51
|
Laver DR, Honen BN, Lamb GD, Ikemoto N. A domain peptide of the cardiac ryanodine receptor regulates channel sensitivity to luminal Ca2+ via cytoplasmic Ca2+ sites. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:455-67. [PMID: 18038129 DOI: 10.1007/s00249-007-0238-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/17/2007] [Accepted: 10/28/2007] [Indexed: 10/22/2022]
Abstract
The clustering of cardiac RyR mutations, linked to sudden cardiac death (SCD), into several regions in the amino acid sequence underlies the hypothesis that these mutations interfere with stabilising interactions between different domains of the RyR2. SCD mutations cause increased channel sensitivity to cytoplasmic and luminal Ca(2+). A synthetic peptide corresponding to part of the central domain (DPc10:(2460)G-P(2495)) was designed to destabilise the interaction of the N-terminal and central domains of wild-type RyR2 and mimic the effects of SCD mutations. With Ca(2+) as the sole regulating ion, DPc10 caused increased channel activity which could be reversed by removal of the peptide whereas in the presence of ATP DPc10 caused no activation. In support of the domain destablising hypothesis, the corresponding peptide (DPc10-mut) containing the CPVT mutation R2474S did not affect channel activity under any circumstances. DPc10-induced activation was due to a small increase in RyR2 sensitivity to cytoplasmic Ca(2+) and a large increase in the magnitude of luminal Ca(2+) activation. The increase in the luminal Ca(2+) response appeared reliant on the luminal-to-cytoplasmic Ca(2+) flux in the channel, indicating that luminal Ca(2+) was activating the RyR2 via its cytoplasmic Ca(2+) sites. DPc10 had no significant effect on the RyR2 gating associated with luminal Ca(2+) sensing sites. The results were fitted by the luminal-triggered Ca(2+) feed-through model and the effects of DPc10 were explained entirely by perturbations in cytoplasmic Ca(2+)-activation mechanism.
Collapse
Affiliation(s)
- Derek R Laver
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | | | | |
Collapse
|
52
|
Loss of luminal Ca2+ activation in the cardiac ryanodine receptor is associated with ventricular fibrillation and sudden death. Proc Natl Acad Sci U S A 2007; 104:18309-14. [PMID: 17984046 DOI: 10.1073/pnas.0706573104] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Different forms of ventricular arrhythmias have been linked to mutations in the cardiac ryanodine receptor (RyR)2, but the molecular basis for this phenotypic heterogeneity is unknown. We have recently demonstrated that an enhanced sensitivity to luminal Ca(2+) and an increased propensity for spontaneous Ca(2+) release or store-overload-induced Ca(2+) release (SOICR) are common defects of RyR2 mutations associated with catecholaminergic polymorphic or bidirectional ventricular tachycardia. Here, we investigated the properties of a unique RyR2 mutation associated with catecholaminergic idiopathic ventricular fibrillation, A4860G. Single-channel analyses revealed that, unlike all other disease-linked RyR2 mutations characterized previously, the A4860G mutation diminished the response of RyR2 to activation by luminal Ca(2+), but had little effect on the sensitivity of the channel to activation by cytosolic Ca(2+). This specific impact of the A4860G mutation indicates that the luminal Ca(2+) activation of RyR2 is distinct from its cytosolic Ca(2+) activation. Stable, inducible HEK293 cells expressing the A4860G mutant showed caffeine-induced Ca(2+) release but exhibited no SOICR. Importantly, HL-1 cardiac cells transfected with the A4860G mutant displayed attenuated SOICR activity compared with cells transfected with RyR2 WT. These observations provide the first evidence that a loss of luminal Ca(2+) activation and SOICR activity can cause ventricular fibrillation and sudden death. These findings also indicate that although suppressing enhanced SOICR is a promising antiarrhythmic strategy, its oversuppression can also lead to arrhythmias.
Collapse
|
53
|
Ryanodine receptor mutations in arrhythmias: advances in understanding the mechanisms of channel dysfunction. Biochem Soc Trans 2007; 35:946-51. [DOI: 10.1042/bst0350946] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cardiac ryanodine receptor (RyR2) mediates rapid Ca2+ efflux from intracellular stores to effect myocyte contraction during the process of EC (excitation–contraction) coupling. It is now known that mutations in this channel perturb Ca2+ release function, leading to triggered arrhythmias that may cause SCD (sudden cardiac death). Resolving the precise molecular mechanisms by which SCD-linked RyR2 dysfunction occurs currently constitutes a burgeoning area of cardiac research. So far, defective channel phosphorylation, accessory protein binding, luminal/cytosolic Ca2+ sensing, and the disruption of interdomain interactions represent the main candidate mechanisms for explaining aberrant SR (sarcoplasmic reticulum) Ca2+ release via mutants of RyR2. It appears increasingly unlikely that a single exclusive common mechanism underlies every case of mutant channel dysfunction, and that each of these potential mechanisms may contribute to the resultant phenotype. The present review will consider very recent mechanistic developments in this field, including new observations from mutant RyR2 transgenic mouse models, peptide-probe studies, and the implications of functional and phenotypic heterogeneity of RyR2 mutations and polymorphisms.
Collapse
|
54
|
Laurita KR, Rosenbaum DS. Mechanisms and potential therapeutic targets for ventricular arrhythmias associated with impaired cardiac calcium cycling. J Mol Cell Cardiol 2007; 44:31-43. [PMID: 18061204 DOI: 10.1016/j.yjmcc.2007.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 10/11/2007] [Accepted: 10/16/2007] [Indexed: 11/30/2022]
Abstract
The close relationship between life-threatening ventricular arrhythmias and contractile dysfunction in the heart implicates intracellular calcium cycling as an important underlying mechanism of arrhythmogenesis. Despite this close association, however, the mechanisms of arrhythmogenesis attributable to impaired calcium cycling are not fully appreciated or understood. In this report we review some of the current thinking regarding arrhythmia mechanisms associated with either abnormal impulse initiation (i.e. arrhythmia triggers) or impulse propagation (i.e. arrhythmia substrates). In all cases, the mechanisms are primarily related to dysfunction of calcium regulatory proteins associated with the sarcomere. These findings highlight the broad scope of arrhythmias associated with abnormal calcium cycling, and provide a basis for a causal relationship between cardiac electrical instability and contractile dysfunction. Moreover, calcium cycling proteins may provide much needed targets for novel antiarrhythmic therapies.
Collapse
Affiliation(s)
- Kenneth R Laurita
- The Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio 44109-1998, USA
| | | |
Collapse
|
55
|
Karch SB. Changing times: DNA resequencing and the “nearly normal autopsy”. J Forensic Leg Med 2007; 14:389-97. [PMID: 17720589 DOI: 10.1016/j.jflm.2007.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 03/30/2007] [Accepted: 04/12/2007] [Indexed: 10/23/2022]
Abstract
No matter how meticulous the autopsy, non-traumatic deaths in the young go unexplained from 5-10% of the time. The percentage is higher in children and young adults. Advances in molecular biology and DNA technology now make it possible to explain many of those deaths. This development is not without irony. At the same time that many clinicians are expressing frustration about the lack of tangible gains provided by the Human Genome Project [Greenhalgh T. The Human Genome Project. J R Soc Med. Dec 2005;98(12):545], and pathologists are wondering about the viability of their field, DNA technology is about to reshape the field of forensic pathology. Emerging evidence suggests that the underlying cause of death in many is genetic, and that both the heart and liver abnormalities can both play a role. The problem is that death from a wide variety of genetic defects may leave no histological markers. The ability to identify these "invisible diseases" with postmortem genetic testing has become a reality far more quickly than anyone had ever imagined. The US Food and Drug Administration is about to place "black box" warnings on warfarin advising doctors screen potential recipients for the ability to metabolize that drug and the American Heart Association has recently editorialized that because of genetic-induced variations in electrical conduction that all newborns should have a screening electrocardiogram before they leave the hospital. The introduction of large-scale genetic screening will have an enormous effect on the practice of forensic pathology, far beyond anything seen in our lifetimes. It will also change the practice of medicine as we know it. This paper reviews the current status of the problem.
Collapse
|
56
|
Meng X, Xiao B, Cai S, Huang X, Li F, Bolstad J, Trujillo R, Airey J, Wayne Chen SR, Wagenknecht T, Liu Z. Three-dimensional localization of serine 2808, a phosphorylation site in cardiac ryanodine receptor. J Biol Chem 2007; 282:25929-39. [PMID: 17606610 PMCID: PMC2796423 DOI: 10.1074/jbc.m704474200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type 2 ryanodine receptor (RyR2) is the major calcium release channel in cardiac muscle. Phosphorylation of RyR2 by cAMP-dependent protein kinase A and by calmodulin-dependent protein kinase II modulates channel activity. Hyperphosphorylation at a single amino acid residue, Ser-2808, has been proposed to directly disrupt the binding of a 12.6-kDa FK506-binding protein (FKBP12.6) to RyR2, causing a RyR2 malfunction that triggers cardiac arrhythmias in human heart failure. To determine the structural basis of the interaction between Ser-2808 and FKBP12.6, we have employed two independent approaches to map this phosphorylation site in RyR2 by three-dimensional cryo-electron microscopy. In one approach, we inserted a green fluorescent protein (GFP) after amino acid Tyr-2801, and mapped the GFP three-dimensional location in the RyR2 structure. In another approach, the binding site of monoclonal antibody 34C was mapped in the three-dimensional structure of skeletal muscle RyR1. The epitope of antibody 34C has been mapped to amino acid residues 2,756 through 2,803 of the RyR1 sequence, corresponding to residues 2,722 through 2,769 of the RyR2 sequence. These locations of GFP insertion and antibody binding are adjacent to one another in domain 6 of the cytoplasmic clamp region. Importantly, the three-dimensional location of the Ser-2808 phosphorylation site is 105-120 A distance from the FKBP12.6 binding site mapped previously, indicating that Ser-2808 is unlikely to be directly involved in the binding of FKBP12.6 to RyR2, as had been proposed previously.
Collapse
Affiliation(s)
- Xing Meng
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Bailong Xiao
- Departments of Physiology and Biophysics, and of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Shitian Cai
- Departments of Physiology and Biophysics, and of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Xiaojun Huang
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York 12201
| | - Fei Li
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York 12201
| | - Jeff Bolstad
- Departments of Physiology and Biophysics, and of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Ramon Trujillo
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Judith Airey
- Department of Pharmacology, University of Nevada, Reno, Nevada 89557
| | - S. R. Wayne Chen
- Departments of Physiology and Biophysics, and of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Terence Wagenknecht
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York 12201
| | - Zheng Liu
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
- To whom correspondence may be addressed: Wadsworth Center, New York State Department of Health, Albany, NY 12201. Tel.: 518-474-6516; Fax: 518-474-7992;
| |
Collapse
|
57
|
George CH, Rogers SA, Bertrand BMA, Tunwell REA, Thomas NL, Steele DS, Cox EV, Pepper C, Hazeel CJ, Claycomb WC, Lai FA. Alternative Splicing of Ryanodine Receptors Modulates Cardiomyocyte Ca
2+
Signaling and Susceptibility to Apoptosis. Circ Res 2007; 100:874-83. [PMID: 17322175 DOI: 10.1161/01.res.0000260804.77807.cf] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ca
2+
release via type 2 ryanodine receptors (RyR2) regulates cardiac function. Molecular cloning of human RyR2 identified 2 alternatively spliced variants, comprising 30- and 24-bp sequence insertions; yet their role in shaping cardiomyocyte Ca
2+
signaling and cell phenotype is unknown. We profiled the developmental regulation and the tissue and species specificity of these variants and showed that their recombinant expression in HL-1 cardiomyocytes profoundly modulated nuclear and cytoplasmic Ca
2+
release. All splice variants localized to the sarcoplasmic reticulum, perinuclear Golgi apparatus, and to finger-like invaginations of the nuclear envelope (nucleoplasmic reticulum). Strikingly, the 24-bp splice insertion that was present at low levels in embryonic and adult hearts was essential for targeting RyR2 to an intranuclear Golgi apparatus and promoted the intracellular segregation of this variant. The amplitude variability of nuclear and cytoplasmic Ca
2+
fluxes were reduced in nonstimulated cardiomyocytes expressing both 30- and 24-bp splice variants and were associated with lower basal levels of apoptosis. Expression of RyR2 containing the 24-bp insertion also suppressed intracellular Ca
2+
fluxes following prolonged caffeine exposure (1 mmol/L, 16 hours) that protected cells from apoptosis. The antiapoptotic effects of this variant were linked to increased levels of Bcl-2 phosphorylation. In contrast, RyR2 containing the 30-bp insertion, which was abundant in human embryonic heart but was decreased during cardiac development, did not protect cardiomyocytes from caffeine-evoked apoptosis. Thus, we provide the first evidence that RyR2 splice variants exquisitely modulate intracellular Ca
2+
signaling and are key determinants of cardiomyocyte apoptotic susceptibility.
Collapse
Affiliation(s)
- Christopher H George
- Department of Cardiology, Wales Heart Research Institute, School of Medicine, Cardiff University, Heath Park, Cardiff, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Thomas NL, George CH, Lai FA. Role of ryanodine receptor mutations in cardiac pathology: more questions than answers? Biochem Soc Trans 2007; 34:913-8. [PMID: 17052226 DOI: 10.1042/bst0340913] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The RyR (ryanodine receptor) mediates rapid Ca2+ efflux from the ER (endoplasmic reticulum) and is responsible for triggering numerous Ca2+-activated physiological processes. The most studied RyR-mediated process is excitation-contraction coupling in striated muscle, where plasma membrane excitation is transmitted to the cell interior and results in Ca2+ efflux that triggers myocyte contraction. Recently, single-residue mutations in the cardiac RyR (RyR2) have been identified in families that exhibit CPVT (catecholaminergic polymorphic ventricular tachycardia), a condition in which physical or emotional stress can trigger severe tachyarrhythmias that can lead to sudden cardiac death. The RyR2 mutations in CPVT are clustered in the N- and C-terminal domains, as well as in a central domain. Further, a critical signalling role for dysfunctional RyR2 has also been implicated in the generation of arrhythmias in the common condition of HF (heart failure). We have prepared cardiac RyR2 plasmids with various CPVT mutations to enable expression and analysis of Ca2+ release mediated by the wild-type and mutated RyR2. These studies suggest that the mutational locus may be important in the mechanism of Ca2+ channel dysfunction. Understanding the causes of aberrant Ca2+ release via RyR2 may assist in the development of effective treatments for the ventricular arrhythmias that often leads to sudden death in HF and in CPVT.
Collapse
Affiliation(s)
- N L Thomas
- Department of Cardiology, Wales Heart Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| | | | | |
Collapse
|
59
|
Durham WJ, Wehrens XHT, Sood S, Hamilton SL. Diseases associated with altered ryanodine receptor activity. Subcell Biochem 2007; 45:273-321. [PMID: 18193641 DOI: 10.1007/978-1-4020-6191-2_10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Mutations in two intracellular Ca2+ release channels or ryanodine receptors (RyR1 and RyR2) are associated with a number of human skeletal and cardiac diseases. This chapter discusses these diseases in terms of known mechanisms, controversies, and unanswered questions. We also compare the cardiac and skeletal muscle diseases to explore common mechanisms.
Collapse
Affiliation(s)
- W J Durham
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
60
|
Wehrens XHT. The molecular basis of catecholaminergic polymorphic ventricular tachycardia: what are the different hypotheses regarding mechanisms? Heart Rhythm 2006; 4:794-7. [PMID: 17556207 PMCID: PMC3046465 DOI: 10.1016/j.hrthm.2006.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Indexed: 10/23/2022]
Affiliation(s)
- Xander H T Wehrens
- Department of Molecular Physiologyand Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
61
|
George CH, Jundi H, Thomas NL, Fry DL, Lai FA. Ryanodine receptors and ventricular arrhythmias: emerging trends in mutations, mechanisms and therapies. J Mol Cell Cardiol 2006; 42:34-50. [PMID: 17081562 DOI: 10.1016/j.yjmcc.2006.08.115] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 08/30/2006] [Indexed: 11/25/2022]
Abstract
It has been six years since the first reported link between mutations in the cardiac ryanodine receptor Ca(2+) release channel (RyR2) and catecholaminergic polymorphic ventricular tachycardia (CPVT), a malignant stress-induced arrhythmia. In this time, rapid advances have been made in identifying new mutations, and in understanding how these mutations disrupt normal channel function to cause VT that frequently degenerates into ventricular fibrillation (VF) and sudden death. Functional characterisation of these RyR2 Ca(2+) channelopathies suggests that mutations alter the ability of RyR2 to sense its intracellular environment, and that channel modulation via covalent modification, Ca(2+)- and Mg(2+)-dependent regulation and structural feedback mechanisms are catastrophically disturbed. This review reconciles the current status of RyR2 mutation-linked etiopathology, the significance of mutational clustering within the RyR2 polypeptide and the mechanisms underlying channel dysfunction. We will also review new data that explores the link between abnormal Ca(2+) release and the resultant cardiac electrical instability in VT and VF, and how these recent developments impact on novel anti-arrhythmic therapies. Finally, we evaluate the concept that mechanistic differences between CPVT and other arrhythmogenic disorders may preclude a common therapeutic strategy to normalise RyR2 function in cardiac disease.
Collapse
Affiliation(s)
- Christopher H George
- Department of Cardiology, Wales Heart Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | | | | | | | | |
Collapse
|
62
|
|