51
|
Gordon KA, Wong DDE, Valero J, Jewell SF, Yoo P, Papsin BC. Use it or lose it? Lessons learned from the developing brains of children who are deaf and use cochlear implants to hear. Brain Topogr 2011; 24:204-19. [PMID: 21479928 DOI: 10.1007/s10548-011-0181-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 03/26/2011] [Indexed: 11/24/2022]
Abstract
In the present paper, we review what is currently known about the effects of deafness on the developing human auditory system and ask: Without use, does the immature auditory system lose the ability to normally function and mature? Any change to the structure or function of the auditory pathways resulting from a lack of activity will have important implications for future use through an auditory prosthesis such as a cochlear implant. Data to date show that deafness in children arrests and disrupts normal auditory development. Multiple changes to the auditory pathways occur during the period of deafness with the extent and type of change being dependent upon the age and stage of auditory development at onset of deafness, the cause or type of deafness, and the length of time the immature auditory pathways are left without significant input. Structural changes to the auditory nerve, brainstem, and cortex have been described in animal models of deafness as well in humans who are deaf. Functional changes in deaf auditory pathways have been evaluated by using a cochlear implant to stimulate the auditory nerve with electrical pulses. Studies of electrically evoked activity in the immature deaf auditory system have demonstrated that auditory brainstem development is arrested and that thalamo-cortical areas are vulnerable to being taken over by other competitive inputs (cross-modal plasticity). Indeed, enhanced peripheral sight and detection of visual movement in congenitally deaf cats and adults have been linked to activity in specific areas of what would normally be auditory cortex. Cochlear implants can stimulate developmental plasticity in the auditory brainstem even after many years of deafness in childhood but changes in the auditory cortex are limited, at least in part, by the degree of reorganization which occurred during the period of deafness. Consequently, we must identify hearing loss rapidly (i.e., at birth for congenital deficits) and provide cochlear implants to appropriate candidates as soon as possible. Doing so has facilitated auditory development in the thalamo-cortex and allowed children who are deaf to perceive and use spoken language.
Collapse
Affiliation(s)
- K A Gordon
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
52
|
Jyothi V, Li M, Kilpatrick LA, Smythe N, LaRue AC, Zhou D, Schulte BA, Schmiedt RA, Lang H. Unmyelinated auditory type I spiral ganglion neurons in congenic Ly5.1 mice. J Comp Neurol 2010; 518:3254-71. [PMID: 20575058 DOI: 10.1002/cne.22398] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the exception of humans, the somata of type I spiral ganglion neurons (SGNs) of most mammalian species are heavily myelinated. In an earlier study, we used Ly5.1 congenic mice as transplant recipients to investigate the role of hematopoietic stem cells in the adult mouse inner ear. An unanticipated finding was that a large percentage of the SGNs in this strain were unmyelinated. Further characterization of the auditory phenotype of young adult Ly5.1 mice in the present study revealed several unusual characteristics, including 1) large aggregates of unmyelinated SGNs in the apical and middle turns, 2) symmetrical junction-like contacts between the unmyelinated neurons, 3) abnormal expression patterns for CNPase and connexin 29 in the SGN clusters, 4) reduced SGN density in the basal cochlea without a corresponding loss of sensory hair cells, 5) significantly delayed auditory brainstem response (ABR) wave I latencies at low and middle frequencies compared with control mice with similar ABR threshold, and 6) elevated ABR thresholds and deceased wave I amplitudes at high frequencies. Taken together, these data suggest a defect in Schwann cells that leads to incomplete myelinization of SGNs during cochlear development. The Ly5.1 mouse strain appears to be the only rodent model so far identified with a high degree of the "human-like" feature of unmyelinated SGNs that aggregate into neural clusters. Thus, this strain may provide a suitable animal platform for modeling human auditory information processing such as synchronous neural activity and other auditory response properties.
Collapse
Affiliation(s)
- Vinu Jyothi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Is Electric Acoustic Stimulation Better Than Conventional Cochlear Implantation for Speech Perception in Quiet? Otol Neurotol 2010; 31:1049-54. [DOI: 10.1097/mao.0b013e3181d8d6fe] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
54
|
Smit JE, Hanekom T, van Wieringen A, Wouters J, Hanekom JJ. Threshold predictions of different pulse shapes using a human auditory nerve fibre model containing persistent sodium and slow potassium currents. Hear Res 2010; 269:12-22. [PMID: 20708672 DOI: 10.1016/j.heares.2010.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 06/29/2010] [Accepted: 08/04/2010] [Indexed: 11/25/2022]
Abstract
The ability of a human auditory nerve fibre computational model to predict threshold differences for biphasic, pseudomonophasic and alternating monophasic waveforms was investigated. The effect of increasing the interphase gap, interpulse interval and pulse rate on thresholds was also simulated. Simulations were performed for both anodic-first and cathodic-first stimuli. Results indicated that the model correctly predicted threshold reductions for pseudomonophasic compared to biphasic waveforms, although reduction for alternating monophasic waveforms was underestimated. Threshold reductions were more pronounced for cathodic-first stimuli compared to anodic-first stimuli. Reversal of the phases in pseudomonophasic stimuli suggested a threshold reduction for anodic-first stimuli, but a threshold increase in cathodic-first stimuli. Inclusion of the persistent sodium and slow potassium currents in the model resulted in a reasonably accurate prediction of the non-monotonic threshold behaviour for pulse rates higher than 1000 pps. However, the model did not correctly predict the threshold changes observed for low pulse rate biphasic and alternating monophasic waveforms. It was suggested that these results could in part be explained by the difference in the refractory periods between real and simulated auditory nerve fibres, but also by the lack of representation of stochasticity observed in real auditory nerve fibres in our auditory nerve model.
Collapse
Affiliation(s)
- Jacoba E Smit
- Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria, South Africa.
| | | | | | | | | |
Collapse
|
55
|
Hartley DEH, Vongpaisal T, Xu J, Shepherd RK, King AJ, Isaiah A. Bilateral cochlear implantation in the ferret: a novel animal model for behavioral studies. J Neurosci Methods 2010; 190:214-28. [PMID: 20576507 PMCID: PMC2938482 DOI: 10.1016/j.jneumeth.2010.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/12/2010] [Accepted: 05/19/2010] [Indexed: 11/24/2022]
Abstract
Bilateral cochlear implantation has recently been introduced with the aim of improving both speech perception in background noise and sound localization. Although evidence suggests that binaural perception is possible with two cochlear implants, results in humans are variable. To explore potential contributing factors to these variable outcomes, we have developed a behavioral animal model of bilateral cochlear implantation in a novel species, the ferret. Although ferrets are ideally suited to psychophysical and physiological assessments of binaural hearing, cochlear implantation has not been previously described in this species. This paper describes the techniques of deafening with aminoglycoside administration, surgical implantation of an intracochlear array and chronic intracochlear electrical stimulation with monitoring for electrode integrity and efficacy of stimulation. Experiments have been presented elsewhere to show that the model can be used to study behavioral and electrophysiological measures of binaural hearing in chronically implanted animals. This paper demonstrates that cochlear implantation and chronic intracochlear electrical stimulation are both safe and effective in ferrets, opening up the possibility of using this model to study potential protective effects of bilateral cochlear implantation on the developing central auditory pathway. Since ferrets can be used to assess psychophysical and physiological aspects of hearing along with the structure of the auditory pathway in the same animals, we anticipate that this model will help develop novel neuroprosthetic therapies for use in humans.
Collapse
|
56
|
Brill S, Müller J, Hagen R, Möltner A, Brockmeier SJ, Stark T, Helbig S, Maurer J, Zahnert T, Zierhofer C, Nopp P, Anderson I, Strahl S. Site of cochlear stimulation and its effect on electrically evoked compound action potentials using the MED-EL standard electrode array. Biomed Eng Online 2009; 8:40. [PMID: 20015362 PMCID: PMC2803480 DOI: 10.1186/1475-925x-8-40] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 12/16/2009] [Indexed: 11/27/2022] Open
Abstract
Background The standard electrode array for the MED-EL MAESTRO cochlear implant system is 31 mm in length which allows an insertion angle of approximately 720°. When fully inserted, this long electrode array is capable of stimulating the most apical region of the cochlea. No investigation has explored Electrically Evoked Compound Action Potential (ECAP) recordings in this region with a large number of subjects using a commercially available cochlear implant system. The aim of this study is to determine if certain properties of ECAP recordings vary, depending on the stimulation site in the cochlea. Methods Recordings of auditory nerve responses were conducted in 67 subjects to demonstrate the feasibility of ECAP recordings using the Auditory Nerve Response Telemetry (ART™) feature of the MED-EL MAESTRO system software. These recordings were then analyzed based on the site of cochlear stimulation defined as basal, middle and apical to determine if the amplitude, threshold and slope of the amplitude growth function and the refractory time differs depending on the region of stimulation. Results Findings show significant differences in the ECAP recordings depending on the stimulation site. Comparing the apical with the basal region, on average higher amplitudes, lower thresholds and steeper slopes of the amplitude growth function have been observed. The refractory time shows an overall dependence on cochlear region; however post-hoc tests showed no significant effect between individual regions. Conclusions Obtaining ECAP recordings is also possible in the most apical region of the cochlea. However, differences can be observed depending on the region of the cochlea stimulated. Specifically, significant higher ECAP amplitude, lower thresholds and steeper amplitude growth function slopes have been observed in the apical region. These differences could be explained by the location of the stimulating electrode with respect to the neural tissue in the cochlea, a higher density, or an increased neural survival rate of neural tissue in the apex. Trial registration The Clinical Investigation has the Competent Authority registration number DE/CA126/AP4/3332/18/05.
Collapse
Affiliation(s)
- Stefan Brill
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Smit JE, Hanekom T, Hanekom JJ. Modelled temperature-dependent excitability behaviour of a generalised human peripheral sensory nerve fibre. BIOLOGICAL CYBERNETICS 2009; 101:115-130. [PMID: 19579032 DOI: 10.1007/s00422-009-0324-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 06/03/2009] [Indexed: 05/28/2023]
Abstract
The objective of this study was to determine if a recently developed human Ranvier node model, which is based on a modified version of the Hodgkin-Huxley model, could predict the excitability behaviour in human peripheral sensory nerve fibres with diameters ranging from 5.0 to 15.0 microm. The Ranvier node model was extended to include a persistent sodium current and was incorporated into a generalised single cable nerve fibre model. Parameter temperature dependence was included. All calculations were performed in Matlab. Sensory nerve fibre excitability behaviour characteristics predicted by the new nerve fibre model at different temperatures and fibre diameters compared well with measured data. Absolute refractory periods deviated from measured data, while relative refractory periods were similar to measured data. Conduction velocities showed both fibre diameter and temperature dependence and were underestimated in fibres thinner than 12.5 microm. Calculated strength-duration time constants ranged from 128.5 to 183.0 micros at 37 degrees C over the studied nerve fibre diameter range, with chronaxie times about 30% shorter than strength-duration time constants. Chronaxie times exhibited temperature dependence, with values overestimated by a factor 5 at temperatures lower than body temperature. Possible explanations include the deviated absolute refractory period trend and inclusion of a nodal strangulation relationship.
Collapse
Affiliation(s)
- Jacoba E Smit
- Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa.
| | | | | |
Collapse
|
58
|
Smit JE, Hanekom T, Hanekom JJ. Estimation of stimulus attenuation in cochlear implants. J Neurosci Methods 2009; 180:363-73. [PMID: 19464523 DOI: 10.1016/j.jneumeth.2009.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 03/26/2009] [Accepted: 03/31/2009] [Indexed: 11/26/2022]
Abstract
Neural excitation profile widths at the neural level, for monopolar stimulation with Nucleus straight and contour arrays respectively, were simulated using a combined volume-conduction-neural model. The electrically evoked compound action potential profile widths at the electrode array level were calculated with a simple approximation method employing stimulus attenuation inside the cochlear duct, and the results compared to profile width data from literature. The objective of the article is to develop a simple method to estimate stimulus attenuation values by calculating the values that best fit the modelled excitation profile widths to the measured evoked compound action potential profile widths. Results indicate that the modelled excitation profile widths decrease with increasing stimulus attenuation. However, fitting of modelled excitation profile widths to measured evoked compound action potential profile widths show that different stimulus attenuation values are needed for different stimulation levels. It is suggested that the proposed simple model can provide an estimate of stimulus attenuation by calculating the value of the parameter that produces the best fit to experimental data in specific human subjects.
Collapse
Affiliation(s)
- Jacoba E Smit
- Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
| | | | | |
Collapse
|
59
|
Volkenstein S, Brors D, Hansen S, Minovi A, Laub M, Jennissen HP, Dazert S, Neumann A. Influence of bone morphogenetic protein-2 on spiral ganglion neurite growth in vitro. Eur Arch Otorhinolaryngol 2009; 266:1381-9. [DOI: 10.1007/s00405-009-0930-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 02/17/2009] [Indexed: 11/28/2022]
|
60
|
Hurley PA, Crook JM, Shepherd RK. Schwann cells revert to non-myelinating phenotypes in the deafened rat cochlea. Eur J Neurosci 2007; 26:1813-21. [PMID: 17868369 DOI: 10.1111/j.1460-9568.2007.05811.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Loss of sensory hair cells within the cochlea results in a permanent sensorineural hearing loss and initiates the gradual degeneration of spiral ganglion neurons (SGNs) - the primary afferent neurons of the cochlea. While these neurons are normally myelinated via Schwann cells, loss of myelin occurs as a precursor to neural degeneration. However, the relationship between demyelination and the status of Schwann cells in deafness is not well understood. We used a marker of peripheral myelin (myelin protein zero; P0) and a marker of Schwann cells (S100) to determine the temporal sequence of myelin and Schwann cell loss as a function of duration of deafness. Rat pups were systemically deafened for periods ranging from 2 weeks to greater than 6 months by co-administration of frusemide and gentamicin. Cochleae were cryosectioned and quantitative immunohistochemistry used to determine the extent of P0 and S100 labelling within the peripheral processes, SGN soma and their central processes within the modiolus. SGN density was also determined for each cochlear turn. P0 labelling decreased throughout the cochlea with increasing duration of deafness. The reduction in P0 labelling occurred at a faster rate than the SGN loss. In contrast, S100 labelling was not significantly reduced compared with age-matched controls in any cochlear region until 6 months post-deafening. These results suggest that Schwann cells may revert to non-myelinating phenotypes in response to deafness and exhibit greater survival traits than SGNs. The potential clinical significance of these findings for cochlear implants is discussed.
Collapse
|
61
|
van Wermeskerken GKA, Prokop M, van Olphen AF, Albers FWJ. Intracochlear assessment of electrode position after cochlear implant surgery by means of multislice computer tomography. Eur Arch Otorhinolaryngol 2007; 264:1405-7. [PMID: 17632730 DOI: 10.1007/s00405-007-0389-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Accepted: 06/22/2007] [Indexed: 12/01/2022]
Abstract
The development of electrode arrays, the past years, has focused on modiolus-hugging cochlear implant electrodes. Besides, atraumatic implantation of electrodes is of importance for the use in hearing preservation, in cases of combined electric and acoustic stimulation. Intracochlear positioning of the individual electrodes by means of multislice computer tomography (CT) has not yet been shown. In this study we formulated and tested a CT imaging protocol for postoperative scanning of the temporal bone in cochlear implant subjects. Both a fresh human temporal bone and a fresh human cadaver head were implanted with a cochlear implant. Multislice CT was performed for adequate depiction of the cochlear implant. All scans were analyzed on a viewing workstation. After mid-modiolar reconstruction we were able to identify the intracochlear electrode position relative to the scala tympani and scala vestibuli. This was possible in both the implanted isolated temporal bone and the fresh human cadaver head. The feasibility of imaging the electrode position of the cochlear implant within the intracochlear spaces is shown with multislice CT. An imaging protocol is suggested.
Collapse
Affiliation(s)
- Gijs K A van Wermeskerken
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center-Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
62
|
Pettingill LN, Richardson RT, Wise AK, O'Leary SJ, Shepherd RK. Neurotrophic factors and neural prostheses: potential clinical applications based upon findings in the auditory system. IEEE Trans Biomed Eng 2007; 54:1138-48. [PMID: 17551571 PMCID: PMC1886005 DOI: 10.1109/tbme.2007.895375] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Spiral ganglion neurons (SGNs) are the target cells of the cochlear implant, a neural prosthesis designed to provide important auditory cues to severely or profoundly deaf patients. The ongoing degeneration of SGNs that occurs following a sensorineural hearing loss is, therefore, considered a limiting factor in cochlear implant efficacy. We review neurobiological techniques aimed at preventing SGN degeneration using exogenous delivery of neurotrophic factors. Application of these proteins prevents SGN degeneration and can enhance neurite outgrowth. Furthermore, chronic electrical stimulation of SGNs increases neurotrophic factor-induced survival and is correlated with functional benefits. The application of neurotrophic factors has the potential to enhance the benefits that patients can derive from cochlear implants; moreover, these techniques may be relevant for use with neural prostheses in other neurological conditions.
Collapse
MESH Headings
- Animals
- Cell Survival/drug effects
- Cell Survival/physiology
- Cochlea/drug effects
- Cochlea/physiopathology
- Cochlear Implants/trends
- Combined Modality Therapy
- Disease Models, Animal
- Electric Stimulation Therapy/instrumentation
- Electric Stimulation Therapy/methods
- Electrodes, Implanted
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Evoked Potentials, Auditory, Brain Stem/physiology
- Hearing Loss, Sensorineural/pathology
- Hearing Loss, Sensorineural/physiopathology
- Hearing Loss, Sensorineural/therapy
- Membrane Potentials/physiology
- Nerve Degeneration/drug therapy
- Nerve Degeneration/physiopathology
- Nerve Degeneration/prevention & control
- Nerve Growth Factors/administration & dosage
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Recovery of Function/drug effects
- Recovery of Function/physiology
- Spiral Ganglion/drug effects
- Spiral Ganglion/physiology
- Treatment Outcome
Collapse
|
63
|
Stakhovskaya O, Sridhar D, Bonham BH, Leake PA. Frequency map for the human cochlear spiral ganglion: implications for cochlear implants. J Assoc Res Otolaryngol 2007; 8:220-33. [PMID: 17318276 PMCID: PMC2394499 DOI: 10.1007/s10162-007-0076-9] [Citation(s) in RCA: 301] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 01/20/2007] [Indexed: 10/23/2022] Open
Abstract
The goals of this study were to derive a frequency-position function for the human cochlear spiral ganglion (SG) to correlate represented frequency along the organ of Corti (OC) to location along the SG, to determine the range of individual variability, and to calculate an "average" frequency map (based on the trajectories of the dendrites of the SG cells). For both OC and SG frequency maps, a potentially important limitation is that accurate estimates of cochlear place frequency based upon the Greenwood function require knowledge of the total OC or SG length, which cannot be determined in most temporal bone and imaging studies. Therefore, an additional goal of this study was to evaluate a simple metric, basal coil diameter that might be utilized to estimate OC and SG length. Cadaver cochleae (n = 9) were fixed <24 h postmortem, stained with osmium tetroxide, microdissected, decalcified briefly, embedded in epoxy resin, and examined in surface preparations. In digital images, the OC and SG were measured, and the radial nerve fiber trajectories were traced to define a series of frequency-matched coordinates along the two structures. Images of the cochlear turns were reconstructed and measurements of basal turn diameter were made and correlated with OC and SG measurements. The data obtained provide a mathematical function for relating represented frequency along the OC to that of the SG. Results showed that whereas the distance along the OC that corresponds to a critical bandwidth is assumed to be constant throughout the cochlea, estimated critical band distance in the SG varies significantly along the spiral. Additional findings suggest that measurements of basal coil diameter in preoperative images may allow prediction of OC/SG length and estimation of the insertion depth required to reach specific angles of rotation and frequencies. Results also indicate that OC and SG percentage length expressed as a function of rotation angle from the round window is fairly constant across subjects. The implications of these findings for the design and surgical insertion of cochlear implants are discussed.
Collapse
Affiliation(s)
- Olga Stakhovskaya
- Epstein Laboratory, Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA 94143-0526, USA.
| | | | | | | |
Collapse
|
64
|
Abstract
Friedrich-Christian Rosenthal was a prominent German anatomist and surgeon. He was born in Greifswald, Germany on June 3, 1780. In his time, he was best known for his work on the olfactory system and ichthyology. However, his late work also led to his description of the eponymous canal in the cochlea and basal cerebral vein. After an itinerant academic, military, and professional career, he died of tuberculosis in Greifswald on December 5, 1829, working to the end on an unfinished treatise on the anatomy of the brain and cranial nerves.
Collapse
Affiliation(s)
- Devin K Binder
- Department of Neurological Surgery, University of California, Irvine, Irvine, California , USA
| | | | | |
Collapse
|
65
|
Maruyama J, Yamagata T, Ulfendahl M, Bredberg G, Altschuler RA, Miller JM. Effects of antioxidants on auditory nerve function and survival in deafened guinea pigs. Neurobiol Dis 2006; 25:309-18. [PMID: 17112730 PMCID: PMC2048572 DOI: 10.1016/j.nbd.2006.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 09/19/2006] [Accepted: 09/21/2006] [Indexed: 10/23/2022] Open
Abstract
Based on in vitro studies, it is hypothesized that neurotrophic factor deprivation following deafferentation elicits an oxidative state change in the deafferented neuron and the formation of free radicals that then signal cell death pathways. This pathway to cell death was tested in vivo by assessing the efficacy of antioxidants (AOs) to prevent degeneration of deafferented CNVIII spiral ganglion cells (SGCs) in deafened guinea pigs. Following destruction of sensory cells, guinea pigs were treated immediately with Trolox (a water soluble vitamin E analogue)+ascorbic acid (vitamin C) administered either locally, directly in the inner ear, or systemically. Electrical auditory brainstem response (EABR) thresholds were recorded to assess nerve function and showed a large increase following deafness. In treated animals EABR thresholds decreased and surviving SGCs were increased significantly compared to untreated animals. These results indicate that a change in oxidative state following deafferentation plays a role in nerve cell death and antioxidant therapy may rescue SGCs from deafferentation-induced degeneration.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Antioxidants/therapeutic use
- Ascorbic Acid/pharmacology
- Auditory Threshold/drug effects
- Auditory Threshold/physiology
- Cell Survival/drug effects
- Cell Survival/physiology
- Chromans/pharmacology
- Cochlear Nerve/drug effects
- Cochlear Nerve/metabolism
- Cochlear Nerve/physiopathology
- Deafness/drug therapy
- Deafness/metabolism
- Deafness/physiopathology
- Denervation
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Evoked Potentials, Auditory, Brain Stem/physiology
- Guinea Pigs
- Hair Cells, Auditory/injuries
- Hair Cells, Auditory/physiopathology
- Hearing Loss, Sensorineural/drug therapy
- Hearing Loss, Sensorineural/metabolism
- Hearing Loss, Sensorineural/physiopathology
- Male
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neurons, Afferent/pathology
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Oxidative Stress/drug effects
- Oxidative Stress/physiology
- Spiral Ganglion/drug effects
- Spiral Ganglion/metabolism
- Spiral Ganglion/physiopathology
- Treatment Outcome
Collapse
Affiliation(s)
- Jun Maruyama
- Center for Hearing and Communication Research, Karolinska Institutet, and Department of Otolaryngology, Karolinska University Hospital, Solna, Stockholm, Sweden
- Department of Otolaryngology, Ehime University School of Medicine, Matsuyama, Japan
| | - Takahiko Yamagata
- Center for Hearing and Communication Research, Karolinska Institutet, and Department of Otolaryngology, Karolinska University Hospital, Solna, Stockholm, Sweden
- Department of Otolaryngology, Ehime University School of Medicine, Matsuyama, Japan
| | - Mats Ulfendahl
- Center for Hearing and Communication Research, Karolinska Institutet, and Department of Otolaryngology, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Göran Bredberg
- Department of Cochlear Implant, Karolinska Hospital, Huddinge, Sweden
| | | | - Josef M. Miller
- Center for Hearing and Communication Research, Karolinska Institutet, and Department of Otolaryngology, Karolinska University Hospital, Solna, Stockholm, Sweden
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, USA
| |
Collapse
|
66
|
Holley MC. Keynote review: The auditory system, hearing loss and potential targets for drug development. Drug Discov Today 2005; 10:1269-82. [PMID: 16214671 DOI: 10.1016/s1359-6446(05)03595-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a huge potential market for the treatment of hearing loss. Drugs are already available to ameliorate predictable, damaging effects of excessive noise and ototoxic drugs. The biggest challenge now is to develop drug-based treatments for regeneration of sensory cells following noise-induced and age-related hearing loss. This requires careful consideration of the physiological mechanisms of hearing loss and identification of key cellular and molecular targets. There are many molecular cues for the discovery of suitable drug targets and a full range of experimental resources are available for initial screening through to functional analysis in vivo. There is now an unparalleled opportunity for translational research.
Collapse
Affiliation(s)
- Matthew C Holley
- Department of Biomedical Sciences, Addison Building, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|