51
|
Alileche A, Hampikian G. The effect of Nullomer-derived peptides 9R, 9S1R and 124R on the NCI-60 panel and normal cell lines. BMC Cancer 2017; 17:533. [PMID: 28793867 PMCID: PMC5551024 DOI: 10.1186/s12885-017-3514-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/28/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Nullomer peptides are the smallest sequences absent from databases of natural proteins. We first began compiling a list of absent 5-amino acid strings in 2006 (1). We report here the effects of Nullomer-derived peptides 9R, 9S1R and 124R on the NCI-60 panel, derived from human cancers of 9 organs (kidney, ovary, skin melanoma, lung, brain, lung, colon, prostate and the hematopoietic system), and four normal cell lines (endothelial HUVEC, skin fibroblasts BJ, colon epithelial FHC and normal prostate RWPE-1). METHODS NCI-60 cancer cell panel and four normal cell lines were cultured in vitro in RPMI1640 supplemented with 10% Hyclone fetal bovine serum and exposed for 48 h to 5 μM, 25 μM and 50 μM of peptides 9R, 9S1R and 124R. Viability was assessed by CCK-8 assay. For peptide ATP depletion effects, one cell line representing each organ in the NCI-60 panel, and four normal cell lines were exposed to 50 μM of peptides 9R, 9S1R and 124R for 3 h. The ATP content was assessed in whole cells, and their supernatants. RESULTS Peptides 9S1R and 9R are respectively lethal to 95 and 81.6% of the 60 cancer cell lines tested. Control peptide 124R has no effect on the growth of these cells. Especially interesting the fact that peptides 9R and 9S1R are capable of killing drug-resistant and hormone-resistant cell lines, and even cancer stem cells. Peptides 9R and 9S1R have a broader activity spectrum than many cancer drugs in current use, can completely deplete cellular ATP within 3 h, and are less toxic to 3 of the 4 normal cell lines tested than they are to several cancers. CONCLUSIONS Nullomer peptides 9R and 9S1R have a large broad lethal effect on cancer cell lines derived from nine organs represented in the NCI-60 panel. This broad activity crosses many of the categorical divisions used in the general classification of cancers: solid vs liquid cancers, drug sensitive vs drug resistant, hormone sensitive vs hormone resistant, cytokine sensitive vs cytokine non sensitive, slow growing vs rapid growing, differentiated vs dedifferentiated cancers. Furthermore peptides 9R and 9S1R are lethal to cancer stem cells and breast canrcinosarcoma.
Collapse
Affiliation(s)
- Abdelkrim Alileche
- Biology Department Room SN-215, Boise State University, 1910 University Drive, Boise, ID 83725 USA
| | - Greg Hampikian
- Biology Department Room SN-215, Boise State University, 1910 University Drive, Boise, ID 83725 USA
| |
Collapse
|
52
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
53
|
Yin SY, Yang NS, Lin TJ. Phytochemicals Approach for Developing Cancer Immunotherapeutics. Front Pharmacol 2017; 8:386. [PMID: 28674499 PMCID: PMC5474465 DOI: 10.3389/fphar.2017.00386] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/02/2017] [Indexed: 12/22/2022] Open
Abstract
Phytochemicals or their derived compounds are being increasingly recognized as potentially potent complementary treatments for cancer. Among them, some phytochemicals are being actively evaluated for use as adjuvants in anticancer therapies. For instance, shikonin and hypericin were found to induce immunogenic cell death of specific cancer cells, and this effect was able to further activate the recognition activity of tumor cells by the host immune system. On the other hand, some derivatives of phytochemicals, such as dihydrobenzofuran lignan (Q2-3) have been found to induce the secretion of an endogenous anticancer factor, namely IL-25, from non-malignant cells. These findings suggest that phytochemicals or their derivatives confer a spectrum of different pharmacological activities, which contrasts with the current cytotoxic anticancer drugs commonly used in clinics. In this review, we have collected together pertinent information from recent studies about the biochemical and cellular mechanisms through which specific phytochemicals regulate target immune systems in defined tumor microenvironments. We have further highlighted the potential application of these immunotherapeutic modifiers in cell-based cancer vaccine systems. This knowledge provides useful technological support and know how for future applications of phytochemicals in cancer immunotherapy.
Collapse
Affiliation(s)
- Shu-Yi Yin
- Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan
| | - Ning-Sun Yang
- Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan
| | - Tien-Jen Lin
- Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan.,Graduate Institute of Injury Prevention and Control, Taipei Medical UniversityTaipei, Taiwan.,Department of Neurosurgery, Taipei Medical University-Wan Fang HospitalTaipei, Taiwan
| |
Collapse
|
54
|
Chen S, Wang X, Ye X, Ma D, Chen C, Cai J, Fu Y, Cheng X, Chen Y, Gong X, Jin J. Identification of Human UMP/CMP Kinase 1 as Doxorubicin Binding Target Using Protein Microarray. SLAS DISCOVERY 2017; 22:1007-1015. [DOI: 10.1177/2472555217707704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Doxorubicin (DOX) is a leading anthracycline drug with exceptional efficacy; however, little is known about the molecular mechanisms of its side effects, which include heart muscle damage, noncancerous cell death, and drug resistance. A total of 17,950 human proteins expressed in HEK293 cells were screened and yielded 14 hits. Competitive and binding experiments further verified the binding of DOX to UMP/CMP kinase 1 (CMPK1), and microscale thermophoresis showed that DOX binds to CMPK1 with a Kd of 1216 nM. In addition, we observed that the binding of DOX to CMPK1 activated the phosphorylation of CMP, dCMP, and UMP. A significant activation was observed at the concentration of 30 µM DOX and reached plateau at the concentration of DOX 30 µM, 150 µM, and 100 µM, respectively. DOX would add up stimulation of CMPK1 by DTT and overcome inhibition of CMPK1 by NaF, EDTA. In summary, we showed that DOX might bind to the nonactive site of CMPK1 and regulate its activity with magnesium.
Collapse
Affiliation(s)
- Shuxian Chen
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Xu Wang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Xianghui Ye
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Donghui Ma
- OriGene Technologies Inc., Rockville, MD, USA
- OriGene Technologies Inc. at Beijing, Beijing, China
| | - Caiwei Chen
- OriGene Technologies Inc., Rockville, MD, USA
- OriGene Technologies Inc. at Beijing, Beijing, China
| | - Junlong Cai
- School of Basic Medical Science, Fudan University, Shanghai, China
| | - Yongfeng Fu
- School of Basic Medical Science, Fudan University, Shanghai, China
| | - Xunjia Cheng
- School of Basic Medical Science, Fudan University, Shanghai, China
| | - Yun Chen
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaohai Gong
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian Jin
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
55
|
Nyquist MD, Prasad B, Mostaghel EA. Harnessing Solute Carrier Transporters for Precision Oncology. Molecules 2017; 22:E539. [PMID: 28350329 PMCID: PMC5570559 DOI: 10.3390/molecules22040539] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Solute Carrier (SLC) transporters are a large superfamily of transmembrane carriers involved in the regulated transport of metabolites, nutrients, ions and drugs across cellular membranes. A subset of these solute carriers play a significant role in the cellular uptake of many cancer therapeutics, ranging from chemotherapeutics such as antimetabolites, topoisomerase inhibitors, platinum-based drugs and taxanes to targeted therapies such as tyrosine kinase inhibitors. SLC transporters are co-expressed in groups and patterns across normal tissues, suggesting they may comprise a coordinated regulatory circuit serving to mediate normal tissue functions. In cancer however, there are dramatic changes in expression patterns of SLC transporters. This frequently serves to feed the increased metabolic demands of the tumor cell for amino acids, nucleotides and other metabolites, but also presents a therapeutic opportunity, as increased transporter expression may serve to increase intracellular concentrations of substrate drugs. In this review, we examine the regulation of drug transporters in cancer and how this impacts therapy response, and discuss novel approaches to targeting therapies to specific cancers via tumor-specific aberrations in transporter expression. We propose that among the oncogenic changes in SLC transporter expression there exist emergent vulnerabilities that can be exploited therapeutically, extending the application of precision medicine from tumor-specific drug targets to tumor-specific determinants of drug uptake.
Collapse
Affiliation(s)
- Michael D Nyquist
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA.
| | - Elahe A Mostaghel
- Division of Oncology, Department of Medicine, University of Washington, Seattle, WA 98195 USA.
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
56
|
Drenberg CD, Gibson AA, Pounds SB, Shi L, Rhinehart DP, Li L, Hu S, Du G, Nies AT, Schwab M, Pabla N, Blum W, Gruber TA, Baker SD, Sparreboom A. OCTN1 Is a High-Affinity Carrier of Nucleoside Analogues. Cancer Res 2017; 77:2102-2111. [PMID: 28209616 DOI: 10.1158/0008-5472.can-16-2548] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/06/2017] [Accepted: 01/24/2017] [Indexed: 11/16/2022]
Abstract
Resistance to xenobiotic nucleosides used to treat acute myeloid leukemia (AML) and other cancers remains a major obstacle to clinical management. One process suggested to participate in resistance is reduced uptake into tumor cells via nucleoside transporters, although precise mechanisms are not understood. Through transcriptomic profiling, we determined that low expression of the ergothioneine transporter OCTN1 (SLC22A4; ETT) strongly predicts poor event-free survival and overall survival in multiple cohorts of AML patients receiving treatment with the cytidine nucleoside analogue cytarabine. Cell biological studies confirmed OCTN1-mediated transport of cytarabine and various structurally related cytidine analogues, such as 2'deoxycytidine and gemcitabine, occurs through a saturable process that is highly sensitive to inhibition by the classic nucleoside transporter inhibitors dipyridamole and nitrobenzylmercaptopurine ribonucleoside. Our findings have immediate clinical implications given the potential of the identified transport system to help refine strategies that could improve patient survival across multiple cancer types where nucleoside analogues are used in cancer treatment. Cancer Res; 77(8); 2102-11. ©2017 AACR.
Collapse
Affiliation(s)
- Christina D Drenberg
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Alice A Gibson
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Stanley B Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Dena P Rhinehart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lie Li
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Shuiying Hu
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Guoqing Du
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Department of Clinical Pharmacology, University Hospital, Tübingen, Germany
| | - Navjotsingh Pabla
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - William Blum
- Division of Hematology, The Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Tanja A Gruber
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sharyn D Baker
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio.
| | - Alex Sparreboom
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
57
|
Buttigliero C, Tucci M, Vignani F, Scagliotti GV, Di Maio M. Molecular biomarkers to predict response to neoadjuvant chemotherapy for bladder cancer. Cancer Treat Rev 2017; 54:1-9. [PMID: 28135623 DOI: 10.1016/j.ctrv.2017.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/30/2022]
Abstract
Cystectomy is the gold standard for treatment of localized muscle-invasive bladder cancer. However, about 50% of patients develop metastases within 2years after cystectomy and subsequently die for the disease. Neoadjuvant cisplatin-based chemotherapy before cystectomy improves the overall survival in patients with muscle-invasive bladder cancer, and pathological response to neoadjuvant treatment (downstaging to ⩽pT1 at cystectomy) is a strong predictor of better disease-specific survival. Nevertheless, some patients do not benefit from neoadjuvant therapy. The identification of reliable biomarkers that could enable the clinicians to identify patients who will really benefit from neoadjuvant chemotherapy is a major issue. This approach could lead to individualized therapy, in order to optimize the chance of response, avoiding the impact of neoadjuvant treatment on quality of life and the delay of cystectomy in non-responder patients. However, no molecular predictive biomarkers have shown clinical utility. This paper aims to review currently available data about biomarkers predictive of response to neoadjuvant chemotherapy in muscle-invasive bladder cancer.
Collapse
Affiliation(s)
- Consuelo Buttigliero
- Division of Medical Oncology, Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Marcello Tucci
- Division of Medical Oncology, Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Francesca Vignani
- Division of Medical Oncology, Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Giorgio V Scagliotti
- Division of Medical Oncology, Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Turin, Italy.
| | - Massimo Di Maio
- Division of Medical Oncology, Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| |
Collapse
|
58
|
Luo Q, Yang B, Tao W, Li J, Kou L, Lian H, Che X, He Z, Sun J. ATB0,+ transporter-mediated targeting delivery to human lung cancer cells via aspartate-modified docetaxel-loading stealth liposomes. Biomater Sci 2017; 5:295-304. [DOI: 10.1039/c6bm00788k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tumor cells have an increased demand for amino acids to support their rapid growth and malignant metastasis.
Collapse
Affiliation(s)
- Qiuhua Luo
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
- Department of Pharmacy
| | - Bin Yang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Wenhui Tao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Jia Li
- College of life science and biological pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Longfa Kou
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - He Lian
- Department of Biomedical Engineering
- School of Medical Devices
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Xin Che
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Zhonggui He
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Jin Sun
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
- Municipal Key Laboratory of Biopharmaceutics
| |
Collapse
|
59
|
Kovacsics D, Patik I, Özvegy-Laczka C. The role of organic anion transporting polypeptides in drug absorption, distribution, excretion and drug-drug interactions. Expert Opin Drug Metab Toxicol 2016; 13:409-424. [PMID: 27783531 DOI: 10.1080/17425255.2017.1253679] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION The in vivo fate and effectiveness of a drug depends highly on its absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Organic anion transporting polypeptides (OATPs) are membrane proteins involved in the cellular uptake of various organic compounds, including clinically used drugs. Since OATPs are significant players in drug absorption and distribution, modulation of OATP function via pharmacotherapy with OATP substrates/inhibitors, or modulation of their expression, affects drug pharmacokinetics. Given their cancer-specific expression, OATPs may also be considered anticancer drug targets. Areas covered: We describe the human OATP family, discussing clinically relevant consequences of altered OATP function. We offer a critical analysis of published data on the role of OATPs in ADME and in drug-drug interactions, especially focusing on OATP1A2, 1B1, 1B3 and 2B1. Expert opinion: Four members of the OATP family, 1A2, 1B1, 1B3 and 2B1, have been characterized in detail. As biochemical and pharmacological knowledge on the other OATPs is lacking, it seems timely to direct research efforts towards developing the experimental framework needed to investigate the transport mechanism and substrate specificity of the poorly described OATPs. In addition, elucidating the role of OATPs in tumor development and therapy response are critical avenues for further research.
Collapse
Affiliation(s)
- Daniella Kovacsics
- a Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Izabel Patik
- a Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Csilla Özvegy-Laczka
- a Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| |
Collapse
|
60
|
Taccioli C, Sorrentino G, Zannini A, Caroli J, Beneventano D, Anderlucci L, Lolli M, Bicciato S, Del Sal G. MDP, a database linking drug response data to genomic information, identifies dasatinib and statins as a combinatorial strategy to inhibit YAP/TAZ in cancer cells. Oncotarget 2016; 6:38854-65. [PMID: 26513174 PMCID: PMC4770742 DOI: 10.18632/oncotarget.5749] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/05/2015] [Indexed: 02/07/2023] Open
Abstract
Targeted anticancer therapies represent the most effective pharmacological strategies in terms of clinical responses. In this context, genetic alteration of several oncogenes represents an optimal predictor of response to targeted therapy. Integration of large-scale molecular and pharmacological data from cancer cell lines promises to be effective in the discovery of new genetic markers of drug sensitivity and of clinically relevant anticancer compounds. To define novel pharmacogenomic dependencies in cancer, we created the Mutations and Drugs Portal (MDP, http://mdp.unimore.it), a web accessible database that combines the cell-based NCI60 screening of more than 50,000 compounds with genomic data extracted from the Cancer Cell Line Encyclopedia and the NCI60 DTP projects. MDP can be queried for drugs active in cancer cell lines carrying mutations in specific cancer genes or for genetic markers associated to sensitivity or resistance to a given compound. As proof of performance, we interrogated MDP to identify both known and novel pharmacogenomics associations and unveiled an unpredicted combination of two FDA-approved compounds, namely statins and Dasatinib, as an effective strategy to potently inhibit YAP/TAZ in cancer cells.
Collapse
Affiliation(s)
- Cristian Taccioli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Giovanni Sorrentino
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste 34149, Italy.,Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste 34149, Italy
| | - Alessandro Zannini
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste 34149, Italy.,Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste 34149, Italy
| | - Jimmy Caroli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | | | | | - Marco Lolli
- Department of Science and Drug Technology, University of Torino, Torino 10125, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste 34149, Italy.,Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste 34149, Italy
| |
Collapse
|
61
|
Mihaljevic I, Popovic M, Zaja R, Smital T. Phylogenetic, syntenic, and tissue expression analysis of slc22 genes in zebrafish (Danio rerio). BMC Genomics 2016; 17:626. [PMID: 27519738 PMCID: PMC4982206 DOI: 10.1186/s12864-016-2981-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/29/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND SLC22 protein family is a member of the SLC (Solute carriers) superfamily of polyspecific membrane transporters responsible for uptake of a wide range of organic anions and cations, including numerous endo- and xenobiotics. Due to the lack of knowledge on zebrafish Slc22 family, we performed initial characterization of these transporters using a detailed phylogenetic and conserved synteny analysis followed by the tissue specific expression profiling of slc22 transcripts. RESULTS We identified 20 zebrafish slc22 genes which are organized in the same functional subgroups as human SLC22 members. Orthologies and syntenic relations between zebrafish and other vertebrates revealed consequences of the teleost-specific whole genome duplication as shown through one-to-many orthologies for certain zebrafish slc22 genes. Tissue expression profiles of slc22 transcripts were analyzed using qRT-PCR determinations in nine zebrafish tissues: liver, kidney, intestine, gills, brain, skeletal muscle, eye, heart, and gonads. Our analysis revealed high expression of oct1 in kidney, especially in females, followed by oat3 and oat2c in females, oat2e in males and orctl4 in females. oct1 was also dominant in male liver. oat2d showed the highest expression in intestine with less noticeable gender differences. All slc22 genes showed low expression in gills, and moderate expression in heart and skeletal muscle. Dominant genes in brain were oat1 in females and oct1 in males, while the highest gender differences were determined in gonads, with dominant expression of almost all slc22 genes in testes and the highest expression of oat2a. CONCLUSIONS Our study offers the first insight into the orthology relationships, gene expression and potential role of Slc22 membrane transporters in zebrafish. Clear orthological relationships of zebrafish slc22 and other vertebrate slc22 genes were established. slc22 members are mostly highly conserved, suggesting their physiological and toxicological importance. One-to-many orthologies and differences in tissue expression patterns of zebrafish slc22 genes in comparison to human orthologs were observed. Our expression data point to partial similarity of zebrafish versus human Slc22 members, with possible compensatory roles of certain zebrafish transporters, whereas higher number of some orthologs implies potentially more diverse and specific roles of these proteins in zebrafish.
Collapse
Affiliation(s)
- Ivan Mihaljevic
- Division for Marine and Environmental Research, Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Marta Popovic
- Division for Marine and Environmental Research, Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.,Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK
| | - Roko Zaja
- Division for Marine and Environmental Research, Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.,Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Tvrtko Smital
- Division for Marine and Environmental Research, Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
62
|
Li Z, Wang H, Chen Y, Wang Y, Li H, Han H, Chen T, Jin Q, Ji J. pH- and NIR Light-Responsive Polymeric Prodrug Micelles for Hyperthermia-Assisted Site-Specific Chemotherapy to Reverse Drug Resistance in Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2731-2740. [PMID: 27043935 DOI: 10.1002/smll.201600365] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/08/2016] [Indexed: 06/05/2023]
Abstract
Despite the exciting advances in cancer chemotherapy over past decades, drug resistance in cancer treatment remains one of the primary reasons for therapeutic failure. IR-780 loaded pH-responsive polymeric prodrug micelles with near infrared (NIR) photothermal effect are developed to circumvent the drug resistance in cancer treatment. The polymeric prodrug micelles are stable in physiological environment, while exhibit fast doxorubicin (DOX) release in acidic condition and significant temperature elevation under NIR laser irradiation. Phosphorylcholine-based biomimetic micellar shell and acid-sensitive drug conjugation endow them with prolonged circulation time and reduced premature drug release during circulation to conduct tumor site-specific chemotherapy. The polymeric prodrug micelles combined with NIR laser irradiation could significantly enhance intracellular DOX accumulation and synergistically induce the cell apoptosis in DOX-resistant MCF-7/ADR cells. Meanwhile, the tumor site-specific chemotherapy combined with hyperthermia effect induces significant inhibition of MCF-7/ADR tumor growth in tumor-bearing mice. These results demonstrate that the well-designed IR-780 loaded polymeric prodrug micelles for hyperthermia-assisted site-specific chemotherapy present an effective approach to reverse drug resistance.
Collapse
Affiliation(s)
- Zuhong Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haibo Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yangjun Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huan Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haijie Han
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tingting Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
63
|
Sangkop F, Singh G, Rodrigues E, Gold E, Bahn A. Uric acid: a modulator of prostate cells and activin sensitivity. Mol Cell Biochem 2016; 414:187-99. [PMID: 26910779 DOI: 10.1007/s11010-016-2671-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 02/17/2016] [Indexed: 12/17/2022]
Abstract
Elevated serum uric acid (SUA) or urate is associated with inflammation and gout. Recent evidence has linked urate to cancers, but little is known about urate effects in prostate cancer. Activins are inflammatory cytokines and negative growth regulators in the prostate. A hallmark of prostate cancer progression is activin insensitivity; however, mechanisms underlying this are unclear. We propose that elevated SUA is associated with prostate cancer counteracting the growth inhibitory effects of activins. The expression of activins A and B, urate transporter GLUT9 and tissue urate levels were examined in human prostate disease. Intracellular and secreted urate and GLUT9 expression were assessed in human prostate cancer cell lines. Furthermore, the effects of urate and probenecid, a known urate transport inhibitor, were determined in combination with activin A. Activin A expression was increased in low-grade prostate cancer, whereas activin B expression was reduced in high-grade prostate cancer. Intracellular urate levels decreased in all prostate pathologies, while GLUT9 expression decreased in benign prostatic hyperplasia, prostatitis and high-grade prostate cancer. Activin responsive LNCaP cells had higher intracellular and lower secreted urate levels than activin-insensitive PC3 cells. GLUT9 expression in prostate cancer cells was progressively lower than in prostate epithelial cells. Elevated extracellular urate was growth promoting in vitro, which was abolished by the gout medication probenecid, and it antagonized the growth inhibitory effects of activins. This study shows for the first time that a change in plasma or intracellular urate levels, possibly involving GLUT9 and a urate efflux transporter, has an impact on prostate cancer cell growth, and that lowering SUA levels in prostate cancer is likely to be therapeutically beneficial.
Collapse
Affiliation(s)
- Febbie Sangkop
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Geeta Singh
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Ely Rodrigues
- Department of Physiology, University of Otago, PO Box 913, Dunedin, 9054, New Zealand
| | - Elspeth Gold
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Andrew Bahn
- Department of Physiology, University of Otago, PO Box 913, Dunedin, 9054, New Zealand.
| |
Collapse
|
64
|
Walsh DR, Nolin TD, Friedman PA. Drug Transporters and Na+/H+ Exchange Regulatory Factor PSD-95/Drosophila Discs Large/ZO-1 Proteins. Pharmacol Rev 2016; 67:656-80. [PMID: 26092975 DOI: 10.1124/pr.115.010728] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Drug transporters govern the absorption, distribution, and elimination of pharmacologically active compounds. Members of the solute carrier and ATP binding-cassette drug transporter family mediate cellular drug uptake and efflux processes, thereby coordinating the vectorial movement of drugs across epithelial barriers. To exert their physiologic and pharmacological function in polarized epithelia, drug transporters must be targeted and stabilized to appropriate regions of the cell membrane (i.e., apical versus basolateral). Despite the critical importance of drug transporter membrane targeting, the mechanisms that underlie these processes are largely unknown. Several clinically significant drug transporters possess a recognition sequence that binds to PSD-95/Drosophila discs large/ZO-1 (PDZ) proteins. PDZ proteins, such as the Na(+)/H(+) exchanger regulatory factor (NHERF) family, act to stabilize and organize membrane targeting of multiple transmembrane proteins, including many clinically relevant drug transporters. These PDZ proteins are normally abundant at apical membranes, where they tether membrane-delimited transporters. NHERF expression is particularly high at the apical membrane in polarized tissue such as intestinal, hepatic, and renal epithelia, tissues important to drug disposition. Several recent studies have highlighted NHERF proteins as determinants of drug transporter function secondary to their role in controlling membrane abundance and localization. Mounting evidence strongly suggests that NHERF proteins may have clinically significant roles in pharmacokinetics and pharmacodynamics of several pharmacologically active compounds and may affect drug action in cancer and chronic kidney disease. For these reasons, NHERF proteins represent a novel class of post-translational mediators of drug transport and novel targets for new drug development.
Collapse
Affiliation(s)
- Dustin R Walsh
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.A.F.); and Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (D.R.W., T.D.N.)
| | - Thomas D Nolin
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.A.F.); and Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (D.R.W., T.D.N.)
| | - Peter A Friedman
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.A.F.); and Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (D.R.W., T.D.N.)
| |
Collapse
|
65
|
The human organic cation transporter OCT1 mediates high affinity uptake of the anticancer drug daunorubicin. Sci Rep 2016; 6:20508. [PMID: 26861753 PMCID: PMC4748219 DOI: 10.1038/srep20508] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/05/2016] [Indexed: 01/11/2023] Open
Abstract
Anthracyclines such as daunorubicin are anticancer agents that are transported into cells, and exert cytotoxicity by blocking DNA metabolism. Although there is evidence for active uptake of anthracyclines into cells, the specific transporter involved in this process has not been identified. Using the high-grade serous ovarian cancer cell line TOV2223G, we show that OCT1 mediated the high affinity (Km ~ 5 μM) uptake of daunorubicin into the cells, and that micromolar amounts of choline completely abolished the drug entry. OCT1 downregulation by shRNA impaired daunorubicin uptake into the TOV2223G cells, and these cells were significantly more resistant to the drug in comparison to the control shRNA. Transfection of HEK293T cells, which accommodated the ectopic expression of OCT1, with a plasmid expressing OCT1-EYFP showed that the transporter was predominantly localized to the plasma membrane. These transfected cells exhibited an increase in the uptake of daunorubicin in comparison to control cells transfected with an empty EYFP vector. Furthermore, a variant of OCT1, OCT1-D474C-EYFP, failed to enhance daunorubicin uptake. This is the first report demonstrating that human OCT1 is involved in the high affinity transport of anthracyclines. We postulate that OCT1 defects may contribute to the resistance of cancer cells treated with anthracyclines.
Collapse
|
66
|
Gillet JP, Andersen JB, Madigan JP, Varma S, Bagni RK, Powell K, Burgan WE, Wu CP, Calcagno AM, Ambudkar SV, Thorgeirsson SS, Gottesman MM. A Gene Expression Signature Associated with Overall Survival in Patients with Hepatocellular Carcinoma Suggests a New Treatment Strategy. Mol Pharmacol 2016; 89:263-72. [PMID: 26668215 PMCID: PMC4727122 DOI: 10.1124/mol.115.101360] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/11/2015] [Indexed: 12/11/2022] Open
Abstract
Despite improvements in the management of liver cancer, the survival rate for patients with hepatocellular carcinoma (HCC) remains dismal. The survival benefit of systemic chemotherapy for the treatment of liver cancer is only marginal. Although the reasons for treatment failure are multifactorial, intrinsic resistance to chemotherapy plays a primary role. Here, we analyzed the expression of 377 multidrug resistance (MDR)-associated genes in two independent cohorts of patients with advanced HCC, with the aim of finding ways to improve survival in this poor-prognosis cancer. Taqman-based quantitative polymerase chain reaction revealed a 45-gene signature that predicts overall survival (OS) in patients with HCC. Using the Connectivity Map Tool, we were able to identify drugs that converted the gene expression profiles of HCC cell lines from ones matching patients with poor OS to profiles associated with good OS. We found three compounds that convert the gene expression profiles of three HCC cell lines to gene expression profiles associated with good OS. These compounds increase histone acetylation, which correlates with the synergistic sensitization of those MDR tumor cells to conventional chemotherapeutic agents, including cisplatin, sorafenib, and 5-fluorouracil. Our results indicate that it is possible to modulate gene expression profiles in HCC cell lines to those associated with better outcome. This approach also increases sensitization of HCC cells toward conventional chemotherapeutic agents. This work suggests new treatment strategies for a disease for which few therapeutic options exist.
Collapse
Affiliation(s)
- Jean-Pierre Gillet
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| | - Jesper B Andersen
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| | - James P Madigan
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| | - Sudhir Varma
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| | - Rachel K Bagni
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| | - Katie Powell
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| | - William E Burgan
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| | - Chung-Pu Wu
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| | - Anna Maria Calcagno
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| | - Suresh V Ambudkar
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| | - Snorri S Thorgeirsson
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| | - Michael M Gottesman
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| |
Collapse
|
67
|
Visscher H, Rassekh SR, Sandor GS, Caron HN, van Dalen EC, Kremer LC, van der Pal HJ, Rogers PC, Rieder MJ, Carleton BC, Hayden MR, Ross CJ. Genetic variants in SLC22A17 and SLC22A7 are associated with anthracycline-induced cardiotoxicity in children. Pharmacogenomics 2015; 16:1065-76. [PMID: 26230641 DOI: 10.2217/pgs.15.61] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM To identify novel variants associated with anthracycline-induced cardiotoxicity and to assess these in a genotype-guided risk prediction model. PATIENTS & METHODS Two cohorts treated for childhood cancer (n = 344 and 218, respectively) were genotyped for 4578 SNPs in drug ADME and toxicity genes. RESULTS Significant associations were identified in SLC22A17 (rs4982753; p = 0.0078) and SLC22A7 (rs4149178; p = 0.0034), with replication in the second cohort (p = 0.0071 and 0.047, respectively). Additional evidence was found for SULT2B1 and several genes related to oxidative stress. Adding the SLC22 variants to the prediction model improved its discriminative ability (AUC 0.78 vs 0.75 [p = 0.029]). CONCLUSION Two novel variants in SLC22A17 and SLC22A7 were significantly associated with anthracycline-induced cardiotoxicity and improved a genotype-guided risk prediction model, which could improve patient risk stratification.
Collapse
Affiliation(s)
- Henk Visscher
- Centre for Molecular Medicine & Therapeutics, Child & Family Research Institute, Department of Medical Genetics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - S Rod Rassekh
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - George S Sandor
- Division of Pediatric Cardiology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Huib N Caron
- Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, Amsterdam, The Netherlands
| | - Elvira C van Dalen
- Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, Amsterdam, The Netherlands
| | - Leontien C Kremer
- Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, Amsterdam, The Netherlands
| | - Helena J van der Pal
- Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, Amsterdam, The Netherlands.,Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands
| | - Paul C Rogers
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Michael J Rieder
- Department of Paediatrics, Children's Hospital/London Health Sciences Centre, London, ON, Canada
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine & Therapeutics, Child & Family Research Institute, Department of Medical Genetics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Colin J Ross
- Centre for Molecular Medicine & Therapeutics, Child & Family Research Institute, Department of Medical Genetics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada.,Division of Translational Therapeutics, Department of Pediatrics, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
68
|
Joyce H, McCann A, Clynes M, Larkin A. Influence of multidrug resistance and drug transport proteins on chemotherapy drug metabolism. Expert Opin Drug Metab Toxicol 2015; 11:795-809. [PMID: 25836015 DOI: 10.1517/17425255.2015.1028356] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Chemotherapy involving the use of anticancer drugs remains an important strategy in the overall management of patients with metastatic cancer. Acquisition of multidrug resistance remains a major impediment to successful chemotherapy. Drug transporters in cell membranes and intracellular drug metabolizing enzymes contribute to the resistance phenotype and determine the pharmacokinetics of anticancer drugs in the body. AREAS COVERED ATP-binding cassette (ABC) transporters mediate the transport of endogenous metabolites and xenobiotics including cytotoxic drugs out of cells. Solute carrier (SLC) transporters mediate the influx of cytotoxic drugs into cells. This review focuses on the substrate interaction of these transporters, on their biology and what role they play together with drug metabolizing enzymes in eliminating therapeutic drugs from cells. EXPERT OPINION The majority of anticancer drugs are substrates for the ABC transporter and SLC transporter families. Together, these proteins have the ability to control the influx and the efflux of structurally unrelated chemotherapeutic drugs, thereby modulating the intracellular drug concentration. These interactions have important clinical implications for chemotherapy because ultimately they determine therapeutic efficacy, disease progression/relapse and the success or failure of patient treatment.
Collapse
Affiliation(s)
- Helena Joyce
- Dublin City University, National Institute for Cellular Biotechnology (NICB) , Glasnevin, Dublin 9 , Ireland +353 1 7005700 ; +353 1 7005484 ;
| | | | | | | |
Collapse
|
69
|
BRENNER STEFAN, RIHA JULIANE, GIESSRIGL BENEDIKT, THALHAMMER THERESIA, GRUSCH MICHAEL, KRUPITZA GEORG, STIEGER BRUNO, JÄGER WALTER. The effect of organic anion-transporting polypeptides 1B1, 1B3 and 2B1 on the antitumor activity of flavopiridol in breast cancer cells. Int J Oncol 2014; 46:324-32. [DOI: 10.3892/ijo.2014.2731] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/29/2014] [Indexed: 11/05/2022] Open
|
70
|
Nakanishi T, Tamai I. Putative roles of organic anion transporting polypeptides (OATPs) in cell survival and progression of human cancers. Biopharm Drug Dispos 2014; 35:463-84. [DOI: 10.1002/bdd.1915] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 08/01/2014] [Accepted: 08/12/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; Kakuma-machi Kanazawa 920-1192 Japan
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
71
|
Hagos Y, Wegner W, Kuehne A, Floerl S, Marada VV, Burckhardt G, Henjakovic M. HNF4α Induced Chemosensitivity to Oxaliplatin and 5-FU Mediated by OCT1 and CNT3 in Renal Cell Carcinoma. J Pharm Sci 2014; 103:3326-34. [DOI: 10.1002/jps.24128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/11/2014] [Accepted: 07/31/2014] [Indexed: 12/16/2022]
|
72
|
Khurana V, Kwatra D, Pal D, Mitra AK. Molecular expression and functional activity of vitamin C specific transport system (SVCT2) in human breast cancer cells. Int J Pharm 2014; 474:14-24. [PMID: 25102111 DOI: 10.1016/j.ijpharm.2014.07.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/01/2014] [Accepted: 07/24/2014] [Indexed: 11/19/2022]
Abstract
The main goal of this study is to investigate the expression of sodium dependent vitamin C transport system (SVCT2). Moreover, this investigation has been carried out to define uptake mechanism and intracellular regulation of ascorbic acid (AA) in human breast cancer cells (MDA-MB231, T47D and ZR-75-1). Uptake of [(14)C] AA was studied in MDA-MB231, T47D and ZR-75-1 cells. Functional parameters of [(14)C] AA uptake were delineated in the presence of different concentrations of unlabeled AA, pH, temperature, metabolic inhibitors, substrates and structural analogs. Molecular identification of SVCT2 was carried out with reverse transcription-polymerase chain reaction (RT-PCR). Uptake of [(14)C] AA was studied and found to be sodium, chloride, temperature, pH and energy dependent in all breast cancer cell lines. [(14)C] AA uptake was found to be saturable, with Km values of 53.85 ± 6.24, 49.69 ± 2.83 and 45.44 ± 3.16 μM and Vmax values of 18.45 ± 0.50, 32.50 ± 0.43 and 33.25 ± 0.53 pmol/min/mg protein, across MDA-MB231, T47D and ZR-75-1, respectively. The process is inhibited by structural analogs (l-AA and d-iso AA) but not by structurally unrelated substrates (glucose and PAHA). Ca(++)/calmodulin and protein kinase pathways appeared to play a crucial role in modulating AA uptake. A 626 bp band corresponding to a vitamin C transporter (SVCT2) based on the primer design was detected by RT-PCR analysis in all breast cancer cell lines. This research article describes AA uptake mechanism, kinetics, and regulation by sodium dependent vitamin C transporter (SVCT2) in MDA-MB231, T47D and ZR-75-1 cells. Also, MDA-MB231, T47D and ZR-75-1 cell lines can be utilized as a valuable in vitro model to investigate absorption and permeability of AA-conjugated chemotherapeutics.
Collapse
Affiliation(s)
- Varun Khurana
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108-2718, USA; INSYS Therapeutics Inc., 444 South Ellis Road, Chandler, AZ 85224, USA
| | - Deep Kwatra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108-2718, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Dhananjay Pal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108-2718, USA
| | - Ashim K Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108-2718, USA.
| |
Collapse
|
73
|
Fung KL, Tepede AK, Pluchino KM, Pouliot LM, Pixley JN, Hall MD, Gottesman MM. Uptake of compounds that selectively kill multidrug-resistant cells: the copper transporter SLC31A1 (CTR1) increases cellular accumulation of the thiosemicarbazone NSC73306. Mol Pharm 2014; 11:2692-702. [PMID: 24800945 PMCID: PMC4137994 DOI: 10.1021/mp500114e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acquired drug resistance in cancer continues to be a challenge in cancer therapy, in part due to overexpression of the drug efflux transporter P-glycoprotein (P-gp, MDR1, ABCB1). NSC73306 is a thiosemicarbazone compound that displays greater toxicity against cells expressing functional P-gp than against other cells. Here, we investigate the cellular uptake of NSC73306, and examine its interaction with P-gp and copper transporter 1 (CTR1, SLC31A1). Overexpression of P-gp sensitizes LLC-PK1 cells to NSC73306. Cisplatin (IC50 = 77 μM), cyclosporin A (IC50 = 500 μM), and verapamil (IC50 = 700 μM) inhibited cellular accumulation of [(3)H]NSC73306. Cellular hypertoxicity of NSC73306 to P-gp-expressing cells was inhibited by cisplatin in a dose-dependent manner. Cells transiently expressing the cisplatin uptake transporter CTR1 (SLC31A1) showed increased [(3)H]NSC73306 accumulation. In contrast, CTR1 knockdown decreased [(3)H]NSC73306 accumulation. The presence of NSC73306 reduced CTR1 levels, similar to the negative feedback of CTR1 levels by copper or cisplatin. Surprisingly, although cisplatin is a substrate of CTR1, we found that CTR1 protein was overexpressed in high-level cisplatin-resistant KB-CP20 and BEL7404-CP20 cell lines. We confirmed that the CTR1 protein was functional, as uptake of NSC73306 was increased in KB-CP20 cells compared to their drug-sensitive parental cells, and downregulation of CTR1 in KB-CP20 cells reduced [(3)H]NSC73306 accumulation. These results suggest that NSC73306 is a transport substrate of CTR1.
Collapse
Affiliation(s)
- King Leung Fung
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | |
Collapse
|
74
|
Li Q, Shu Y. Role of solute carriers in response to anticancer drugs. MOLECULAR AND CELLULAR THERAPIES 2014; 2:15. [PMID: 26056583 PMCID: PMC4452062 DOI: 10.1186/2052-8426-2-15] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/14/2014] [Indexed: 12/20/2022]
Abstract
Membrane transporters play critical roles in moving a variety of anticancer drugs across cancer cell membrane, thereby determining chemotherapy efficacy and/or toxicity. The retention of anticancer drugs in cancer cells is the result of net function of efflux and influx transporters. The ATP-binding cassette (ABC) transporters are mainly the efflux transporters expressing at cancer cells, conferring the chemo-resistance in various malignant tumors, which has been well documented over the past decades. However, the function of influx transporters, in particular the solute carriers (SLC) in cancer cells, has only been recently well recognized to have significant impact on cancer therapy. The SLC transporters not only directly bring anticancer agents into cancer cells but also serve as the uptake mediators of essential nutrients for tumor growth and survival. In this review, we concentrate on the interaction of SLC transporters with anticancer drugs and nutrients, and their impact on chemo-sensitivity or -resistance of cancer cells. The differential expression patterns of SLC transporters between normal and tumor tissues may be well utilized to achieve specific delivery of chemotherapeutic agents.
Collapse
Affiliation(s)
- Qing Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, Maryland USA ; Institute of Clinical Pharmacology, Central South University, Changsha, Hunan 410078 China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, Maryland USA
| |
Collapse
|
75
|
Li Q, Shu Y. Role of solute carriers in response to anticancer drugs. MOLECULAR AND CELLULAR THERAPIES 2014; 2:15. [PMID: 26056583 PMCID: PMC4452062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/14/2014] [Indexed: 11/21/2023]
Abstract
Membrane transporters play critical roles in moving a variety of anticancer drugs across cancer cell membrane, thereby determining chemotherapy efficacy and/or toxicity. The retention of anticancer drugs in cancer cells is the result of net function of efflux and influx transporters. The ATP-binding cassette (ABC) transporters are mainly the efflux transporters expressing at cancer cells, conferring the chemo-resistance in various malignant tumors, which has been well documented over the past decades. However, the function of influx transporters, in particular the solute carriers (SLC) in cancer cells, has only been recently well recognized to have significant impact on cancer therapy. The SLC transporters not only directly bring anticancer agents into cancer cells but also serve as the uptake mediators of essential nutrients for tumor growth and survival. In this review, we concentrate on the interaction of SLC transporters with anticancer drugs and nutrients, and their impact on chemo-sensitivity or -resistance of cancer cells. The differential expression patterns of SLC transporters between normal and tumor tissues may be well utilized to achieve specific delivery of chemotherapeutic agents.
Collapse
Affiliation(s)
- Qing Li
- />Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, Maryland USA
- />Institute of Clinical Pharmacology, Central South University, Changsha, Hunan 410078 China
| | - Yan Shu
- />Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, Maryland USA
| |
Collapse
|
76
|
Meyer Zu Schwabedissen HE, Boettcher K, Steiner T, Schwarz UI, Keiser M, Kroemer HK, Siegmund W. OATP1B3 is expressed in pancreatic β-islet cells and enhances the insulinotropic effect of the sulfonylurea derivative glibenclamide. Diabetes 2014; 63:775-84. [PMID: 24150606 DOI: 10.2337/db13-1005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Organic anion transporting polypeptide OATP1B3 is a membrane-bound drug transporter that facilitates cellular entry of a variety of substrates. Most of the previous studies focused on its hepatic expression and function in hepatic drug elimination. In this study, we report expression of OATP1B3 in human pancreatic tissue, with the abundance of the transporter localized in the islets of Langerhans. Transport studies using OATP1B3-overexpressing MDCKII cells revealed significant inhibition of the cellular uptake of the known substrate cholecystokinin-8 in the presence of the insulinotropic antidiabetes compounds tolbutamide, glibenclamide, glimepiride, and nateglinide and identified glibenclamide as a novel substrate of OATP1B3. Sulfonylurea derivatives exert their insulinotropic effect by binding to the SUR1 subunit of the KATP channels inducing insulin secretion in β-cells. Here, we show that transient overexpression of human OATP1B3 in a murine β-cell line (MIN6)-which exhibits glucose and glibenclamide-sensitive insulin secretion-significantly enhances the insulinotropic effect of glibenclamide without affecting glucose-stimulated insulin secretion. Taken together, our data provide evidence that the drug transporter OATP1B3 functions as a determinant of the insulinotropic effect of glibenclamide on the tissue level. Changes in transport activity based on drug-drug interactions or genetic variability may therefore influence glibenclamide efficacy.
Collapse
|
77
|
Grafting polyzwitterions onto polyamide by click chemistry and nucleophilic substitution on nitrogen: A novel approach to enhance membrane fouling resistance. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2013.08.022] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
78
|
Characterization of SLCO5A1/OATP5A1, a solute carrier transport protein with non-classical function. PLoS One 2013; 8:e83257. [PMID: 24376674 PMCID: PMC3869781 DOI: 10.1371/journal.pone.0083257] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 11/01/2013] [Indexed: 12/14/2022] Open
Abstract
Organic anion transporting polypeptides (OATP/SLCO) have been identified to mediate the uptake of a broad range of mainly amphipathic molecules. Human OATP5A1 was found to be expressed in the epithelium of many cancerous and non-cancerous tissues throughout the body but protein characterization and functional analysis have not yet been performed. This study focused on the biochemical characterization of OATP5A1 using Xenopus laevis oocytes and Flp-In T-REx-HeLa cells providing evidence regarding a possible OATP5A1 function. SLCO5A1 is highly expressed in mature dendritic cells compared to immature dendritic cells (∼6.5-fold) and SLCO5A1 expression correlates with the differentiation status of primary blood cells. A core- and complex- N-glycosylated polypeptide monomer of ∼105 kDa and ∼130 kDa could be localized in intracellular membranes and on the plasma membrane, respectively. Inducible expression of SLCO5A1 in HeLa cells led to an inhibitory effect of ∼20% after 96 h on cell proliferation. Gene expression profiling with these cells identified immunologically relevant genes (e.g. CCL20) and genes implicated in developmental processes (e.g. TGM2). A single nucleotide polymorphism leading to the exchange of amino acid 33 (L→F) revealed no differences regarding protein expression and function. In conclusion, we provide evidence that OATP5A1 might be a non-classical OATP family member which is involved in biological processes that require the reorganization of the cell shape, such as differentiation and migration.
Collapse
|
79
|
Drug resistance: as complex and diverse as the disease itself. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
80
|
Proteoliposomes as tool for assaying membrane transporter functions and interactions with xenobiotics. Pharmaceutics 2013; 5:472-97. [PMID: 24300519 PMCID: PMC3836619 DOI: 10.3390/pharmaceutics5030472] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/15/2013] [Accepted: 09/04/2013] [Indexed: 02/07/2023] Open
Abstract
Proteoliposomes represent a suitable and up to date tool for studying membrane transporters which physiologically mediate absorption, excretion, trafficking and reabsorption of nutrients and metabolites. Using recently developed reconstitution strategies, transporters can be inserted in artificial bilayers with the same orientation as in the cell membranes and in the absence of other interfering molecular systems. These methodologies are very suitable for studying kinetic parameters and molecular mechanisms. After the first applications on mitochondrial transporters, in the last decade, proteoliposomes obtained with optimized methodologies have been used for studying plasma membrane transporters and defining their functional and kinetic properties and structure/function relationships. A lot of information has been obtained which has clarified and completed the knowledge on several transporters among which the OCTN sub-family members, transporters for neutral amino acid, B0AT1 and ASCT2, and others. Transporters can mediate absorption of substrate-like derivatives or drugs, improving their bioavailability or can interact with these compounds or other xenobiotics, leading to side/toxic effects. Therefore, proteoliposomes have recently been used for studying the interaction of some plasma membrane and mitochondrial transporters with toxic compounds, such as mercurials, H2O2 and some drugs. Several mechanisms have been defined and in some cases the amino acid residues responsible for the interaction have been identified. The data obtained indicate proteoliposomes as a novel and potentially important tool in drug discovery.
Collapse
|
81
|
Lukka PB, Chen YY, Finlay GJ, Joseph WR, Richardson E, Paxton JW, Baguley BC. Tumour tissue selectivity in the uptake and retention of SN 28049, a new topoisomerase II-directed anticancer agent. Cancer Chemother Pharmacol 2013; 72:1013-22. [PMID: 24036845 DOI: 10.1007/s00280-013-2280-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/27/2013] [Indexed: 01/03/2023]
Abstract
PURPOSE A variety of anticancer drugs, including doxorubicin and mitoxantrone, have structures in which a DNA-intercalating chromophore is linked to a positively charged side chain. These drugs generally inhibit tumour growth and survival by poisoning the enzyme DNA topoisomerase II. SN 28049, a benzonaphthyridine derivative with these properties, has curative activity against the Colon 38 tumour in mice. Previous pharmacokinetic studies have demonstrated tumour-selective retention with approximately 20-fold higher area under the concentration-time curve (AUC) for tumour tissue as compared to normal tissues. We have investigated here whether such retention is tumour specific. METHODS Plasma and tissue pharmacokinetics were assessed in the murine Lewis lung (LL3) tumour in C57 BL/6 mice and in xenografts of the NZM4, NZM10 and NZM52 human melanoma lines in Balb/c Rag-1 immunodeficient mice. The in vitro cellular localisation of SN 28049 in murine and human cell lines was studied by confocal fluorescence microscopy. RESULTS A 260-fold variation, from 8.9 μM h (NZM4) to 2,334 μM h (Colon 38), was found among the different tumours. Only small variations were observed in the corresponding plasma AUC (2.9-5 μM h). Moreover, in vivo activity, as measured by tumour growth delay, varied from 1 day (NZM4) to curative (Colon 38), consistent with the tumour pharmacokinetic data. In cultured cell lines, SN 28049 was found in cytoplasmic bodies, suggesting that drug sequestration could contribute to tumour pharmacokinetics. CONCLUSION SN 28049 shows dramatic differences in both tumour AUC and antitumour activity against different tumours. These differences point to the presence of a tumour-specific uptake and retention mechanism.
Collapse
Affiliation(s)
- Pradeep B Lukka
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | | | | | | | | | | | | |
Collapse
|
82
|
Koepsell H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med 2013; 34:413-35. [PMID: 23506881 DOI: 10.1016/j.mam.2012.10.010] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 08/18/2012] [Indexed: 12/14/2022]
Abstract
The SLC22 family contains 13 functionally characterized human plasma membrane proteins each with 12 predicted α-helical transmembrane domains. The family comprises organic cation transporters (OCTs), organic zwitterion/cation transporters (OCTNs), and organic anion transporters (OATs). The transporters operate as (1) uniporters which mediate facilitated diffusion (OCTs, OCTNs), (2) anion exchangers (OATs), and (3) Na(+)/zwitterion cotransporters (OCTNs). They participate in small intestinal absorption and hepatic and renal excretion of drugs, xenobiotics and endogenous compounds and perform homeostatic functions in brain and heart. Important endogeneous substrates include monoamine neurotransmitters, l-carnitine, α-ketoglutarate, cAMP, cGMP, prostaglandins, and urate. It has been shown that mutations of the SLC22 genes encoding these transporters cause specific diseases like primary systemic carnitine deficiency and idiopathic renal hypouricemia and are correlated with diseases such as Crohn's disease and gout. Drug-drug interactions at individual transporters may change pharmacokinetics and toxicities of drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- University of Würzburg, Institute of Anatomy and Cell Biology, Koellikerstr. 6, 97070 Würzburg, Germany.
| |
Collapse
|
83
|
Ito S, Ando H, Ose A, Kitamura Y, Ando T, Kusuhara H, Sugiyama Y. Relationship Between the Urinary Excretion Mechanisms of Drugs and Their Physicochemical Properties. J Pharm Sci 2013; 102:3294-301. [DOI: 10.1002/jps.23599] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 01/11/2023]
|
84
|
Pochini L, Scalise M, Galluccio M, Indiveri C. OCTN cation transporters in health and disease: role as drug targets and assay development. ACTA ACUST UNITED AC 2013; 18:851-67. [PMID: 23771822 DOI: 10.1177/1087057113493006] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The three members of the organic cation transporter novel subfamily are known to be involved in interactions with xenobiotic compounds. These proteins are characterized by 12 transmembrane segments connected by nine short loops and two large hydrophilic loops. It has been recently pointed out that acetylcholine is a physiological substrate of OCTN1. Its transport could be involved in nonneuronal cholinergic functions. OCTN2 maintains the carnitine homeostasis, resulting from intestinal absorption, distribution to tissues, and renal excretion/reabsorption. OCTN3, identified only in mouse, mediates also carnitine transport. OCTN1 and OCTN2 are associated with several pathologies, such as inflammatory bowel disease, primary carnitine deficiency, diabetes, neurological disorders, and cancer, thus representing useful pharmacological targets. The function and interaction with drugs of OCTNs have been studied in intact cell systems and in proteoliposomes. The latter experimental model enables reduced interference from other transporters or enzyme pathways. Using proteoliposomes, the molecular bases of toxicity of some drugs have recently been revealed. Therefore, proteoliposomes represent a promising experimental tool suitable for large-scale molecular screening of interactions of OCTNs with chemicals regarding human health.
Collapse
Affiliation(s)
- Lorena Pochini
- Laboratory of Biochemistry and Molecular Biotechnology, Department BEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Italy
| | | | | | | |
Collapse
|
85
|
Lancaster CS, Sprowl JA, Walker AL, Hu S, Gibson AA, Sparreboom A. Modulation of OATP1B-type transporter function alters cellular uptake and disposition of platinum chemotherapeutics. Mol Cancer Ther 2013; 12:1537-44. [PMID: 23757163 DOI: 10.1158/1535-7163.mct-12-0926] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Expression of the human organic anion transporting polypeptides OATP1B1 and OATP1B3 has been previously believed to be restricted to hepatocytes. Here we show that the gene encoding OATP1B3, but not OATP1B1, is abundantly expressed in multiple human solid tumors that include hepatocellular, lung, and ovarian carcinomas. Surprisingly, OATP1B3 gene expression in a panel of 60 human tumor cell lines was linked with sensitivity to multiple cytotoxic agents, including the platinum anticancer drugs cisplatin, carboplatin, and oxaliplatin. In addition, overexpression of OATP1B3 in mammalian cells increased cellular accumulation of platinum agents and decreased cell survival. In mice with a targeted disruption of the ortholog transporter Oatp1b2, the liver-to-plasma ratio of cisplatin was significantly reduced compared with wild-type mice, without concurrent changes in expression profiles of other transporter genes. Our findings indicate an unexpected role for tumoral and host OATP1B-type carriers in the toxicity and disposition of platinum anticancer drugs, and may provide a foundation for understanding the extensive interindividual pharmacodynamic variability seen with these drugs in patients.
Collapse
Affiliation(s)
- Cynthia S Lancaster
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | | | | | |
Collapse
|
86
|
Toh DSL, Cheung FSG, Murray M, Pern TK, Lee EJD, Zhou F. Functional Analysis of Novel Variants in the Organic Cation/Ergothioneine Transporter 1 Identified in Singapore Populations. Mol Pharm 2013; 10:2509-16. [DOI: 10.1021/mp400193r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dorothy Su Lin Toh
- Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119245
| | | | - Michael Murray
- Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
- Discipline of Pharmacology, School
of Medical Sciences, The University of Sydney, NSW 2006, Australia
| | - Tan Kuan Pern
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Edmund Jon Deoon Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119245
| | - Fanfan Zhou
- Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
| |
Collapse
|
87
|
Staquicini FI, Pasqualini R, Arap W. Ligand-directed profiling: applications to target drug discovery in cancer. Expert Opin Drug Discov 2013; 4:51-9. [PMID: 23480336 DOI: 10.1517/17460440802628152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Generation of targeted therapy remains a major challenge in medicine. The development of drugs that can discriminate between tumor cells and non-malignant cells would improve efficacy and reduce general side effects. Phage display allows identification of specific supramolecular complexes that can target therapeutic compounds or imaging agents, both in vitro and in vivo. The use of phage display to identify molecules expressed on the surface of human cancer cells without bias, as well as to provide initial steps toward identification of a ligand/receptor-based map of the human microvasculature, has broad implications for drug discovery in general, especially for cancer therapy. OBJECTIVE/METHOD In this review, we discuss the use of phage display technology as a ligand-directed targeting strategy and its applications to drug discovery. CONCLUSION Compared to other existing drug discovery platforms, phage display technology has the advantage to provide valuable clues pointing to target proteins in an unbiased biological context. The result from various display library screenings indicates that in many cases the selected peptide motifs mimic biological ligands. Analysis of peptide motifs targeting a receptor provides a basis for rational drug design of targeted peptidomimetics.
Collapse
Affiliation(s)
- Fernanda I Staquicini
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA +1 713 792 3872 ; +1 713 745 0201 ;
| | | | | |
Collapse
|
88
|
Chen YC, Hsiao CC, Chen KD, Hung YC, Wu CY, Lie CH, Liu SF, Sung MT, Chen CJ, Wang TY, Chang JC, Tang P, Fang WF, Wang YH, Chung YH, Chao TY, Leung SY, Su MC, Wang CC, Lin MC. Peripheral immune cell gene expression changes in advanced non-small cell lung cancer patients treated with first line combination chemotherapy. PLoS One 2013; 8:e57053. [PMID: 23451142 PMCID: PMC3581559 DOI: 10.1371/journal.pone.0057053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 01/16/2013] [Indexed: 11/18/2022] Open
Abstract
Introduction Increasing evidence has shown that immune surveillance is compromised in a tumor-promoting microenvironment for patients with non-small cell lung cancer (NSCLC), and can be restored by appropriate chemotherapy. Methods To test this hypothesis, we analyzed microarray gene expression profiles of peripheral blood mononuclear cells from 30 patients with newly-diagnosed advanced stage NSCLC, and 20 age-, sex-, and co-morbidity-matched healthy controls. All the patients received a median of four courses of chemotherapy with cisplatin and gemcitabine for a 28-day cycle as first line treatment. Results Sixty-nine differentially expressed genes between the patients and controls, and 59 differentially expressed genes before and after chemotherapy were identified. The IL4 pathway was significantly enriched in both tumor progression and chemotherapy signatures. CXCR4 and IL2RG were down-regulated, while DOK2 and S100A15 were up-regulated in the patients, and expressions of all four genes were partially or totally reversed after chemotherapy. Real-time quantitative RT-PCR for the four up-regulated (S100A15, DOK2) and down-regulated (TLR7, TOP1MT) genes in the patients, and the six up-regulated (TLR7, CRISP3, TOP1MT) and down-regulated (S100A15, DOK2, IL2RG) genes after chemotherapy confirmed the validity of the microarray results. Further immunohistochemical analysis of the paraffin-embedded lung cancer tissues identified strong S100A15 nuclear staining not only in stage IV NSCLC as compared to stage IIIB NSCLC (p = 0.005), but also in patients with stable or progressive disease as compared to those with a partial response (p = 0.032). A high percentage of S100A15 nuclear stained cells (HR 1.028, p = 0.01) was the only independent factor associated with three-year overall mortality. Conclusions Our results suggest a potential role of the IL4 pathway in immune surveillance of advanced stage NSCLC, and immune potentiation of combination chemotherapy. S100A15 may serve as a potential biomarker for tumor staging, and a predictor of poor prognosis in NSCLC.
Collapse
Affiliation(s)
- Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chang-Chun Hsiao
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuang-Den Chen
- Center of Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Chiang Hung
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Yuan Wu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Hao Lie
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Feng Liu
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ming-Tse Sung
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chung-Jen Chen
- Division of Rheumatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ting-Ya Wang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jen-Chieh Chang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Petrus Tang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Feng Fang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Hsi Wang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Hsiu Chung
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tung-Ying Chao
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sum-Yee Leung
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Mao-Chang Su
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chin-Chou Wang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
89
|
Dahlin A, Geier E, Stocker SL, Cropp CD, Grigorenko E, Bloomer M, Siegenthaler J, Xu L, Basile AS, Tang-Liu DDS, Giacomini KM. Gene expression profiling of transporters in the solute carrier and ATP-binding cassette superfamilies in human eye substructures. Mol Pharm 2013; 10:650-63. [PMID: 23268600 DOI: 10.1021/mp300429e] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The barrier epithelia of the cornea and retina control drug and nutrient access to various compartments of the human eye. While ocular transporters are likely to play a critical role in homeostasis and drug delivery, little is known about their expression, localization and function. In this study, the mRNA expression levels of 445 transporters, metabolic enzymes, transcription factors and nuclear receptors were profiled in five regions of the human eye: cornea, iris, ciliary body, choroid and retina. Through RNA expression profiling and immunohistochemistry, several transporters were identified as putative targets for drug transport in ocular tissues. Our analysis identified SLC22A7 (OAT2), a carrier for the antiviral drug acyclovir, in the corneal epithelium, in addition to ABCG2 (BCRP), an important xenobiotic efflux pump, in retinal nerve fibers and the retinal pigment epithelium. Collectively, our results provide an understanding of the transporters that serve to maintain ocular homeostasis and which may be potential targets for drug delivery to deep compartments of the eye.
Collapse
Affiliation(s)
- Amber Dahlin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Vadlapudi AD, Vadlapatla RK, Pal D, Mitra AK. Biotin uptake by T47D breast cancer cells: Functional and molecular evidence of sodium-dependent multivitamin transporter (SMVT). Int J Pharm 2013; 441:535-43. [DOI: 10.1016/j.ijpharm.2012.10.047] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 10/25/2012] [Accepted: 10/31/2012] [Indexed: 11/27/2022]
|
91
|
Riganti C, Rolando B, Kopecka J, Campia I, Chegaev K, Lazzarato L, Federico A, Fruttero R, Ghigo D. Mitochondrial-targeting nitrooxy-doxorubicin: a new approach to overcome drug resistance. Mol Pharm 2012. [PMID: 23186264 DOI: 10.1021/mp300311b] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In previous studies, we showed that nitric oxide (NO) donors and synthetic doxorubicins (DOXs) modified with moieties containing NO-releasing groups--such as nitrooxy-DOX (NitDOX) or 3-phenylsulfonylfuroxan-DOX (FurDOX)--overcome drug resistance by decreasing the activity of ATP-binding cassette (ABC) transporters that can extrude the drug. Here, we have investigated the biochemical mechanisms by which NitDOX and FurDOX exert antitumor effects. Both NitDOX and FurDOX were more cytotoxic than DOX against drug-resistant cells. Interestingly, NitDOX exhibited a faster uptake and an extranuclear distribution. NitDOX was preferentially localized in the mitochondria, where it nitrated and inhibited the mitochondria-associated ABC transporters, decreased the flux through the tricarboxylic acid cycle, slowed down the activity of complex I, lowered the synthesis of ATP, induced oxidative and nitrosative stress, and elicited the release of cytochrome c and the activation of caspase-9 and -3 in DOX-resistant cells. We suggest that NitDOX may represent the prototype of a new class of multifunctional anthracyclines, which have cellular targets different from conventional anthracyclines and greater efficacy against drug-resistant tumors.
Collapse
Affiliation(s)
- Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
The promiscuous binding of pharmaceutical drugs and their transporter-mediated uptake into cells: what we (need to) know and how we can do so. Drug Discov Today 2012. [PMID: 23207804 DOI: 10.1016/j.drudis.2012.11.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A recent paper in this journal sought to counter evidence for the role of transport proteins in effecting drug uptake into cells, and questions that transporters can recognize drug molecules in addition to their endogenous substrates. However, there is abundant evidence that both drugs and proteins are highly promiscuous. Most proteins bind to many drugs and most drugs bind to multiple proteins (on average more than six), including transporters (mutations in these can determine resistance); most drugs are known to recognise at least one transporter. In this response, we alert readers to the relevant evidence that exists or is required. This needs to be acquired in cells that contain the relevant proteins, and we highlight an experimental system for simultaneous genome-wide assessment of carrier-mediated uptake in a eukaryotic cell (yeast).
Collapse
|
93
|
Zhang Y, Pullambhatla M, Laterra J, Pomper MG. Influence of bioluminescence imaging dynamics by D-luciferin uptake and efflux mechanisms. Mol Imaging 2012; 11:499-506. [PMID: 23084250 PMCID: PMC4332814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023] Open
Abstract
Bioluminescence imaging (BLI) detects light generated by luciferase-mediated oxidation of substrate and is used widely for evaluating transgene expression in cell-based assays and in vivo in relevant preclinical models. The most commonly used luciferase for in vivo applications is firefly luciferase (fLuc), for which D-luciferin serves as the substrate. We demonstrated previously that the expression of the ABCG2 efflux transporter can significantly reduce BLI signal output and that HhAntag-691 can inhibit the efflux of D-luciferin, thereby enhancing BLI signal. Here we show that an HhAntag-691-sensitive uptake mechanism facilitates the intracellular concentration of D-luciferin and that the BLI dynamics of different cell lines are coregulated by this uptake mechanism in conjunction with ABCG2-mediated efflux. After administration of D-luciferin, the HhAntag-691-sensitive uptake mechanism generates a rapid increase in BLI signal that decreases over time, whereas ABCG2-mediated efflux stably reduces signal output. We implicate SLC22A4 (OCTN1), a member of the organic cation/zwitterion uptake transporter family, as one potential mediator of the HhAntag-691-sensitive D-luciferin uptake. These findings provide insight into mechanisms that contribute to the cellular uptake kinetics and in vivo biodistribution of D-luciferin.
Collapse
Affiliation(s)
- Yimao Zhang
- Russell H. Morgan Department of Radiology and Department of Neurology, Johns Hopkins Medical School, Baltimore, MD, USA
| | | | | | | |
Collapse
|
94
|
Zhang Y, Pullambhatla M, Laterra J, Pomper MG. Influence of Bioluminescence Imaging Dynamics by D-Luciferin Uptake and Efflux Mechanisms. Mol Imaging 2012. [DOI: 10.2310/7290.2012.00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yimao Zhang
- From the Russell H. Morgan Department of Radiology and Department of Neurology, Johns Hopkins Medical School, and the Kennedy Krieger Institute, Baltimore, MD
| | - Mrudula Pullambhatla
- From the Russell H. Morgan Department of Radiology and Department of Neurology, Johns Hopkins Medical School, and the Kennedy Krieger Institute, Baltimore, MD
| | - John Laterra
- From the Russell H. Morgan Department of Radiology and Department of Neurology, Johns Hopkins Medical School, and the Kennedy Krieger Institute, Baltimore, MD
| | - Martin G. Pomper
- From the Russell H. Morgan Department of Radiology and Department of Neurology, Johns Hopkins Medical School, and the Kennedy Krieger Institute, Baltimore, MD
| |
Collapse
|
95
|
Marin JJG. Plasma membrane transporters in modern liver pharmacology. SCIENTIFICA 2012; 2012:428139. [PMID: 24278693 PMCID: PMC3820525 DOI: 10.6064/2012/428139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/26/2012] [Indexed: 06/02/2023]
Abstract
The liver plays a crucial role in the detoxification of drugs used in the treatment of many diseases. The liver itself is the target for drugs aimed to modify its function or to treat infections and tumours affecting this organ. Both detoxification and pharmacological processes occurring in the liver require the uptake of the drug by hepatic cells and, in some cases, the elimination into bile. These steps have been classified as detoxification phase 0 and phase III, respectively. Since most drugs cannot cross the plasma membrane by simple diffusion, the involvement of transporters is mandatory. Several members of the superfamilies of solute carriers (SLC) and ATP-binding cassette (ABC) proteins, with a minor participation of other families of transporters, account for the uptake and efflux, respectively, of endobiotic and xenobiotic compounds across the basolateral and apical membranes of hepatocytes and cholangiocytes. These transporters are also involved in the sensitivity and refractoriness to the pharmacological treatment of liver tumours. An additional interesting aspect of the role of plasma membrane transporters in liver pharmacology regards the promiscuity of many of these carriers, which accounts for a variety of drug-drug, endogenous substances-drug and food components-drug interactions with clinical relevance.
Collapse
Affiliation(s)
- Jose J. G. Marin
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca and CIBERehd, Spain
- Department of Physiology and Pharmacology, Campus Miguel de Unamuno E.D. S09, 37007 Salamanca, Spain
| |
Collapse
|
96
|
Njiaju UO, Gamazon ER, Gorsic LK, Delaney SM, Wheeler HE, Im HK, Dolan ME. Whole-genome studies identify solute carrier transporters in cellular susceptibility to paclitaxel. Pharmacogenet Genomics 2012; 22:498-507. [PMID: 22437668 DOI: 10.1097/fpc.0b013e328352f436] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The clinical use of paclitaxel is limited by variable responses and the potential for significant toxicity. To date, studies of associations between variants in candidate genes and paclitaxel effects have yielded conflicting results. We aimed to evaluate the relationships between global gene expression and paclitaxel sensitivity. METHODS We utilized well-genotyped lymphoblastoid cell lines derived from the International HapMap Project to evaluate the relationships between cellular susceptibility to paclitaxel and global gene expression. Cells were exposed to varying concentrations of paclitaxel to evaluate paclitaxel-induced cytotoxicity and apoptosis. Among the top genes, we identified solute carrier (SLC) genes associated with paclitaxel sensitivity and narrowed down the list to those that had single nucleotide polymorphisms associated with both the expression level of the SLC gene and also with paclitaxel sensitivity. We performed an independent validation in an independent set of cell lines and also conducted functional studies using RNA interference. RESULTS Of all genes associated with paclitaxel-induced cytotoxicity at P less than 0.05 (1713 genes), there was a significant enrichment in SLC genes (31 genes). A subset of SLC genes, namely SLC31A2, SLC43A1, SLC35A5, and SLC41A2, was associated with paclitaxel sensitivity and had regulating single nucleotide polymorphisms that were also associated with paclitaxel-induced cytotoxicity. Multivariate modeling demonstrated that those four SLC genes together explained 20% of the observed variability in paclitaxel susceptibility. Using RNA interference, we demonstrated increased paclitaxel susceptibility with knockdown of three SLC genes, SLC31A2, SLC35A5, and SLC41A2. CONCLUSION Our findings are novel and lend further support to the role of transporters, specifically solute carriers, in mediating cellular susceptibility to paclitaxel.
Collapse
Affiliation(s)
- Uchenna O Njiaju
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Comprehensive Cancer, Chicago, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
97
|
Marin JJG, Sanchez de Medina F, Castaño B, Bujanda L, Romero MR, Martinez-Augustin O, Moral-Avila RD, Briz O. Chemoprevention, chemotherapy, and chemoresistance in colorectal cancer. Drug Metab Rev 2012; 44:148-72. [PMID: 22497631 DOI: 10.3109/03602532.2011.638303] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
98
|
Sprowl JA, Mikkelsen TS, Giovinazzo H, Sparreboom A. Contribution of tumoral and host solute carriers to clinical drug response. Drug Resist Updat 2012; 15:5-20. [PMID: 22459901 DOI: 10.1016/j.drup.2012.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Members of the solute carrier family of transporters are responsible for the cellular uptake of a broad range of endogenous compounds and xenobiotics in multiple tissues. Several of these solute carriers are known to be expressed in cancer cells or cancer cell lines, and decreased cellular uptake of drugs potentially contributes to the development of resistance. As result, the expression levels of these proteins in humans have important consequences for an individual's susceptibility to certain drug-induced side effects, interactions, and treatment efficacy. In this review article, we provide an update of this rapidly emerging field, with specific emphasis on the direct contribution of solute carriers to anticancer drug uptake in tumors, the role of these carriers in regulation of anticancer drug disposition, and recent advances in attempts to evaluate these proteins as therapeutic targets.
Collapse
Affiliation(s)
- Jason A Sprowl
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
99
|
Wan P, Li Q, Larsen JEP, Eklund AC, Parlesak A, Rigina O, Nielsen SJ, Björkling F, Jónsdóttir SÓ. Prediction of drug efficacy for cancer treatment based on comparative analysis of chemosensitivity and gene expression data. Bioorg Med Chem 2011; 20:167-76. [PMID: 22154557 DOI: 10.1016/j.bmc.2011.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 11/06/2011] [Accepted: 11/11/2011] [Indexed: 01/24/2023]
Abstract
The NCI60 database is the largest available collection of compounds with measured anti-cancer activity. The strengths and limitations for using the NCI60 database as a source of new anti-cancer agents are explored and discussed in relation to previous studies. We selected a sub-set of 2333 compounds with reliable experimental half maximum growth inhibitions (GI(50)) values for 30 cell lines from the NCI60 data set and evaluated their growth inhibitory effect (chemosensitivity) with respect to tissue of origin. This was done by identifying natural clusters in the chemosensitivity data set and in a data set of expression profiles of 1901 genes for the corresponding tumor cell lines. Five clusters were identified based on the gene expression data using self-organizing maps (SOM), comprising leukemia, melanoma, ovarian and prostate, basal breast, and luminal breast cancer cells, respectively. The strong difference in gene expression between basal and luminal breast cancer cells was reflected clearly in the chemosensitivity data. Although most compounds in the data set were of low potency, high efficacy compounds that showed specificity with respect to tissue of origin could be found. Furthermore, eight potential topoisomerase II inhibitors were identified using a structural similarity search. Finally, a set of genes with expression profiles that were significantly correlated with anti-cancer drug activity was identified. Our study demonstrates that the combined data sets, which provide comprehensive information on drug activity and gene expression profiles of tumor cell lines studied, are useful for identifying potential new active compounds.
Collapse
Affiliation(s)
- Peng Wan
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Bldg. 208, DK-2800 Kgs. Lyngby, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Grottker J, Rosenberger A, Burckhardt G, Hagos Y. Interaction of human multidrug and toxin extrusion 1 (MATE1) transporter with antineoplastic agents. ACTA ACUST UNITED AC 2011; 26:181-9. [PMID: 22149660 DOI: 10.1515/dmdi.2011.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The transport of endogenous and exogenous organic cations across the plasma membrane of cells is mediated by multispecific organic cation transporters (OCTs), and the multidrug and toxin extrusion (MATE) transporters. MATE belongs to the SLC47 transporter family consisting of only two members, MATE1 and MATE2-K. MATE2-K is exclusively expressed in the kidney at the apical membrane of proximal tubular epithelial cells. MATE1 is highly expressed in the kidney, liver, skeletal muscle and also in adrenal glands, testes and heart. MATE1 exchanges organic cations against protons both in influx as well as in efflux modes. METHODS Here, we examined the interaction of 25 antineoplastic agents with human MATE1. We generated stably transfected MATE1-HEK293 cells and determined the inhibition of MATE1-mediated [(3)H]1-methyl-4-phenylpyridinium (MPP) uptake by the antineoplastic agents. RESULTS We found a significant inhibition of MATE1-mediated MPP uptake by several antineoplastic agents and pH dependent IC(50)values for mitoxantrone (7.8 μM at pH 7.4 and 0.6 μM at pH 8.5) as well as for irinotecan (4.4 μM at pH 7.4 and 1.1 μM at pH 8.5), respectively. CONCLUSIONS We suggest that hMATE1 could play a role in chemosensitivity of tumor cells. In addition, hepatic and renal MATE1 could potentially be involved in drug-drug-interactions as well as in drug metabolism and excretion during chemotherapy.
Collapse
Affiliation(s)
- Julia Grottker
- Department of Physiology and Pathophysiology, Georg-August-University, Göttingen, Germany
| | | | | | | |
Collapse
|