposed method demonstrates statistically significant improvements compared to the baseline models. The performance improvements brought by our proposed multi-task mechanism can be attributed to the association between the distribution and morphology of calcifications in mammograms, which is interpretable using graphical visualizations and consistent with the definitions of descriptors in the standard BI-RADS guideline. In short, we explore, for the first time, the application of GCNs in microcalcification characterization that suggests the potential of using graph learning for more robust understanding of medical images.
Collapse
|
82
|
Bishnoi V, Goel N. Tensor-RT-Based Transfer Learning Model for Lung Cancer Classification. J Digit Imaging 2023; 36:1364-1375. [PMID: 37059889 PMCID: PMC10407002 DOI: 10.1007/s10278-023-00822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023] Open
Abstract
Cancer is a leading cause of death across the globe, in which lung cancer constitutes the maximum mortality rate. Early diagnosis through computed tomography scan imaging helps to identify the stages of lung cancer. Several deep learning-based classification methods have been employed for developing automatic systems for the diagnosis and detection of computed tomography scan lung slices. However, the diagnosis based on nodule detection is a challenging task as it requires manual annotation of nodule regions. Also, these computer-aided systems have yet not achieved the desired performance in real-time lung cancer classification. In the present paper, a high-speed real-time transfer learning-based framework is proposed for the classification of computed tomography lung cancer slices into benign and malignant. The proposed framework comprises of three modules: (i) pre-processing and segmentation of lung images using K-means clustering based on cosine distance and morphological operations; (ii) tuning and regularization of the proposed model named as weighted VGG deep network (WVDN); (iii) model inference in Nvidia tensor-RT during post-processing for the deployment in real-time applications. In this study, two pre-trained CNN models were experimented and compared with the proposed model. All the models have been trained on 19,419 computed tomography scan lung slices, which were obtained from the publicly available Lung Image Database Consortium and Image Database Resource Initiative dataset. The proposed model achieved the best classification metric, an accuracy of 0.932, precision, recall, an F1 score of 0.93, and Cohen's kappa score of 0.85. A statistical evaluation has also been performed on the classification parameters and achieved a p-value <0.0001 for the proposed model. The quantitative and statistical results validate the improved performance of the proposed model as compared to state-of-the-art methods. The proposed framework is based on complete computed tomography slices rather than the marked annotations and may help in improving clinical diagnosis.
Collapse
Affiliation(s)
- Vidhi Bishnoi
- Indira Gandhi Delhi Technical University for Women, Delhi, India
| | - Nidhi Goel
- Indira Gandhi Delhi Technical University for Women, Delhi, India
| |
Collapse
|
83
|
Yu KL, Tseng YS, Yang HC, Liu CJ, Kuo PC, Lee MR, Huang CT, Kuo LC, Wang JY, Ho CC, Shih JY, Yu CJ. Deep learning with test-time augmentation for radial endobronchial ultrasound image differentiation: a multicentre verification study. BMJ Open Respir Res 2023; 10:e001602. [PMID: 37532473 PMCID: PMC10401203 DOI: 10.1136/bmjresp-2022-001602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/23/2023] [Indexed: 08/04/2023] Open
Abstract
PURPOSE Despite the importance of radial endobronchial ultrasound (rEBUS) in transbronchial biopsy, researchers have yet to apply artificial intelligence to the analysis of rEBUS images. MATERIALS AND METHODS This study developed a convolutional neural network (CNN) to differentiate between malignant and benign tumours in rEBUS images. This study retrospectively collected rEBUS images from medical centres in Taiwan, including 769 from National Taiwan University Hospital Hsin-Chu Branch, Hsinchu Hospital for model training (615 images) and internal validation (154 images) as well as 300 from National Taiwan University Hospital (NTUH-TPE) and 92 images were obtained from National Taiwan University Hospital Hsin-Chu Branch, Biomedical Park Hospital (NTUH-BIO) for external validation. Further assessments of the model were performed using image augmentation in the training phase and test-time augmentation (TTA). RESULTS Using the internal validation dataset, the results were as follows: area under the curve (AUC) (0.88 (95% CI 0.83 to 0.92)), sensitivity (0.80 (95% CI 0.73 to 0.88)), specificity (0.75 (95% CI 0.66 to 0.83)). Using the NTUH-TPE external validation dataset, the results were as follows: AUC (0.76 (95% CI 0.71 to 0.80)), sensitivity (0.58 (95% CI 0.50 to 0.65)), specificity (0.92 (95% CI 0.88 to 0.97)). Using the NTUH-BIO external validation dataset, the results were as follows: AUC (0.72 (95% CI 0.64 to 0.82)), sensitivity (0.71 (95% CI 0.55 to 0.86)), specificity (0.76 (95% CI 0.64 to 0.87)). After fine-tuning, the AUC values for the external validation cohorts were as follows: NTUH-TPE (0.78) and NTUH-BIO (0.82). Our findings also demonstrated the feasibility of the model in differentiating between lung cancer subtypes, as indicated by the following AUC values: adenocarcinoma (0.70; 95% CI 0.64 to 0.76), squamous cell carcinoma (0.64; 95% CI 0.54 to 0.74) and small cell lung cancer (0.52; 95% CI 0.32 to 0.72). CONCLUSIONS Our results demonstrate the feasibility of the proposed CNN-based algorithm in differentiating between malignant and benign lesions in rEBUS images.
Collapse
Affiliation(s)
- Kai-Lun Yu
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Shiuan Tseng
- Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Han-Ching Yang
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Chia-Jung Liu
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Po-Chih Kuo
- Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Meng-Rui Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Ta Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Lu-Cheng Kuo
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jann-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jin-Yuan Shih
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
84
|
Su X, Sun Y, Liu H, Lang Q, Zhang Y, Zhang J, Wang C, Chen Y. An innovative ensemble model based on deep learning for predicting COVID-19 infection. Sci Rep 2023; 13:12322. [PMID: 37516796 PMCID: PMC10387055 DOI: 10.1038/s41598-023-39408-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
Nowadays, global public health crises are occurring more frequently, and accurate prediction of these diseases can reduce the burden on the healthcare system. Taking COVID-19 as an example, accurate prediction of infection can assist experts in effectively allocating medical resources and diagnosing diseases. Currently, scholars worldwide use single model approaches or epidemiology models more often to predict the outbreak trend of COVID-19, resulting in poor prediction accuracy. Although a few studies have employed ensemble models, there is still room for improvement in their performance. In addition, there are only a few models that use the laboratory results of patients to predict COVID-19 infection. To address these issues, research efforts should focus on improving disease prediction performance and expanding the use of medical disease prediction models. In this paper, we propose an innovative deep learning model Whale Optimization Convolutional Neural Networks (CNN), Long-Short Term Memory (LSTM) and Artificial Neural Network (ANN) called WOCLSA which incorporates three models ANN, CNN and LSTM. The WOCLSA model utilizes the Whale Optimization Algorithm to optimize the neuron number, dropout and batch size parameters in the integrated model of ANN, CNN and LSTM, thereby finding the global optimal solution parameters. WOCLSA employs 18 patient indicators as predictors, and compares its results with three other ensemble deep learning models. All models were validated with train-test split approaches. We evaluate and compare our proposed model and other models using accuracy, F1 score, recall, AUC and precision metrics. Through many studies and tests, our results show that our prediction models can identify patients with COVID-19 infection at the AUC of 91%, 91%, and 93% respectively. Other prediction results achieve a respectable accuracy of 92.82%, 92.79%, and 91.66% respectively, f1-score of 93.41%, 92.79%, and 92.33% respectively, precision of 93.41%, 92.79%, and 92.33% respectively, recall of 93.41%, 92.79%, and 92.33% respectively. All of these exceed 91%, surpassing those of comparable models. The execution time of WOCLSA is also an advantage. Therefore, the WOCLSA ensemble model can be used to assist in verifying laboratory research results and predict and to judge various diseases in public health events.
Collapse
Affiliation(s)
- Xiaoying Su
- School of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130021, China
| | - Yanfeng Sun
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Hongxi Liu
- School of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130021, China
| | - Qiuling Lang
- School of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130021, China
| | - Yichen Zhang
- School of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130021, China
| | - Jiquan Zhang
- School of Environment, Northeast Normal University, Changchun, 130024, China
| | - Chaoyong Wang
- School of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130021, China.
| | - Yanan Chen
- School of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130021, China
| |
Collapse
|
85
|
Wang J, Zheng Z, Zhang Y, Tan W, Li J, Xing L, Sun X. 18F-FDG PET/CT radiomics for prediction of lymphovascular invasion in patients with early stage non-small cell lung cancer. Front Oncol 2023; 13:1185808. [PMID: 37546415 PMCID: PMC10401837 DOI: 10.3389/fonc.2023.1185808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Objective To explore a prediction model for lymphovascular invasion (LVI) on cT1-2N0M0 radiologic solid non-small cell lung cancer (NSCLC) based on a 2-deoxy-2[18F]fluoro-D-glucose ([18F]F-FDG) positron emission tomography-computed tomography (PET-CT) radiomics analysis. Methods The present work retrospectively included 148 patients receiving surgical resection and verified pathologically with cT1-2N0M0 radiologic solid NSCLC. The cases were randomized into training or validation sets in the ratio of 7:3. PET and CT images were used to select optimal radiomics features. Three radiomics predictive models incorporating CT, PET, as well as PET/CT images radiomics features (CT-RS, PET-RS, PET/CT-RS) were developed using logistic analyses. Furthermore, model performance was evaluated by ROC analysis for predicting LVI status. Model performance was evaluated in terms of discrimination, calibration along with clinical utility. Kaplan-Meier curves were employed to analyze the outcome of LVI. Results The ROC analysis demonstrated that PET/CT-RS (AUCs were 0.773 and 0.774 for training and validation sets) outperformed both CT-RS(AUCs, 0.727 and 0.752) and PET-RS(AUCs, 0.715 and 0.733). A PET/CT radiology nomogram (PET/CT-model) was developed to estimate LVI; the model demonstrated conspicuous prediction performance for training (C-index, 0.766; 95%CI, 0.728-0.805) and validation sets (C-index, 0.774; 95%CI, 0.702-0.846). Besides, decision curve analysis and calibration curve showed that PET/CT-model provided clinically beneficial effects. Disease-free survival and overall survival varied significantly between LVI and non-LVI cases (P<0.001). Conclusions The PET/CT radiomics models could effectively predict LVI on early stage radiologic solid lung cancer and provide support for clinical treatment decisions.
Collapse
Affiliation(s)
- Jie Wang
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhonghang Zheng
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yi Zhang
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Weiyue Tan
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jing Li
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaorong Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
86
|
Wang H, Zhu H, Ding L, Yang K. A diagnostic classification of lung nodules using multiple-scale residual network. Sci Rep 2023; 13:11322. [PMID: 37443333 PMCID: PMC10345110 DOI: 10.1038/s41598-023-38350-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Computed tomography (CT) scans have been shown to be an effective way of improving diagnostic efficacy and reducing lung cancer mortality. However, distinguishing benign from malignant nodules in CT imaging remains challenging. This study aims to develop a multiple-scale residual network (MResNet) to automatically and precisely extract the general feature of lung nodules, and classify lung nodules based on deep learning. The MResNet aggregates the advantages of residual units and pyramid pooling module (PPM) to learn key features and extract the general feature for lung nodule classification. Specially, the MResNet uses the ResNet as a backbone network to learn contextual information and discriminate feature representation. Meanwhile, the PPM is used to fuse features under four different scales, including the coarse scale and the fine-grained scale to obtain more general lung features of the CT image. MResNet had an accuracy of 99.12%, a sensitivity of 98.64%, a specificity of 97.87%, a positive predictive value (PPV) of 99.92%, and a negative predictive value (NPV) of 97.87% in the training set. Additionally, its area under the receiver operating characteristic curve (AUC) was 0.9998 (0.99976-0.99991). MResNet's accuracy, sensitivity, specificity, PPV, NPV, and AUC in the testing set were 85.23%, 92.79%, 72.89%, 84.56%, 86.34%, and 0.9275 (0.91662-0.93833), respectively. The developed MResNet performed exceptionally well in estimating the malignancy risk of pulmonary nodules found on CT. The model has the potential to provide reliable and reproducible malignancy risk scores for clinicians and radiologists, thereby optimizing lung cancer screening management.
Collapse
Affiliation(s)
- Hongfeng Wang
- School of Network Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Hai Zhu
- School of Network Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Kaili Yang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, 450003, China.
| |
Collapse
|
87
|
Sun H, Plawinski J, Subramaniam S, Jamaludin A, Kadir T, Readie A, Ligozio G, Ohlssen D, Baillie M, Coroller T. A deep learning approach to private data sharing of medical images using conditional generative adversarial networks (GANs). PLoS One 2023; 18:e0280316. [PMID: 37410795 PMCID: PMC10325103 DOI: 10.1371/journal.pone.0280316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 12/27/2022] [Indexed: 07/08/2023] Open
Abstract
Clinical data sharing can facilitate data-driven scientific research, allowing a broader range of questions to be addressed and thereby leading to greater understanding and innovation. However, sharing biomedical data can put sensitive personal information at risk. This is usually addressed by data anonymization, which is a slow and expensive process. An alternative to anonymization is construction of a synthetic dataset that behaves similar to the real clinical data but preserves patient privacy. As part of a collaboration between Novartis and the Oxford Big Data Institute, a synthetic dataset was generated based on images from COSENTYX® (secukinumab) ankylosing spondylitis (AS) clinical studies. An auxiliary classifier Generative Adversarial Network (ac-GAN) was trained to generate synthetic magnetic resonance images (MRIs) of vertebral units (VUs), conditioned on the VU location (cervical, thoracic and lumbar). Here, we present a method for generating a synthetic dataset and conduct an in-depth analysis on its properties along three key metrics: image fidelity, sample diversity and dataset privacy.
Collapse
Affiliation(s)
- Hanxi Sun
- Department of Statistics, Purdue University, West Lafayette, IN, United States of America
| | - Jason Plawinski
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, United States of America
| | - Sajanth Subramaniam
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, United States of America
| | | | | | - Aimee Readie
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, United States of America
| | - Gregory Ligozio
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, United States of America
| | - David Ohlssen
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, United States of America
| | - Mark Baillie
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, United States of America
| | - Thibaud Coroller
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, United States of America
| |
Collapse
|
88
|
Liu W, Qiao X, Ge H, Zhang S, Sun X, Li J, Chen W, Gu W, Yuan S. Recurrence patterns are significantly associated with the 18F‑FDG PET/CT radiomic features of patients with locally advanced non‑small cell lung cancer treated with chemoradiotherapy. Oncol Lett 2023; 26:317. [PMID: 37332327 PMCID: PMC10272971 DOI: 10.3892/ol.2023.13903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
A model for predicting the recurrence pattern of patients with locally advanced non-small cell lung cancer (LA-NSCLC) treated with chemoradiotherapy is of great importance for precision treatment. The present study analyzed whether the comprehensive quantitative values (CVs) of the fluorine-18(18F)-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) radiomic features and metastasis tumor volume (MTV) combined with clinical characteristics could predict the recurrence pattern of patients with LA-NSCLC treated with chemoradiotherapy. Patients with LA-NSCLC treated with chemoradiotherapy were divided into training and validation sets. The recurrence profile of each patient, including locoregional recurrence (LR), distant metastasis (DM) and both LR/DM were recorded. In the training set of patients, the primary tumor prior radiotherapy with 18F-FDG PET/CT and both primary tumors and lymph node metastasis were considered as the regions of interest (ROIs). The CVs of ROIs were calculated using principal component analysis. Additionally, MTVs were obtained from ROIs. The CVs, MTVs and the clinical characteristics of patients were subjected to aforementioned analysis. Furthermore, for the validation set of patients, the CVs and clinical characteristics of patients with LA-NSCLC were also subjected to logistic regression analysis and the area under the curve (AUC) values calculated. A total of 86 patients with LA-NSCLC were included in the analysis, including 59 and 27 patients in the training and validation sets of patients, respectively. The analysis revealed 22 and 12 cases with LR, 24 and 6 cases with DM and 13 and 9 cases with LR/DM in the training and validation sets of patients, respectively. Histological subtype, CV2-5 and CV3-4 were identified as independent variables in the logistic regression analysis (P<0.05). In addition, the AUC values for diagnosing LR, DM and LR/DM were 0.873, 0.711 and 0.826, and 0.675, 0.772 and 0.708 in the training and validation sets of patients, respectively. Overall, the results demonstrated that the spatial and metabolic heterogeneity quantitative values from the primary tumor combined with the histological subtype could predict the recurrence pattern of patients with LA-NSCLC treated with chemoradiotherapy.
Collapse
Affiliation(s)
- Wenju Liu
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong 250117, P.R. China
- Department of Radiation Oncology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Xu Qiao
- School of Control Science and Engineering, Shandong University, Jinan, Shandong 250117, P.R. China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan 450000, P.R. China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaojiang Sun
- Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Jiancheng Li
- Department of Radiation Oncology, Fujian Cancer Hospital, College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Weilin Chen
- Department of Radiation Oncology, Zhangzhou Hospital Affiliated to Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Wendong Gu
- Department of Radiation Oncology, The Third Hospital Afiliated to Suzhou University, Changzhou, Jiangsu 213000, P.R. China
| | - Shuanghu Yuan
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong 250117, P.R. China
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan 450000, P.R. China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
89
|
Nikulin P, Zschaeck S, Maus J, Cegla P, Lombardo E, Furth C, Kaźmierska J, Rogasch JMM, Holzgreve A, Albert NL, Ferentinos K, Strouthos I, Hajiyianni M, Marschner SN, Belka C, Landry G, Cholewinski W, Kotzerke J, Hofheinz F, van den Hoff J. A convolutional neural network with self-attention for fully automated metabolic tumor volume delineation of head and neck cancer in
[
18
F]FDG PET/CT. Eur J Nucl Med Mol Imaging 2023; 50:2751-2766. [PMID: 37079128 PMCID: PMC10317885 DOI: 10.1007/s00259-023-06197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE PET-derived metabolic tumor volume (MTV) and total lesion glycolysis of the primary tumor are known to be prognostic of clinical outcome in head and neck cancer (HNC). Including evaluation of lymph node metastases can further increase the prognostic value of PET but accurate manual delineation and classification of all lesions is time-consuming and prone to interobserver variability. Our goal, therefore, was development and evaluation of an automated tool for MTV delineation/classification of primary tumor and lymph node metastases in PET/CT investigations of HNC patients. METHODS Automated lesion delineation was performed with a residual 3D U-Net convolutional neural network (CNN) incorporating a multi-head self-attention block. 698[ 18 F]FDG PET/CT scans from 3 different sites and 5 public databases were used for network training and testing. An external dataset of 181[ 18 F]FDG PET/CT scans from 2 additional sites was employed to assess the generalizability of the network. In these data, primary tumor and lymph node (LN) metastases were interactively delineated and labeled by two experienced physicians. Performance of the trained network models was assessed by 5-fold cross-validation in the main dataset and by pooling results from the 5 developed models in the external dataset. The Dice similarity coefficient (DSC) for individual delineation tasks and the primary tumor/metastasis classification accuracy were used as evaluation metrics. Additionally, a survival analysis using univariate Cox regression was performed comparing achieved group separation for manual and automated delineation, respectively. RESULTS In the cross-validation experiment, delineation of all malignant lesions with the trained U-Net models achieves DSC of 0.885, 0.805, and 0.870 for primary tumor, LN metastases, and the union of both, respectively. In external testing, the DSC reaches 0.850, 0.724, and 0.823 for primary tumor, LN metastases, and the union of both, respectively. The voxel classification accuracy was 98.0% and 97.9% in cross-validation and external data, respectively. Univariate Cox analysis in the cross-validation and the external testing reveals that manually and automatically derived total MTVs are both highly prognostic with respect to overall survival, yielding essentially identical hazard ratios (HR) (HR man = 1.9 ;p < 0.001 vs.HR cnn = 1.8 ;p < 0.001 in cross-validation andHR man = 1.8 ;p = 0.011 vs.HR cnn = 1.9 ;p = 0.004 in external testing). CONCLUSION To the best of our knowledge, this work presents the first CNN model for successful MTV delineation and lesion classification in HNC. In the vast majority of patients, the network performs satisfactory delineation and classification of primary tumor and lymph node metastases and only rarely requires more than minimal manual correction. It is thus able to massively facilitate study data evaluation in large patient groups and also does have clear potential for supervised clinical application.
Collapse
Affiliation(s)
- Pavel Nikulin
- Helmholtz-Zentrum Dresden-Rossendorf, PET Center, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany.
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Maus
- Helmholtz-Zentrum Dresden-Rossendorf, PET Center, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Paulina Cegla
- Department of Nuclear Medicine, Greater Poland Cancer Centre, Poznan, Poland
| | - Elia Lombardo
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joanna Kaźmierska
- Electroradiology Department, University of Medical Sciences, Poznan, Poland
- Radiotherapy Department II, Greater Poland Cancer Centre, Poznan, Poland
| | - Julian M M Rogasch
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Konstantinos Ferentinos
- Department of Radiation Oncology, German Oncology Center, European University Cyprus, Limassol, Cyprus
| | - Iosif Strouthos
- Department of Radiation Oncology, German Oncology Center, European University Cyprus, Limassol, Cyprus
| | - Marina Hajiyianni
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian N Marschner
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Witold Cholewinski
- Department of Nuclear Medicine, Greater Poland Cancer Centre, Poznan, Poland
- Electroradiology Department, University of Medical Sciences, Poznan, Poland
| | - Jörg Kotzerke
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Frank Hofheinz
- Helmholtz-Zentrum Dresden-Rossendorf, PET Center, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Jörg van den Hoff
- Helmholtz-Zentrum Dresden-Rossendorf, PET Center, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
90
|
Chinnappan R, Mir TA, Alsalameh S, Makhzoum T, Alzhrani A, Alnajjar K, Adeeb S, Al Eman N, Ahmed Z, Shakir I, Al-Kattan K, Yaqinuddin A. Emerging Biosensing Methods to Monitor Lung Cancer Biomarkers in Biological Samples: A Comprehensive Review. Cancers (Basel) 2023; 15:3414. [PMID: 37444523 DOI: 10.3390/cancers15133414] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Lung cancer is the most commonly diagnosed of all cancers and one of the leading causes of cancer deaths among men and women worldwide, causing 1.5 million deaths every year. Despite developments in cancer treatment technologies and new pharmaceutical products, high mortality and morbidity remain major challenges for researchers. More than 75% of lung cancer patients are diagnosed in advanced stages, leading to poor prognosis. Lung cancer is a multistep process associated with genetic and epigenetic abnormalities. Rapid, accurate, precise, and reliable detection of lung cancer biomarkers in biological fluids is essential for risk assessment for a given individual and mortality reduction. Traditional diagnostic tools are not sensitive enough to detect and diagnose lung cancer in the early stages. Therefore, the development of novel bioanalytical methods for early-stage screening and diagnosis is extremely important. Recently, biosensors have gained tremendous attention as an alternative to conventional methods because of their robustness, high sensitivity, inexpensiveness, and easy handling and deployment in point-of-care testing. This review provides an overview of the conventional methods currently used for lung cancer screening, classification, diagnosis, and prognosis, providing updates on research and developments in biosensor technology for the detection of lung cancer biomarkers in biological samples. Finally, it comments on recent advances and potential future challenges in the field of biosensors in the context of lung cancer diagnosis and point-of-care applications.
Collapse
Affiliation(s)
- Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Tanveer Ahmad Mir
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | | | - Tariq Makhzoum
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Alaa Alzhrani
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid Alnajjar
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Salma Adeeb
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Noor Al Eman
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Zara Ahmed
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ismail Shakir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
91
|
Tang L, Zhang Z, Fan J, Xu J, Xiong J, Tang L, Jiang Y, Zhang S, Zhang G, Luo W, Xu Y. Comprehensively analysis of immunophenotyping signature in triple-negative breast cancer patients based on machine learning. Front Pharmacol 2023; 14:1195864. [PMID: 37426809 PMCID: PMC10328722 DOI: 10.3389/fphar.2023.1195864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Immunotherapy is a promising strategy for triple-negative breast cancer (TNBC) patients, however, the overall survival (OS) of 5-years is still not satisfactory. Hence, developing more valuable prognostic signature is urgently needed for clinical practice. This study established and verified an effective risk model based on machine learning methods through a series of publicly available datasets. Furthermore, the correlation between risk signature and chemotherapy drug sensitivity were also performed. The findings showed that comprehensive immune typing is highly effective and accurate in assessing prognosis of TNBC patients. Analysis showed that IL18R1, BTN3A1, CD160, CD226, IL12B, GNLY and PDCD1LG2 are key genes that may affect immune typing of TNBC patients. The risk signature plays a robust ability in prognosis prediction compared with other clinicopathological features in TNBC patients. In addition, the effect of our constructed risk model on immunotherapy response was superior to TIDE results. Finally, high-risk groups were more sensitive to MR-1220, GSK2110183 and temsirolimus, indicating that risk characteristics could predict drug sensitivity in TNBC patients to a certain extent. This study proposes an immunophenotype-based risk assessment model that provides a more accurate prognostic assessment tool for patients with TNBC and also predicts new potential compounds by performing machine learning algorithms.
Collapse
|
92
|
Lim CY, Cha YK, Chung MJ, Park S, Park S, Woo JH, Kim JH. Estimating the Volume of Nodules and Masses on Serial Chest Radiography Using a Deep-Learning-Based Automatic Detection Algorithm: A Preliminary Study. Diagnostics (Basel) 2023; 13:2060. [PMID: 37370955 DOI: 10.3390/diagnostics13122060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The purpose of this study was to assess the volume of the pulmonary nodules and masses on serial chest X-rays (CXRs) from deep-learning-based automatic detection algorithm (DLAD)-based parameters. METHODS In a retrospective single-institutional study, 72 patients, who obtained serial CXRs (n = 147) for pulmonary nodules or masses with corresponding chest CT images as the reference standards, were included. A pre-trained DLAD based on a convolutional neural network was developed to detect and localize nodules using 13,710 radiographs and to calculate a localization map and the derived parameters (e.g., the area and mean probability value of pulmonary nodules) for each CXR, including serial follow-ups. For validation, reference 3D CT volumes were measured semi-automatically. Volume prediction models for pulmonary nodules were established through univariable or multivariable, and linear or non-linear regression analyses with the parameters. A polynomial regression analysis was performed as a method of a non-linear regression model. RESULTS Of the 147 CXRs and 208 nodules of 72 patients, the mean volume of nodules or masses was measured as 9.37 ± 11.69 cm3 (mean ± standard deviation). The area and CT volume demonstrated a linear correlation of moderate strength (i.e., R = 0.58, RMSE: 9449.9 mm3 m3 in a linear regression analysis). The area and mean probability values exhibited a strong linear correlation (R = 0.73). The volume prediction performance based on a multivariable regression model was best with a mean probability and unit-adjusted area (i.e. , RMSE 7975.6 mm3, the smallest among the other variable parameters). CONCLUSIONS The prediction model with the area and the mean probability based on the DLAD showed a rather accurate quantitative estimation of pulmonary nodule or mass volume and the change in serial CXRs.
Collapse
Affiliation(s)
- Chae Young Lim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Yoon Ki Cha
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Myung Jin Chung
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Subin Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soyoung Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jung Han Woo
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jong Hee Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| |
Collapse
|
93
|
Burger B, Bernathova M, Seeböck P, Singer CF, Helbich TH, Langs G. Deep learning for predicting future lesion emergence in high-risk breast MRI screening: a feasibility study. Eur Radiol Exp 2023; 7:32. [PMID: 37280478 DOI: 10.1186/s41747-023-00343-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/04/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND International societies have issued guidelines for high-risk breast cancer (BC) screening, recommending contrast-enhanced magnetic resonance imaging (CE-MRI) of the breast as a supplemental diagnostic tool. In our study, we tested the applicability of deep learning-based anomaly detection to identify anomalous changes in negative breast CE-MRI screens associated with future lesion emergence. METHODS In this prospective study, we trained a generative adversarial network on dynamic CE-MRI of 33 high-risk women who participated in a screening program but did not develop BC. We defined an anomaly score as the deviation of an observed CE-MRI scan from the model of normal breast tissue variability. We evaluated the anomaly score's association with future lesion emergence on the level of local image patches (104,531 normal patches, 455 patches of future lesion location) and entire CE-MRI exams (21 normal, 20 with future lesion). Associations were analyzed by receiver operating characteristic (ROC) curves on the patch level and logistic regression on the examination level. RESULTS The local anomaly score on image patches was a good predictor for future lesion emergence (area under the ROC curve 0.804). An exam-level summary score was significantly associated with the emergence of lesions at any location at a later time point (p = 0.045). CONCLUSIONS Breast cancer lesions are associated with anomalous appearance changes in breast CE-MRI occurring before the lesion emerges in high-risk women. These early image signatures are detectable and may be a basis for adjusting individual BC risk and personalized screening. RELEVANCE STATEMENT Anomalies in screening MRI preceding lesion emergence in women at high-risk of breast cancer may inform individualized screening and intervention strategies. KEY POINTS • Breast lesions are associated with preceding anomalies in CE-MRI of high-risk women. • Deep learning-based anomaly detection can help to adjust risk assessment for future lesions. • An appearance anomaly score may be used for adjusting screening interval times.
Collapse
Affiliation(s)
- Bianca Burger
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Computational Imaging Research (CIR), Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Maria Bernathova
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Vienna, Austria
| | - Philipp Seeböck
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Computational Imaging Research (CIR), Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Christian F Singer
- Department of Obstetrics and Gynecology, Division of Special Gynecology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Vienna, Austria
| | - Georg Langs
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Computational Imaging Research (CIR), Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
94
|
Zhang Y, Feng W, Wu Z, Li W, Tao L, Liu X, Zhang F, Gao Y, Huang J, Guo X. Deep-Learning Model of ResNet Combined with CBAM for Malignant-Benign Pulmonary Nodules Classification on Computed Tomography Images. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1088. [PMID: 37374292 DOI: 10.3390/medicina59061088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: Lung cancer remains a leading cause of cancer mortality worldwide. Accurately classifying benign pulmonary nodules and malignant ones is crucial for early diagnosis and improved patient outcomes. The purpose of this study is to explore the deep-learning model of ResNet combined with a convolutional block attention module (CBAM) for the differentiation between benign and malignant lung cancer, based on computed tomography (CT) images, morphological features, and clinical information. Methods and materials: In this study, 8241 CT slices containing pulmonary nodules were retrospectively included. A random sample comprising 20% (n = 1647) of the images was used as the test set, and the remaining data were used as the training set. ResNet combined CBAM (ResNet-CBAM) was used to establish classifiers on the basis of images, morphological features, and clinical information. Nonsubsampled dual-tree complex contourlet transform (NSDTCT) combined with SVM classifier (NSDTCT-SVM) was used as a comparative model. Results: The AUC and the accuracy of the CBAM-ResNet model were 0.940 and 0.867, respectively, in test set when there were only images as inputs. By combining the morphological features and clinical information, CBAM-ResNet shows better performance (AUC: 0.957, accuracy: 0.898). In comparison, a radiomic analysis using NSDTCT-SVM achieved AUC and accuracy values of 0.807 and 0.779, respectively. Conclusions: Our findings demonstrate that deep-learning models, combined with additional information, can enhance the classification performance of pulmonary nodules. This model can assist clinicians in accurately diagnosing pulmonary nodules in clinical practice.
Collapse
Affiliation(s)
- Yanfei Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Wei Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Zhiyuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Weiming Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Lixin Tao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Xiangtong Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Feng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Yan Gao
- Department of Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Jian Huang
- School of Mathematical Sciences, University College Cork, T12 YN60 Cork, Ireland
| | - Xiuhua Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
95
|
Sun YK, Zhou BY, Miao Y, Shi YL, Xu SH, Wu DM, Zhang L, Xu G, Wu TF, Wang LF, Yin HH, Ye X, Lu D, Han H, Xiang LH, Zhu XX, Zhao CK, Xu HX. Three-dimensional convolutional neural network model to identify clinically significant prostate cancer in transrectal ultrasound videos: a prospective, multi-institutional, diagnostic study. EClinicalMedicine 2023; 60:102027. [PMID: 37333662 PMCID: PMC10276260 DOI: 10.1016/j.eclinm.2023.102027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/22/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Background Identifying patients with clinically significant prostate cancer (csPCa) before biopsy helps reduce unnecessary biopsies and improve patient prognosis. The diagnostic performance of traditional transrectal ultrasound (TRUS) for csPCa is relatively limited. This study was aimed to develop a high-performance convolutional neural network (CNN) model (P-Net) based on a TRUS video of the entire prostate and investigate its efficacy in identifying csPCa. Methods Between January 2021 and December 2022, this study prospectively evaluated 832 patients from four centres who underwent prostate biopsy and/or radical prostatectomy. All patients had a standardised TRUS video of the whole prostate. A two-dimensional CNN (2D P-Net) and three-dimensional CNN (3D P-Net) were constructed using the training cohort (559 patients) and tested on the internal validation cohort (140 patients) as well as on the external validation cohort (133 patients). The performance of 2D P-Net and 3D P-Net in predicting csPCa was assessed in terms of the area under the receiver operating characteristic curve (AUC), biopsy rate, and unnecessary biopsy rate, and compared with the TRUS 5-point Likert score system as well as multiparametric magnetic resonance imaging (mp-MRI) prostate imaging reporting and data system (PI-RADS) v2.1. Decision curve analyses (DCAs) were used to determine the net benefits associated with their use. The study is registered at https://www.chictr.org.cn with the unique identifier ChiCTR2200064545. Findings The diagnostic performance of 3D P-Net (AUC: 0.85-0.89) was superior to TRUS 5-point Likert score system (AUC: 0.71-0.78, P = 0.003-0.040), and similar to mp-MRI PI-RADS v2.1 score system interpreted by experienced radiologists (AUC: 0.83-0.86, P = 0.460-0.732) and 2D P-Net (AUC: 0.79-0.86, P = 0.066-0.678) in the internal and external validation cohorts. The biopsy rate decreased from 40.3% (TRUS 5-point Likert score system) and 47.6% (mp-MRI PI-RADS v2.1 score system) to 35.5% (2D P-Net) and 34.0% (3D P-Net). The unnecessary biopsy rate decreased from 38.1% (TRUS 5-point Likert score system) and 35.2% (mp-MRI PI-RADS v2.1 score system) to 32.0% (2D P-Net) and 25.8% (3D P-Net). 3D P-Net yielded the highest net benefit according to the DCAs. Interpretation 3D P-Net based on a prostate grayscale TRUS video achieved satisfactory performance in identifying csPCa and potentially reducing unnecessary biopsies. More studies to determine how AI models better integrate into routine practice and randomized controlled trials to show the values of these models in real clinical applications are warranted. Funding The National Natural Science Foundation of China (Grants 82202174 and 82202153), the Science and Technology Commission of Shanghai Municipality (Grants 18441905500 and 19DZ2251100), Shanghai Municipal Health Commission (Grants 2019LJ21 and SHSLCZDZK03502), Shanghai Science and Technology Innovation Action Plan (21Y11911200), and Fundamental Research Funds for the Central Universities (ZD-11-202151), Scientific Research and Development Fund of Zhongshan Hospital of Fudan University (Grant 2022ZSQD07).
Collapse
Affiliation(s)
- Yi-Kang Sun
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
| | - Bo-Yang Zhou
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
| | - Yao Miao
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumour, Shanghai Tenth People's Hospital, Ultrasound Institute of Research and Education, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Ultrasound in Diagnosis and Treatment, Shanghai, China
| | - Yi-Lei Shi
- MedAI Technology (Wuxi) Co., Ltd., Wuxi, China
| | - Shi-Hao Xu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Dao-Ming Wu
- Department of Ultrasound, Fujian Provincial Hospital, Fujian, China
| | - Lei Zhang
- MedAI Technology (Wuxi) Co., Ltd., Wuxi, China
| | - Guang Xu
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumour, Shanghai Tenth People's Hospital, Ultrasound Institute of Research and Education, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Ultrasound in Diagnosis and Treatment, Shanghai, China
| | - Ting-Fan Wu
- Bayer Healthcare, Radiology, Shanghai, China
| | - Li-Fan Wang
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
| | - Hao-Hao Yin
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
| | - Xin Ye
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
| | - Dan Lu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
| | - Hong Han
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
| | - Li-Hua Xiang
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumour, Shanghai Tenth People's Hospital, Ultrasound Institute of Research and Education, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Ultrasound in Diagnosis and Treatment, Shanghai, China
| | - Xiao-Xiang Zhu
- Chair of Data Science in Earth Observation, Technical University of Munich, Munich, Germany
| | - Chong-Ke Zhao
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
| | - Hui-Xiong Xu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
| | | |
Collapse
|
96
|
Tang FH, Xue C, Law MYY, Wong CY, Cho TH, Lai CK. Prognostic Prediction of Cancer Based on Radiomics Features of Diagnostic Imaging: The Performance of Machine Learning Strategies. J Digit Imaging 2023; 36:1081-1090. [PMID: 36781589 PMCID: PMC10287586 DOI: 10.1007/s10278-022-00770-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 02/15/2023] Open
Abstract
Tumor phenotypes can be characterized by radiomics features extracted from images. However, the prediction accuracy is challenged by difficulties such as small sample size and data imbalance. The purpose of the study was to evaluate the performance of machine learning strategies for the prediction of cancer prognosis. A total of 422 patients diagnosed with non-small cell lung carcinoma (NSCLC) were selected from The Cancer Imaging Archive (TCIA). The gross tumor volume (GTV) of each case was delineated from the respective CT images for radiomic features extraction. The samples were divided into 4 groups with survival endpoints of 1 year, 3 years, 5 years, and 7 years. The radiomic image features were analyzed with 6 different machine learning methods: decision tree (DT), boosted tree (BT), random forests (RF), support vector machine (SVM), generalized linear model (GLM), and deep learning artificial neural networks (DL-ANNs) with 70:30 cross-validation. The overall average prediction performance of the BT, RF, DT, SVM, GLM and DL-ANNs was AUC with 0.912, 0.938, 0.793, 0.746, 0.789 and 0.705 respectively. The RF and BT gave the best and second performance in the prediction. The DL-ANN did not show obvious advantage in predicting prognostic outcomes. Deep learning artificial neural networks did not show a significant improvement than traditional machine learning methods such as random forest and boosted trees. On the whole, the accurate outcome prediction using radiomics serves as a supportive reference for formulating treatment strategy for cancer patients.
Collapse
Affiliation(s)
- Fuk-hay Tang
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | - Cheng Xue
- Department of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Maria YY Law
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | - Chui-ying Wong
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
- Department of Radiotherapy, Hong Kong Sanatorium Hospital, Hong Kong, China
| | - Tze-hei Cho
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | - Chun-kit Lai
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
- Department of Oncology, Prince of Wales Hospital, Hong Kong, China
| |
Collapse
|
97
|
Mu J, Kuang K, Ao M, Li W, Dai H, Ouyang Z, Li J, Huang J, Guo S, Yang J, Yang L. Deep learning predicts malignancy and metastasis of solid pulmonary nodules from CT scans. Front Med (Lausanne) 2023; 10:1145846. [PMID: 37275359 PMCID: PMC10235703 DOI: 10.3389/fmed.2023.1145846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/10/2023] [Indexed: 06/07/2023] Open
Abstract
In the clinic, it is difficult to distinguish the malignancy and aggressiveness of solid pulmonary nodules (PNs). Incorrect assessments may lead to delayed diagnosis and an increased risk of complications. We developed and validated a deep learning-based model for the prediction of malignancy as well as local or distant metastasis in solid PNs based on CT images of primary lesions during initial diagnosis. In this study, we reviewed the data from multiple patients with solid PNs at our institution from 1 January 2019 to 30 April 2022. The patients were divided into three groups: benign, Ia-stage lung cancer, and T1-stage lung cancer with metastasis. Each cohort was further split into training and testing groups. The deep learning system predicted the malignancy and metastasis status of solid PNs based on CT images, and then we compared the malignancy prediction results among four different levels of clinicians. Experiments confirmed that human-computer collaboration can further enhance diagnostic accuracy. We made a held-out testing set of 134 cases, with 689 cases in total. Our convolutional neural network model reached an area under the ROC (AUC) of 80.37% for malignancy prediction and an AUC of 86.44% for metastasis prediction. In observer studies involving four clinicians, the proposed deep learning method outperformed a junior respiratory clinician and a 5-year respiratory clinician by considerable margins; it was on par with a senior respiratory clinician and was only slightly inferior to a senior radiologist. Our human-computer collaboration experiment showed that by simply adding binary human diagnosis into model prediction probabilities, model AUC scores improved to 81.80-88.70% when combined with three out of four clinicians. In summary, the deep learning method can accurately diagnose the malignancy of solid PNs, improve its performance when collaborating with human experts, predict local or distant metastasis in patients with T1-stage lung cancer, and facilitate the application of precision medicine.
Collapse
Affiliation(s)
- Junhao Mu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kaiming Kuang
- Dianei Technology, Shanghai, China
- University of California, San Diego, San Diego, CA, United States
| | - Min Ao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyun Dai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zubin Ouyang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingyu Li
- Dianei Technology, Shanghai, China
- School of Computer Science, Wuhan University, Wuhan, China
| | - Jing Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiancheng Yang
- Dianei Technology, Shanghai, China
- Shanghai Jiao Tong University, Shanghai, China
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Li Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
98
|
Kim G, Park YM, Yoon HJ, Choi JH. A multi-kernel and multi-scale learning based deep ensemble model for predicting recurrence of non-small cell lung cancer. PeerJ Comput Sci 2023; 9:e1311. [PMID: 37346527 PMCID: PMC10280639 DOI: 10.7717/peerj-cs.1311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 06/23/2023]
Abstract
Predicting recurrence in patients with non-small cell lung cancer (NSCLC) before treatment is vital for guiding personalized medicine. Deep learning techniques have revolutionized the application of cancer informatics, including lung cancer time-to-event prediction. Most existing convolutional neural network (CNN) models are based on a single two-dimensional (2D) computational tomography (CT) image or three-dimensional (3D) CT volume. However, studies have shown that using multi-scale input and fusing multiple networks provide promising performance. This study proposes a deep learning-based ensemble network for recurrence prediction using a dataset of 530 patients with NSCLC. This network assembles 2D CNN models of various input slices, scales, and convolutional kernels, using a deep learning-based feature fusion model as an ensemble strategy. The proposed framework is uniquely designed to benefit from (i) multiple 2D in-plane slices to provide more information than a single central slice, (ii) multi-scale networks and multi-kernel networks to capture the local and peritumoral features, (iii) ensemble design to integrate features from various inputs and model architectures for final prediction. The ensemble of five 2D-CNN models, three slices, and two multi-kernel networks, using 5 × 5 and 6 × 6 convolutional kernels, achieved the best performance with an accuracy of 69.62%, area under the curve (AUC) of 72.5%, F1 score of 70.12%, and recall of 70.81%. Furthermore, the proposed method achieved competitive results compared with the 2D and 3D-CNN models for cancer outcome prediction in the benchmark studies. Our model is also a potential adjuvant treatment tool for identifying NSCLC patients with a high risk of recurrence.
Collapse
Affiliation(s)
- Gihyeon Kim
- Department of Computational Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, South Korea
| | - Young Mi Park
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Hyun Jung Yoon
- Department of Radiology, Veterans Health Service Medical Center, Seoul, South Korea
| | - Jang-Hwan Choi
- Division of Mechanical and Biomedical Engineering, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, South Korea
- Department of Artificial Intelligence, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
99
|
Shakir H, Aijaz B, Khan TMR, Hussain M. A deep learning-based cancer survival time classifier for small datasets. Comput Biol Med 2023; 160:106896. [PMID: 37150085 DOI: 10.1016/j.compbiomed.2023.106896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/07/2023] [Accepted: 04/09/2023] [Indexed: 05/09/2023]
Abstract
Cancer survival time prediction using Deep Learning (DL) has been an emerging area of research. However, non-availability of large-sized annotated medical imaging databases affects the training performance of DL models leading to their arguable usage in many clinical applications. In this research work, a neural network model is customized for small sample space to avoid data over-fitting for DL training. A set of prognostic radiomic features is selected through an iterative process using average of multiple dropouts which results in back-propagated gradients with low variance, thus increasing the network learning capability, reliable feature selection and better training over a small database. The proposed classifier is further compared with erasing feature selection method proposed in the literature for improved network training and with other well-known classifiers on small sample size. Achieved results which were statistically validated show efficient and improved classification of cancer survival time into three intervals of 6 months, between 6 months up to 2 years, and above 2 years; and has the potential to aid health care professionals in lung tumor evaluation for timely treatment and patient care.
Collapse
Affiliation(s)
- Hina Shakir
- Department of Software Engineering, Bahria University, 13-National Stadium Road Karachi, 75620, Pakistan.
| | - Bushra Aijaz
- Department of Electrical Engineering, Bahria University, 13-National Stadium Road Karachi, 75620, Pakistan.
| | - Tariq Mairaj Rasool Khan
- Department of Electrical and Power Engineering, Pakistan Navy Engineering College, National University of Science and Technology, Karachi, Pakistan.
| | - Muhammad Hussain
- Department of Electrical Engineering, Bahria University, 13-National Stadium Road Karachi, 75620, Pakistan.
| |
Collapse
|
100
|
Zhang L, LaBelle W, Unberath M, Chen H, Hu J, Li G, Dreizin D. A vendor-agnostic, PACS integrated, and DICOMcompatible software-server pipeline for testing segmentation algorithms within the clinical radiology workflow. RESEARCH SQUARE 2023:rs.3.rs-2837634. [PMID: 37163064 PMCID: PMC10168465 DOI: 10.21203/rs.3.rs-2837634/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background Reproducible approaches are needed to bring AI/ML for medical image analysis closer to the bedside. Investigators wishing to shadow test cross-sectional medical imaging segmentation algorithms on new studies in real-time will benefit from simple tools that integrate PACS with on-premises image processing, allowing visualization of DICOM-compatible segmentation results and volumetric data at the radiology workstation. Purpose In this work, we develop and release a simple containerized and easily deployable pipeline for shadow testing of segmentation algorithms within the clinical workflow. Methods Our end-to-end automated pipeline has two major components-1. a router/listener and anonymizer and an OHIF web viewer backstopped by a DCM4CHEE DICOM query/retrieve archive deployed in the virtual infrastructure of our secure hospital intranet, and 2. An on-premises single GPU workstation host for DICOM/NIfTI conversion steps, and image processing. DICOM images are visualized in OHIF along with their segmentation masks and associated volumetry measurements (in mL) using DICOM SEG and structured report (SR) elements. Feasibility is demonstrated by recording clock times for a traumatic pelvic hematoma cascaded nnU-net model. Results Mean total clock time from PACS send by user to completion of transfer to the DCM4CHEE query/retrieve archive was 5 minutes 32 seconds (+/- SD of 1 min 26 sec). This compares favorably to the report turnaround times for whole-body CT exams, which often exceed 30 minutes. Inference times accounted for most of the total clock time, ranging from 2 minutes 41 seconds to 8 minutes 27 seconds. All other virtual and on-premises host steps combined ranged from a minimum of 34 seconds to a maximum of 48 seconds. Conclusion The software worked seamlessly with an existing PACS and could be used for deployment of DL models within the radiology workflow for prospective testing on newly scanned patients. Once configured, the pipeline is executed through one command using a single shell script. The code is made publicly available through an open-source license at "https://github.com/vastc/", and includes a readme file providing pipeline config instructions for host names, series filter, other parameters, and citation instructions for this work.
Collapse
Affiliation(s)
| | | | | | | | | | - Guang Li
- University of Maryland, Baltimore
| | | |
Collapse
|