51
|
Mejia Saldarriaga M, Darwiche W, Jayabalan D, Monge J, Rosenbaum C, Pearse RN, Niesvizky R, Bustoros M. Advances in the molecular characterization of multiple myeloma and mechanism of therapeutic resistance. Front Oncol 2022; 12:1020011. [PMID: 36387095 PMCID: PMC9646612 DOI: 10.3389/fonc.2022.1020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Recent insight in the genomic landscape of newly diagnosed multiple myeloma (NDMM) and its precursor conditions, monoclonal gammopathy of uncertain significance (MGUS), and smoldering myeloma have allowed the identification of patients with precursor conditions with a high risk of progression. These cases with "progressor" MGUS/SMM have a higher average mutation burden, have higher rates of mutations in specific genes such as MAPK, DNA repair, MYC, DIS3, and are enriched for specific mutational signatures when compared to non-progressors and are comparable to those found in NDMM. The highly preserved clonal heterogeneity seen upon progression of SMM, combined with the importance of these early variables, suggests that the identification of progressors based on these findings could complement and enhance the currently available clinical models based on tumor burden. Mechanisms leading to relapse/refractory multiple myeloma (RRMM) are of clinical interest given worse overall survival in this population. An Increased mutational burden is seen in patients with RRMM when compared to NDMM, however, there is evidence of branching evolution with many of these mutations being present at the subclonal level. Likewise, alterations in proteins associated with proteosome inhibitor and immunomodulatory drugs activity could partially explain clinical resistance to these agents. Evidence of chromosomal events leading to copy number changes is seen, with the presence of TP53 deletion, mutation, or a combination of both being present in many cases. Additional chromosomal events such as 1q gain and amplification may also interact and lead to resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mark Bustoros
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
52
|
Combination venetoclax and selinexor effective in relapsed refractory multiple myeloma with translocation t(11;14). NPJ Precis Oncol 2022; 6:73. [PMID: 36261486 PMCID: PMC9581939 DOI: 10.1038/s41698-022-00315-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/29/2022] [Indexed: 11/08/2022] Open
Abstract
Patients with multiple myeloma-bearing translocation t(11;14) have recently been shown to benefit from the apoptosis-inducing drug venetoclax; however, the drug lacks FDA approval in multiple myeloma thus far due to a potential safety signal in the overall patient population. Selinexor is an inhibitor of nuclear export that is FDA-approved for patients with multiple myeloma refractory to multiple lines of therapy. Here, we report that in four patients with multiple myeloma with t(11;14), the concomitant administration of venetoclax and selinexor was safe and associated with disease response. Moreover, the combination was synergistic in t(11;14) multiple myeloma cell lines and caused decreased levels of Cyclin D1 (which is overexpressed due to the CCND1-IGH fusion) when given in combination as compared to single agents. These data suggest that the combination of venetoclax and selinexor is effective and t(11;14) may serve as a therapeutic marker for response and target for future clinical trials.
Collapse
|
53
|
Liu J, Chen Y, Yu L, Yang L. Mechanisms of venetoclax resistance and solutions. Front Oncol 2022; 12:1005659. [PMID: 36313732 PMCID: PMC9597307 DOI: 10.3389/fonc.2022.1005659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
The BCL-2 inhibitor venetoclax is currently approved for treatment of hematologic diseases and is widely used either as monotherapy or in combination strategies. It has produced promising results in the treatment of refractory or relapsed (R/R) and aged malignant hematologic diseases. However, with clinical use, resistance to venetoclax has emerged. We review the mechanism of reduced dependence on BCL-2 mediated by the upregulation of antiapoptotic proteins other than BCL-2, such as MCL-1 and BCL-XL, which is the primary mechanism of venetoclax resistance, and find that this mechanism is achieved through different pathways in different hematologic diseases. Additionally, this paper also summarizes the current investigations of the mechanisms of venetoclax resistance in terms of altered cellular metabolism, changes in the mitochondrial structure, altered or modified BCL-2 binding domains, and some other aspects; this article also reviews relevant strategies to address these resistance mechanisms.
Collapse
Affiliation(s)
- Jiachen Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yidong Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lihua Yu
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lihua Yang
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
54
|
Solimando AG, Malerba E, Leone P, Prete M, Terragna C, Cavo M, Racanelli V. Drug resistance in multiple myeloma: Soldiers and weapons in the bone marrow niche. Front Oncol 2022; 12:973836. [PMID: 36212502 PMCID: PMC9533079 DOI: 10.3389/fonc.2022.973836] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is still an incurable disease, despite considerable improvements in treatment strategies, as resistance to most currently available agents is not uncommon. In this study, data on drug resistance in MM were analyzed and led to the following conclusions: resistance occurs via intrinsic and extrinsic mechanisms, including intraclonal heterogeneity, drug efflux pumps, alterations of drug targets, the inhibition of apoptosis, increased DNA repair and interactions with the bone marrow (BM) microenvironment, cell adhesion, and the release of soluble factors. Since MM involves the BM, interactions in the MM-BM microenvironment were examined as well, with a focus on the cross-talk between BM stromal cells (BMSCs), adipocytes, osteoclasts, osteoblasts, endothelial cells, and immune cells. Given the complex mechanisms that drive MM, next-generation treatment strategies that avoid drug resistance must target both the neoplastic clone and its non-malignant environment. Possible approaches based on recent evidence include: (i) proteasome and histone deacetylases inhibitors that not only target MM but also act on BMSCs and osteoclasts; (ii) novel peptide drug conjugates that target both the MM malignant clone and angiogenesis to unleash an effective anti-MM immune response. Finally, the role of cancer stem cells in MM is unknown but given their roles in the development of solid and hematological malignancies, cancer relapse, and drug resistance, their identification and description are of paramount importance for MM management.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
- Istituto di ricovero e cura a carattere scientifico (IRCCS) Istituto Tumori ‘Giovanni Paolo II’ of Bari, Bari, Italy
| | - Eleonora Malerba
- Department of Biomedical Sciences and Human Oncology, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
| | - Marcella Prete
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
| | - Carolina Terragna
- ’Seràgnoli’ Institute of Hematology, Bologna University School of Medicine, Bologna, Italy
| | - Michele Cavo
- ’Seràgnoli’ Institute of Hematology, Bologna University School of Medicine, Bologna, Italy
| | - Vito Racanelli
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
- *Correspondence: Vito Racanelli,
| |
Collapse
|
55
|
Radiomics Models Based on Magnetic Resonance Imaging for Prediction of the Response to Bortezomib-Based Therapy in Patients with Multiple Myeloma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6911246. [PMID: 36105939 PMCID: PMC9467708 DOI: 10.1155/2022/6911246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/04/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
Purpose. To identify significant radiomics features based on MRI and establish effective models for predicting the response to bortezomib-based regimens. Materials and Methods. In total, 95 MM patients treated with bortezomib-based therapy were enrolled, including 77 with bortezomib, cyclophosphamide, and dexamethasone (BCD) and 18 with bortezomib, lenalidomide, and dexamethasone (VRD). Based on T1-weighted imaging (T1WI) and T2-weighted imaging with fat suppression (T2WI-fs), radiomics features were extracted and then selected. The random forest (RF),
-nearest neighbor, support vector machine, logistic regression, decision tree, and Bayes models were built using the selected features. The predictive power of six models for response to BCD and VRD regimens were evaluated. The correlation between the selected features and progression-free survival (PFS) was also analyzed. Results. Four wavelet features were correlated with BCD treatment response. The six models all showed predictive power for BCD regimen (AUC: 0.84-0.896 in the training set, 0.801-0.885 in the validation set), and RF performed relatively better than others. Nevertheless, all the BCD-based models were incapable of predicting the VRD treatment response. The wavelet-HLH_firstorder_kurtosis was also associated with PFS (log-rank
). Conclusion. The four wavelet features were valuable biomarkers for predicting the response to BCD regimen. The six models based on these features showed predictive power, and RF was the best. One wavelet feature was also a survival-related biomarker. MRI-based radiomics had the potential to guide clinicians in MM management.
Collapse
|
56
|
Diamantidis MD, Papadaki S, Hatjiharissi E. Exploring the current molecular landscape and management of multiple myeloma patients with the t(11;14) translocation. Front Oncol 2022; 12:934008. [PMID: 35982976 PMCID: PMC9379277 DOI: 10.3389/fonc.2022.934008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is a genetically complex disease. The key myeloma-initiating genetic events are hyperdiploidy and translocations involving the immunoglobulin heavy chain (IgH) enhancer on chromosome 14, which leads to the activation of oncogenes (e.g., CCND1, CCND3, MAF, and MMSET). The t(11;14) translocation is the most common in MM (15%–20%) and results in cyclin D1 (CCND1) upregulation, which leads to kinase activation and tumor cell proliferation. Notably, t(11;14) occurs at a higher rate in patients with plasma cell leukemia (40%) and light chain amyloidosis (50%). Patients with myeloma who harbor the t(11;14) translocation have high levels of the anti-apoptotic protein B-cell lymphoma 2 (BCL2). Multiple studies demonstrated that the presence of t(11;14) was predictive of BCL2 dependency, suggesting that BCL2 could be a target in this subtype of myeloma. Venetoclax, an oral BCL2 inhibitor, has shown remarkable activity in treating relapsed/refractory MM patients with t(11;14) and BCL2 overexpression, either as monotherapy or in combination with other anti-myeloma agents. In this review, we describe the molecular defects associated with the t(11;14), bring into question the standard cytogenetic risk of myeloma patients harboring t(11;14), summarize current efficacy and safety data of targeted venetoclax-based therapies, and discuss the future of individualized or precision medicine for this unique myeloma subgroup, which will guide optimal treatment.
Collapse
Affiliation(s)
- Michael D. Diamantidis
- Thalassemia and Sickle Cell Disease Unit, Department of Hematology, General Hospital of Larissa, Larissa, Greece
| | - Sofia Papadaki
- Division of Hematology, First Department of Internal Medicine, AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evdoxia Hatjiharissi
- Division of Hematology, First Department of Internal Medicine, AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
- *Correspondence: Evdoxia Hatjiharissi,
| |
Collapse
|
57
|
Lindeman GJ, Fernando TM, Bowen R, Jerzak KJ, Song X, Decker T, Boyle F, McCune S, Armstrong A, Shannon C, Bertelli G, Chang CW, Desai R, Gupta K, Wilson TR, Flechais A, Bardia A. VERONICA: Randomized Phase II Study of Fulvestrant and Venetoclax in ER-Positive Metastatic Breast Cancer Post-CDK4/6 Inhibitors - Efficacy, Safety, and Biomarker Results. Clin Cancer Res 2022; 28:3256-3267. [PMID: 35583555 PMCID: PMC9662928 DOI: 10.1158/1078-0432.ccr-21-3811] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 05/16/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Despite promising activity in hematopoietic malignancies, efficacy of the B-cell lymphoma 2 (BCL2) inhibitor venetoclax in solid tumors is unknown. We report the prespecified VERONICA primary results, a randomized phase II clinical trial evaluating venetoclax and fulvestrant in estrogen receptor (ER)-positive, HER2-negative metastatic breast cancer, post-cyclin-dependent kinase (CDK) 4/6 inhibitor progression. PATIENTS AND METHODS Pre-/postmenopausal females ≥18 years were randomized 1:1 to venetoclax (800 mg orally daily) plus fulvestrant (500 mg intramuscular; cycle 1: days 1 and 15; subsequent 28-day cycles: day 1) or fulvestrant alone. The primary endpoint was clinical benefit rate (CBR); secondary endpoints were progression-free survival (PFS), overall survival, and safety. Exploratory biomarker analyses included BCL2 and BCL extra-large (BCLXL) tumor expression, and PIK3CA circulating tumor DNA mutational status. RESULTS At primary analysis (cutoff: August 5, 2020; n = 103), venetoclax did not significantly improve CBR [venetoclax plus fulvestrant: 11.8% (n = 6/51; 95% confidence interval (CI), 4.44-23.87); fulvestrant: 13.7% (7/51; 5.70-26.26); risk difference -1.96% (95% CI, -16.86 to 12.94)]. Median PFS was 2.69 months (95% CI, 1.94-3.71) with venetoclax plus fulvestrant versus 1.94 months (1.84-3.55) with fulvestrant (stratified HR, 0.94; 95% CI, 0.61-1.45; P = 0.7853). Overall survival data were not mature. A nonsignificant improvement of CBR and PFS was observed in patients whose tumors had strong BCL2 expression (IHC 3+), a BCL2/BCLXL Histoscore ratio ≥1, or PIK3CA-wild-type status. CONCLUSIONS Our findings do not indicate clinical utility for venetoclax plus fulvestrant in endocrine therapy-resistant, CDK4/6 inhibitor-refractory metastatic breast tumors, but suggest possible increased dependence on BCLXL in this setting.
Collapse
Affiliation(s)
- Geoffrey J. Lindeman
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Cancer Biology and Stem Cells Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Tharu M. Fernando
- Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Rebecca Bowen
- Medical Oncology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - Katarzyna J. Jerzak
- Medical Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Xinni Song
- Medical Oncology, The Ottawa Hospital Cancer Centre, Ottawa, Canada
| | - Thomas Decker
- Hematology and Oncology, Onkologie Ravensburg, Ravensburg, Germany
| | - Frances Boyle
- Patricia Ritchie Centre for Cancer Care and Research, Mater Hospital, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Steve McCune
- Medical Oncology, Wellstar Health System, Marietta, Georgia
| | - Anne Armstrong
- Medical Oncology, The Christie NHS Foundation Trust and the University of Manchester, Manchester, United Kingdom
| | | | | | - Ching-Wei Chang
- PHC and Early Development Oncology Biostatistics, Genentech, Inc., South San Francisco, California
| | - Rupal Desai
- Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Kushagra Gupta
- Biostatistics, IQVIA RDS (India) Private Ltd, Bangalore, India
| | - Timothy R. Wilson
- Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Aulde Flechais
- Global PD Senior Clinical Scientist-Oncology, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Aditya Bardia
- Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
58
|
Downey-Kopyscinski SL, Srinivasa S, Kisselev AF. A clinically relevant pulse treatment generates a bortezomib-resistant myeloma cell line that lacks proteasome mutations and is sensitive to Bcl-2 inhibitor venetoclax. Sci Rep 2022; 12:12788. [PMID: 35896610 PMCID: PMC9329464 DOI: 10.1038/s41598-022-17239-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
Proteasome inhibitors bortezomib and carfilzomib are the backbones of treatments of multiple myeloma, which remains incurable despite many recent advances. With many patients relapsing despite high initial response rates to proteasome inhibitor-containing regimens, it is critical to understand the process of acquired resistance. In vitro generated resistant cell lines are important tools in this process. The majority of previously developed bortezomib-resistant cell lines bear mutations in the proteasome PSMB5 sites, the prime target of bortezomib and carfilzomib, which are rarely observed in patients. Here we present a novel bortezomib-resistant derivative of the KMS-12-BM multiple myeloma cell line, KMS-12-BM-BPR. Unlike previously published bortezomib-resistant cell lines, it was created using clinically relevant twice-weekly pulse treatments with bortezomib instead of continuous incubation. It does not contain mutations in the PSMB5 site and retains its sensitivity to carfilzomib. Reduced load on proteasome due to decreased protein synthesis appears to be the main cause of resistance. In addition, KMS-12-BM-BPR cells are more sensitive to Bcl-2 inhibitor venetoclax. Overall, this study demonstrates the feasibility of creating a proteasome inhibitor resistant myeloma cell lines by using clinically relevant pulse treatments and provides a novel model of acquired resistance.
Collapse
Affiliation(s)
- Sondra L Downey-Kopyscinski
- Department of Molecular and Systems Biology, and Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- SLDK-Rancho Biosciences, San Diego, CA, USA
| | - Sriraja Srinivasa
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, PRB, 720 S. Donahue Dr., Auburn, AL, 36849, USA
| | - Alexei F Kisselev
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, PRB, 720 S. Donahue Dr., Auburn, AL, 36849, USA.
| |
Collapse
|
59
|
Snow A, Zeidner JF. The development of pevonedistat in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML): hope or hype? Ther Adv Hematol 2022; 13:20406207221112899. [PMID: 35898435 PMCID: PMC9310330 DOI: 10.1177/20406207221112899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a clonal hematopoietic stem cell disorder clinically defined by cytopenias, bone marrow failure, and an increased risk of progressing to acute myeloid leukemia (AML). Traditionally, first-line treatment for patients with higher-risk MDS has been hypomethylating agents (HMAs). However, these agents have modest clinical activity as single agents. A one-size-fits-all treatment paradigm is insufficient for such a heterogeneous disease in the modern era of precision medicine. Several new agents have been developed for MDS with the hopes of improving clinical outcomes and survival. Pevonedistat is a first-in-class, novel inhibitor of neuronal precursor cell-expressed developmentally down-regulated protein-8 (NEDD8) activating enzyme (NAE) blocking the neddylation pathway leading to downstream effects on the ubiquitin-proteosome pathway. Pevonedistat ultimately leads to apoptosis and inhibition of the cell cycle in cancer cells. Studies have demonstrated the safety profile of pevonedistat, leading to the development of multiple trials investigating combination strategies with pevonedistat in MDS and AML. In this review, we summarize the preclinical and clinical rationale for pevonedistat in MDS and AML, review the clinical data of this agent alone and in combination with HMAs to date, and highlight potential future directions for this agent in myeloid malignancies.
Collapse
Affiliation(s)
- Anson Snow
- Lineberger Comprehensive Cancer Center,
University of North Carolina School of Medicine
- Division of Hematology, Department of Medicine,
University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Joshua F. Zeidner
- Lineberger Comprehensive Cancer Center,
University of North Carolina School of Medicine
- Division of Hematology, Department of Medicine,
University of North Carolina School of Medicine, 170 Manning Drive, POB, 3rd
Floor, CB #7305, Chapel Hill, NC 27599, USA
| |
Collapse
|
60
|
Updates in the Use of BCL-2-Family Small Molecule Inhibitors for the Treatment of Relapsed/Refractory Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14143330. [PMID: 35884390 PMCID: PMC9317574 DOI: 10.3390/cancers14143330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Despite considerable advances in the treatment of multiple myeloma over the past decade, progression of disease is inevitable, and patients ultimately succumb to relapsed and refractory disease. Efficacious therapeutic regimens that target the key biological pathways that are essential for malignant plasma cell survival are necessary in the efforts to improve patient survival outcomes. The Bcl-2 family of proteins comprise oncogenes that promote myeloma cell survival by conferring resistance to apoptosis. These proteins are frequently upregulated in myeloma cells, thus making them attractive therapeutic targets. Several small molecule inhibitors of Bcl-2-family proteins are currently in clinical development for the treatment of relapsed/refractory multiple myeloma. Venetoclax, a Bcl-2-specific inhibitor, has generated the most clinical data and has shown promising results in patients with multiple myeloma harboring the t (11;14) translocation. Venetoclax has shown efficacy when combined with anti-CD38 monoclonal antibodies, immunomodulatory drugs, and proteasome inhibitors. Several other Bcl-2 inhibitors are in clinical development, as are inhibitors of Mcl-1, a Bcl-2-family oncoprotein that is perhaps more critical for myeloma cell survival than Bcl-2. This review will summarize the latest clinical data regarding the clinical development of Bcl-2-family protein inhibitors in the treatment of relapsed/refractory multiple myeloma.
Collapse
|
61
|
Cao L, Chen Q, Gu H, Li Y, Cao W, Liu Y, Qu J, Hou Y, Chen J, Zhang E, He J, Cai Z. Chidamide and venetoclax synergistically exert cytotoxicity on multiple myeloma by upregulating BIM expression. Clin Epigenetics 2022; 14:84. [PMID: 35799216 PMCID: PMC9264603 DOI: 10.1186/s13148-022-01306-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background Multiple myeloma (MM) is the second most common hematologic malignancy with almost all patients eventually having relapse or refractory MM (RRMM), thus novel drugs or combination therapies are needed for improved prognosis. Chidamide and venetoclax, which target histone deacetylase and BCL2, respectively, are two promising agents for the treatment of RRMM. Results Herein, we found that chidamide and venetoclax synergistically exert an anti-myeloma effect in vitro in human myeloma cell lines (HMCLs) with a combination index (CI) < 1. Moreover, the synergistic anti-myeloma effect of these two drugs was demonstrated in primary MM cells and MM xenograft mice. Mechanistically, co-exposure to chidamide and venetoclax led to cell cycle arrest at G0/G1 and a sharp increase in DNA double-strand breaks. In addition, the combination of chidamide and venetoclax resulted in BCL-XL downregulation and BIM upregulation, and the latter protein was proved to play a critical role in sensitizing HMCLs to co-treatment. Conclusion In conclusion, these results proved the high therapeutic potential of venetoclax and chidamide combination in curing MM, representing a potent and alternative salvage therapy for the treatment of RRMM. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01306-7.
Collapse
Affiliation(s)
- Liqin Cao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Qingxiao Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Huiyao Gu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Yi Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Wen Cao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Yang Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Jianwei Qu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Yifan Hou
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Jing Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
| |
Collapse
|
62
|
Solimando AG, Da Vià MC, Bolli N, Steinbrunn T. The Route of the Malignant Plasma Cell in Its Survival Niche: Exploring “Multiple Myelomas”. Cancers (Basel) 2022; 14:cancers14133271. [PMID: 35805041 PMCID: PMC9265748 DOI: 10.3390/cancers14133271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Growing evidence points to multiple myeloma (MM) and its stromal microenvironment using several mechanisms to subvert effective immune and anti-tumor responses. Recent advances have uncovered the tumor-stromal cell influence in regulating the immune-microenvironment and have envisioned targeting these suppressive pathways to improve therapeutic outcomes. Nevertheless, some subgroups of patients include those with particularly unfavorable prognoses. Biological stratification can be used to categorize patient-, disease- or therapy-related factors, or alternatively, these biological determinants can be included in a dynamic model that customizes a given treatment to a specific patient. Genetic heterogeneity and current knowledge enforce a systematic and comprehensive bench-to-bedside approach. Given the increasing role of cancer stem cells (CSCs) in better characterizing the pathogenesis of solid and hematological malignancies, disease relapse, and drug resistance, identifying and describing CSCs is of paramount importance in the management of MM. Even though the function of CSCs is well-known in other cancer types, their role in MM remains elusive. With this review, we aim to provide an update on MM homing and resilience in the bone marrow micro milieu. These data are particularly interesting for clinicians facing unmet medical needs while designing novel treatment approaches for MM.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy
- Department of Medicine II, University Hospital of Würzburg, 97080 Würzburg, Germany
- Correspondence: (A.G.S.); (T.S.); Tel.: +39-3395626475 (A.G.S.)
| | - Matteo Claudio Da Vià
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.C.D.V.); (N.B.)
| | - Niccolò Bolli
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.C.D.V.); (N.B.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Torsten Steinbrunn
- Department of Medicine II, University Hospital of Würzburg, 97080 Würzburg, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Correspondence: (A.G.S.); (T.S.); Tel.: +39-3395626475 (A.G.S.)
| |
Collapse
|
63
|
Chiou JT, Lee YC, Wang LJ, Chang LS. BCL2 inhibitor ABT-199 and BCL2L1 inhibitor WEHI-539 coordinately promote NOXA-mediated degradation of MCL1 in human leukemia cells. Chem Biol Interact 2022; 361:109978. [PMID: 35561756 DOI: 10.1016/j.cbi.2022.109978] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/05/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023]
Abstract
Human leukemia U937 cells that were continuously treated with hydroquinone (HQ) were transformed into U937/HQ cells with increased MCL1 and BCL2L1 expression. Compared with their parental cells, U937/HQ cells were less sensitive to ABT-263 (BCL2/BCL2L1 inhibitor)/ABT-199 (BCL2 inhibitor) cytotoxicity. The combination of WEHI-539 (BCL2L1 inhibitor) with either ABT-199 or ABT-263 showed synergistic cytotoxicity to U937 and U937/HQ cells. Therefore, we further investigated the cytotoxic mechanism induced by the combination of WEHI-539 and ABT-199. The combined treatment of WEHI-539 and ABT-199 induced NOX4/ROS/p38 MAPK axis-mediated autophagy, which in turn accelerated β-TrCP mRNA turnover. Downregulation of β-TrCP increased Sp1 expression, thereby promoting Sp1-mediated NOXA transcription, which in turn induced NOXA-dependent MCL1 degradation. Enforced expression of MCL1 alleviated the cytotoxicity of WEHI-539 plus ABT-199 to induce the loss of mitochondrial membrane potential and cell viability. WEHI-539 alone induced Sp1/NOXA axis-mediated MCL1 downregulation, while ABT-199 significantly decreased the dose of WEHI-539 by approximately 350- and 50-fold to induce MCL1 suppression in parental and HQ-selected cells, respectively. Furthermore, WEHI-539 sensitized ABT-199-resistant U937 cells to ABT-199 cytotoxicity by inducing NOXA-mediated degradation of MCL1. Collectively, the data in this study indicate that ABT-199 and WEHI-539 cooperatively induce NOXA-dependent MCL1 degradation, and the inhibition of MCL1 mainly explains their combined cytotoxicity in parental, HQ-selected, and ABT-199-resistant U937 cells.
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
64
|
Chen CC, Zhuang ZJ, Wu CW, Tan YL, Huang CH, Hsu CY, Tsai EM, Hsieh TH. Venetoclax Decreases the Expression of the Spike Protein through Amino Acids Q493 and S494 in SARS-CoV-2. Cells 2022; 11:cells11121924. [PMID: 35741053 PMCID: PMC9221610 DOI: 10.3390/cells11121924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
The new coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2) has been reported and spread globally. There is an urgent need to take urgent measures to treat and prevent further infection of this virus. Here, we use virtual drug screening to establish pharmacophore groups and analyze the ACE2 binding site of the spike protein with the ZINC drug database and DrugBank database by molecular docking and molecular dynamics simulations. Screening results showed that Venetoclax, a treatment drug for chronic lymphocytic leukemia, has a potential ability to bind to the spike protein of SARS-CoV-2. In addition, our in vitro study found that Venetoclax degraded the expression of the spike protein of SARS-CoV-2 through amino acids Q493 and S494 and blocked the interaction with the ACE2 receptor. Our results suggest that Venetoclax is a candidate for clinical prevention and treatment and deserves further research.
Collapse
Affiliation(s)
- Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (C.-C.C.); (Z.-J.Z.); (Y.-L.T.)
- Rapid Screening Research Center for Toxicology and Biomedicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Zhi-Jie Zhuang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (C.-C.C.); (Z.-J.Z.); (Y.-L.T.)
| | - Chia-Wei Wu
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (C.-W.W.); (C.-H.H.)
| | - Yi-Ling Tan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (C.-C.C.); (Z.-J.Z.); (Y.-L.T.)
| | - Chen-Hsiu Huang
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (C.-W.W.); (C.-H.H.)
| | - Chia-Yi Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-Y.H.); (E.-M.T.)
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-Y.H.); (E.-M.T.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Tsung-Hua Hsieh
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (C.-W.W.); (C.-H.H.)
- Correspondence: ; Tel.: +886-7615-1100 (ext. 5072)
| |
Collapse
|
65
|
Lew TE, Seymour JF. Clinical experiences with venetoclax and other pro-apoptotic agents in lymphoid malignancies: lessons from monotherapy and chemotherapy combination. J Hematol Oncol 2022; 15:75. [PMID: 35659041 PMCID: PMC9164485 DOI: 10.1186/s13045-022-01295-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
BH3-mimetics are a novel drug class of small molecule inhibitors of BCL2 family proteins which restore apoptosis in malignant cells. The only currently approved BH3-mimetic, the selective BCL2 inhibitor venetoclax, is highly efficacious in chronic lymphocytic leukemia and has rapidly advanced to an approved standard of care in frontline and relapsed disease in combination with anti-CD20 monoclonal antibodies. In this context, tumour lysis syndrome and myelosuppression are the most commonly encountered toxicities and are readily manageable with established protocols. Venetoclax is active in other lymphoid malignancies including several B cell non-Hodgkin lymphomas, acute lymphoblastic leukemia and multiple myeloma, with the highest intrinsic sensitivity observed in mantle cell lymphoma and Waldenstrom macroglobulinemia. Venetoclax combination with standard regimens in follicular lymphoma, multiple myeloma and aggressive B cell neoplasms has shown some promise, but further studies are required to optimize dose and scheduling to mitigate increased myelosuppression and infection risk, and to find validated biomarkers of venetoclax sensitivity. Future research will focus on overcoming venetoclax resistance, targeting other BCL2 family members and the rational design of synergistic combinations.
Collapse
Affiliation(s)
- Thomas E Lew
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - John F Seymour
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia. .,Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
66
|
Xu Y, Ye H. Progress in understanding the mechanisms of resistance to BCL-2 inhibitors. Exp Hematol Oncol 2022; 11:31. [PMID: 35598030 PMCID: PMC9124382 DOI: 10.1186/s40164-022-00283-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/28/2022] [Indexed: 12/18/2022] Open
Abstract
Venetoclax is a new type of BH3 mimetic compound that can target the binding site in the BCL-2 protein and induce apoptosis in cancer cells by stimulating the mitochondrial apoptotic pathway. Venetoclax is especially used to treat haematological malignancies. However, with the recent expansion in the applications of venetoclax, some cases of venetoclax resistance have appeared, posing a major problem in clinical treatment. In this article, we explored several common mechanisms of venetoclax resistance. Increased expression of the antiapoptotic proteins MCL-1 and BCL-XL plays a key role in conferring cellular resistance to venetoclax. These proteins can bind to the released BIM in the context of venetoclax binding to BCL-2 and thus continue to inhibit mitochondrial apoptosis. Structural mutations in BCL-2 family proteins caused by genetic instability lead to decreased affinity for venetoclax and inhibit the intrinsic apoptosis pathway. Mutation or deletion of the BAX gene renders the BAX protein unable to anchor to the outer mitochondrial membrane to form pores. In addition to changes in BCL-2 family genes, mutations in other oncogenes can also confer resistance to apoptosis induced by venetoclax. TP53 mutations and the expansion of FLT3-ITD promote the expression of antiapoptotic proteins MCL-1 and BCL-XL through multiple signalling pathways, and interfere with venetoclax-mediated apoptosis processes depending on their affinity for BH3-only proteins. Finally, the level of mitochondrial oxidative phosphorylation in venetoclax-resistant leukaemia stem cells is highly abnormal. Not only the metabolic pathways but also the levels of important metabolic components are changed, and all of these alterations antagonize the venetoclax-mediated inhibition of energy metabolism and promote the survival and proliferation of leukaemia stem cells. In addition, venetoclax can change mitochondrial morphology independent of the BCL-2 protein family, leading to mitochondrial dysfunction. However, mitochondria resistant to venetoclax antagonize this effect, forming tighter mitochondrial cristae, which provide more energy for cell survival.
Collapse
Affiliation(s)
- Yilan Xu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University-Zhejiang, Wenzhou, China
| | - Haige Ye
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University-Zhejiang, Wenzhou, China.
| |
Collapse
|
67
|
Liang M, Ji C, Zhang L, Wang X, Hu C, Zhang J, Zhu Y, Mo JQ, Guan MX. Leber's hereditary optic neuropathy (LHON)-associated ND6 14 484 T > C mutation caused pleiotropic effects on the complex I, RNA homeostasis, apoptosis and mitophagy. Hum Mol Genet 2022; 31:3299-3312. [PMID: 35567411 DOI: 10.1093/hmg/ddac109] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/12/2022] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternally inherited eye disease due to mitochondrial DNA (mtDNA) mutations. LHON-linked ND6 14 484 T > C (p.M64V) mutation affected structural components of complex I but its pathophysiology is poorly understood. The structural analysis of complex I revealed that the M64 forms a nonpolar interaction Y59 in the ND6, Y59 in the ND6 interacts with E34 of ND4L, and L60 of ND6 interacts with the Y114 of ND1. These suggested that the m.14484 T > C mutation may perturb the structure and function of complex I. Mutant cybrids constructed by transferring mitochondria from lymphoblastoid cell lines of one Chinese LHON family into mtDNA-less (ρo) cells revealed decreases in the levels of ND6, ND1 and ND4L. The m.14484 T > C mutation may affect mitochondrial mRNA homeostasis, supported by reduced levels of SLIRP and SUPV3L1 involved in mRNA degradation and increasing expression of ND6, ND1 and ND4L genes. These alterations yielded decreased activity of complex I, respiratory deficiency, diminished mitochondrial ATP production and reduced membrane potential, and increased production of reactive oxygen species in the mutant cybrids. Furthermore, the m.14484 T > C mutation promoted apoptosis, evidenced by elevating Annexin V-positive cells, release of cytochrome c into cytosol, levels in apoptotic proteins BAX, caspases 3, 7, 9 and decreasing levels in anti-apoptotic protein Bcl-xL in the mutant cybrids. Moreover, the cybrids bearing the m.14484 T > C mutation exhibited the reduced levels of autophagy protein LC3, increased levels of substrate P62 and impaired PINK1/Parkin-dependent mitophagy. Our findings highlighted the critical role of m.14484 T > C mutation in the pathogenesis of LHON.
Collapse
Affiliation(s)
- Min Liang
- Department of Medical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.,Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chun Ji
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang 310058, China
| | - Liyao Zhang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xuan Wang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Cuifang Hu
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Juanjuan Zhang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiwei Zhu
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California at San Diego School of Medicine, San Diego, California 92123, USA
| | - Min-Xin Guan
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
68
|
Mitochondrial Kv1.3 Channels as Target for Treatment of Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14081955. [PMID: 35454865 PMCID: PMC9032553 DOI: 10.3390/cancers14081955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Multiple myeloma is a non-curable disease and new therapeutic approaches are needed. PAPTP and PCARBTP, two novel mitochondria-specific inhibitors of the Kv1.3 ion channel, are effective in killing cultured myeloma cell lines and myeloma cells isolated from patient punctates, while healthy bone marrow cells are not affected. Cell death occurs through the classical mitochondrial apoptotic pathway, and further treatment with venetoclax, a BCL-2 inhibitor, has a clear synergistic effect. We identify Kv1.3 channels as a new therapeutic target for the treatment of multiple myeloma. Abstract Despite several new developments in the treatment of multiple myeloma, all available therapies are only palliative without curative potential and all patients ultimately relapse. Thus, novel therapeutic options are urgently required to prolong survival of or to even cure myeloma. Here, we show that multiple myeloma cells express the potassium channel Kv1.3 in their mitochondria. The mitochondrial Kv1.3 inhibitors PAPTP and PCARBTP are efficient against two tested human multiple myeloma cell lines (L-363 and RPMI-8226) and against ex vivo cultured, patient-derived myeloma cells, while healthy bone marrow cells are spared from toxicity. Cell death after treatment with PAPTP and PCARBTP occurs via the mitochondrial apoptotic pathway. In addition, we identify up-regulation of the multidrug resistance pump MDR-1 as the main potential resistance mechanism. Combination with ABT-199 (venetoclax), an inhibitor of Bcl2, has a synergistic effect, suggesting that mitochondrial Kv1.3 inhibitors could potentially be used as combination partner to venetoclax, even in the treatment of t(11;14) negative multiple myeloma, which represent the major part of cases and are rather resistant to venetoclax alone. We thus identify mitochondrial Kv1.3 channels as druggable targets against multiple myeloma.
Collapse
|
69
|
Cottini F, Rodriguez J, Hughes T, Sharma N, Guo L, Lozanski G, Liu B, Cocucci E, Yang Y, Benson D. Redefining CD56 as a biomarker and therapeutic target in Multiple Myeloma. Mol Cancer Res 2022; 20:1083-1095. [PMID: 35380709 DOI: 10.1158/1541-7786.mcr-21-0828] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/11/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022]
Abstract
Multiple myeloma (MM) cells aberrantly express surface antigens compared to normal plasma cells. Among others, CD56 is present at variable levels in approximately 70% of MM patients; however very little is known about CD56 role in MM. We demonstrated that MM patients with more than 10 percent of CD56-expressing clonal MM cells have inferior clinical outcomes. By gain-of and loss-of function models, we revealed that CD56 promotes MM cell growth, survival, and adhesion to stromal cells. These protumoral effects are induced by the activation of the RSK2/CREB1 signaling pathway, with increased mRNA and protein levels of the anti-apoptotic genes BCL2 and MCL1. Consequently, the genomic and pharmacological inhibition of RSK2 or CREB1 specifically induced MM cell death in CD56-expressing MM cells. Finally, we observed that CD56 signaling decreases CRBN expression, reducing responses to lenalidomide. RSK2 or CREB1 inhibition increased CRBN levels and were synergic with lenalidomide in inducing cell death, especially in CD56-expressing MM cells. In conclusion, our findings demonstrate that CD56 promotes MM cell growth, and pave the way to novel therapies based on targeting CD56, along with the use of CD56 as a predictive biomarker for MM therapies. Implications: Multiple myeloma (MM) is an incurable, genetically heterogeneous disease, without available tailored therapeutic approaches. CD56 signaling promotes MM growth and adhesion, by activating CREB1 target genes, MCL1 and BCL2. Inhibition of CREB1 alone or in combination with lenalidomide is an unexplored synthetic lethal approach in CD56-expressing MM patients.
Collapse
Affiliation(s)
- Francesca Cottini
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Jose Rodriguez
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Tiffany Hughes
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Nidhi Sharma
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Ling Guo
- Department of Pathology, OhioHealth, Columbus, Ohio
| | - Gerard Lozanski
- Department of Pathology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Emanuele Cocucci
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- The Ohio State University, College of Pharmacy, Columbus, Ohio
| | - Yiping Yang
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Don Benson
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
70
|
Moutabian H, Majdaeen M, Ghahramani-Asl R, Yadollahi M, Gharepapagh E, Ataei G, Falahatpour Z, Bagheri H, Farhood B. A systematic review of the therapeutic effects of resveratrol in combination with 5-fluorouracil during colorectal cancer treatment: with a special focus on the oxidant, apoptotic, and anti-inflammatory activities. Cancer Cell Int 2022; 22:142. [PMID: 35366874 PMCID: PMC8976963 DOI: 10.1186/s12935-022-02561-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/27/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE 5-fluorouracil (5-FU), an effective chemotherapy drug, is commonly applied for colorectal cancer treatment. Nevertheless, its toxicity to normal tissues and the development of tumor resistance are the main obstacles to successful cancer chemotherapy and hence, its clinical application is limited. The use of resveratrol can increase 5-FU-induced cytotoxicity and mitigate the unwanted adverse effects. This study aimed to review the potential therapeutic effects of resveratrol in combination with 5-FU against colorectal cancer. METHODS According to the PRISMA guideline, a comprehensive systematic search was carried out for the identification of relevant literature in four electronic databases of PubMed, Web of Science, Embase, and Scopus up to May 2021 using a pre-defined set of keywords in their titles and abstracts. We screened 282 studies in accordance with our inclusion and exclusion criteria. Thirteen articles were finally included in this systematic review. RESULTS The in vitro findings showed that proliferation inhibition of colorectal cancer cells in the groups treated by 5-FU was remarkably higher than the untreated groups and the co-administration of resveratrol remarkably increased cytotoxicity induced by 5-FU. The in vivo results demonstrated a decrease in tumor growth of mice treated by 5-FU than the untreated group and a dramatic decrease was observed following combined treatment of resveratrol and 5-FU. It was also found that 5-FU alone and combined with resveratrol could regulate the cell cycle profile of colorectal cancer cells. Moreover, this chemotherapeutic agent induced the biochemical and histopathological changes in the cancerous cells/tissues and these alterations were synergized by resveratrol co-administration (for most of the cases), except for the inflammatory mediators. CONCLUSION The results obtained from this systematic review demonstrated that co-administration of resveratrol could sensitize the colorectal cancer cells to 5-FU treatment via various mechanisms, including regulation of cell cycle distribution, oxidant, apoptosis, anti-inflammatory effects.
Collapse
Affiliation(s)
- Hossein Moutabian
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
| | - Mehrsa Majdaeen
- Department of Radiotherapy and Oncology, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Ruhollah Ghahramani-Asl
- Department of Medical Physics and Radiological Sciences, Faculty of Paramedicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Masoumeh Yadollahi
- Department of Allied Medical Sciences, Semnan University of Medical Sciences, Semnan, Iran
| | - Esmaeil Gharepapagh
- Medical Radiation Sciences Research Team, Tabriz University of Medical Science, Tabriz, Iran
| | - Gholamreza Ataei
- Department of Radiology Technology, Faculty of Paramedical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Falahatpour
- Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran.
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Bagher Farhood
- Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran.
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
71
|
Ferrarini I, Rigo A, Visco C. The mitochondrial anti-apoptotic dependencies of hematologic malignancies: from disease biology to advances in precision medicine. Haematologica 2022; 107:790-802. [PMID: 35045693 PMCID: PMC8968907 DOI: 10.3324/haematol.2021.280201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are critical organelles in the regulation of intrinsic apoptosis. As a general feature of blood cancers, different antiapoptotic members of the BCL-2 protein family localize at the outer mitochondrial membrane to sequester variable amounts of proapoptotic activators, and hence protect cancer cells from death induction. However, the impact of distinct anti-apoptotic members on apoptosis prevention, a concept termed anti-apoptotic dependence, differs remarkably across disease entities. Over the last two decades, several genetic and functional methodologies have been established to uncover the anti-apoptotic dependencies of the majority of blood cancers, inspiring the development of a new class of small molecules called BH3 mimetics. In this review, we highlight the rationale of targeting mitochondrial apoptosis in hematology, and provide a comprehensive map of the anti-apoptotic dependencies that are currently guiding novel therapeutic strategies. Cell-extrinsic and -intrinsic mechanisms conferring resistance to BH3 mimetics are also examined, with insights on potential strategies to overcome them. Finally, we discuss how the field of mitochondrial apoptosis might be complemented with other dimensions of precision medicine for more successful treatment of 'highly complex' hematologic malignancies.
Collapse
Affiliation(s)
- Isacco Ferrarini
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy.
| | - Antonella Rigo
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Carlo Visco
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy.
| |
Collapse
|
72
|
Madhavan K, Balakrishnan I, Lakshmanachetty S, Pierce A, Sanford B, Fosmire S, Elajaili HB, Walker F, Wang D, Nozik ES, Mitra SS, Dahl NA, Vibhakar R, Venkataraman S. Venetoclax cooperates with ionizing radiation to attenuate Diffuse Midline Glioma tumor growth. Clin Cancer Res 2022; 28:2409-2424. [PMID: 35344040 DOI: 10.1158/1078-0432.ccr-21-4002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/10/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Tumor relapse after radiation therapy (RT) is a major hurdle in treating pediatric H3K27M-mutant diffuse midline gliomas (DMGs). RT-induced stress increases association of BCL2 family of proteins with BH3 pro-apoptotic activators preventing apoptosis. We hypothesized that inhibition of RT-induced BCL2 with a clinically relevant inhibitor, venetoclax, will block BCL2 activity leading to increased apoptosis. BCL2 has never been implicated in DMG as a RT-induced resistant mechanism. EXPERIMENTAL DESIGN We performed an integrated genomic analysis to determine genes responsible for radioresistance and a targeted drug screen to identify drugs that synergize with radiation in DMG. Effect of venetoclax on radiation-na�ve and 6Gy radiation on cells was evaluated by studying cell death, changes in BCL2 phosphorylation, reactive oxygen species (ROS), and apoptosis, as well as BCL2 association with BH3 apoptosis initiators. The efficacy of combining venetoclax with radiation was evaluated in vivo using orthotopic xenograft models. RESULTS BCL2 was identified as a key regulator of tumor growth after radiation in DMGs. Radiation sensitizes DMGs to venetoclax treatment independent of p53 status. Venetoclax as a monotherapy was not cytotoxic to DMG cells. Post-radiation venetoclax treatment significantly increased cell death, reduced BCL2-BIM association and augmented mitochondrial ROS leading to increased apoptosis. Combining venetoclax with RT significantly enhanced the survival of mice with DMG tumors. CONCLUSIONS This study shows that venetoclax impedes the anti-apoptotic function of radiation-induced BCL2 in DMG leading to increased apoptosis. Results from these pre-clinical studies demonstrate the potential use of the BCL2 inhibitor, venetoclax, combined with RT for pediatric DMG.
Collapse
Affiliation(s)
- Krishna Madhavan
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | | | - Angela Pierce
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Bridget Sanford
- University of Colorado Anschutz Medical Campus, United States
| | - Susan Fosmire
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Hanan B Elajaili
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Faye Walker
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Dong Wang
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Eva S Nozik
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Siddhartha S Mitra
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Nathan A Dahl
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | | |
Collapse
|
73
|
In Vitro and In Vivo Cardioprotective Effects of Curcumin against Doxorubicin-Induced Cardiotoxicity: A Systematic Review. JOURNAL OF ONCOLOGY 2022; 2022:7277562. [PMID: 35237323 PMCID: PMC8885194 DOI: 10.1155/2022/7277562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022]
Abstract
Objective This study aimed to review the potential chemoprotective effects of curcumin against the doxorubicin-induced cardiotoxicity. Methods According to the PRISMA guideline, a comprehensive systematic search was performed in different electronic databases (Web of Science, PubMed, and Scopus) up to July 2021. One hundred and sixty-four studies were screened in accordance with a predefined set of inclusion and exclusion criteria. Eighteen eligible articles were finally included in the current systematic review. Results According to the in vitro and in vivo findings, it was found that doxorubicin administration leads to decreased cell survival, increased mortality, decreased bodyweight, heart weight, and heart to the bodyweight ratio compared to the control groups. However, curcumin cotreatment demonstrated an opposite pattern in comparison with the doxorubicin-treated groups alone. Other findings showed that doxorubicin significantly induces biochemical changes in the cardiac cells/tissue. Furthermore, the histological changes on the cardiac tissue were observed following doxorubicin treatment. Nevertheless, for most of the cases, these biochemical and histological changes mediated by doxorubicin were reversed near to control groups following curcumin coadministration. Conclusion It can be mentioned that coadministration of curcumin alleviates the doxorubicin-induced cardiotoxicity. Curcumin exerts these cardioprotective effects through different mechanisms of antioxidant, antiapoptosis, and anti-inflammatory. Since the finding presented in this systematic review are based on in vitro and in vivo studies, suggesting the use of curcumin in cancer patients as a cardioprotector agent against cardiotoxicity mediated by doxorubicin requires further clinical studies.
Collapse
|
74
|
Roles and Regulation of BCL-xL in Hematological Malignancies. Int J Mol Sci 2022; 23:ijms23042193. [PMID: 35216310 PMCID: PMC8876520 DOI: 10.3390/ijms23042193] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
Members of the Bcl-2 family are proteins that play an essential role in the regulation of apoptosis, a crucial process in development and normal physiology in multicellular organisms. The essential mechanism of this family of proteins is given by the role of pro-survival proteins, which inhibit apoptosis by their direct binding with their counterpart, the effector proteins of apoptosis. This family of proteins was named after the typical member Bcl-2, which was named for its discovery and abnormal expression in B-cell lymphomas. Subsequently, the structure of one of its members BCL-xL was described, which allowed one to understand much of the molecular mechanism of this family. Due to its role of BCL-xL in the regulation of cell survival and proliferation, it has been of great interest in its study. Due to this, it is important to research its role regarding the development and progression of human malignancies, especially in hematologic malignancies. Due to its variation in expression in cancer, it has been suggested that BCL-xL can or cannot play a role in cancer depending on the cellular or tissue context. This review discusses recent advances in its transcriptional regulation of BCL-xL, as well as the advances regarding the activities of BCL-xL in hematological malignancies, its possible role as a biomarker, and its possible clinical relevance in these malignancies.
Collapse
|
75
|
Bi JY, Wen L, Duan WB, Liu Y, Wang SS, Huang XJ, Lu J. [Efficacy and safety analysis of BCL-2 inhibitor in relapsed/refractory multiple myeloma with t (11;14) in a single center]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:146-149. [PMID: 35381676 PMCID: PMC8980639 DOI: 10.3760/cma.j.issn.0253-2727.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 11/24/2022]
Affiliation(s)
- J Y Bi
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - L Wen
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - W B Duan
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - Y Liu
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - S S Wang
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - X J Huang
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - J Lu
- Department of Hematology, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| |
Collapse
|
76
|
Pan D, Richter J. Where We Stand With Precision Therapeutics in Myeloma: Prosperity, Promises, and Pipedreams. Front Oncol 2022; 11:819127. [PMID: 35127532 PMCID: PMC8811139 DOI: 10.3389/fonc.2021.819127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma remains an incurable disease despite numerous novel agents being approved in the last decade. Furthermore, disease behavior and susceptibility to current treatments often vary drastically from patient to patient. To date there are no approved therapies in myeloma that are targeted to specific patient populations based on genomic or immunologic findings. Precision medicine, using biomarkers descriptive of a specific tumor's biology and predictive of response to appropriate agents, may continue to push the field forward by expanding our treatment arsenal while refining our ability to expose patients to only those treatments likely to be efficacious. Extensive research efforts have been carried out in this endeavor including the use of agents targeting Bcl2 and the RAS/MAPK and PI3K/AKT/mTOR pathways. Thus far, clinical trials have yielded occasional successes intermixed with disappointments, reflecting significant hurdles which still remain including the complex crosstalk between oncogenic pathways and the nonlinear genetic development of myeloma, prone to cultivating sub-clones with distinctive mutations. In this review, we explore the landscape of precision therapeutics in multiple myeloma and underscore the degree to which research efforts have produced tangible clinical results.
Collapse
Affiliation(s)
- Darren Pan
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | |
Collapse
|
77
|
Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer 2022; 22:45-64. [PMID: 34663943 DOI: 10.1038/s41568-021-00407-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Apoptosis is a form of programmed cell death that is regulated by the balance between prosurvival and proapoptotic BCL-2 protein family members. Evasion of apoptosis is a hallmark of cancer that arises when this balance is tipped in favour of survival. One form of anticancer therapeutic, termed 'BH3-mimetic drugs', has been developed to directly activate the apoptosis machinery in malignant cells. These drugs bind to and inhibit specific prosurvival BCL-2 family proteins, thereby mimicking their interaction with the BH3 domains of proapoptotic BCL-2 family proteins. The BCL-2-specific inhibitor venetoclax is approved by the US Food and Drug Administration and many regulatory authorities worldwide for the treatment of chronic lymphocytic leukaemia and acute myeloid leukaemia. BH3-mimetic drugs targeting other BCL-2 prosurvival proteins have been tested in preclinical models of cancer, and drugs targeting MCL-1 or BCL-XL have advanced into phase I clinical trials for certain cancers. As with all therapeutics, efficacy and tolerability need to be carefully balanced to achieve a therapeutic window whereby there is significant anticancer activity with an acceptable safety profile. In this Review, we outline the current state of BH3-mimetic drugs targeting various prosurvival BCL-2 family proteins and discuss emerging data regarding primary and acquired resistance to these agents and approaches that may overcome this. We highlight issues that need to be addressed to further advance the clinical application of BH3-mimetic drugs, both alone and in combination with additional anticancer agents (for example, standard chemotherapeutic drugs or inhibitors of oncogenic kinases), for improved responses in patients with cancer.
Collapse
Affiliation(s)
- Sarah T Diepstraten
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Mary Ann Anderson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
78
|
Computational design of an apoptogenic protein that binds BCL-xL and MCL-1 simultaneously and potently. Comput Struct Biotechnol J 2022; 20:3019-3029. [PMID: 35782728 PMCID: PMC9218148 DOI: 10.1016/j.csbj.2022.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
One of the hallmarks of cancer cells is their ability to evade apoptosis, which confers survival advantages and resistance to anti-cancer drugs. Cancers often exhibit overexpression of anti-apoptotic BCL-2 proteins, the loss of which triggers apoptosis. In particular, the inhibition of both BCL-xL and MCL-1, but neither one individually, synergistically enhances apoptotic cell death. Here, we report computational design to produce a protein that inhibits both BCL-xL and MCL-1 simultaneously. To a reported artificial three-helix bundle whose second helix was designed to bind MCL-1, we added a fourth helix and designed it to bind BCL-xL. After structural validation of the design and further structure-based sequence design, we produced a dual-binding protein that interacts with both BCL-xL and MCL-1 with apparent dissociation constants of 820 pM and 196 pM, respectively. Expression of this dual binder in a subset of cancer cells induced apoptotic cell death at levels significantly higher than those induced by the pro-apoptotic BIM protein. With a genetic fusion of a mitochondria-targeting sequence or the BH3 sequence of BIM, the activity of the dual binder was enhanced even further. These data suggest that targeted delivery of this dual binder alone or as a part of a modular protein to cancers in the form of protein, mRNA, or DNA may be an effective way to induce cancer cell apoptosis.
Collapse
|
79
|
Westaby D, Jimenez-Vacas JM, Padilha A, Varkaris A, Balk SP, de Bono JS, Sharp A. Targeting the Intrinsic Apoptosis Pathway: A Window of Opportunity for Prostate Cancer. Cancers (Basel) 2021; 14:51. [PMID: 35008216 PMCID: PMC8750516 DOI: 10.3390/cancers14010051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Despite major improvements in the management of advanced prostate cancer over the last 20 years, the disease remains invariably fatal, and new effective therapies are required. The development of novel hormonal agents and taxane chemotherapy has improved outcomes, although primary and acquired resistance remains problematic. Inducing cancer cell death via apoptosis has long been an attractive goal in the treatment of cancer. Apoptosis, a form of regulated cell death, is a highly controlled process, split into two main pathways (intrinsic and extrinsic), and is stimulated by a multitude of factors, including cellular and genotoxic stress. Numerous therapeutic strategies targeting the intrinsic apoptosis pathway are in clinical development, and BH3 mimetics have shown promising efficacy for hematological malignancies. Utilizing these agents for solid malignancies has proved more challenging, though efforts are ongoing. Molecular characterization and the development of predictive biomarkers is likely to be critical for patient selection, by identifying tumors with a vulnerability in the intrinsic apoptosis pathway. This review provides an up-to-date overview of cell death and apoptosis, specifically focusing on the intrinsic pathway. It summarizes the latest approaches for targeting the intrinsic apoptosis pathway with BH3 mimetics and discusses how these strategies may be leveraged to treat prostate cancer.
Collapse
Affiliation(s)
- Daniel Westaby
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| | - Juan M. Jimenez-Vacas
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
| | - Ana Padilha
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
| | - Andreas Varkaris
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (A.V.); (S.P.B.)
| | - Steven P. Balk
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (A.V.); (S.P.B.)
| | - Johann S. de Bono
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| | - Adam Sharp
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| |
Collapse
|
80
|
Black H, Glavey S. Gene expression profiling as a prognostic tool in multiple myeloma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:1008-1018. [PMID: 35582380 PMCID: PMC8992436 DOI: 10.20517/cdr.2021.83] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/27/2021] [Indexed: 11/12/2022]
Abstract
Multiple myeloma (MM) is an aggressive plasma cell malignancy with high degrees of variability in outcome, some patients experience long remissions, whilst others survive less than two years from diagnosis. Therapy refractoriness and relapse remain challenges in MM management, and there is a need for improved prognostication and targeted therapies to improve overall survival (OS). The past decade has seen a surge in gene expression profiling (GEP) studies which have elucidated the molecular landscape of MM and led to the identification of novel gene signatures that predict OS and outperform current clinical predictors. In this review, we discuss the limitations of current prognostic tools and the emerging role of GEP in diagnostics and in the development of personalised medicine approaches to combat drug resistance.
Collapse
Affiliation(s)
- Harmony Black
- Department of Haematology, Beaumont Hospital, Dublin D09 V2N0, Ireland
| | - Siobhan Glavey
- Department of Haematology, Beaumont Hospital, Dublin D09 V2N0, Ireland
- Department of Pathology, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| |
Collapse
|
81
|
Aksenova AY, Zhuk AS, Lada AG, Zotova IV, Stepchenkova EI, Kostroma II, Gritsaev SV, Pavlov YI. Genome Instability in Multiple Myeloma: Facts and Factors. Cancers (Basel) 2021; 13:5949. [PMID: 34885058 PMCID: PMC8656811 DOI: 10.3390/cancers13235949] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a malignant neoplasm of terminally differentiated immunoglobulin-producing B lymphocytes called plasma cells. MM is the second most common hematologic malignancy, and it poses a heavy economic and social burden because it remains incurable and confers a profound disability to patients. Despite current progress in MM treatment, the disease invariably recurs, even after the transplantation of autologous hematopoietic stem cells (ASCT). Biological processes leading to a pathological myeloma clone and the mechanisms of further evolution of the disease are far from complete understanding. Genetically, MM is a complex disease that demonstrates a high level of heterogeneity. Myeloma genomes carry numerous genetic changes, including structural genome variations and chromosomal gains and losses, and these changes occur in combinations with point mutations affecting various cellular pathways, including genome maintenance. MM genome instability in its extreme is manifested in mutation kataegis and complex genomic rearrangements: chromothripsis, templated insertions, and chromoplexy. Chemotherapeutic agents used to treat MM add another level of complexity because many of them exacerbate genome instability. Genome abnormalities are driver events and deciphering their mechanisms will help understand the causes of MM and play a pivotal role in developing new therapies.
Collapse
Affiliation(s)
- Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna S. Zhuk
- International Laboratory “Computer Technologies”, ITMO University, 197101 St. Petersburg, Russia;
| | - Artem G. Lada
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA;
| | - Irina V. Zotova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Ivan I. Kostroma
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Sergey V. Gritsaev
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
82
|
Bhalla S, Melnekoff DT, Aleman A, Leshchenko V, Restrepo P, Keats J, Onel K, Sawyer JR, Madduri D, Richter J, Richard S, Chari A, Cho HJ, Dudley JT, Jagannath S, Laganà A, Parekh S. Patient similarity network of newly diagnosed multiple myeloma identifies patient subgroups with distinct genetic features and clinical implications. SCIENCE ADVANCES 2021; 7:eabg9551. [PMID: 34788103 PMCID: PMC8598000 DOI: 10.1126/sciadv.abg9551] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/29/2021] [Indexed: 05/04/2023]
Abstract
The remarkable genetic heterogeneity of multiple myeloma poses a substantial challenge for proper prognostication and clinical management of patients. Here, we introduce MM-PSN, the first multiomics patient similarity network of myeloma. MM-PSN enabled accurate dissection of the genetic and molecular landscape of the disease and determined 12 distinct subgroups defined by five data types generated from genomic and transcriptomic profiling of 655 patients. MM-PSN identified patient subgroups not previously described defined by specific patterns of alterations, enriched for specific gene vulnerabilities, and associated with potential therapeutic options. Our analysis revealed that co-occurrence of t(4;14) and 1q gain identified patients at significantly higher risk of relapse and shorter survival as compared to t(4;14) as a single lesion. Furthermore, our results show that 1q gain is the most important single lesion conferring high risk of relapse and that it can improve on the current International Staging Systems (ISS and R-ISS).
Collapse
Affiliation(s)
- Sherry Bhalla
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David T. Melnekoff
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo Aleman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Violetta Leshchenko
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paula Restrepo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan Keats
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Kenan Onel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatric Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey R. Sawyer
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Deepu Madduri
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Richter
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shambavi Richard
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ajai Chari
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hearn Jay Cho
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Sundar Jagannath
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandro Laganà
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samir Parekh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
83
|
Bazarbachi AH, Avet-Loiseau H, Szalat R, Samur AA, Hunter Z, Shammas M, Corre J, Fulciniti M, Anderson KC, Parmigiani G, Treon SP, Mohty M, Munshi NC, Samur MK. IgM-MM is predominantly a pre-germinal center disorder and has a distinct genomic and transcriptomic signature from WM. Blood 2021; 138:1980-1985. [PMID: 34792571 PMCID: PMC8602933 DOI: 10.1182/blood.2021011452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
Immunoglobulin M (IgM) multiple myeloma (MM) is a rare disease subgroup. Its differentiation from other IgM-producing gammopathies such as Waldenström macroglobulinemia (WM) has not been well characterized but is essential for proper risk assessment and treatment. In this study, we investigated genomic and transcriptomic characteristics of IgM-MM samples using whole-genome and transcriptome sequencing to identify differentiating characteristics from non-IgM-MM and WM. Our results suggest that IgM-MM shares most of its defining structural variants and gene-expression profiling with MM, but has some key characteristics, including t(11;14) translocation, chromosome 6 and 13 deletion as well as distinct molecular and transcription-factor signatures. Furthermore, IgM-MM translocations were predominantly characterized by VHDHJH recombination-induced breakpoints, as opposed to the usual class-switching region breakpoints; coupled with its lack of class switching, these data favor a pre-germinal center origin. Finally, we found elevated expression of clinically relevant targets, including CD20 and Bruton tyrosine kinase, as well as high BCL2/BCL2L1 ratio in IgM-MM, providing potential for targeted therapeutics.
Collapse
Affiliation(s)
- Abdul Hamid Bazarbachi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, New York, NY
| | - Hervé Avet-Loiseau
- University Cancer Center of Toulouse, Institut National de la Santé, Toulouse, France
| | - Raphael Szalat
- Department of Hematology and Medical Oncology, Boston University Medical Center, Boston, MA
| | - Anil Aktas Samur
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Zachary Hunter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Masood Shammas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jill Corre
- University Cancer Center of Toulouse, Institut National de la Santé, Toulouse, France
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Giovanni Parmigiani
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Steven P Treon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mohamad Mohty
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, INSERM UMRs 938, Université Sorbonne, Paris, France; and
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Mehmet Kemal Samur
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
| |
Collapse
|
84
|
New Bioactive Fused Triazolothiadiazoles as Bcl-2-Targeted Anticancer Agents. Int J Mol Sci 2021; 22:ijms222212272. [PMID: 34830153 PMCID: PMC8621373 DOI: 10.3390/ijms222212272] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022] Open
Abstract
A series of 3-(6-substituted phenyl-[1,2,4]-triazolo[3,4-b]-[1,3,4]-thiadiazol-3-yl)-1H-indoles (5a–l) were designed, synthesized and evaluated for anti-apoptotic Bcl-2-inhibitory activity. Synthesis of the target compounds was readily accomplished through a reaction of acyl hydrazide (1) with carbon disulfide in the presence of alcoholic potassium hydroxide to afford the corresponding intermediate potassium thiocarbamate salt (2), which underwent cyclization reaction in the presence of excess hydrazine hydrate to the corresponding triazole thiol (3). Further cyclisation reaction with substituted benzoyl chloride derivatives in the presence of phosphorous oxychloride afforded the final 6-phenyl-indol-3-yl [1,2,4]-triazolo[3,4-b]-[1,3,4]-thiadiazole compounds (5a–l). The novel series showed selective sub-micromolar IC50 growth-inhibitory activity against Bcl-2-expressing human cancer cell lines. The most potent 6-(2,4-dimethoxyphenyl) substituted analogue (5k) showed selective IC50 values of 0.31–0.7 µM against Bcl-2-expressing cell lines without inhibiting the Bcl-2-negative cell line (Jurkat). ELISA binding affinity assay (interruption of Bcl-2-Bim interaction) showed potent binding affinity for (5k) with an IC50 value of 0.32 µM. Moreover, it fulfils drug likeness criteria as a promising drug candidate.
Collapse
|
85
|
Heterogeneous modulation of Bcl-2 family members and drug efflux mediate MCL-1 inhibitor resistance in multiple myeloma. Blood Adv 2021; 5:4125-4139. [PMID: 34478517 PMCID: PMC8945627 DOI: 10.1182/bloodadvances.2020003826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/07/2021] [Indexed: 01/19/2023] Open
Abstract
Antiapoptotic Bcl-2 family members have recently (re)emerged as key drug targets in cancer, with a tissue- and tumor-specific activity profile of available BH3 mimetics. In multiple myeloma, MCL-1 has been described as a major gatekeeper of apoptosis. This discovery has led to the rapid establishment of clinical trials evaluating the impact of various MCL-1 inhibitors. However, our understanding about the clinical impact and optimal use of MCL-1 inhibitors is still limited. We therefore explored mechanisms of acquired MCL-1 inhibitor resistance and optimization strategies in myeloma. Our findings indicated heterogeneous paths to resistance involving baseline Bcl-2 family alterations of proapoptotic (BAK, BAX, and BIM) and antiapoptotic (Bcl-2 and MCL-1) proteins. These manifestations depend on the BH3 profile of parental cells that guide the enhanced formation of Bcl-2:BIM and/or the dynamic (ie, treatment-induced) formation of Bcl-xL:BIM and Bcl-xL:BAK complexes. Accordingly, an unbiased high-throughput drug-screening approach (n = 528) indicated alternative BH3 mimetics as top combination partners for MCL-1 inhibitors in sensitive and resistant cells (Bcl-xL>Bcl-2 inhibition), whereas established drug classes were mainly antagonistic (eg, antimitotic agents). We also revealed reduced activity of MCL-1 inhibitors in the presence of stromal support as a drug-class effect that was overcome by concurrent Bcl-xL or Bcl-2 inhibition. Finally, we demonstrated heterogeneous Bcl-2 family deregulation and MCL-1 inhibitor cross-resistance in carfilzomib-resistant cells, a phenomenon linked to the MDR1-driven drug efflux of MCL-1 inhibitors. The implications of our findings for clinical practice emphasize the need for patient-adapted treatment protocols, with the tracking of tumor- and/or clone-specific adaptations in response to MCL-1 inhibition.
Collapse
|
86
|
Costa LJ, Davies FE, Monohan GP, Kovacsovics T, Burwick N, Jakubowiak A, Kaufman JL, Hong WJ, Dail M, Salem AH, Yang X, Masud AA, Munasinghe W, Ross JA, Bueno OF, Kumar SK, Stadtmauer EA. Phase 2 study of venetoclax plus carfilzomib and dexamethasone in patients with relapsed/refractory multiple myeloma. Blood Adv 2021; 5:3748-3759. [PMID: 34470049 PMCID: PMC8679663 DOI: 10.1182/bloodadvances.2020004146] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
Proteins in the antiapoptotic B-cell lymphoma 2 (BCL-2) family play a role in the pathophysiology of multiple myeloma (MM). Venetoclax is a highly selective, potent, oral BCL-2 inhibitor that induces apoptosis of MM cells, and its efficacy may be potentiated through combination with agents that increase BCL-2 dependency or have complementary mechanisms of action. The safety, tolerability, pharmacokinetics, and antitumor activity of venetoclax in combination with carfilzomib and dexamethasone (VenKd) in adults with relapsed/refractory MM (RRMM) were investigated in this phase 2 dose-escalation study. Oral venetoclax (400 or 800 mg) was administered daily in combination with intravenous carfilzomib (27, 56, or 70 mg/m2) and oral dexamethasone (20 or 40 mg) in 4 dose-finding cohorts. The expansion cohort received venetoclax 800 mg, carfilzomib 70 mg/m2, and dexamethasone 40 mg. Forty-nine patients received treatment. Median prior lines of therapy was 1 (range, 1-3), and median time in the study was 27 months. The most common treatment-emergent adverse events were diarrhea (65%), fatigue (47%), nausea (47%), and lymphopenia (35%). Serious adverse events occurred in 26 (53%) patients. Of 3 treatment-emergent deaths, 1 was considered treatment related. The overall response rate was 80% in all patients, 92% in patients with t(11;14) (n = 13), and 75% in patients without (n = 36). The rate of complete response or better was 41%. Median progression-free survival was 22.8 months. Treatment with VenKd was well tolerated and showed promising response rates in this RRMM patient population, with greater responses observed in patients with t(11;14). This trial is registered at www.clinicaltrials.gov as #NCT02899052.
Collapse
Affiliation(s)
- Luciano J. Costa
- Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Faith E. Davies
- Myeloma Research Program, Perlmutter Cancer Center, NYU Langone, New York, NY
| | - Gregory P. Monohan
- Division of Hematology and Blood & Marrow Transplant, University of Kentucky, Lexington, KY
| | - Tibor Kovacsovics
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | | | | | - Jonathan L. Kaufman
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | | | | | - Ahmed Hamed Salem
- AbbVie, Inc, North Chicago, IL
- Department of Clinical Pharmacy, Ain Shams University, Cairo, Egypt
| | | | | | | | | | | | | | - Edward A. Stadtmauer
- Division of Hematology and Oncology, University of Pennsylvania Abramson Cancer Center, Philadelphia, PA
| |
Collapse
|
87
|
Advances in the Treatment of Relapsed and Refractory Multiple Myeloma in Patients with Renal Insufficiency: Novel Agents, Immunotherapies and Beyond. Cancers (Basel) 2021; 13:cancers13205036. [PMID: 34680184 PMCID: PMC8533858 DOI: 10.3390/cancers13205036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Renal insufficiency is one of the most frequent complications in multiple myeloma. The incidence of renal insufficiency in patients with multiple myeloma ranges from 20% to 50%. Renal impairment in patients with multiple myeloma results primarily from the toxic effects of monoclonal light chains on the kidneys. Dehydration, hypercalcemia, hyperuricemia, the application of nephrotoxic NSARs, antibiotics, contrast agents, etc., all play a major role in the deterioration of renal function in patients with multiple myeloma. The diagnosis and treatment of these patients use an interdisciplinary approach in consultation with hematologist-oncologists, radiologists, nephrologists and intensive care specialists. Using new drugs in the treatment of patients with refractory/relapsed multiple myeloma and renal insufficiency markedly improves progression-free survival and overall survival in these patients. CONCLUSIONS New drugs have helped to widen the treatment options available for patients with renal impairment and refractory/relapsed multiple myeloma, since dose adjustments are unnecessary with carfilzomib as well as with panobinostat, elotuzumab, pomalidomide or daratumumab in patients with renal impairment. Several new substances for the treatment of refractory/relapsed multiple myeloma have been approved in the meantime, including belantamab mafodotin, selinexor, melflufen, venetoclax, CAR T-cell therapy and checkpoint inhibitors. Ongoing studies are investigating their administration in patients with renal impairment.
Collapse
|
88
|
Nakamura A, Suzuki S, Kanasugi J, Ejiri M, Hanamura I, Ueda R, Seto M, Takami A. Synergistic Effects of Venetoclax and Daratumumab on Antibody-Dependent Cell-Mediated Natural Killer Cytotoxicity in Multiple Myeloma. Int J Mol Sci 2021; 22:ijms221910761. [PMID: 34639102 PMCID: PMC8509545 DOI: 10.3390/ijms221910761] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023] Open
Abstract
The prognosis of multiple myeloma (MM) has drastically improved owing to the development of new drugs, such as proteasome inhibitors and immunomodulatory drugs. Nevertheless, MM is an extremely challenging disease, and many patients are still refractory to the existing therapies, thus requiring new treatment alternatives. Venetoclax is a selective, orally bioavailable inhibitor of BCL-2 that shows efficacy in MM not only as a single agent but also in combination therapy, especially for MM patients with translocation t(11;14). However, many patients are refractory to this drug. Here, we treated the MM cell lines KMS12PE and KMS27 with a combination treatment of venetoclax targeting BCL-2 and daratumumab targeting CD38 to evaluate the synergistic cytotoxicity of these drugs in vitro. MM cell lines were co-cultured with natural killer (NK) cells at an effector:target ratio of 0.3:1 in the presence of serial concentrations of daratumumab and venetoclax, and the resulting apoptotic MM cells were detected by flow cytometry using annexin V. These results indicated that the antibody-dependent cell-mediated NK cytotoxicity was enhanced in KMS12PE and KMS27 cells harboring t(11;14) with a high BCL-2 expression, suggesting that the combination treatment of venetoclax and daratumumab should be especially effective in patients with these characteristics.
Collapse
Affiliation(s)
- Ayano Nakamura
- Department of Internal Medicine, Division of Hematology, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (A.N.); (J.K.); (I.H.); (M.S.); (A.T.)
| | - Susumu Suzuki
- Research Creation Support Center, Aichi Medical University, Nagakute 480-1195, Japan
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan;
- Correspondence: ; Tel.: +81-561-62-3311 (ext. 11426)
| | - Jo Kanasugi
- Department of Internal Medicine, Division of Hematology, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (A.N.); (J.K.); (I.H.); (M.S.); (A.T.)
| | - Masayuki Ejiri
- Department of Pharmacy, University Hospital, Aichi Medical University, Nagakute 480-1195, Japan;
| | - Ichiro Hanamura
- Department of Internal Medicine, Division of Hematology, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (A.N.); (J.K.); (I.H.); (M.S.); (A.T.)
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan;
| | - Masao Seto
- Department of Internal Medicine, Division of Hematology, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (A.N.); (J.K.); (I.H.); (M.S.); (A.T.)
| | - Akiyoshi Takami
- Department of Internal Medicine, Division of Hematology, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (A.N.); (J.K.); (I.H.); (M.S.); (A.T.)
| |
Collapse
|
89
|
Sgherza N, Curci P, Rizzi R, Musto P. Novel Approaches Outside the Setting of Immunotherapy for the Treatment of Multiple Myeloma: The Case of Melflufen, Venetoclax, and Selinexor. Front Oncol 2021; 11:716751. [PMID: 34660279 PMCID: PMC8514936 DOI: 10.3389/fonc.2021.716751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Although the survival rate of patients with multiple myeloma has significantly improved in the last years thanks to the introduction of various classes of new drugs, such as proteasome inhibitors, immunomodulatory agents, and monoclonal antibodies, the vast majority of these subjects relapse with a more aggressive disease due to the acquisition of further genetic alterations that may cause resistance to current salvage therapies. The treatment of these often "triple" (or even more) refractory patients remains challenging, and alternative approaches are required to overcome the onset of that resistance. Immunotherapies with novel monoclonal, drug-conjugated, or bi-specific antibodies, as well as the use of chimeric antigen receptor T cells, have been recently developed and are currently investigated. However, other non-immunologic therapeutic regimens based on melfluflen, venetoclax, or selinexor, three molecules with new mechanisms of action, have also shown promising results in the setting of relapsed/refractory myeloma. Here we report the most recent literature data regarding these three drugs, focusing on their efficacy and safety in multiple myeloma.
Collapse
Affiliation(s)
- Nicola Sgherza
- Unit of Hematology and Stem Cell Transplantation, Azienda Ospedaliero Universitaria Consorziale (AOUC) Policlinico, Bari, Italy
| | - Paola Curci
- Unit of Hematology and Stem Cell Transplantation, Azienda Ospedaliero Universitaria Consorziale (AOUC) Policlinico, Bari, Italy
| | - Rita Rizzi
- Unit of Hematology and Stem Cell Transplantation, Azienda Ospedaliero Universitaria Consorziale (AOUC) Policlinico, Bari, Italy
- Department of Emergency and Organ Transplantation, “Aldo Moro” University School of Medicine, Bari, Italy
| | - Pellegrino Musto
- Unit of Hematology and Stem Cell Transplantation, Azienda Ospedaliero Universitaria Consorziale (AOUC) Policlinico, Bari, Italy
- Department of Emergency and Organ Transplantation, “Aldo Moro” University School of Medicine, Bari, Italy
| |
Collapse
|
90
|
Todoerti K, Taiana E, Puccio N, Favasuli V, Lionetti M, Silvestris I, Gentile M, Musto P, Morabito F, Gianelli U, Bolli N, Baldini L, Neri A, Ronchetti D. Transcriptomic Analysis in Multiple Myeloma and Primary Plasma Cell Leukemia with t(11;14) Reveals Different Expression Patterns with Biological Implications in Venetoclax Sensitivity. Cancers (Basel) 2021; 13:cancers13194898. [PMID: 34638381 PMCID: PMC8508148 DOI: 10.3390/cancers13194898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary The growing interest in BCL2 inhibitors for the treatment of multiple myeloma (MM) has led to the need for biomarkers that are able to predict patient’s sensitivity to the drug. The presence of the chromosomal translocation t(11;14) in MM is mainly associated with sensitivity to venetoclax and good prognosis. The incidence of t(11;14) largely increases in primary Plasma Cell Leukemia (pPCL) in association with an unfavorable outcome. Currently, data concerning pPCL sensitivity to venetoclax are virtually absent. In this context, we investigated the transcriptome of MM and pPCL with t(11;14), evidencing that the two clinical entities are likely responsive to venetoclax based on different molecular programs, thus prompting further studies to elucidate better novel potential predictive biomarkers. Abstract Mechanisms underlying the pathophysiology of primary Plasma Cell Leukemia (pPCL) and intramedullary multiple myeloma (MM) need to be further elucidated, being potentially relevant for improving therapeutic approaches. In such a context, the MM and pPCL subgroups characterized by t(11;14) deserve a focused investigation, as the presence of the translocation is mainly associated with sensitivity to venetoclax. Herein, we investigated a proprietary cohort of MM and pPCL patients, focusing on the transcriptional signature of samples carrying t(11;14), whose incidence increases in pPCL in association with an unfavorable outcome. In addition, we evaluated the expression levels of the BCL2-gene family members and of a panel of B-cell genes recently reported to be associated with sensitivity to venetoclax in MM. Moreover, transcriptional analysis of lncRNAs in the two clinical settings led to the identification of several differentially expressed transcripts, among which the SNGH6 deregulated lncRNA might be relevant in the pathogenesis and prognosis of pPCL with t(11;14). Overall, our data suggest that MMs and pPCLs with t(11;14) might be responsive to venetoclax based on different molecular programs, prompting further studies to elucidate better novel potential predictive biomarkers.
Collapse
Affiliation(s)
- Katia Todoerti
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.T.); (E.T.); (N.P.); (V.F.); (M.L.); (I.S.); (N.B.); (L.B.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Elisa Taiana
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.T.); (E.T.); (N.P.); (V.F.); (M.L.); (I.S.); (N.B.); (L.B.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Noemi Puccio
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.T.); (E.T.); (N.P.); (V.F.); (M.L.); (I.S.); (N.B.); (L.B.)
| | - Vanessa Favasuli
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.T.); (E.T.); (N.P.); (V.F.); (M.L.); (I.S.); (N.B.); (L.B.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Marta Lionetti
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.T.); (E.T.); (N.P.); (V.F.); (M.L.); (I.S.); (N.B.); (L.B.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Ilaria Silvestris
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.T.); (E.T.); (N.P.); (V.F.); (M.L.); (I.S.); (N.B.); (L.B.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Massimo Gentile
- Hematology Unit, “Annunziata” Hospital of Cosenza, 87100 Cosenza, Italy;
| | - Pellegrino Musto
- Department of Emergency and Organ Transplantation, “Aldo Moro” University School of Medicine, 70124 Bari, Italy;
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico, 70124 Bari, Italy
| | - Fortunato Morabito
- Hematology and Bone Marrow Transplant Unit, Hemato-Oncology Department, Augusta Victoria Hospital, East Jerusalem 91191, Israel;
- Biotechnology Research Unit, Azienda Ospedaliera di Cosenza, 87100 Cosenza, Italy
| | - Umberto Gianelli
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Division of Pathology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Niccolò Bolli
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.T.); (E.T.); (N.P.); (V.F.); (M.L.); (I.S.); (N.B.); (L.B.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Luca Baldini
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.T.); (E.T.); (N.P.); (V.F.); (M.L.); (I.S.); (N.B.); (L.B.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.T.); (E.T.); (N.P.); (V.F.); (M.L.); (I.S.); (N.B.); (L.B.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
- Correspondence: (A.N.); (D.R.)
| | - Domenica Ronchetti
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.T.); (E.T.); (N.P.); (V.F.); (M.L.); (I.S.); (N.B.); (L.B.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
- Correspondence: (A.N.); (D.R.)
| |
Collapse
|
91
|
Gasparetto C, Bowles KM, Abdallah AO, Morris L, Mander G, Coppola S, Wang J, Ross JA, Bueno OF, Arriola E, Mateos MV. A Phase II Study of Venetoclax in Combination With Pomalidomide and Dexamethasone in Relapsed/Refractory Multiple Myeloma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:775-784. [PMID: 34551886 DOI: 10.1016/j.clml.2021.07.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/29/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Venetoclax is a selective BCL-2 inhibitor with clinical activity in relapsed/refractory multiple myeloma (RRMM). Combinations of venetoclax with agents that have complementary mechanisms of action may improve venetoclax efficacy in RRMM. This study evaluated venetoclax with pomalidomide and dexamethasone (VenPd) in RRMM. PATIENTS AND METHODS This phase II open label study (NCT03567616) evaluated VenPd in patients with RRMM who had received ≥ 1 prior therapy and were refractory to lenalidomide. Venetoclax was administered orally daily for days 1 to 28, pomalidomide was administered orally daily for days 1 to 21, and dexamethasone was administered weekly for each 28-day cycle. The primary objective was to characterize the safety and tolerability of VenPd. The secondary objectives were to evaluate the efficacy and pharmacokinetics. The study was terminated early due to partial clinical hold and decision to pursue biomarker driven strategy. RESULTS Eight patients were enrolled. Patients had a median age of 67.5 years. All patients received 400 mg venetoclax; 4 patients experienced dose-limiting toxicities and the dose was not escalated. All patients had a grade ≥ 3 adverse event, and the most common was neutropenia (n = 6); cytopenias were the most prevalent adverse events. Five patients (63%) had a confirmed response, and the median duration of response was 12.9 months. The median progression-free survival was 10.5 months. CONCLUSIONS Given the limited enrollment, no clear safety or efficacy conclusions about VenPd can be drawn. Preliminary safety data, particularly the occurrence of cytopenias, can be used to guide dosing strategies for future combinations of venetoclax with immunomodulatory agents.
Collapse
Affiliation(s)
| | - Kristian M Bowles
- Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, and Norwich Medical School, Norwich, United Kingdom
| | - Al-Ola Abdallah
- Division of Hematological Malignancies and Cellular Therapeutics, University of Kansas, Lawrence, KS
| | | | | | | | | | | | | | | | - Maria Victoria Mateos
- Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Instituto de Biología Molecular y Celular del Cáncer (Universidad de Salamanca-Consejo Superior de Investigaciones Científicas), CIBERONC, Salamanca, Spain
| |
Collapse
|
92
|
Wallington-Beddoe CT, Mynott RL. Prognostic and predictive biomarker developments in multiple myeloma. J Hematol Oncol 2021; 14:151. [PMID: 34556161 PMCID: PMC8461914 DOI: 10.1186/s13045-021-01162-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
New approaches to stratify multiple myeloma patients based on prognosis and therapeutic decision-making, or prediction, are needed since patients are currently managed in a similar manner regardless of individual risk factors or disease characteristics. However, despite new and improved biomarkers for determining the prognosis of patients, there is currently insufficient information to utilise biomarkers to intensify, reduce or altogether change treatment, nor to target patient-specific biology in a so-called predictive manner. The ever-increasing number and complexity of drug classes to treat multiple myeloma have improved response rates and so clinically useful biomarkers will need to be relevant in the era of such novel therapies. Therefore, the field of multiple myeloma biomarker development is rapidly progressing, spurred on by new technologies and therapeutic approaches, and underpinned by a deeper understanding of tumour biology with individualised patient management the goal. In this review, we describe the main biomarker categories in multiple myeloma and relate these to diagnostic, prognostic and predictive applications. ![]()
Collapse
Affiliation(s)
- Craig T Wallington-Beddoe
- College of Medicine and Public Health, Level 4, Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, SA, 5042, Australia. .,Flinders Medical Centre, Bedford Park, SA, 5042, Australia. .,Centre for Cancer Biology, SA Pathology and The University of South Australia, Adelaide, SA, 5000, Australia. .,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5000, Australia.
| | - Rachel L Mynott
- College of Medicine and Public Health, Level 4, Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, SA, 5042, Australia
| |
Collapse
|
93
|
Sidiqi MH, Al Saleh AS, Kumar SK, Leung N, Jevremovic D, Muchtar E, Gonsalves WI, Kourelis TV, Warsame R, Buadi FK, Lacy MQ, Kyle RA, Go R, Hobbs M, Dispenzieri A, Dingli D, Hayman SR, Gertz MA, Rajkumar SV, Kapoor P. Venetoclax for the treatment of multiple myeloma: Outcomes outside of clinical trials. Am J Hematol 2021; 96:1131-1136. [PMID: 34115387 DOI: 10.1002/ajh.26269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/23/2023]
Abstract
Multiple myeloma (MM) remains an incurable disease despite incorporation of novel agents. Venetoclax, a B-cell lymphoma 2 (BCL-2) inhibitor is approved for some hematologic malignancies but not yet for MM, although clinical trials have shown efficacy in patients with MM, particularly those harboring t(11;14). We reviewed the medical records of relapsed and/or refractory MM patients to study the efficacy and safety of venetoclax used outside of clinical trials at Mayo Clinic between December, 2016 and March, 2019. The data cut-off date was August 06, 2020. We identified 56 patients of whom 42 (75%) harbored t(11;14). The median number of prior therapies was six (range 1-15) and 14% of patients had received ≥10 prior lines of therapy. Fifty-three (95%) patients were refractory to an immunomodulatory drug and proteasome inhibitor. Venetoclax was used as monotherapy or doublet, in combination with dexamethasone in 55% (n = 31) and a triplet or quadruplet in 45% of patients. No patient experienced tumor lysis syndrome. Overall response rate in 52 evaluable patients was 44%. The median time to best response was 2 months and median duration of response was 13.6 months. The median PFS for the entire cohort was 5.8 (95% CI 4.9-10.3) months and median OS was 28.4 (95% CI 14.6-not reached) months. The presence of t(11;14) was associated with improved PFS (median 9.7 months vs. 4.2 months, p = 0.019) and OS (median not reached vs. 10.8 9 months, p = 0.015). Venetoclax demonstrates encouraging activity in heavily-treated patients with relapsed/refractory MM, particularly the t(11;14) patient-population.
Collapse
Affiliation(s)
- M Hasib Sidiqi
- Haematology Department, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Abdullah S Al Saleh
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Division of Haematology and HSCT, Department of Oncology, King Abdul Aziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Shaji K Kumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Nelson Leung
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Nephrology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Dragan Jevremovic
- Division of Hematopathology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Eli Muchtar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Wilson I Gonsalves
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Taxiarchis V Kourelis
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Rahma Warsame
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Francis K Buadi
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Martha Q Lacy
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert A Kyle
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ronald Go
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Miriam Hobbs
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Angela Dispenzieri
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - David Dingli
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Suzanne R Hayman
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Morie A Gertz
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - S Vincent Rajkumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Prashant Kapoor
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
94
|
Hu LF, Lan HR, Li XM, Jin KT. A Systematic Review of the Potential Chemoprotective Effects of Resveratrol on Doxorubicin-Induced Cardiotoxicity: Focus on the Antioxidant, Antiapoptotic, and Anti-Inflammatory Activities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2951697. [PMID: 34471463 PMCID: PMC8405305 DOI: 10.1155/2021/2951697] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Although doxorubicin chemotherapeutic drug is commonly used to treat various solid and hematological tumors, its clinical use is restricted because of its adverse effects on the normal cells/tissues, especially cardiotoxicity. The use of resveratrol may mitigate the doxorubicin-induced cardiotoxic effects. For this aim, we systematically reviewed the potential chemoprotective effects of resveratrol against the doxorubicin-induced cardiotoxicity. METHODS In the current study, a systematic search was performed based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline for the identification of all relevant studies on "the role of resveratrol on doxorubicin-induced cardiotoxicity" in the electronic databases of Web of Science, PubMed, and Scopus up to March 2021 using search terms in their titles and abstracts. Two hundred and eighteen articles were screened in accordance with a predefined set of inclusion and exclusion criteria. Finally, 33 eligible articles were included in this systematic review. RESULTS The in vitro and in vivo findings demonstrated a decreased cell survival, increased mortality, decreased heart weight, and increased ascites in the doxorubicin-treated groups compared to the control groups. The combined treatment of resveratrol and doxorubicin showed an opposite pattern than the doxorubicin-treated groups alone. Furthermore, this chemotherapeutic agent induced the biochemical and histopathological changes on the cardiac cells/tissue; however, the results (for most of the cases) revealed that these alterations induced by doxorubicin were reversed near to normal levels (control groups) by resveratrol coadministration. CONCLUSION The results of this systematic review stated that coadministration of resveratrol alleviates the doxorubicin-induced cardiotoxicity. Resveratrol exerts these chemoprotective effects through several main mechanisms of antioxidant, antiapoptosis, and anti-inflammatory.
Collapse
Affiliation(s)
- Li-Feng Hu
- Department of Colorectal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, China
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000 Zhejiang Province, China
| | - Xue-Min Li
- Department of Hepatobiliary Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000 Zhejiang Province, China
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000 Zhejiang Province, China
| |
Collapse
|
95
|
Bahlis NJ, Baz R, Harrison SJ, Quach H, Ho SJ, Vangsted AJ, Plesner T, Moreau P, Gibbs SD, Coppola S, Yang X, Al Masud A, Ross JA, Bueno O, Kaufman JL. Phase I Study of Venetoclax Plus Daratumumab and Dexamethasone, With or Without Bortezomib, in Patients With Relapsed or Refractory Multiple Myeloma With and Without t(11;14). J Clin Oncol 2021; 39:3602-3612. [PMID: 34388020 PMCID: PMC8577687 DOI: 10.1200/jco.21.00443] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Venetoclax is an oral BCL-2 inhibitor with single-agent activity in patients with relapsed or refractory multiple myeloma (RRMM) with t(11;14) translocation. Venetoclax efficacy in RRMM may be potentiated through combination with agents including bortezomib, dexamethasone, and daratumumab. METHODS This phase I study (NCT03314181) evaluated venetoclax with daratumumab and dexamethasone (VenDd) in patients with t(11;14) RRMM and VenDd with bortezomib (VenDVd) in cytogenetically unselected patients with RRMM. Primary objectives included expansion-phase dosing, safety, and overall response rate. Secondary objectives included further safety analysis, progression-free survival, duration of response, time to progression, and minimal residual disease negativity. RESULTS Forty-eight patients were enrolled, 24 each in parts 1 (VenDd) and 2 (VenDVd). There was one dose-limiting toxicity in part 1 (grade 3 febrile neutropenia, 800 mg VenDd). Common adverse events with VenDd and VenDVd included diarrhea (63% and 54%) and nausea (50% and 50%); grade ≥ 3 adverse events were observed in 88% in the VenDd group and 71% in the VenDVd group. One treatment-emergent death occurred in part 2 (sepsis) in the context of progressive disease, with no other infection-related deaths on study with medians of 20.9 and 20.4 months of follow-up in parts 1 and 2, respectively. The overall response rate was 96% with VenDd (all very good partial response or better [≥ VGPR]) and 92% with VenDVd (79% ≥ VGPR). The 18-month progression-free survival rate was 90.5% (95% CI, 67.0 to 97.5) with VenDd and 66.7% (95% CI, 42.5 to 82.5) with VenDVd. CONCLUSION VenDd and VenDVd produced a high rate of deep and durable responses in patients with RRMM. These results support continued evaluation of venetoclax with daratumumab regimens to treat RRMM, particularly in those with t(11;14).
Collapse
Affiliation(s)
- Nizar J Bahlis
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Rachid Baz
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Simon J Harrison
- Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Hang Quach
- St Vincent's Hospital, University of Melbourne, Melbourne, VIC, Australia
| | | | | | - Torben Plesner
- University of Southern Denmark, Vejle Hospital, Vejle, Denmark
| | - Philippe Moreau
- Department of Hematology, University Hospital, Nantes, France
| | - Simon D Gibbs
- Box Hill Hospital, Eastern Health Clinical School, Monash University, Melbourne, VIC, Australia
| | | | | | | | | | | | | |
Collapse
|
96
|
Kitadate A, Terao T, Narita K, Ikeda S, Takahashi Y, Tsushima T, Miura D, Takeuchi M, Takahashi N, Matsue K. Multiple myeloma with t(11;14)-associated immature phenotype has lower CD38 expression and higher BCL2 dependence. Cancer Sci 2021; 112:3645-3654. [PMID: 34288263 PMCID: PMC8409299 DOI: 10.1111/cas.15073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022] Open
Abstract
CD38 expression on myeloma cells is a critical factor affecting the early response to the anti-CD38 antibody daratumumab. However, factors affecting CD38 expression in untreated multiple myeloma are not fully elucidated. In this study, we found that CD38 expression was significantly lower in myeloma patients with the translocation t(11;14)-associated immature plasma cell phenotype, and particularly in those expressing B-cell-associated genes such as PAX5 and CD79A. CD138, a representative marker of plasmacytic differentiation, was also significantly lower in these patients, suggesting that CD38 expression may be associated with the differentiation and maturation stages of myeloma cells. Furthermore, the BCL2/BCL2L1 ratio, a response marker of the BCL2 inhibitor venetoclax, was significantly higher in patients with the immature phenotype expressing B-cell-associated genes. The BCL2/BCL2L1 ratio and CD38 expression were significantly negatively correlated. We also confirmed that patients with translocation t(11;14) expressing B-cell-associated genes were indeed less sensitive to daratumumab-mediated direct cytotoxicity but highly sensitive to venetoclax treatment in ex vivo assays. Moreover, all-trans-retinoic acid, which enhances CD38 expression and induces cell differentiation in myeloma cells, reduced B-cell marker expression and the BCL2/BCL2L1 ratio in myeloma cell lines, leading to reduced efficacy of venetoclax. Venetoclax specifically induces cell death in myeloma with t(11;14), although why patients with translocation t(11;14) show BCL2 dependence is unclear. These results suggest that BCL2 dependence, as well as CD38 expression, are deeply associated with the differentiation and maturation stages of myeloma cells. This study highlights the importance of examining t(11;14) and considering cell maturity in myeloma treatment strategies.
Collapse
Affiliation(s)
- Akihiro Kitadate
- Division of Hematology/Oncology, Department of Medicine, Kameda Medical Center, Kamogawa, Japan.,Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Toshiki Terao
- Division of Hematology/Oncology, Department of Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Kentaro Narita
- Division of Hematology/Oncology, Department of Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Sho Ikeda
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Yuto Takahashi
- Department of Life Science, Akita University Graduate School of Engineering Science, Akita, Japan
| | - Takafumi Tsushima
- Division of Hematology/Oncology, Department of Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Daisuke Miura
- Division of Hematology/Oncology, Department of Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Masami Takeuchi
- Division of Hematology/Oncology, Department of Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kosei Matsue
- Division of Hematology/Oncology, Department of Medicine, Kameda Medical Center, Kamogawa, Japan
| |
Collapse
|
97
|
BCL2 inhibitors and MCL1 inhibitors for hematological malignancies. Blood 2021; 138:1120-1136. [PMID: 34320168 DOI: 10.1182/blood.2020006785] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/17/2021] [Indexed: 11/20/2022] Open
Abstract
BCL2 and MCL1 are commonly expressed pro-survival (anti-apoptotic) proteins in hematological cancers and play important roles in their biology either through dysregulation or by virtue of intrinsic importance to the cell-of-origin of the malignancy. A new class of small molecule anti-cancer drugs, BH3-mimetics, now enable specific targeting of these proteins in patients. BH3-mimetics act by inhibiting the pro-survival BCL2 proteins to enable the activation of BAX and BAK, apoptosis effectors which permeabilize the outer mitochondrial membrane, triggering apoptosis directly in many cells and sensitizing others to cell death when combined with other anti-neoplastic drugs. Venetoclax, a specific inhibitor of BCL2, is the first approved in class, demonstrating striking single agent activity in chronic lymphocytic leukemia (CLL) and in other lymphoid neoplasms, as well as activity against acute myeloid leukemia (AML), especially when used in combination. Key insights from the venetoclax experience include that responses occur rapidly, with major activity as monotherapy proving to be the best indicator for success in combination regimens. This emphasizes the importance of adequate single agent studies for drugs in this class. Furthermore, secondary resistance is common with long-term exposure and often mediated by genetic or adaptive changes in the apoptotic pathway, suggesting that BH3-mimetics are better suited to limited-duration, rather than continuous, therapy. The success of venetoclax has inspired development of BH3-mimetics targeting MCL1. Despite promising preclinical activity against MYC-driven lymphomas, myeloma and AML, their success may particularly depend on their tolerability profile given physiological roles for MCL1 in several non-hematological tissues.
Collapse
|
98
|
Chen W, Li J. Alternative splicing of BCL-X and implications for treating hematological malignancies. Oncol Lett 2021; 22:670. [PMID: 34345295 PMCID: PMC8323006 DOI: 10.3892/ol.2021.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
BCL-X is a member of the BCL-2 family. It regulates apoptosis and plays a critical role in hematological malignancies. It is well-known that >90% of human genes undergo alternative splicing. A total of 10 distinct splicing transcripts of the BCL-X gene have been identified, including transcript variants 1–9 and ABALON. Different transcripts from the same gene have different functions. The present review discusses the progress in understanding the different alternative splicing transcripts of BCL-X, including their characteristics, functions and expression patterns. The potential use of BCL-X in targeted therapies for hematological malignancies is also discussed.
Collapse
Affiliation(s)
- Wanling Chen
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, Fujian 361023, P.R. China
| | - Jinggang Li
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
99
|
Gupta VA, Barwick BG, Matulis SM, Shirasaki R, Jaye DL, Keats JJ, Oberlton B, Joseph NS, Hofmeister CC, Heffner LT, Dhodapkar MV, Nooka AK, Lonial S, Mitsiades CS, Kaufman JL, Boise LH. Venetoclax sensitivity in multiple myeloma is associated with B-cell gene expression. Blood 2021; 137:3604-3615. [PMID: 33649772 PMCID: PMC8462405 DOI: 10.1182/blood.2020007899] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/29/2021] [Indexed: 01/31/2023] Open
Abstract
Venetoclax is a highly potent, selective BCL2 inhibitor capable of inducing apoptosis in cells dependent on BCL2 for survival. Most myeloma is MCL1-dependent; however, a subset of myeloma enriched for translocation t(11;14) is codependent on BCL2 and thus sensitive to venetoclax. The biology underlying this heterogeneity remains poorly understood. We show that knockdown of cyclin D1 does not induce resistance to venetoclax, arguing against a direct role for cyclin D1 in venetoclax sensitivity. To identify other factors contributing to venetoclax response, we studied a panel of 31 myeloma cell lines and 25 patient samples tested for venetoclax sensitivity. In cell lines, we corroborated our previous observation that BIM binding to BCL2 correlates with venetoclax response and further showed that knockout of BIM results in decreased venetoclax sensitivity. RNA-sequencing analysis identified expression of B-cell genes as enriched in venetoclax-sensitive myeloma, although no single gene consistently delineated sensitive and resistant cells. However, a panel of cell surface makers correlated well with ex vivo prediction of venetoclax response in 21 patient samples and may serve as a biomarker independent of t(11;14). Assay for transposase-accessible chromatin sequencing of myeloma cell lines also identified an epigenetic program in venetoclax-sensitive cells that was more similar to B cells than that of venetoclax-resistant cells, as well as enrichment for basic leucine zipper domain-binding motifs such as BATF. Together, these data indicate that remnants of B-cell biology are associated with BCL2 dependency and point to novel biomarkers of venetoclax-sensitive myeloma independent of t(11;14).
Collapse
MESH Headings
- B-Lymphocytes/metabolism
- Basic-Leucine Zipper Transcription Factors/genetics
- Basic-Leucine Zipper Transcription Factors/metabolism
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line, Tumor
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 11/metabolism
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 14/metabolism
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Epigenesis, Genetic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Knockdown Techniques
- Humans
- Multiple Myeloma/drug therapy
- Multiple Myeloma/genetics
- Multiple Myeloma/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/pharmacology
- Translocation, Genetic/drug effects
Collapse
Affiliation(s)
- Vikas A Gupta
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Benjamin G Barwick
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Shannon M Matulis
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Ryosuke Shirasaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - David L Jaye
- Department of Pathology and Laboratory Medicine, Winship Cancer Institute of Emory University, Atlanta, GA; and
| | - Jonathan J Keats
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Benjamin Oberlton
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Nisha S Joseph
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Craig C Hofmeister
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Leonard T Heffner
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Madhav V Dhodapkar
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Ajay K Nooka
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | | | - Jonathan L Kaufman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| |
Collapse
|
100
|
Synergistic efficacy of the dual PI3K-δ/γ inhibitor duvelisib with the Bcl-2 inhibitor venetoclax in Richter syndrome PDX models. Blood 2021; 137:3378-3389. [PMID: 33786583 DOI: 10.1182/blood.2020010187] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
A small subset of cases of chronic lymphocytic leukemia undergoes transformation to diffuse large B-cell lymphoma, Richter syndrome (RS), which is associated with a poor prognosis. Conventional chemotherapy results in limited responses, underlining the need for novel therapeutic strategies. Here, we investigate the ex vivo and in vivo efficacy of the dual phosphatidylinositol 3-kinase-δ/γ (PI3K-δ/γ) inhibitor duvelisib (Duv) and the Bcl-2 inhibitor venetoclax (Ven) using 4 different RS patient-derived xenograft (PDX) models. Ex vivo exposure of RS cells to Duv, Ven, or their combination results in variable apoptotic responses, in line with the expression levels of target proteins. Although RS1316, IP867/17, and RS9737 cells express PI3K-δ, PI3K-γ, and Bcl-2 and respond to the drugs, RS1050 cells, expressing very low levels of PI3K-γ and lacking Bcl-2, are fully resistant. Moreover, the combination of these drugs is more effective than each agent alone. When tested in vivo, RS1316 and IP867/17 show the best tumor growth inhibition responses, with the Duv/Ven combination leading to complete remission at the end of treatment. The synergistic effect of Duv and Ven relies on the crosstalk between PI3K and apoptotic pathways occurring at the GSK3β level. Indeed, inhibition of PI3K signaling by Duv results in GSK3β activation, leading to ubiquitination and subsequent degradation of both c-Myc and Mcl-1, making RS cells more sensitive to Bcl-2 inhibition by Ven. This work provides, for the first time, a proof of concept of the efficacy of dual targeting of PI3K-δ/γ and Bcl-2 in RS and providing an opening for a Duv/Ven combination for these patients. Clinical studies in aggressive lymphomas, including RS, are under way. This trial was registered at www.clinicaltrials.gov as #NCT03892044.
Collapse
|