51
|
Seifert R, Schneider EH, Bähre H. From canonical to non-canonical cyclic nucleotides as second messengers: pharmacological implications. Pharmacol Ther 2014; 148:154-84. [PMID: 25527911 DOI: 10.1016/j.pharmthera.2014.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 02/07/2023]
Abstract
This review summarizes our knowledge on the non-canonical cyclic nucleotides cCMP, cUMP, cIMP, cXMP and cTMP. We place the field into a historic context and discuss unresolved questions and future directions of research. We discuss the implications of non-canonical cyclic nucleotides for experimental and clinical pharmacology, focusing on bacterial infections, cardiovascular and neuropsychiatric disorders and reproduction medicine. The canonical cyclic purine nucleotides cAMP and cGMP fulfill the criteria of second messengers. (i) cAMP and cGMP are synthesized by specific generators, i.e. adenylyl and guanylyl cyclases, respectively. (ii) cAMP and cGMP activate specific effector proteins, e.g. protein kinases. (iii) cAMP and cGMP exert specific biological effects. (iv) The biological effects of cAMP and cGMP are terminated by phosphodiesterases and export. The effects of cAMP and cGMP are mimicked by (v) membrane-permeable cyclic nucleotide analogs and (vi) bacterial toxins. For decades, the existence and relevance of cCMP and cUMP have been controversial. Modern mass-spectrometric methods have unequivocally demonstrated the existence of cCMP and cUMP in mammalian cells. For both, cCMP and cUMP, the criteria for second messenger molecules are now fulfilled as well. There are specific patterns by which nucleotidyl cyclases generate cNMPs and how they are degraded and exported, resulting in unique cNMP signatures in biological systems. cNMP signaling systems, specifically at the level of soluble guanylyl cyclase, soluble adenylyl cyclase and ExoY from Pseudomonas aeruginosa are more promiscuous than previously appreciated. cUMP and cCMP are evolutionary new molecules, probably reflecting an adaption to signaling requirements in higher organisms.
Collapse
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Erich H Schneider
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany
| | - Heike Bähre
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
52
|
Abstract
Many bacterial and viral pathogens block or subvert host cellular processes to promote successful infection. One host protein that is targeted by invading pathogens is the small GTPase RAB11, which functions in vesicular trafficking. RAB11 functions in conjunction with a protein complex known as the exocyst to mediate terminal steps in cargo transport via the recycling endosome to cell-cell junctions, phagosomes and cellular protrusions. These processes contribute to host innate immunity by promoting epithelial and endothelial barrier integrity, sensing and immobilizing pathogens and repairing pathogen-induced cellular damage. In this Review, we discuss the various mechanisms that pathogens have evolved to disrupt or subvert RAB11-dependent pathways as part of their infection strategy.
Collapse
|
53
|
Saucerman JJ, Greenwald EC, Polanowska-Grabowska R. Mechanisms of cyclic AMP compartmentation revealed by computational models. ACTA ACUST UNITED AC 2014; 143:39-48. [PMID: 24378906 PMCID: PMC3874575 DOI: 10.1085/jgp.201311044] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jeffrey J Saucerman
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | | | | |
Collapse
|
54
|
ExoY from Pseudomonas aeruginosa is a nucleotidyl cyclase with preference for cGMP and cUMP formation. Biochem Biophys Res Commun 2014; 450:870-4. [PMID: 24971548 DOI: 10.1016/j.bbrc.2014.06.088] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 11/21/2022]
Abstract
In addition to the well known second messengers cAMP and cGMP, mammalian cells contain the cyclic pyrimidine nucleotides cCMP and cUMP. Soluble guanylyl cyclase and soluble adenylyl cyclase produce all four cNMPs. Several bacterial toxins exploit mammalian cyclic nucleotide signaling. The type III secretion protein ExoY from Pseudomonas aeruginosa induces severe lung damage and effectively produces cGMP. Here, we show that transfection of mammalian cells with ExoY or infection with ExoY-expressing P. aeruginosa not only massively increases cGMP but also cUMP levels. In contrast, the structurally related CyaA from Bordetella pertussis and edema factor from Bacillus anthracis exhibit a striking preference for cAMP increases. Thus, ExoY is a nucleotidyl cyclase with preference for cGMP and cUMP production. The differential effects of bacterial toxins on cNMP levels suggest that cUMP plays a distinct second messenger role.
Collapse
|
55
|
Huber P, Bouillot S, Elsen S, Attrée I. Sequential inactivation of Rho GTPases and Lim kinase by Pseudomonas aeruginosa toxins ExoS and ExoT leads to endothelial monolayer breakdown. Cell Mol Life Sci 2014; 71:1927-41. [PMID: 23974244 PMCID: PMC11113219 DOI: 10.1007/s00018-013-1451-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/12/2013] [Accepted: 08/05/2013] [Indexed: 12/21/2022]
Abstract
Pseudomonas aeruginosa is a major human opportunistic pathogen and one of the most important causal agents of bacteremia. For non-blood-borne infection, bacterial dissemination requires the crossing of the vascular endothelium, the main barrier between blood and the surrounding tissues. Here, we investigated the effects of P. aeruginosa type 3 secretion effectors, namely ExoS, ExoT, and ExoY, on regulators of actin cytoskeleton dynamics in primary endothelial cells. ExoS and ExoT similarly affected the Lim kinase-cofilin pathway, thereby promoting actin filament severing. Cofilin activation was also observed in a mouse model of P. aeruginosa-induced acute pneumonia. Rho, Rac, and Cdc42 GTPases were sequentially inactivated, leading to inhibition of membrane ruffling, filopodia, and stress fiber collapse, and focal adhesion disruption. At the end of the process, ExoS and ExoT produced a dramatic retraction in all primary endothelial cell types tested and thus a rupture of the endothelial monolayer. ExoY alone had no effect in this context. Cell retraction could be counteracted by overexpression of actin cytoskeleton regulators. In addition, our data suggest that moesin is neither a direct exotoxin target nor an important player in this process. We conclude that any action leading to inhibition of actin filament breakdown will improve the barrier function of the endothelium during P. aeruginosa infection.
Collapse
Affiliation(s)
- P Huber
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France,
| | | | | | | |
Collapse
|
56
|
Stevens TC, Ochoa CD, Morrow KA, Robson MJ, Prasain N, Zhou C, Alvarez DF, Frank DW, Balczon R, Stevens T. The Pseudomonas aeruginosa exoenzyme Y impairs endothelial cell proliferation and vascular repair following lung injury. Am J Physiol Lung Cell Mol Physiol 2014; 306:L915-24. [PMID: 24705722 DOI: 10.1152/ajplung.00135.2013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exoenzyme Y (ExoY) is a Pseudomonas aeruginosa toxin that is introduced into host cells through the type 3 secretion system (T3SS). Once inside the host cell cytoplasm, ExoY generates cyclic nucleotides that cause tau phosphorylation and microtubule breakdown. Microtubule breakdown causes interendothelial cell gap formation and tissue edema. Although ExoY transiently induces interendothelial cell gap formation, it remains unclear whether ExoY prevents repair of the endothelial cell barrier. Here, we test the hypothesis that ExoY intoxication impairs recovery of the endothelial cell barrier following gap formation, decreasing migration, proliferation, and lung repair. Pulmonary microvascular endothelial cells (PMVECs) were infected with P. aeruginosa strains for 6 h, including one possessing an active ExoY (PA103 exoUexoT::Tc pUCPexoY; ExoY(+)), one with an inactive ExoY (PA103ΔexoUexoT::Tc pUCPexoY(K81M); ExoY(K81M)), and one that lacks PcrV required for a functional T3SS (ΔPcrV). ExoY(+) induced interendothelial cell gaps, whereas ExoY(K81M) and ΔPcrV did not promote gap formation. Following gap formation, bacteria were removed and endothelial cell repair was examined. PMVECs were unable to repair gaps even 3-5 days after infection. Serum-stimulated growth was greatly diminished following ExoY intoxication. Intratracheal inoculation of ExoY(+) and ExoY(K81M) caused severe pneumonia and acute lung injury. However, whereas the pulmonary endothelial cell barrier was functionally improved 1 wk following ExoY(K81M) infection, pulmonary endothelium was unable to restrict the hyperpermeability response to elevated hydrostatic pressure following ExoY(+) infection. In conclusion, ExoY is an edema factor that chronically impairs endothelial cell barrier integrity following lung injury.
Collapse
Affiliation(s)
- Trevor C Stevens
- Center for Lung Biology, University of South Alabama, Mobile, Alabama;
| | - Cristhiaan D Ochoa
- Physician-Scientist Training Program, Department of Medicine, University of Texas-Southwestern Medical Center, Dallas, Texas; Division of Pulmonary and Critical Care, University of Texas-Southwestern Medical Center, Dallas, Texas
| | - K Adam Morrow
- Department of Pharmacology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Matthew J Robson
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Nutan Prasain
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, Indianapolis, Indiana
| | - Chun Zhou
- Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Diego F Alvarez
- Department of Pharmacology, University of South Alabama, Mobile, Alabama; Department of Medicine, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Dara W Frank
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin; and Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ron Balczon
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Troy Stevens
- Department of Pharmacology, University of South Alabama, Mobile, Alabama; Department of Medicine, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
57
|
Golovkine G, Faudry E, Bouillot S, Voulhoux R, Attrée I, Huber P. VE-cadherin cleavage by LasB protease from Pseudomonas aeruginosa facilitates type III secretion system toxicity in endothelial cells. PLoS Pathog 2014; 10:e1003939. [PMID: 24626230 PMCID: PMC3953407 DOI: 10.1371/journal.ppat.1003939] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/06/2014] [Indexed: 01/01/2023] Open
Abstract
Infection of the vascular system by Pseudomonas aeruginosa (Pa) occurs during bacterial dissemination in the body or in blood-borne infections. Type 3 secretion system (T3SS) toxins from Pa induce a massive retraction when injected into endothelial cells. Here, we addressed the role of type 2 secretion system (T2SS) effectors in this process. Mutants with an inactive T2SS were much less effective than wild-type strains at inducing cell retraction. Furthermore, secretomes from wild-types were sufficient to trigger cell-cell junction opening when applied to cells, while T2SS-inactivated mutants had minimal activity. Intoxication was associated with decreased levels of vascular endothelial (VE)-cadherin, a homophilic adhesive protein located at endothelial cell-cell junctions. During the process, the protein was cleaved in the middle of its extracellular domain (positions 335 and 349). VE-cadherin attrition was T3SS-independent but T2SS-dependent. Interestingly, the epithelial (E)-cadherin was unaffected by T2SS effectors, indicating that this mechanism is specific to endothelial cells. We showed that one of the T2SS effectors, the protease LasB, directly affected VE-cadherin proteolysis, hence promoting cell-cell junction disruption. Furthermore, mouse infection with Pa to induce acute pneumonia lead to significant decreases in lung VE-cadherin levels, whereas the decrease was minimal with T2SS-inactivated or LasB-deleted mutant strains. We conclude that the T2SS plays a pivotal role during Pa infection of the vascular system by breaching the endothelial barrier, and propose a model in which the T2SS and the T3SS cooperate to intoxicate endothelial cells.
Collapse
Affiliation(s)
- Guillaume Golovkine
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Eric Faudry
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Stéphanie Bouillot
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Romé Voulhoux
- CNRS and Aix-Marseille Univ, Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR7255), Marseille, France
| | - Ina Attrée
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Philippe Huber
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| |
Collapse
|
58
|
The molecular mechanism of acute lung injury caused by Pseudomonas aeruginosa: from bacterial pathogenesis to host response. J Intensive Care 2014; 2:10. [PMID: 25520826 PMCID: PMC4267601 DOI: 10.1186/2052-0492-2-10] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 01/28/2014] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa is the most common gram-negative pathogen causing pneumonia in immunocompromised patients. Acute lung injury induced by bacterial exoproducts is associated with a poor outcome in P. aeruginosa pneumonia. The major pathogenic toxins among the exoproducts of P. aeruginosa and the mechanism by which they cause acute lung injury have been investigated: exoenzyme S and co-regulated toxins were found to contribute to acute lung injury. P. aeruginosa secretes these toxins through the recently defined type III secretion system (TTSS), by which gram-negative bacteria directly translocate toxins into the cytosol of target eukaryotic cells. TTSS comprises the secretion apparatus (termed the injectisome), translocators, secreted toxins, and regulatory components. In the P. aeruginosa genome, a pathogenic gene cluster, the exoenzyme S regulon, encodes genes underlying the regulation, secretion, and translocation of TTSS. Four type III secretory toxins, namely ExoS, ExoT, ExoU, and ExoY, have been identified in P. aeruginosa. ExoS is a 49-kDa form of exoenzyme S, a bifunctional toxin that exerts ADP-ribosyltransferase and GTPase-activating protein (GAP) activity to disrupt endocytosis, the actin cytoskeleton, and cell proliferation. ExoT, a 53-kDa form of exoenzyme S with 75% sequence homology to ExoS, also exerts GAP activity to interfere with cell morphology and motility. ExoY is a nucleotidal cyclase that increases the intracellular levels of cyclic adenosine and guanosine monophosphates, resulting in edema formation. ExoU, which exhibits phospholipase A2 activity activated by host cell ubiquitination after translocation, is a major pathogenic cytotoxin that causes alveolar epithelial injury and macrophage necrosis. Approximately 20% of clinical isolates also secrete ExoU, a gene encoded within an insertional pathogenic gene cluster named P. aeruginosa pathogenicity island-2. The ExoU secretory phenotype is associated with a poor clinical outcome in P. aeruginosa pneumonia. Blockade of translocation by TTSS or inhibition of the enzymatic activity of translocated toxins has the potential to decrease acute lung injury and improve clinical outcome.
Collapse
|
59
|
Rolsma SL, Frank DW. In vitro assays to monitor the activity of Pseudomonas aeruginosa Type III secreted proteins. Methods Mol Biol 2014; 1149:171-84. [PMID: 24818904 PMCID: PMC5860653 DOI: 10.1007/978-1-4939-0473-0_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pseudomonas aeruginosa secretes numerous toxins and destructive enzymes that play distinct roles in pathogenesis. The Type III secretion system (T3SS) of Pseudomonas is a system that delivers a subset of toxins directly into the cytoplasm of eukaryotic cells. The secreted effectors include ExoS, ExoT, ExoU, and ExoY. In this chapter, we describe methods to induce T3S expression and measure the enzymatic activities of each effector in in vitro assays. ExoU is a phospholipase and its activity can be measured in a fluorescence-based assay monitoring the cleavage of the fluorogenic substrate, PED6. ExoS and ExoT both possess ADP-ribosyltransferase (ADPRT) and GTPase-activating protein (GAP) activity. ADPRT activity can be assessed by using radiolabeled nicotinamide adenine dinucleotide (NAD(+)) and measuring the covalent incorporation of ADP-ribose into a target protein. GAP activity is measured by the release of radiolabeled phosphate from [γ-(32)P]GTP-bound target proteins. In accordance with recent trends towards reducing the use of radioactivity in the laboratory, alternative assays using fluorescent or biotin-labeled reagents are described. ExoY is a nucleotidyl cyclase; cAMP production stimulated by ExoY can be monitored using reverse-phase HPLC or with commercially available immunological assays.
Collapse
Affiliation(s)
- Stephanie L Rolsma
- Department of Microbiology and Molecular Genetics, Center of Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | | |
Collapse
|
60
|
Audia JP, Lindsey AS, Housley NA, Ochoa CR, Zhou C, Toba M, Oka M, Annamdevula NS, Fitzgerald MS, Frank DW, Alvarez DF. In the absence of effector proteins, the Pseudomonas aeruginosa type three secretion system needle tip complex contributes to lung injury and systemic inflammatory responses. PLoS One 2013; 8:e81792. [PMID: 24312357 PMCID: PMC3842252 DOI: 10.1371/journal.pone.0081792] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/16/2013] [Indexed: 01/06/2023] Open
Abstract
Herein we describe a pathogenic role for the Pseudomonas aeruginosa type three secretion system (T3SS) needle tip complex protein, PcrV, in causing lung endothelial injury. We first established a model in which P. aeruginosa wild type strain PA103 caused pneumonia-induced sepsis and distal organ dysfunction. Interestingly, a PA103 derivative strain lacking its two known secreted effectors, ExoU and ExoT [denoted PA103 (ΔU/ΔT)], also caused sepsis and modest distal organ injury whereas an isogenic PA103 strain lacking the T3SS needle tip complex assembly protein [denoted PA103 (ΔPcrV)] did not. PA103 (ΔU/ΔT) infection caused neutrophil influx into the lung parenchyma, lung endothelial injury, and distal organ injury (reminiscent of sepsis). In contrast, PA103 (ΔPcrV) infection caused nominal neutrophil infiltration and lung endothelial injury, but no distal organ injury. We further examined pathogenic mechanisms of the T3SS needle tip complex using cultured rat pulmonary microvascular endothelial cells (PMVECs) and revealed a two-phase, temporal nature of infection. At 5-hours post-inoculation (early phase infection), PA103 (ΔU/ΔT) elicited PMVEC barrier disruption via perturbation of the actin cytoskeleton and did so in a cell death-independent manner. Conversely, PA103 (ΔPcrV) infection did not elicit early phase PMVEC barrier disruption. At 24-hours post-inoculation (late phase infection), PA103 (ΔU/ΔT) induced PMVEC damage and death that displayed an apoptotic component. Although PA103 (ΔPcrV) infection induced late phase PMVEC damage and death, it did so to an attenuated extent. The PA103 (ΔU/ΔT) and PA103 (ΔPcrV) mutants grew at similar rates and were able to adhere equally to PMVECs post-inoculation indicating that the observed differences in damage and barrier disruption are likely attributable to T3SS needle tip complex-mediated pathogenic differences post host cell attachment. Together, these infection data suggest that the T3SS needle tip complex and/or another undefined secreted effector(s) are important determinants of P. aeruginosa pneumonia-induced lung endothelial barrier disruption.
Collapse
Affiliation(s)
- Jonathon P. Audia
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail: (JPA); (DFA)
| | - Ashley S. Lindsey
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Nicole A. Housley
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Courtney R. Ochoa
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Chun Zhou
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Michie Toba
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Masahiko Oka
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Naga S. Annamdevula
- Department of Chemical and Biomolecular Engineering, University of South Alabama, Mobile, Alabama, United States of America
| | - Meshann S. Fitzgerald
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Dara W. Frank
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Diego F. Alvarez
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail: (JPA); (DFA)
| |
Collapse
|
61
|
Balczon R, Prasain N, Ochoa C, Prater J, Zhu B, Alexeyev M, Sayner S, Frank DW, Stevens T. Pseudomonas aeruginosa exotoxin Y-mediated tau hyperphosphorylation impairs microtubule assembly in pulmonary microvascular endothelial cells. PLoS One 2013; 8:e74343. [PMID: 24023939 PMCID: PMC3762819 DOI: 10.1371/journal.pone.0074343] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/01/2013] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa uses a type III secretion system to introduce the adenylyl and guanylyl cyclase exotoxin Y (ExoY) into the cytoplasm of endothelial cells. ExoY induces Tau hyperphosphorylation and insolubility, microtubule breakdown, barrier disruption and edema, although the mechanism(s) responsible for microtubule breakdown remain poorly understood. Here we investigated both microtubule behavior and centrosome activity to test the hypothesis that ExoY disrupts microtubule dynamics. Fluorescence microscopy determined that infected pulmonary microvascular endothelial cells contained fewer microtubules than control cells, and further studies demonstrated that the microtubule-associated protein Tau was hyperphosphorylated following infection and dissociated from microtubules. Disassembly/reassembly studies determined that microtubule assembly was disrupted in infected cells, with no detectable effects on either microtubule disassembly or microtubule nucleation by centrosomes. This effect of ExoY on microtubules was abolished when the cAMP-dependent kinase phosphorylation site (Ser-214) on Tau was mutated to a non-phosphorylatable form. These studies identify Tau in microvascular endothelial cells as the target of ExoY in control of microtubule architecture following pulmonary infection by Pseudomonas aeruginosa and demonstrate that phosphorylation of tau following infection decreases microtubule assembly.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail:
| | - Nutan Prasain
- Department of Pediatrics, University of Indiana School of Medicine, Indianapolis, Indiana, United States of America
| | - Cristhiaan Ochoa
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
| | - Jason Prater
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Bing Zhu
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
| | - Mikhail Alexeyev
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Sarah Sayner
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Dara W. Frank
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Troy Stevens
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| |
Collapse
|
62
|
Obiako B, Calchary W, Xu N, Kunstadt R, Richardson B, Nix J, Sayner SL. Bicarbonate disruption of the pulmonary endothelial barrier via activation of endogenous soluble adenylyl cyclase, isoform 10. Am J Physiol Lung Cell Mol Physiol 2013; 305:L185-92. [PMID: 23686854 PMCID: PMC3726949 DOI: 10.1152/ajplung.00392.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/14/2013] [Indexed: 01/23/2023] Open
Abstract
It is becoming increasingly apparent that cAMP signals within the pulmonary endothelium are highly compartmentalized, and this compartmentalization is critical to maintaining endothelial barrier integrity. Studies demonstrate that the exogenous soluble bacterial toxin, ExoY, and heterologous expression of the forskolin-stimulated soluble mammalian adenylyl cyclase (AC) chimera, sACI/II, elevate cytosolic cAMP and disrupt the pulmonary microvascular endothelial barrier. The barrier-disruptive effects of cytosolic cAMP generated by exogenous soluble ACs are in contrast to the barrier-protective effects of subplasma membrane cAMP generated by transmembrane AC, which strengthens endothelial barrier integrity. Endogenous soluble AC isoform 10 (AC10 or commonly known as sAC) lacks transmembrane domains and localizes within the cytosolic compartment. AC10 is uniquely activated by bicarbonate to generate cytosolic cAMP, yet its role in regulation of endothelial barrier integrity has not been addressed. Here we demonstrate that, within the pulmonary circulation, AC10 is expressed in pulmonary microvascular endothelial cells (PMVECs) and pulmonary artery endothelial cells (PAECs), yet expression in PAECs is lower. Furthermore, pulmonary endothelial cells selectively express bicarbonate cotransporters. While extracellular bicarbonate generates a phosphodiesterase 4-sensitive cAMP pool in PMVECs, no such cAMP response is detected in PAECs. Finally, addition of extracellular bicarbonate decreases resistance across the PMVEC monolayer and increases the filtration coefficient in the isolated perfused lung above osmolality controls. Collectively, these findings suggest that PMVECs have a bicarbonate-sensitive cytosolic cAMP pool that disrupts endothelial barrier integrity. These studies could provide an alternative mechanism for the controversial effects of bicarbonate correction of acidosis of acute respiratory distress syndrome patients.
Collapse
Affiliation(s)
- Boniface Obiako
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 2012; 76:46-65. [PMID: 22390972 DOI: 10.1128/mmbr.05007-11] [Citation(s) in RCA: 484] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell-to-cell communication is a major process that allows bacteria to sense and coordinately react to the fluctuating conditions of the surrounding environment. In several pathogens, this process triggers the production of virulence factors and/or a switch in bacterial lifestyle that is a major determining factor in the outcome and severity of the infection. Understanding how bacteria control these signaling systems is crucial to the development of novel antimicrobial agents capable of reducing virulence while allowing the immune system of the host to clear bacterial infection, an approach likely to reduce the selective pressures for development of resistance. We provide here an up-to-date overview of the molecular basis and physiological implications of cell-to-cell signaling systems in Gram-negative bacteria, focusing on the well-studied bacterium Pseudomonas aeruginosa. All of the known cell-to-cell signaling systems in this bacterium are described, from the most-studied systems, i.e., N-acyl homoserine lactones (AHLs), the 4-quinolones, the global activator of antibiotic and cyanide synthesis (GAC), the cyclic di-GMP (c-di-GMP) and cyclic AMP (cAMP) systems, and the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), to less-well-studied signaling molecules, including diketopiperazines, fatty acids (diffusible signal factor [DSF]-like factors), pyoverdine, and pyocyanin. This overview clearly illustrates that bacterial communication is far more complex than initially thought and delivers a clear distinction between signals that are quorum sensing dependent and those relying on alternative factors for their production.
Collapse
|
64
|
Ochoa CD, Alexeyev M, Pastukh V, Balczon R, Stevens T. Pseudomonas aeruginosa exotoxin Y is a promiscuous cyclase that increases endothelial tau phosphorylation and permeability. J Biol Chem 2012; 287:25407-18. [PMID: 22637478 DOI: 10.1074/jbc.m111.301440] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Exotoxin Y (ExoY) is a type III secretion system effector found in ~ 90% of the Pseudomonas aeruginosa isolates. Although it is known that ExoY causes inter-endothelial gaps and vascular leak, the mechanisms by which this occurs are poorly understood. Using both a bacteria-delivered and a codon-optimized conditionally expressed ExoY, we report that this toxin is a dual soluble adenylyl and guanylyl cyclase that results in intracellular cAMP and cGMP accumulation. The enzymatic activity of ExoY caused phosphorylation of endothelial Tau serine 214, accumulation of insoluble Tau, inter-endothelial cell gap formation, and increased macromolecular permeability. To discern whether the cAMP or cGMP signal was responsible for Tau phosphorylation and barrier disruption, pulmonary microvascular endothelial cells were engineered for the conditional expression of either wild-type guanylyl cyclase, which synthesizes cGMP, or a mutated guanylyl cyclase, which synthesizes cAMP. Sodium nitroprusside stimulation of the cGMP-generating cyclase resulted in transient Tau serine 214 phosphorylation and gap formation, whereas stimulation of the cAMP-generating cyclase induced a robust increase in Tau serine 214 phosphorylation, gap formation, and macromolecular permeability. These results indicate that the cAMP signal is the dominant stimulus for Tau phosphorylation. Hence, ExoY is a promiscuous cyclase and edema factor that uses cAMP and, to some extent, cGMP to induce the hyperphosphorylation and insolubility of endothelial Tau. Because hyperphosphorylated and insoluble Tau are hallmarks in neurodegenerative tauopathies such as Alzheimer disease, acute Pseudomonas infections cause a pathophysiological sequela in endothelium previously recognized only in chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Cristhiaan D Ochoa
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | | | |
Collapse
|
65
|
Ochoa CD, Stevens T. Studies on the cell biology of interendothelial cell gaps. Am J Physiol Lung Cell Mol Physiol 2012; 302:L275-86. [PMID: 21964402 PMCID: PMC3289273 DOI: 10.1152/ajplung.00215.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/24/2011] [Indexed: 02/06/2023] Open
Abstract
Pain, redness, heat, and swelling are hallmarks of inflammation that were recognized as early as the first century AD. Despite these early observations, the mechanisms responsible for swelling, in particular, remained an enigma for nearly two millennia. Only in the past century have scientists and physicians gained an appreciation for the role that vascular endothelium plays in controlling the exudation that is responsible for swelling. One of these mechanisms is the formation of transient gaps between adjacent endothelial cell borders. Inflammatory mediators act on endothelium to reorganize the cytoskeleton, decrease the strength of proteins that connect cells together, and induce transient gaps between endothelial cells. These gaps form a paracellular route responsible for exudation. The discovery that interendothelial cell gaps are causally linked to exudation began in the 1960s and was accompanied by significant controversy. Today, the role of gap formation in tissue edema is accepted by many, and significant scientific effort is dedicated toward developing therapeutic strategies that will prevent or reverse the endothelial cell gaps that are present during the course of inflammatory illness. Given the importance of this field in endothelial cell biology and inflammatory disease, this focused review catalogs key historical advances that contributed to our modern-day understanding of the cell biology of interendothelial gap formation.
Collapse
Affiliation(s)
- Cristhiaan D Ochoa
- Depts. of Pharmacology and Medicine, Center for Lung Biology, College of Medicine, Univ. of South Alabama, Mobile, AL 36688, USA
| | | |
Collapse
|
66
|
Feinstein WP, Zhu B, Leavesley SJ, Sayner SL, Rich TC. Assessment of cellular mechanisms contributing to cAMP compartmentalization in pulmonary microvascular endothelial cells. Am J Physiol Cell Physiol 2011; 302:C839-52. [PMID: 22116306 DOI: 10.1152/ajpcell.00361.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic AMP signals encode information required to differentially regulate a wide variety of cellular responses; yet it is not well understood how information is encrypted within these signals. An emerging concept is that compartmentalization underlies specificity within the cAMP signaling pathway. This concept is based on a series of observations indicating that cAMP levels are distinct in different regions of the cell. One such observation is that cAMP production at the plasma membrane increases pulmonary microvascular endothelial barrier integrity, whereas cAMP production in the cytosol disrupts barrier integrity. To better understand how cAMP signals might be compartmentalized, we have developed mathematical models in which cellular geometry as well as total adenylyl cyclase and phosphodiesterase activities were constrained to approximate values measured in pulmonary microvascular endothelial cells. These simulations suggest that the subcellular localizations of adenylyl cyclase and phosphodiesterase activities are by themselves insufficient to generate physiologically relevant cAMP gradients. Thus, the assembly of adenylyl cyclase, phosphodiesterase, and protein kinase A onto protein scaffolds is by itself unlikely to ensure signal specificity. Rather, our simulations suggest that reductions in the effective cAMP diffusion coefficient may facilitate the formation of substantial cAMP gradients. We conclude that reductions in the effective rate of cAMP diffusion due to buffers, structural impediments, and local changes in viscosity greatly facilitate the ability of signaling complexes to impart specificity within the cAMP signaling pathway.
Collapse
Affiliation(s)
- Wei P Feinstein
- Center for Lung Biology, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | | | |
Collapse
|
67
|
Anderson DM, Schmalzer KM, Sato H, Casey M, Terhune SS, Haas AL, Feix JB, Frank DW. Ubiquitin and ubiquitin-modified proteins activate the Pseudomonas aeruginosa T3SS cytotoxin, ExoU. Mol Microbiol 2011; 82:1454-67. [PMID: 22040088 DOI: 10.1111/j.1365-2958.2011.07904.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that possesses a type III secretion system (T3SS) critical for evading innate immunity and establishing acute infections in compromised patients. Our research has focused on the structure-activity relationships of ExoU, the most toxic and destructive type III effector produced by P. aeruginosa. ExoU possesses phospholipase activity, which is detectable in vitro only when a eukaryotic cofactor is provided with membrane substrates. We report here that a subpopulation of ubiquitylated yeast SOD1 and other ubiquitylated mammalian proteins activate ExoU. Phospholipase activity was detected using purified ubiquitin of various chain lengths and linkage types; however, free monoubiquitin is sufficient in a genetically engineered dual expression system. The use of ubiquitin by a bacterial enzyme as an activator is unprecedented and represents a new aspect in the manipulation of the eukaryotic ubiquitin system to facilitate bacterial replication and dissemination.
Collapse
Affiliation(s)
- David M Anderson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
This review discusses the potential place of soluble adenylyl cyclase (sAC) in the framework of signaling in the cardiovascular system. cAMP has been studied as a critical and pleiotropic second messenger in cardiomyocytes, endothelial cells, and smooth muscle vascular cells for many years. It is involved in the transduction of signaling by catecholamines, prostaglandins, adenosine, and glucagon, just to name a few. These hormones can act via cAMP by binding to a G protein-coupled receptor on the plasma membrane with subsequent activation of a heterotrimeric G protein and its downstream effector, transmembrane adenylyl cyclase. This has long been the canonical standard for cAMP production in a cell. However, the relatively recent discovery of a unique source of cAMP, sAC, creates the potential for a shift in this signaling paradigm. In fact, sAC has been shown to play a role in apoptosis in coronary endothelial cells and cardiomyocytes. Additionally, it links nutrient utilization with ATP production in the liver and brain, which suggests one of many potential roles for sAC in cardiac function. The possibility of producing cAMP from a source distal to the plasma membrane provides a critical new building block for reconstructing the cellular signaling infrastructure.
Collapse
Affiliation(s)
- Jonathan Chen
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | |
Collapse
|
69
|
Guichard A, Nizet V, Bier E. New insights into the biological effects of anthrax toxins: linking cellular to organismal responses. Microbes Infect 2011; 14:97-118. [PMID: 21930233 DOI: 10.1016/j.micinf.2011.08.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 12/15/2022]
Abstract
The anthrax toxins lethal toxin (LT) and edema toxin (ET) are essential virulence factors produced by Bacillus anthracis. These toxins act during two distinct phases of anthrax infection. During the first, prodromal phase, which is often asymptomatic, anthrax toxins act on cells of the immune system to help the pathogen establish infection. Then, during the rapidly progressing (or fulminant) stage of the disease bacteria disseminate via a hematological route to various target tissues and organs, which are typically highly vascularized. As bacteria proliferate in the bloodstream, LT and ET begin to accumulate rapidly reaching a critical threshold level that will cause death even when the bacterial proliferation is curtailed by antibiotics. During this final phase of infection the toxins cause an increase in vascular permeability and a decrease in function of target organs including the heart, spleen, kidney, adrenal gland, and brain. In this review, we examine the various biological effects of anthrax toxins, focusing on the fulminant stage of the disease and on mechanisms by which the two toxins may collaborate to cause cardiovascular collapse. We discuss normal mechanisms involved in maintaining vascular integrity and based on recent studies indicating that LT and ET cooperatively inhibit membrane trafficking to cell-cell junctions we explore several potential mechanisms by which the toxins may achieve their lethal effects. We also summarize the effects of other potential virulence factors secreted by B. anthracis and consider the role of toxic factors in the evolutionarily recent emergence of this devastating disease.
Collapse
Affiliation(s)
- Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349, USA
| | | | | |
Collapse
|
70
|
Hritonenko V, Mun JJ, Tam C, Simon NC, Barbieri JT, Evans DJ, Fleiszig SMJ. Adenylate cyclase activity of Pseudomonas aeruginosa ExoY can mediate bleb-niche formation in epithelial cells and contributes to virulence. Microb Pathog 2011; 51:305-12. [PMID: 21843628 DOI: 10.1016/j.micpath.2011.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 07/26/2011] [Accepted: 08/02/2011] [Indexed: 11/15/2022]
Abstract
We previously showed that ADP-ribosylation (ADP-r) activity of ExoS, a type III secreted toxin of Pseudomonas aeruginosa, enables bacterial replication in corneal and respiratory epithelial cells and correlates with bacterial trafficking to plasma membrane blebs (bleb-niche formation). Here, we explored another type III secreted toxin, ExoY, for its impact on intracellular trafficking and survival, and for virulence in vivo using a murine corneal infection model. Chromosomal or plasmid-mediated expression of exoY in invasive P. aeruginosa (strain PAO1) enabled bacteria to form and traffic to epithelial membrane blebs in the absence of other known effectors. In contrast, plasmid expression of any of four adenylate cyclase mutant forms of exoY did not enable bleb-niche formation, and bacteria localized to perinuclear vacuoles as for effector-null mutant controls. None of the plasmid-complemented bacteria used in this study showed ADP-r activity in the absence of ExoS and ExoT. In contrast to ADP-r activity of ExoS, bleb-niche formation induced by ExoY's adenylate cyclase activity was not accompanied by enhanced intracellular replication. In vivo results showed that ExoY-adenylate cyclase activity promoted P. aeruginosa corneal virulence in susceptible mice. Together the data show that adenylate cyclase activity of P. aeruginosa ExoY, similarly to the ADP-r activity of ExoS, can mediate bleb-niche formation in epithelial cells. While this activity did not promote intracellular replication in vitro, ExoY conferred increased virulence in vivo in susceptible mice. Mechanisms for bleb-niche formation and relationships to intracellular replication and virulence in vivo require further investigation for both ExoS and ExoY.
Collapse
|
71
|
Sayner SL, Balczon R, Frank DW, Cooper DMF, Stevens T. Filamin A is a phosphorylation target of membrane but not cytosolic adenylyl cyclase activity. Am J Physiol Lung Cell Mol Physiol 2011; 301:L117-24. [PMID: 21478251 DOI: 10.1152/ajplung.00417.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transmembrane adenylyl cyclase (AC) generates a cAMP pool within the subplasma membrane compartment that strengthens the endothelial cell barrier. This cAMP signal is steered toward effectors that promote junctional integrity and is inactivated before it accesses microtubules, where the cAMP signal causes phosphorylation of tau, leading to microtubule disassembly and barrier disruption. During infection, Pseudomonas aeruginosa uses a type III secretion system to inject a soluble AC, ExoY, into the cytosol of pulmonary microvascular endothelial cells. ExoY generates a cAMP signal that disrupts the endothelial cell barrier. We tested the hypothesis that this ExoY-dependent cAMP signal causes phosphorylation of tau, without inducing phosphorylation of membrane effectors that strengthen endothelial barrier function. To approach this hypothesis, we first discerned the membrane compartment in which endogenous transmembrane AC6 resides. AC6 was resolved in caveolin-rich lipid raft fractions with calcium channel proteins and the cell adhesion molecules N-cadherin, E-cadherin, and activated leukocyte adhesion molecule. VE-cadherin was excluded from the caveolin-rich fractions and was detected in the bulk plasma membrane fractions. The actin binding protein, filamin A, was detected in all membrane fractions. Isoproterenol activation of ACs promoted filamin phosphorylation, whereas thrombin inhibition of AC6 reduced filamin phosphorylation within the membrane fraction. In contrast, ExoY produced a cAMP signal that did not cause filamin phosphorylation yet induced tau phosphorylation. Hence, our data indicate that cAMP signals are strictly compartmentalized; whereas cAMP emanating from transmembrane ACs activates barrier-enhancing targets, such as filamin, cAMP emanating from soluble ACs activates barrier-disrupting targets, such as tau.
Collapse
Affiliation(s)
- Sarah L Sayner
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, Alabama 36688, USA.
| | | | | | | | | |
Collapse
|
72
|
Pawitan JA. Potential Agents against Plasma Leakage. ISRN PHARMACOLOGY 2011; 2011:975048. [PMID: 22084722 PMCID: PMC3195382 DOI: 10.5402/2011/975048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 02/21/2011] [Indexed: 11/23/2022]
Abstract
Shock due to severe plasma leakage may happen in infectious diseases such as severe dengue and sepsis due to various bacterial infections, which may be deleterious and may lead to death. Various substances and proteins are known to modulate the effects of proleakage mediators and counteract the deleterious effect of plasma leakage. Some of the various substances and proteins such as focal adhesion kinase (FAK), the Rho GTPases, protein kinase A, and caveolin-1 have dual actions; therefore they are not suitable for therapy. However, sphingosine 1phosphate and its receptor agonists, Angiopoetin-1, Slit, and Bbeta15-42 may be promising.
Collapse
Affiliation(s)
- Jeanne Adiwinata Pawitan
- Department of Histology, Faculty of Medicine, University of Indonesia, Jl. Salemba 6, Jakarta 10430, Indonesia
| |
Collapse
|
73
|
Sayner SL. Emerging themes of cAMP regulation of the pulmonary endothelial barrier. Am J Physiol Lung Cell Mol Physiol 2011; 300:L667-78. [PMID: 21335524 DOI: 10.1152/ajplung.00433.2010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The presence of excess fluid in the interstitium and air spaces of the lung presents severe restrictions to gas exchange. The pulmonary endothelial barrier regulates the flux of fluid and plasma proteins from the vascular space into the underlying tissue. The integrity of this endothelial barrier is dynamically regulated by transitions in cAMP (3',5'-cyclic adenosine monophosphate), which are synthesized in discrete subcellular compartments. Cyclic AMP generated in the subplasma membrane compartment acts through PKA and Epac (exchange protein directly activated by cAMP) to tighten cell adhesions, strengthen cortical actin, reduce actomyosin contraction, and decrease permeability. Confining cAMP within the subplasma membrane space is critical to its barrier-protective properties. When cAMP escapes the near membrane compartment and gains access to the cytosolic compartment, or when soluble adenylyl cyclases generate cAMP within the cytosolic compartment, this second messenger activates established cytosolic cAMP signaling cascades to perturb the endothelial barrier through PKA-mediated disruption of microtubules. Thus the concept of cAMP compartmentalization in endothelial barrier regulation is gaining momentum and new possibilities are being unveiled for cytosolic cAMP signaling with the emergence of the bicarbonate-regulated mammalian soluble adenylyl cyclase (sAC or AC10).
Collapse
Affiliation(s)
- Sarah L Sayner
- Dept. of Cell Biology and Neuroscience, Member, Center for Lung Biology, College of Medicine, Univ. of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
74
|
Surapisitchat J, Beavo JA. Regulation of endothelial barrier function by cyclic nucleotides: the role of phosphodiesterases. Handb Exp Pharmacol 2011:193-210. [PMID: 21695641 PMCID: PMC4062991 DOI: 10.1007/978-3-642-17969-3_8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction.
Collapse
Affiliation(s)
- James Surapisitchat
- Department of Pharmacology, University of Washington School of Medicine, 1959 NE Pacific St., Box 357280, Seattle, WA 98195-7280, USA and McEwen Centre for Regenerative Medicine, University Health Network, 101 College Street, Room 8-601, Toronto, ON, Canada, M5G 1L7
| | - Joseph A. Beavo
- Department of Pharmacology, University of Washington School of Medicine, 1959 NE Pacific St., Box 357280, Seattle, WA 98195-7280, USA
| |
Collapse
|
75
|
Zhu B, Zhang L, Creighton J, Alexeyev M, Strada SJ, Stevens T. Protein kinase A phosphorylation of tau-serine 214 reorganizes microtubules and disrupts the endothelial cell barrier. Am J Physiol Lung Cell Mol Physiol 2010; 299:L493-501. [PMID: 20639351 DOI: 10.1152/ajplung.00431.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Intracellular cAMP is compartmentalized to near membrane domains in endothelium, where it strengthens endothelial cell barrier function. Phosphodiesterase 4D4 (PDE4D4) interacts with the spectrin membrane skeleton and prevents cAMP from accessing microtubules. Expression of a dominant-negative PDE4D4 peptide enables cAMP to access microtubules, where it results in phosphorylation of the nonneuronal microtubule-associated protein tau at serine 214. Presently, we sought to determine whether PKA is responsible for tau-Ser214 phosphorylation and furthermore whether PKA phosphorylation of tau-Ser214 is sufficient to reorganize microtubules and induce endothelial cell gaps. In cells expressing the dominant-negative PDE4D4 peptide, forskolin activated transmembrane adenylyl cyclases, increased cAMP, and induced tau-Ser214 phosphorylation that was accompanied by microtubule reorganization. PKA catalytic and regulatory I subunits, but not the regulatory II subunit, coassociated with reorganized microtubules. To determine the functional consequence of tau-Ser214 phosphorylation, wild-type human tau40 and tau40 engineered to possess an alanine point mutation (S214A) were stably expressed in endothelium. In cells expressing the dominant-negative PDE4D4 peptide and tau-S214A, PKA-dependent phosphorylation of both the endogenous and heterologously expressed tau were abolished. Expression of tau-S214A prevented forskolin from depolymerizing microtubules, inducing intercellular gaps, and increasing macromolecular permeability. These findings therefore identify nonneuronal tau as a critical cAMP-responsive microtubule-associated protein that controls microtubule architecture and endothelial cell barrier function.
Collapse
Affiliation(s)
- Bing Zhu
- Dept. of Pharmacology, Univ. of South Alabama, Mobile, 36688, USA.
| | | | | | | | | | | |
Collapse
|
76
|
Abstract
OBJECTIVE Lung inflammation causes perivascular fluid cuffs to form around extra-alveolar blood vessels; however, the physiologic consequences of such cuffs remain poorly understood. Herein, we tested the hypothesis that perivascular fluid cuffs, without concomitant alveolar edema, are sufficient to decrease lung compliance. DESIGN Prospective, randomized, controlled study. SETTING Research laboratory. SUBJECTS One hundred twenty male CD40 rats. INTERVENTIONS To test this hypothesis, the plant alkaloid thapsigargin was used to activate store-operated calcium entry and increase cytosolic calcium in endothelium. Thapsigargin was infused into a central venous catheter of intact, sedated, and mechanically ventilated rats. MEASUREMENTS Static and dynamic lung mechanics and hemodynamics were measured continuously. MAIN RESULTS Thapsigargin produced perivascular fluid cuffs along extra-alveolar vessels but did not cause alveolar flooding or blood gas abnormalities. Lung compliance dose-dependently decreased after thapsigargin infusion, attributable to an increase in tissue resistance that was attributed to increased tissue damping and tissue elastance. Airway resistance was not changed. Neither central venous pressure nor left ventricular end diastolic pressure was altered by thapsigargin. Heart rate did not change, although thapsigargin decreased left ventricular systolic function sufficient to reduce cardiac output by 50%. Infusion of the type 4 phosphodiesterase inhibitor, rolipram, prevented thapsigargin from inducing perivascular cuffs and decreasing lung compliance. Rolipram also normalized pressure over time and corrected the deficit in cardiac output. CONCLUSIONS Our findings resolve for the first time that perivascular cuff formation negatively impacts mechanical coupling between the bronchovascular bundle and the lung parenchyma, decreasing lung compliance without impacting central venous pressure.
Collapse
|
77
|
EXOU-INDUCED VASCULAR HYPERPERMEABILITY AND PLATELET ACTIVATION IN THE COURSE OF EXPERIMENTAL PSEUDOMONAS AERUGINOSA PNEUMOSEPSIS. Shock 2010; 33:315-21. [DOI: 10.1097/shk.0b013e3181b2b0f4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
78
|
Bogatcheva NV, Zemskova MA, Kovalenkov Y, Poirier C, Verin AD. Molecular mechanisms mediating protective effect of cAMP on lipopolysaccharide (LPS)-induced human lung microvascular endothelial cells (HLMVEC) hyperpermeability. J Cell Physiol 2009; 221:750-9. [PMID: 19725051 DOI: 10.1002/jcp.21913] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Up to date, the nature of the sepsis-induced vascular leakage is understood only partially, which limits pharmacological approaches for its management. Here we studied the protective effect of cAMP using endotoxin-induced hyperpermeability as a model for barrier dysfunction observed in gram-negative sepsis. We demonstrated that the alleviation of lipopolysaccharide (LPS)-induced barrier compromise could be achieved by the specific activation of either protein kinase A (PKA) or Epac with cAMP analogs Bnz-cAMP or O-Me-cAMP, respectively. We next studied the involvement of PKA substrates VASP and filamin1 in barrier maintenance and LPS-induced barrier compromise. Depletion of both VASP and filamin1 with the specific siRNAs significantly exacerbated both the quiescent cells barrier and LPS-induced barrier dysfunction, suggesting barrier-protective role of these proteins. VASP depletion was associated with the more severe loss of ZO-1 peripheral staining in response to LPS, whereas filamin1-depleted cells reacted to LPS with more robust stress fiber induction and more profound changes in ZO-1 and VE-cadherin peripheral organization. Both VASP and filamin1 phosphorylation was significantly increased as a result of PKA activation. We next analyzed the effect of VASP and filamin1 depletion on the PKA-dependent alleviation of LPS-induced barrier compromise. We observed that Bnz-cAMP ability to counteract LPS-induced hyperpermeability was attenuated only by VASP, but not filamin1 depletion. Our data indicate that while PKA-dependent VASP phosphorylation contributes to the protective effect of cAMP elicited on LPS-compromised monolayers, filamin1 phosphorylation is unlikely to play a significant role in this process.
Collapse
Affiliation(s)
- Natalia V Bogatcheva
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | | | | | | | |
Collapse
|
79
|
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa uses a complex type III secretion apparatus to inject effector proteins into host cells. The configuration of this secretion machinery, the activities of the proteins that are injected by it and the consequences of this process for infection are now being elucidated. This Review summarizes our current knowledge of P. aeruginosa type III secretion, including the secretion and translocation machinery, the regulation of this machinery, and the associated chaperones and effector proteins. The features of this interesting secretion system have important implications for the pathogenesis of P. aeruginosa infections and for other type III secretion systems.
Collapse
Affiliation(s)
- Alan R Hauser
- Departments of MicrobiologyImmunology and Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| |
Collapse
|
80
|
Kwan HY, Huang Y, Yao XQ, Leung FP. Role of cyclic nucleotides in the control of cytosolic Ca2+ levels in vascular endothelial cells. Clin Exp Pharmacol Physiol 2009; 36:857-66. [PMID: 19413591 DOI: 10.1111/j.1440-1681.2009.05199.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
1. Endothelial cells have a key role in the cardiovascular system. Most endothelial cell functions depend on changes in cytosolic Ca(2+) concentrations ([Ca(2+)](i)) to some extent and Ca2+ signalling acts to link external stimuli with the synthesis and release of regulatory factors in endothelial cells. The [Ca(2+)](i) is maintained by a well-balanced Ca(2+) flux across the endoplasmic reticulum and plasma membrane. 2. Cyclic nucleotides, such as cAMP and cGMP, are very important second messengers. The cyclic nucleotides can affect [Ca(2+)](i) directly or indirectly (via the actions of protein kinase (PK) A or PKG-mediated phosphorylation) by regulating Ca(2+) mobilization and Ca(2+) influx. Fine-tuning of [Ca(2+)](i) is also fundamental to protect endothelial cells against damaged caused by the excessive accumulation of Ca(2+). 3. Therapeutic agents that control cAMP and cGMP levels have been used to treat various cardiovascular diseases. 4. The aim of the present review is to discuss: (i) the functions of endothelial cells; (ii) the importance of [Ca(2+)](i) in endothelial cells; (iii) the impact of excessive [Ca(2+)](i) in endothelial cells; and (iv) the balanced control of [Ca(2+)](i) in endothelial cells via involvement of cyclic nucleotides (cAMP and cGMP) and their general effectors.
Collapse
Affiliation(s)
- H Y Kwan
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
81
|
Prasain N, Alexeyev M, Balczon R, Stevens T. Soluble adenylyl cyclase-dependent microtubule disassembly reveals a novel mechanism of endothelial cell retraction. Am J Physiol Lung Cell Mol Physiol 2009; 297:L73-83. [PMID: 19395666 DOI: 10.1152/ajplung.90577.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Soluble adenylyl cyclase toxins, such as Pseudomonas aeruginosa exoY, generate a cAMP pool that retracts cell borders. However, the cytoskeletal basis by which this cAMP signal retracts cell borders is not known. We sought to determine whether activation of chimeric, soluble adenylyl cyclase I/II (sACI/II) reorganizes either microtubules or peripheral actin. Endothelial cells were stably transfected with either green fluorescent protein-labeled alpha-tubulin or beta-actin, and then infected with adenovirus to express sACI/II. Forskolin, which stimulates both the endogenously expressed transmembrane adenylyl cyclases and sACI/II, induced cell retraction accompanied by the reorganization of peripheral microtubules. However, cortical filamentous-actin (f-actin) did not reorganize into stress fibers, and myosin light-chain-20 phosphorylation was decreased. Isoproterenol, which activates endogenous adenylyl cyclases but does not activate sACI/II, did not induce endothelial cell gaps and did not influence microtubule or f-actin architecture. Thus, sACI/II generates a cAMP signal that reorganizes microtubules and induces cell retraction, without inducing f-actin stress fibers. These findings illustrate that endothelial cell gap formation can proceed without f-actin stress fiber formation, and provide mechanistic insight how bacterial adenylyl cyclase toxins reorganize the cytoskeleton to induce cell rounding.
Collapse
Affiliation(s)
- Nutan Prasain
- Departments of Pharmacology, Center for Lung Biology, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | |
Collapse
|
82
|
Anthrax edema toxin modulates PKA- and CREB-dependent signaling in two phases. PLoS One 2008; 3:e3564. [PMID: 18958164 PMCID: PMC2569206 DOI: 10.1371/journal.pone.0003564] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/22/2008] [Indexed: 01/03/2023] Open
Abstract
Background Anthrax edema toxin (EdTx) is an adenylate cyclase which operates in the perinuclear region of host cells. However, the action of EdTx is poorly understood, especially at molecular level. The ability of EdTx to modulate cAMP-dependent signaling was studied in Jurkat T cells and was compared with that of other cAMP-rising agents: Bordetella pertussis adenylate cyclase toxin, cholera toxin and forskolin. Methodology/Principal Findings EdTx caused a prolonged increase of the intracellular cAMP concentration. This led to nuclear translocation of the cAMP-dependent protein kinase (PKA) catalytic subunit, phosphorylation of cAMP response element binding protein (CREB) and expression of a reporter gene under control of the cAMP response element. Neither p90 ribosomal S6 kinase nor mitogen- and stress-activated kinase, which mediate CREB phosphorylation during T cell activation, were involved. The duration of phospho-CREB binding to chromatin correlated with the spatio-temporal rise of cAMP levels. Strikingly, EdTx pre-treated T cells were unresponsive to other stimuli involving CREB phosphorylation such as addition of forskolin or T cell receptor cross-linking. Conclusions/Significance We concluded that, in a first intoxication phase, EdTx induces PKA-dependent signaling, which culminates in CREB phosphorylation and activation of gene transcription. Subsequently CREB phosphorylation is impaired and therefore T cells are not able to respond to cues involving CREB. The present data functionally link the perinuclear localization of EdTx to its intoxication mechanism, indicating that this is a specific feature of its intoxication mechanism.
Collapse
|
83
|
Prasain N, Stevens T. The actin cytoskeleton in endothelial cell phenotypes. Microvasc Res 2008; 77:53-63. [PMID: 19028505 DOI: 10.1016/j.mvr.2008.09.012] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 09/26/2008] [Indexed: 10/21/2022]
Abstract
Endothelium forms a semi-permeable barrier that separates blood from the underlying tissue. Barrier function is largely determined by cell-cell and cell-matrix adhesions that define the limits of cell borders. Yet, such cell-cell and cell-matrix tethering is critically reliant upon the nature of adherence within the cell itself. Indeed, the actin cytoskeleton fulfills this essential function, to provide a strong, dynamic intracellular scaffold that organizes integral membrane proteins with the cell's interior, and responds to environmental cues to orchestrate appropriate cell shape. The actin cytoskeleton is comprised of three distinct, but inter-related structures, including actin cross-linking of spectrin within the membrane skeleton, the cortical actin rim, and actomyosin-based stress fibers. This review addresses each of these actin-based structures, and discusses cellular signals that control the disposition of actin in different endothelial cell phenotypes.
Collapse
Affiliation(s)
- Nutan Prasain
- Department of Molecular and Cellular Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | | |
Collapse
|
84
|
Ganter MT, Roux J, Su G, Lynch SV, Deutschman CS, Weiss YG, Christiaans SC, Myazawa B, Kipnis E, Wiener-Kronish JP, Howard M, Pittet JF. Role of small GTPases and alphavbeta5 integrin in Pseudomonas aeruginosa-induced increase in lung endothelial permeability. Am J Respir Cell Mol Biol 2008; 40:108-18. [PMID: 18703797 DOI: 10.1165/rcmb.2007-0454oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe pneumonia associated with airspace flooding with protein-rich edema in critically ill patients. The type III secretion system is a major virulence factor and contributes to dissemination of P. aeruginosa. However, it is still unknown which particular bacterial toxin and which cellular pathways are responsible for the increase in lung endothelial permeability induced by P. aeruginosa. Thus, the first objective of this study was to determine the mechanisms by which this species causes an increase in lung endothelial permeability. The results showed that ExoS and ExoT, two of the four known P. aeruginosa type III cytotoxins, were primarily responsible for bacterium-induced increases in protein permeability across the lung endothelium via an inhibition of Rac1 and an activation of the RhoA signaling pathway. In addition, inhibition of the alphavbeta5 integrin, a central regulator of lung vascular permeability, prevented these P. aeruginosa-mediated increases in albumin flux due to endothelial permeability. Finally, prior activation of the stress protein response or adenoviral gene transfer of the inducible heat shock protein Hsp72 also inhibited the damaging effects of P. aeruginosa on the barrier function of lung endothelium. Taken together, these results demonstrate the critical role of the RhoA/alphavbeta5 integrin pathway in mediating P. aeruginosa-induced lung vascular permeability. In addition, activation of the stress protein response with pharmacologic inhibitors of Hsp90 may protect lungs against P. aeruginosa-induced permeability changes.
Collapse
Affiliation(s)
- Michael T Ganter
- Department of Anesthesia and Surgery, University of California San Francisco, San Francisco, California 94110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Diverse type III secretion phenotypes among Pseudomonas aeruginosa strains upon infection of murine macrophage-like and endothelial cell lines. Microb Pathog 2007; 44:448-58. [PMID: 18221854 DOI: 10.1016/j.micpath.2007.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 11/19/2007] [Accepted: 11/29/2007] [Indexed: 11/23/2022]
Abstract
The interaction of over 100 isolates of Pseudomonas aeruginosa representing different genotypes of type III secretion system (TTSS) with RAW 264.7 murine macrophage-like cells and pulmonary microvascular endothelial (PME) cells were studied. The strains were isolated from clinical materials and from stool specimens of healthy carriers and were analyzed by pulsed field gel electrophoresis (PFGE) to characterize their heterogeneity. In order to differentiate TTSS genotypes of P. aeruginosa isolates, the distribution of the following genes: exoU, exoS, pcrV, exoT, and exoY was assessed by multiplex and duplex PCR assays. The cytotoxicity and invasiveness of the P. aeruginosa isolates were determined. P. aeruginosa isolates showed a discrepancy in their ability to induce cytotoxicity and to invade mammalian cells. Up to four phenotypes among the isolates were observed and the most diverse interactions of the isolates were noticed with PME cells. The reduction of the viability of the cells, infected by P. aeruginosa isolates of the same clone, was associated with the ability of these strains to secrete the TTSS effectors: ExoU or ExoS. The results of this study also suggest that healthy people can be the carriers of cytotoxic strains of this dangerous pathogen.
Collapse
|
86
|
Creighton J, Zhu B, Alexeyev M, Stevens T. Spectrin-anchored phosphodiesterase 4D4 restricts cAMP from disrupting microtubules and inducing endothelial cell gap formation. J Cell Sci 2007; 121:110-9. [PMID: 18073242 DOI: 10.1242/jcs.011692] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dynamic cAMP fluctuations that are restricted to a sub-plasma-membrane domain strengthen endothelial barrier integrity. Phosphodiesterases (PDEs) localize within this domain where they limit cAMP diffusion into the bulk cytosolic compartment; however, the molecular identity of PDEs responsible for endothelial cell membrane cAMP compartmentation remain poorly understood. Our present findings reveal that the D4 splice variant of the PDE4 phosphodiesterase family - PDE4D4 - is expressed in pulmonary microvascular endothelial cells, and is found in plasma membrane fractions. PDE4D4 interacts with alpha II spectrin within this membrane domain. Although constitutive PDE4D4 activity limits cAMP access to the bulk cytosol, inhibiting its activity permits cAMP to access a cytosolic domain that is rich in microtubules, where it promotes protein kinase A (PKA) phosphorylation of tau at Ser214. Such phosphorylation reorganizes microtubules and induces interendothelial cell gap formation. Thus, spectrin-anchored PDE4D4 shapes the physiological response to cAMP by directing it to barrier-enhancing effectors while limiting PKA-mediated microtubule reorganization.
Collapse
Affiliation(s)
- Judy Creighton
- Center for Lung Biology, The University of South Alabama College of Medicine, Mobile, AL 36688, USA
| | | | | | | |
Collapse
|
87
|
Sayner S, Stevens T. Soluble adenylate cyclase reveals the significance of compartmentalized cAMP on endothelial cell barrier function. Biochem Soc Trans 2006; 34:492-4. [PMID: 16856841 DOI: 10.1042/bst0340492] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Within pulmonary microvascular endothelial cells, activation of endogenous adenylate cyclase generates tightly regulated cAMP transitions in the subplasma membrane space. These cAMP fluxes strengthen contacts between adjacent cells to tighten their barrier function. However, pathogenic bacteria have devised a mechanism to transfer toxic adenylate cyclases into eukaryotic cells and generate a cytosolic pool of cAMP that disrupts the barrier. To determine whether membrane or cytosolic cAMP synthesis dominates in control of endothelial cell barrier function, we expressed a soluble mammalian adenylate cyclase chimaera. This chimaera is not constitutively active, but is activated by forskolin. Thus forskolin application increases cAMP in both the plasma membrane and cytosolic compartments. Forskolin induced inter-endothelial cell gaps in cells expressing the soluble adenylate cyclase, demonstrating that the cytosolic cAMP pool dominates over the plasma membrane cAMP pool in control of endothelial cell barrier strength. Indeed, when the soluble chimaera is relocalized to the plasma membrane, the forskolin-stimulated adenylate cyclase activity does not induce gaps. These results therefore support the growing paradigm that membrane and cytosolic cAMP pools target discrete effectors to control different physiological processes.
Collapse
Affiliation(s)
- S Sayner
- Center for Lung Biology, Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | | |
Collapse
|
88
|
|
89
|
Sayner SL, Alexeyev M, Dessauer CW, Stevens T. Soluble adenylyl cyclase reveals the significance of cAMP compartmentation on pulmonary microvascular endothelial cell barrier. Circ Res 2006; 98:675-81. [PMID: 16469954 DOI: 10.1161/01.res.0000209516.84815.3e] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Subtle elevations in cAMP localized to the plasma membrane intensely strengthen endothelial barrier function. Paradoxically, pathogenic bacteria insert adenylyl cyclases (ACs) into eukaryotic cells generating a time-dependent cytosolic cAMP-increase that disrupts rather than strengthens the endothelial barrier. These findings bring into question whether membrane versus cytosolic AC activity dominates in control of cell adhesion. To address this problem, a mammalian forskolin-sensitive soluble AC (sACI/II) was expressed in pulmonary microvascular endothelial cells. Forskolin stimulated this sACI/II construct generating a small cytosolic cAMP-pool that was not regulated by phosphodiesterases or Galphas. Whereas forskolin simultaneously activated the sACI/II construct and endogenous transmembrane ACs, the modest sACI/II activity overwhelmed the barrier protective effects of plasma membrane activity to induce endothelial gap formation. Retargeting sACI/II to the plasma membrane retained AC activity but protected the endothelial cell barrier. These findings demonstrate for the first time that the intracellular location of cAMP synthesis critically determines its physiological outcome.
Collapse
Affiliation(s)
- Sarah L Sayner
- Center for Lung Biology, Department of Pharmacology, University of South Alabama, College of Medicine, Mobile, AL 36688, USA
| | | | | | | |
Collapse
|
90
|
Kipnis E, Sawa T, Wiener-Kronish J. Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Med Mal Infect 2006; 36:78-91. [PMID: 16427231 DOI: 10.1016/j.medmal.2005.10.007] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 10/18/2005] [Indexed: 01/08/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen responsible for ventilator-acquired pneumonia, acute lower respiratory tract infections in immunocompromised patients and chronic respiratory infections in cystic fibrosis patients. High incidence, infection severity and increasing resistance characterize P. aeruginosa infections, highlighting the need for new therapeutic options. One such option is to target the many pathogenic mechanisms conferred to P. aeruginosa by its large genome encoding many different virulence factors. This article reviews the pathogenic mechanisms and potential therapies targeting these mechanisms in P. aeruginosa respiratory infections.
Collapse
Affiliation(s)
- E Kipnis
- Department of Anesthesia and Perioperative Care, University of California San Francisco, 513 Parnassus Avenue, Room s-261, Medical Science Building, Box 0542, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
91
|
Abstract
The microvascular endothelial cell monolayer localized at the critical interface between the blood and vessel wall has the vital functions of regulating tissue fluid balance and supplying the essential nutrients needed for the survival of the organism. The endothelial cell is an exquisite “sensor” that responds to diverse signals generated in the blood, subendothelium, and interacting cells. The endothelial cell is able to dynamically regulate its paracellular and transcellular pathways for transport of plasma proteins, solutes, and liquid. The semipermeable characteristic of the endothelium (which distinguishes it from the epithelium) is crucial for establishing the transendothelial protein gradient (the colloid osmotic gradient) required for tissue fluid homeostasis. Interendothelial junctions comprise a complex array of proteins in series with the extracellular matrix constituents and serve to limit the transport of albumin and other plasma proteins by the paracellular pathway. This pathway is highly regulated by the activation of specific extrinsic and intrinsic signaling pathways. Recent evidence has also highlighted the importance of the heretofore enigmatic transcellular pathway in mediating albumin transport via transcytosis. Caveolae, the vesicular carriers filled with receptor-bound and unbound free solutes, have been shown to shuttle between the vascular and extravascular spaces depositing their contents outside the cell. This review summarizes and analyzes the recent data from genetic, physiological, cellular, and morphological studies that have addressed the signaling mechanisms involved in the regulation of both the paracellular and transcellular transport pathways.
Collapse
Affiliation(s)
- Dolly Mehta
- Center of Lung and Vascular Biology, Dept. of Pharmacology (M/C 868), University of Illinois, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | |
Collapse
|
92
|
Cowell BA, Evans DJ, Fleiszig SMJ. Actin cytoskeleton disruption by ExoY and its effects on Pseudomonas aeruginosa invasion. FEMS Microbiol Lett 2005; 250:71-6. [PMID: 16039071 DOI: 10.1016/j.femsle.2005.06.044] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 05/19/2005] [Accepted: 06/22/2005] [Indexed: 11/29/2022] Open
Abstract
Three of the Type III-secreted effectors of Pseudomonas aeruginosa (ExoS, ExoT, and ExoY) each alter mammalian cell morphology in culture without causing a loss of cell viability. For ExoS and ExoT this property involves RhoGAP activity, and leads to actin cytoskeleton disruption and a reduced capacity for internalizing bacteria. ExoY does not possess RhoGAP activity. Instead, cell rounding depends upon its adenylate cyclase catalytic region. Since anti-phagocytic activities of ExoS and ExoT are associated with cell rounding and cytoskeleton disruption, we hypothesized that ExoY would also inhibit P. aeruginosa invasion of epithelial cells coinciding with adenylate cyclase-mediated cytoskeleton disruption. The results showed actin disruption of epithelial cells at 2 h post-infection associated with both adenylate cyclase-active ExoY and its catalytic mutant form ExoYK81M, and which coincided with inhibition of bacterial invasion (76% inhibition by ExoY, and 37% by ExoYK81M). Surprisingly, at 4h post-infection, neither form of ExoY inhibited invasion despite extensive actin disruption. These data suggest that ExoY, like ExoS and ExoT, contains more than one active domain affecting mammalian cell function. The data also suggest that cytoskeleton disruption does not necessarily predict invasion inhibitory activity, supporting the recently proposed model that P. aeruginosa internalization can proceed through more than one pathway.
Collapse
Affiliation(s)
- Brigitte A Cowell
- School of Optometry, University of California, 688 Minor Hall, Berkeley, CA 94720-2020, USA
| | | | | |
Collapse
|
93
|
Lau GW, Hassett DJ, Britigan BE. Modulation of lung epithelial functions by Pseudomonas aeruginosa. Trends Microbiol 2005; 13:389-97. [PMID: 15951179 DOI: 10.1016/j.tim.2005.05.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2005] [Revised: 04/28/2005] [Accepted: 05/31/2005] [Indexed: 11/16/2022]
Abstract
Microorganisms gain access to the airways and respiratory epithelial surface during normal breathing. Most inhaled microbes are trapped on the mucous layer coating the nasal epithelium and upper respiratory tract, and are cleared by ciliary motion. Microorganisms reaching the alveolar spaces are deposited on the pulmonary epithelium. This contact initiates complex offensive and defensive strategies by both parties. Here, we briefly outline how the pulmonary pathogen Pseudomonas aeruginosa uses multi-pronged strategies that include cell surface appendages, and secreted and injected virulence determinants to switch from an unobtrusive soil bacterium to a pathogen for lung epithelium colonization. Understanding the complex interactions between the lung epithelium and P. aeruginosa might enable more effective therapeutic strategies against infection in cystic fibrosis and immuno-compromised individuals.
Collapse
Affiliation(s)
- Gee W Lau
- Department of Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0557, USA
| | | | | |
Collapse
|
94
|
Wu S, Cioffi EA, Alvarez D, Sayner SL, Chen H, Cioffi DL, King J, Creighton JR, Townsley M, Goodman SR, Stevens T. Essential role of a Ca2+-selective, store-operated current (ISOC) in endothelial cell permeability: determinants of the vascular leak site. Circ Res 2005; 96:856-63. [PMID: 15790951 DOI: 10.1161/01.res.0000163632.67282.1f] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Store-operated calcium (SOC) entry is sufficient to disrupt the extra-alveolar, but not the alveolar, endothelial cell barrier. Mechanism(s) underlying such insensitivity to transitions in cytosolic calcium ([Ca2+]i) in microvascular endothelial cells are unknown. Depletion of stored Ca2+ activates a larger SOC entry response in extra-alveolar (pulmonary artery; PAECs) than alveolar (pulmonary microvascular; PMVECs) endothelial cells. In vivo permeation studies revealed that Ca2+ store depletion activates similar nonselective cationic conductances in PAECs and PMVECs, while only PAECs possess the calcium-selective, store-operated Ca2+ entry current, I(SOC). Pretreatment with the type 4 phosphodiesterase inhibitor, rolipram, abolished thapsigargin-activated I(SOC) in PAECs, and revealed I(SOC) in PMVECs. Rolipram pretreatment shifted the thapsigargin-induced fluid leak site from extra-alveolar to alveolar vessels in the intact pulmonary circulation. Thus, our results indicate I(SOC) provides a [Ca2+]i source that is needed to disrupt the endothelial cell barrier, and demonstrate that intracellular events controlling I(SOC) activation coordinate the site-specific vascular response to inflammation.
Collapse
Affiliation(s)
- Songwei Wu
- Center for Lung Biology, The University of South Alabama College of Medicine, Mobile, Ala 36688, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Chapter 5 Adenylyl cyclase and CAMP regulation of the endothelial barrier. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1569-2558(05)35005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|