51
|
Gragasin FS, Bourque SL, Davidge ST. Vascular aging and hemodynamic stability in the intraoperative period. Front Physiol 2012; 3:74. [PMID: 22485091 PMCID: PMC3317267 DOI: 10.3389/fphys.2012.00074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/14/2012] [Indexed: 11/13/2022] Open
Abstract
The proportion of elderly people in the population is steadily increasing, and the inevitable consequence is that this subpopulation is more frequently represented in common medical procedures and surgeries. Understanding the circulatory changes that accompany the aging process is therefore becoming increasingly timely and relevant. In this short review, we discuss aspects of vascular control in aging that are particularly relevant in the maintenance of intraoperative hemodynamic stability. We subsequently review the effects of certain notable anesthetic agents with respect to the aging vasculature.
Collapse
Affiliation(s)
- Ferrante S. Gragasin
- Department of Anesthesiology and Pain Medicine, University of AlbertaEdmonton, AB, Canada
- Department of Physiology, University of AlbertaEdmonton, AB, Canada
- Cardiovascular Research Centre, University of AlbertaEdmonton, AB, Canada
- Women and Children’s Health Research Institute, University of AlbertaEdmonton, AB, Canada
| | - Stephane L. Bourque
- Cardiovascular Research Centre, University of AlbertaEdmonton, AB, Canada
- Women and Children’s Health Research Institute, University of AlbertaEdmonton, AB, Canada
- Department of Obstetrics and Gynecology, University of AlbertaEdmonton, AB, Canada
| | - Sandra T. Davidge
- Department of Physiology, University of AlbertaEdmonton, AB, Canada
- Cardiovascular Research Centre, University of AlbertaEdmonton, AB, Canada
- Women and Children’s Health Research Institute, University of AlbertaEdmonton, AB, Canada
- Department of Obstetrics and Gynecology, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
52
|
Hald BO, Jacobsen JCB, Braunstein TH, Inoue R, Ito Y, Sørensen PG, Holstein-Rathlou NH, Jensen LJ. BKCa and KV channels limit conducted vasomotor responses in rat mesenteric terminal arterioles. Pflugers Arch 2011; 463:279-95. [PMID: 22052159 DOI: 10.1007/s00424-011-1049-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/15/2011] [Accepted: 10/16/2011] [Indexed: 11/28/2022]
Abstract
Intracellular Ca(2+) signals underlying conducted vasoconstriction to local application of a brief depolarizing KCl stimulus was investigated in rat mesenteric terminal arterioles (<40 μm). Using a computer model of an arteriole segment comprised of coupled endothelial cells (EC) and vascular smooth muscle cells (VSMC) simulations of both membrane potential and intracellular [Ca(2+)] were performed. The "characteristic" length constant, λ, was approximated using a modified cable equation in both experiments and simulations. We hypothesized that K(+) conductance in the arteriolar wall limit the electrotonic spread of a local depolarization along arterioles by current dissipation across the VSMC plasma membrane. Thus, we anticipated an increased λ by inhibition of voltage-activated K(+) channels. Application of the BK(Ca) channel blocker iberiotoxin (100 nM) onto mesenteric arterioles in vitro and inhibition of BK(Ca) channel current in silico increased λ by 34% and 32%, respectively. Similarly, inhibition of K(V) channels in vitro (4-aminopyridine, 1 mM) or in silico increased λ by 41% and 21%, respectively. Immunofluorescence microscopy demonstrated expression of BK(Ca), Kv1.5, Kv2.1, but not Kv1.2, in VSMCs of rat mesenteric terminal arterioles. Our results demonstrate that inhibition of voltage-activated K(+) channels enhance vascular-conducted responses to local depolarization in terminal arterioles by increasing the membrane resistance of VSMCs. These data contribute to our understanding of how differential expression patterns of voltage-activated K(+) channels may influence conducted vasoconstriction in small arteriolar networks. This finding is potentially relevant to understanding the compromised microcirculatory blood flow in systemic vascular diseases such as diabetes mellitus and hypertension.
Collapse
Affiliation(s)
- Bjørn Olav Hald
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Danesh SM, Kundu P, Lu R, Stefani E, Toro L. Distinct transcriptional regulation of human large conductance voltage- and calcium-activated K+ channel gene (hSlo1) by activated estrogen receptor alpha and c-Src tyrosine kinase. J Biol Chem 2011; 286:31064-71. [PMID: 21757754 DOI: 10.1074/jbc.m111.235457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Estrogen receptor α (ERα) regulates gene transcription via "genomic" (binding directly or indirectly, typically via Sp1 or AP-1 sites, to target genes) and/or "nongenomic" (signaling) mechanisms. ERα activation by estrogen up-regulates the murine Ca(2+)-activated K(+) channel α subunit gene (mSlo1) via genomic mechanisms. Here, we investigated whether ERα also drives transcription of the human (hSlo1) gene. Consistent with this view, estrogen increased hSlo1 transcript levels in primary human smooth muscle cells. Promoter studies revealed that estrogen/hERα-mediated hSlo1 transcription was nearly 6-fold more efficient than for mSlo1 (EC(50), 0.07 versus 0.4 nM). Unlike the genomic transcriptional mechanism employed by mSlo1, hSlo1 exhibits a nongenomic hERα-mediated regulatory mechanism. This is supported by the following: 1) efficient hSlo1 transcription after disruption of the DNA-binding domain of hERα or knockdown of Sp1, and 2) lack of AP-1 sites in the hSlo1 promoter. Three nongenomic signaling pathways were explored: Src, Rho, and PI3K. Inhibition of Src with 10 μM PP2, and reported downstream ERK with 25 μM PD98059 did not prevent estrogen action but caused an increase in hSlo1 basal transcription; conversely, constitutively active c-Src (Y527F) decreased hSlo1 basal transcription even preventing its estrogen/hERα-mediated transcriptional activation. Rho inhibition by coexpressed Clostridium botulinum C3 transferase did not alter estrogen action. In contrast, inhibition of PI3K activity with 10 μM LY294002 decreased estrogen-stimulated hSlo1 transcription by ∼40%. These results indicate that the nongenomic PI3K signaling pathway plays a role in estrogen/hERα-stimulated hSlo1 gene expression; whereas c-Src activity leads to hSlo1 gene tonic repression independently of estrogen, likely through ERK activation.
Collapse
Affiliation(s)
- Shahab M Danesh
- Division of Molecular Medicine, Department of Anesthesiology, UCLA, Los Angeles, California 90095-1778, USA
| | | | | | | | | |
Collapse
|
54
|
Jeffries O, Geiger N, Rowe ICM, Tian L, McClafferty H, Chen L, Bi D, Knaus HG, Ruth P, Shipston MJ. Palmitoylation of the S0-S1 linker regulates cell surface expression of voltage- and calcium-activated potassium (BK) channels. J Biol Chem 2010; 285:33307-33314. [PMID: 20693285 PMCID: PMC2963414 DOI: 10.1074/jbc.m110.153940] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/14/2010] [Indexed: 11/18/2022] Open
Abstract
S-palmitoylation is rapidly emerging as an important post-translational mechanism to regulate ion channels. We have previously demonstrated that large conductance calcium- and voltage-activated potassium (BK) channels are palmitoylated within an alternatively spliced (STREX) insert. However, these studies also revealed that additional site(s) for palmitoylation must exist outside of the STREX insert, although the identity or the functional significance of these palmitoylated cysteine residues are unknown. Here, we demonstrate that BK channels are palmitoylated at a cluster of evolutionary conserved cysteine residues (Cys-53, Cys-54, and Cys-56) within the intracellular linker between the S0 and S1 transmembrane domains. Mutation of Cys-53, Cys-54, and Cys-56 completely abolished palmitoylation of BK channels lacking the STREX insert (ZERO variant). Palmitoylation allows the S0-S1 linker to associate with the plasma membrane but has no effect on single channel conductance or the calcium/voltage sensitivity. Rather, S0-S1 linker palmitoylation is a critical determinant of cell surface expression of BK channels, as steady state surface expression levels are reduced by ∼55% in the C53:54:56A mutant. STREX variant channels that could not be palmitoylated in the S0-S1 linker also displayed significantly reduced cell surface expression even though STREX insert palmitoylation was unaffected. Thus our work reveals the functional independence of two distinct palmitoylation-dependent membrane interaction domains within the same channel protein and demonstrates the critical role of S0-S1 linker palmitoylation in the control of BK channel cell surface expression.
Collapse
Affiliation(s)
- Owen Jeffries
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Nina Geiger
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom; Pharmacology and Toxicology, Institute of Pharmacy, University Tuebingen, 72076 Tuebingen, Germany
| | - Iain C M Rowe
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Lijun Tian
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Heather McClafferty
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Lie Chen
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Danlei Bi
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Hans Guenther Knaus
- Division for Molecular and Cellular Pharmacology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University Innsbruck, Peter-Mayr Strasse 1, 6020 Innsbruck, Austria
| | - Peter Ruth
- Pharmacology and Toxicology, Institute of Pharmacy, University Tuebingen, 72076 Tuebingen, Germany
| | - Michael J Shipston
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
| |
Collapse
|
55
|
Chen L, Jeffries O, Rowe ICM, Liang Z, Knaus HG, Ruth P, Shipston MJ. Membrane trafficking of large conductance calcium-activated potassium channels is regulated by alternative splicing of a transplantable, acidic trafficking motif in the RCK1-RCK2 linker. J Biol Chem 2010; 285:23265-75. [PMID: 20479001 PMCID: PMC2906319 DOI: 10.1074/jbc.m110.139758] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Indexed: 01/26/2023] Open
Abstract
Trafficking of the pore-forming alpha-subunits of large conductance calcium- and voltage-activated potassium (BK) channels to the cell surface represents an important regulatory step in controlling BK channel function. Here, we identify multiple trafficking signals within the intracellular RCK1-RCK2 linker of the cytosolic C terminus of the channel that are required for efficient cell surface expression of the channel. In particular, an acidic cluster-like motif was essential for channel exit from the endoplasmic reticulum and subsequent cell surface expression. This motif could be transplanted onto a heterologous nonchannel protein to enhance cell surface expression by accelerating endoplasmic reticulum export. Importantly, we identified a human alternatively spliced BK channel variant, hSloDelta(579-664), in which these trafficking signals are excluded because of in-frame exon skipping. The hSloDelta(579-664) variant is expressed in multiple human tissues and cannot form functional channels at the cell surface even though it retains the putative RCK domains and downstream trafficking signals. Functionally, the hSloDelta(579-664) variant acts as a dominant negative subunit to suppress cell surface expression of BK channels. Thus alternative splicing of the intracellular RCK1-RCK2 linker plays a critical role in determining cell surface expression of BK channels by controlling the inclusion/exclusion of multiple trafficking motifs.
Collapse
Affiliation(s)
- Lie Chen
- From the
Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, Scotland, United Kingdom
| | - Owen Jeffries
- From the
Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, Scotland, United Kingdom
| | - Iain C. M. Rowe
- From the
Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, Scotland, United Kingdom
| | - Zhi Liang
- From the
Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, Scotland, United Kingdom
| | - Hans-Guenther Knaus
- the
Division for Molecular and Cellular Pharmacology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University Innsbruck, Peter-Mayr Strasse 1, 6020 Innsbruck, Austria, and
| | - Peter Ruth
- Pharmacology and Toxicology, Institute of Pharmacy, University Tuebingen, 72076 Tuebingen, Germany
| | - Michael J. Shipston
- From the
Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, Scotland, United Kingdom
| |
Collapse
|
56
|
Rubio-Ruiz ME, Vargas-González A, Monter-Garrido M, Díaz-Díaz E, Guarner-Lans V. Aortic vasoreactivity during a postnatal critical window of the pancreas in rats. Heart Vessels 2010; 25:248-53. [PMID: 20512453 DOI: 10.1007/s00380-009-1166-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 03/27/2009] [Indexed: 11/29/2022]
Abstract
Changes in aortic vasoreactivity during the postnatal pancreatic critical window, where insulin and glucose, which modify vasoreactivity, are elevated, were studied and compared to those in control and metabolic syndrome (MS) rats. Twelve 21- and 28-day-old rats were used. To develop MS rats, male Wistar animals were given 30% sucrose in drinking water since weaning and used when 6 months old. Glucose and insulin levels were higher during suckling and decreased after weaning, and insulin and triglycerides levels increased in MS rats. Contraction elicited by norepinephrine (NE) was stronger than KCl contraction at all ages. KCl-induced contraction increased with, age being stronger in control rats; it further increased in MS rats. Norepinephrine-induced contraction increased from day 12 to day 28 but stabilized from day 21 to day 28; it was stronger in controls and increased in MS rats. Vasorelaxation to acetylcholine in NE precontracted rings did not change during the neonatal period, being similar to MS rats and lower than in controls. Insulin-induced increase in contraction elicited by KCl increased from day 12 to day 28 and increased from control to MS rats. There is a postnatal critical window in vasoreactivity that might predispose to cardiovascular diseases in adults.
Collapse
Affiliation(s)
- Maria Esther Rubio-Ruiz
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Tlalpan, México DF 14080, Mexico
| | | | | | | | | |
Collapse
|
57
|
Morrison AC, Felix JF, Cupples LA, Glazer NL, Loehr LR, Dehghan A, Demissie S, Bis JC, Rosamond WD, Aulchenko YS, Wang YA, Haritunians T, Folsom AR, Rivadeneira F, Benjamin EJ, Lumley T, Couper D, Stricker BH, O'Donnell CJ, Rice KM, Chang PP, Hofman A, Levy D, Rotter JI, Fox ER, Uitterlinden AG, Wang TJ, Psaty BM, Willerson JT, van Duijn CM, Boerwinkle E, Witteman JCM, Vasan RS, Smith NL. Genomic variation associated with mortality among adults of European and African ancestry with heart failure: the cohorts for heart and aging research in genomic epidemiology consortium. CIRCULATION. CARDIOVASCULAR GENETICS 2010; 3:248-55. [PMID: 20400778 PMCID: PMC3033765 DOI: 10.1161/circgenetics.109.895995] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Prognosis and survival are significant concerns for individuals with heart failure (HF). To better understand the pathophysiology of HF prognosis, the association between 2,366,858 single-nucleotide polymorphisms (SNPs) and all-cause mortality was evaluated among individuals with incident HF from 4 community-based prospective cohorts: the Atherosclerosis Risk in Communities Study, the Cardiovascular Health Study, the Framingham Heart Study, and the Rotterdam Study. METHODS AND RESULTS Participants were 2526 individuals of European ancestry and 466 individuals of African ancestry who experienced an incident HF event during follow-up in the respective cohorts. Within each study, the association between genetic variants and time to mortality among individuals with HF was assessed by Cox proportional hazards models that included adjustment for sex and age at the time of the HF event. Prospective fixed-effect meta-analyses were conducted for the 4 study populations of European ancestry (N=1645 deaths) and for the 2 populations of African ancestry (N=281 deaths). Genome-wide significance was set at P=5.0x10(-7). Meta-analytic findings among individuals of European ancestry revealed 1 genome-wide significant locus on chromosome 3p22 in an intron of CKLF-like MARVEL transmembrane domain containing 7 (CMTM7, P=3.2x10(-7)). Eight additional loci in individuals of European ancestry and 4 loci in individuals of African ancestry were identified by high-signal SNPs (P<1.0x10(-5)) but did not meet genome-wide significance. CONCLUSIONS This study identified a novel locus associated with all-cause mortality among individuals of European ancestry with HF. This finding warrants additional investigation, including replication, in other studies of HF.
Collapse
Affiliation(s)
- Alanna C Morrison
- Atherosclerosis Risk in Communities Study: University of Texas Health Science Center at Houston, Human Genetics Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Albarwani S, Al-Siyabi S, Baomar H, Hassan MO. Exercise training attenuates ageing-induced BKCachannel downregulation in rat coronary arteries. Exp Physiol 2010; 95:746-55. [DOI: 10.1113/expphysiol.2009.051250] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
59
|
Hill MA, Yang Y, Ella SR, Davis MJ, Braun AP. Large conductance, Ca2+-activated K+ channels (BKCa) and arteriolar myogenic signaling. FEBS Lett 2010; 584:2033-42. [PMID: 20178789 DOI: 10.1016/j.febslet.2010.02.045] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 02/15/2010] [Indexed: 12/22/2022]
Abstract
Myogenic, or pressure-induced, vasoconstriction is critical for local blood flow autoregulation. Underlying this vascular smooth muscle (VSM) response are events including membrane depolarization, Ca(2+) entry and mobilization, and activation of contractile proteins. Large conductance, Ca(2+)-activated K(+) channel (BK(Ca)) has been implicated in several of these steps including, (1) channel closure causing membrane depolarization, and (2) channel opening causing hyperpolarization to oppose excessive pressure-induced vasoconstriction. As multiple mechanisms regulate BK(Ca) activity (subunit composition, membrane potential (Em) and Ca(2+) levels, post-translational modification) tissue level diversity is predicted. Importantly, heterogeneity in BK(Ca) channel activity may contribute to tissue-specific differences in regulation of myogenic vasoconstriction, allowing local hemodynamics to be matched to metabolic requirements. Knowledge of such variability will be important to exploiting the BK(Ca) channel as a therapeutic target and understanding systemic effects of its pharmacological manipulation.
Collapse
Affiliation(s)
- Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|
60
|
Dick GM, Tune JD. Role of potassium channels in coronary vasodilation. Exp Biol Med (Maywood) 2010; 235:10-22. [DOI: 10.1258/ebm.2009.009201] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
K+ channels in coronary arterial smooth muscle cells (CASMC) determine the resting membrane potential ( Em) and serve as targets of endogenous and therapeutic vasodilators. Em in CASMC is in the voltage range for activation of L-type Ca2+ channels; therefore, when K+ channel activity changes, Ca2+ influx and arterial tone change. This is why both Ca2+ channel blockers and K+ channel openers have such profound effects on coronary blood flow; the former directly inhibits Ca2+ influx through L-type Ca2+ channels, while the latter indirectly inhibits Ca2+ influx by hyperpolarizing Em and reducing Ca2+ channel activity. K+ channels in CASMC play important roles in vasodilation to endothelial, ischemic and metabolic stimuli. The purpose of this article is to review the types of K+ channels expressed in CASMC, discuss the regulation of their activity by physiological mechanisms and examine impairments related to cardiovascular disease.
Collapse
Affiliation(s)
- Gregory M Dick
- Department of Exercise Physiology and Center for Cardiovascular & Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
61
|
Gao Y, Yang Y, Guan Q, Pang X, Zhang H, Zeng D. IL-1beta modulate the Ca(2+)-activated big-conductance K channels (BK) via reactive oxygen species in cultured rat aorta smooth muscle cells. Mol Cell Biochem 2009; 338:59-68. [PMID: 19949838 DOI: 10.1007/s11010-009-0338-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 11/19/2009] [Indexed: 10/20/2022]
Abstract
The large conductance Ca(2+)-activated K(+) (BK) channel, abundantly expressed in vascular smooth muscle cells, plays a critical role in controlling vascular tone. Activation of BK channels leads to membrane hyperpolarization and promotes vasorelaxation. BK channels are activated either by elevation of the intracellular Ca(2+) concentration or by membrane depolarization. It is also regulated by a diversity of vasodilators and vasoconstrictors. Interleukin-1beta (IL-1beta) is one of the cytokines that play important roles in the development and progression of a variety of cardiovascular diseases. The effects of IL-1beta on vascular reactivity are controversial, and little is known about the modulation of BK channel function by IL-1beta. In this study, we investigated how IL-1beta modulates BK channel function in cultured arterial smooth muscle cells (ASMCs), and examined the role of H(2)O(2) in the process. We demonstrated that IL-1beta had biphasic effects on BK channel function and membrane potential of ASMCs, that is both concentration and time dependent. IL-1beta increased BK channel-dependent K(+) current and hyperpolarized ASMCs when applied for 30 min. While long-term (24-48 h) treatment of IL-1beta resulted in decreased expression of alpha-subunit of BK channel, suppressed BK channel activity, decreased BK channel-dependent K(+) current and depolarization of the cells. H(2)O(2) scavenger catalase completely abolished the early effect of IL-1beta, while it only partly diminished the long-term effect of IL-1beta. These results may provide important molecular mechanisms for therapeutic strategies targeting BK channel in inflammation-related diseases.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Cardiology, the First Affiliated Hospital, China Medical University, Heping District, Shengyang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
62
|
Wu GB, Zhou EX, Qing DX, Li J. Role of potassium channels in regulation of rat coronary arteriole tone. Eur J Pharmacol 2009; 620:57-62. [DOI: 10.1016/j.ejphar.2009.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 07/17/2009] [Accepted: 08/04/2009] [Indexed: 11/25/2022]
|
63
|
Rusch NJ. BK channels in cardiovascular disease: a complex story of channel dysregulation. Am J Physiol Heart Circ Physiol 2009; 297:H1580-2. [PMID: 19749161 DOI: 10.1152/ajpheart.00852.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
64
|
Perez-Vizcaino F, Duarte J, Andriantsitohaina R. Endothelial function and cardiovascular disease: Effects of quercetin and wine polyphenols. Free Radic Res 2009; 40:1054-65. [PMID: 17015250 DOI: 10.1080/10715760600823128] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Endothelial dysfunction is an early pathophysiological feature and independent predictor of poor prognosis in most forms of cardiovascular diseases. Epidemiological studies report an inverse association between dietary flavonoid consumption and mortality from cardiovascular diseases. In the present paper, we review the effects of flavonoids, especially quercetin and wine polyphenols, on endothelial function and dysfunction and its potential protective role in hypertension, ischemic heart disease and stroke. In vitro studies show that flavonoids may exert multiple actions on the NO-guanylyl cyclase pathway, endothelium-derived hyperpolarizing factor(s) and endothelin-1 and protect endothelial cells against apoptosis. In vivo, flavonoids prevent endothelial dysfunction and reduce blood pressure, oxidative stress and end-organ damage in hypertensive animals. Moreover, some clinical studies have shown that flavonoid-rich foods can improve endothelial function in patients with hypertension and ischemic heart disease. Altogether, the available evidence indicates that quercetin and wine polyphenols might be of therapeutic benefit in cardiovascular diseases even though prospective controlled clinical studies are still lacking.
Collapse
Affiliation(s)
- Francisco Perez-Vizcaino
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | |
Collapse
|
65
|
Hypertension of Kcnmb1-/- is linked to deficient K secretion and aldosteronism. Proc Natl Acad Sci U S A 2009; 106:11800-5. [PMID: 19556540 DOI: 10.1073/pnas.0904635106] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mice lacking the beta1-subunit (gene, Kcnmb1; protein, BK-beta1) of the large Ca-activated K channel (BK) are hypertensive. This phenotype is thought to result from diminished BK currents in vascular smooth muscle where BK-beta1 is an ancillary subunit. However, the beta1-subunit is also expressed in the renal connecting tubule (CNT), a segment of the aldosterone-sensitive distal nephron, where it associates with BK and facilitates K secretion. Because of the correlation between certain forms of hypertension and renal defects, particularly in the distal nephron, it was determined whether the hypertension of Kcnmb1(-/-) has a renal origin. We found that Kcnmb1(-/-) are hypertensive, volume expanded, and have reduced urinary K and Na clearances. These conditions are exacerbated when the animals are fed a high K diet (5% K; HK). Supplementing HK-fed Kcnmb1(-/-) with eplerenone (mineralocorticoid receptor antagonist) corrected the fluid imbalance and more than 70% of the hypertension. Finally, plasma [aldo] was elevated in Kcnmb1(-/-) under basal conditions (control diet, 0.6% K) and increased significantly more than wild type when fed the HK diet. We conclude that the majority of the hypertension of Kcnmb1(-/-) is due to aldosteronism, resulting from renal potassium retention and hyperkalemia.
Collapse
|
66
|
Li J, Deng CL, Gao F, Cheng JH, Yu ZB, Liu L, Xie MJ. Coexpression and characterization of the human large-conductance Ca2+-activated K+ channel α + β1 subunits in HEK293 cells. Mol Cell Biochem 2009; 331:117-26. [DOI: 10.1007/s11010-009-0149-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 04/23/2009] [Indexed: 12/30/2022]
|
67
|
Kang LS, Kim S, Dominguez JM, Sindler AL, Dick GM, Muller-Delp JM. Aging and muscle fiber type alter K+ channel contributions to the myogenic response in skeletal muscle arterioles. J Appl Physiol (1985) 2009; 107:389-98. [PMID: 19407249 DOI: 10.1152/japplphysiol.91245.2008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aging diminishes myogenic tone in arterioles from skeletal muscle. Recent evidence indicates that both large-conductance Ca2+-activated (BKCa) and voltage-dependent (KV) K+ channels mediate negative feedback control of the myogenic response. Thus we tested the hypothesis that aging increases the contributions of KV and BKCa channels to myogenic regulation of vascular tone. Because myogenic responsiveness differs between oxidative and glycolytic muscles, we predicted that KV and BKCa channel contributions to myogenic responsiveness vary with fiber type. Myogenic responses of first-order arterioles from the gastrocnemius and soleus muscles of 4- and 24-mo-old Fischer 344 rats were evaluated in the presence and absence of 4-aminopyridine (5 mM) or iberiotoxin (30 nM), inhibitors of KV and BKCa, respectively. 4-Aminopyridine enhanced myogenic tone with aging and normalized age-related differences in both muscle types. By contrast, iberiotoxin eliminated age-related differences in soleus arterioles and had no effect in gastrocnemius vessels. KV1.5 is an integral component of KV channels in vascular smooth muscle; therefore, we determined the relative protein expression of KV1.5, as well as BKCa, in soleus and gastrocnemius arterioles. Immunoblot analysis revealed no differences in KV1.5 protein with aging or between variant fiber types, whereas BKCa protein levels declined with age in arterioles from both muscle groups. Collectively, these results suggest that the contribution of BKCa to myogenic regulation of vascular tone changes with age in soleus muscle arterioles, whereas increased KV channel expression and negative feedback regulation of myogenic tone increases with advancing age in arterioles from both oxidative and glycolytic muscles.
Collapse
Affiliation(s)
- Lori S Kang
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | | | | | | | | | | |
Collapse
|
68
|
Félétou M. Calcium-activated potassium channels and endothelial dysfunction: therapeutic options? Br J Pharmacol 2009; 156:545-62. [PMID: 19187341 DOI: 10.1111/j.1476-5381.2009.00052.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The three subtypes of calcium-activated potassium channels (K(Ca)) of large, intermediate and small conductance (BK(Ca), IK(Ca) and SK(Ca)) are present in the vascular wall. In healthy arteries, BK(Ca) channels are preferentially expressed in vascular smooth muscle cells, while IK(Ca) and SK(Ca) are preferentially located in endothelial cells. The activation of endothelial IK(Ca) and SK(Ca) contributes to nitric oxide (NO) generation and is required to elicit endothelium-dependent hyperpolarizations. In the latter responses, the hyperpolarization of the smooth muscle cells is evoked either via electrical coupling through myo-endothelial gap junctions or by potassium ions, which by accumulating in the intercellular space activate the inwardly rectifying potassium channel Kir2.1 and/or the Na(+)/K(+)-ATPase. Additionally, endothelium-derived factors such as cytochrome P450-derived epoxyeicosatrienoic acids and under some circumstances NO, prostacyclin, lipoxygenase products and hydrogen peroxide (H(2)O(2)) hyperpolarize and relax the underlying smooth muscle cells by activating BK(Ca). In contrast, cytochrome P450-derived 20-hydroxyeicosatetraenoic acid and various endothelium-derived contracting factors inhibit BK(Ca). Aging and cardiovascular diseases are associated with endothelial dysfunctions that can involve a decrease in NO bioavailability, alterations of EDHF-mediated responses and/or enhanced production of endothelium-derived contracting factors. Because potassium channels are involved in these endothelium-dependent responses, activation of endothelial and/or smooth muscle K(Ca) could prevent the occurrence of endothelial dysfunction. Therefore, direct activators of these potassium channels or compounds that regulate their activity or their expression may be of some therapeutic interest. Conversely, blockers of IK(Ca) may prevent restenosis and that of BK(Ca) channels sepsis-dependent hypotension.
Collapse
Affiliation(s)
- Michel Félétou
- Department of Angiology, Institut de Recherches Servier, Suresnes, France.
| |
Collapse
|
69
|
Nadadur SS, Haykal-Coates N, Mudipalli A, Costa DL. Endothelial effects of emission source particles: acute toxic response gene expression profiles. Toxicol In Vitro 2008; 23:67-77. [PMID: 19000753 DOI: 10.1016/j.tiv.2008.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/22/2008] [Accepted: 10/14/2008] [Indexed: 11/16/2022]
Abstract
Air pollution epidemiology has established a strong association between exposure to ambient particulate matter (PM) and cardiovascular outcomes. Experimental studies in both humans and laboratory animals support varied biological mechanisms including endothelial dysfunction as potentially a central step to the elicitation of cardiovascular events. We therefore hypothesized that relevant early molecular alterations on endothelial cells should be assessable in vitro upon acute exposure to PM components previously shown to be involved in health outcomes. Using a model emission PM, residual oil fly ash and one of its predominant constituents (vanadium-V), we focused on the development of gene expression profiles to fingerprint that particle and its constituents to explore potential biomarkers for PM-induced endothelial dysfunction. Here we present differential gene expression and transcription factor activation profiles in human vascular endothelial cells exposed to a non-cytotoxic dose of fly ash or V following semi-global gene expression profiling of approximately 8000 genes. Both fly ash and it's prime constituent, V, induced alterations in genes involved in passive and active transport of solutes across the membrane; voltage-dependent ion pumps; induction of extracellular matrix proteins and adhesion molecules; and activation of numerous kinases involved in signal transduction pathways. These preliminary data suggest that cardiovascular effects associated with exposure to PM may be mediated by perturbations in endothelial cell permeability, membrane integrity; and ultimately endothelial dysfunction.
Collapse
Affiliation(s)
- Srikanth S Nadadur
- Pulmonary Toxicology Branch, Experimental Toxicology Division, National Health Environmental Effects Research Laboratory, ORD, US EPA, Research Triangle Park, NC 27711, USA.
| | | | | | | |
Collapse
|
70
|
Werner ME, Meredith AL, Aldrich RW, Nelson MT. Hypercontractility and impaired sildenafil relaxations in the BKCa channel deletion model of erectile dysfunction. Am J Physiol Regul Integr Comp Physiol 2008; 295:R181-8. [PMID: 18480246 DOI: 10.1152/ajpregu.00173.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Erectile dysfunction (ED) can be elicited by a variety of pathogenic factors, particularly impaired formation of and responsiveness to nitric oxide (NO) and the downstream effectors soluble guanylate cyclase (sGC) and cGMP-dependent protein kinase I (PKGI). One important target of PKGI in smooth muscle is the large-conductance, Ca2+ -activated potassium (BKCa) channel. In our previous report (42), we demonstrated that deletion of the BKCa channel in mice induced force oscillations and led to reduced nerve-evoked relaxations and ED. In the current study, we used this ED model to explore the role of the BKCa channel in the NO/sGC/PKGI pathway. Electrical field stimulation (EFS)-induced contractions of corpus cavernosum smooth muscle strips were significantly enhanced in the absence of BKCa channel function. In strips precontracted with phenylephrine, EFS-induced relaxations were converted to contractions by inhibition of sGC, and this was further enhanced by loss of BK channel function. Sildenafil-induced relaxations were decreased to a similar extent by inhibition of sGC or BKCa channels. At concentrations >1 microM, sildenafil caused relaxations independent of inhibition of sGC or BKCa channels. Sildenafil did not affect the enhanced force oscillations that were induced by the loss of BKCa channel function. Yet, these oscillations could be completely eliminated by blocking L-type voltage-dependent Ca2+ channels (VDCCs). These results suggest that therapeutically relevant concentrations of sildenafil act through cGMP and BKCa channels, and loss of BKCa channel function leads to hypercontractility, which depends on VDCCs and cannot be modified by the cGMP pathway.
Collapse
Affiliation(s)
- Matthias E Werner
- Division of Cardiovascular and Endocrine Sciences, School of Medicine, University of Manchester, Manchester, United Kingdom.
| | | | | | | |
Collapse
|
71
|
Ledoux J, Bonev AD, Nelson MT. Ca2+-activated K+ channels in murine endothelial cells: block by intracellular calcium and magnesium. ACTA ACUST UNITED AC 2008; 131:125-35. [PMID: 18195387 PMCID: PMC2213563 DOI: 10.1085/jgp.200709875] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The intermediate (IK(Ca)) and small (SK(Ca)) conductance Ca(2+)-sensitive K(+) channels in endothelial cells (ECs) modulate vascular diameter through regulation of EC membrane potential. However, contribution of IK(Ca) and SK(Ca) channels to membrane current and potential in native endothelial cells remains unclear. In freshly isolated endothelial cells from mouse aorta dialyzed with 3 microM free [Ca(2+)](i) and 1 mM free [Mg(2+)](i), membrane currents reversed at the potassium equilibrium potential and exhibited an inward rectification at positive membrane potentials. Blockers of large-conductance, Ca(2+)-sensitive potassium (BK(Ca)) and strong inward rectifier potassium (K(ir)) channels did not affect the membrane current. However, blockers of IK(Ca) channels, charybdotoxin (ChTX), and of SK(Ca) channels, apamin (Ap), significantly reduced the whole-cell current. Although IK(Ca) and SK(Ca) channels are intrinsically voltage independent, ChTX- and Ap-sensitive currents decreased steeply with membrane potential depolarization. Removal of intracellular Mg(2+) significantly increased these currents. Moreover, concomitant reduction of the [Ca(2+)](i) to 1 microM caused an additional increase in ChTX- and Ap-sensitive currents so that the currents exhibited theoretical outward rectification. Block of IK(Ca) and SK(Ca) channels caused a significant endothelial membrane potential depolarization (approximately 11 mV) and decrease in [Ca(2+)](i) in mesenteric arteries in the absence of an agonist. These results indicate that [Ca(2+)](i) can both activate and block IK(Ca) and SK(Ca) channels in endothelial cells, and that these channels regulate the resting membrane potential and intracellular calcium in native endothelium.
Collapse
Affiliation(s)
- Jonathan Ledoux
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington 05405, USA
| | | | | |
Collapse
|
72
|
Garcia ML, Shen DM, Kaczorowski GJ. High-conductance calcium-activated potassium channels. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.7.831] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
73
|
So I, Chae MR, Lee SW. Gene transfer of the K(ATP) channel restores age-related erectile dysfunction in rats. BJU Int 2007; 100:1154-60. [PMID: 17645416 DOI: 10.1111/j.1464-410x.2007.07050.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine if gene transfer of the ATP-sensitive potassium (K(ATP)) channel can reverse age-related erectile dysfunction in the rat, as the K(ATP) channel is an important subtype of potassium channels regulating smooth muscle tone. MATERIALS AND METHODS In an in vitro study, gene were transferred using cDNA of the K(ATP) channel in cultured human corporal smooth muscle (CSM) cells and human embryonic kidney (HEK) cells. After gene transfer, the activities of transferred channels were assessed by the patch-clamp technique. In an in vivo study, 15 old rats were used for groups of gene therapy and nine young adult rats were used as normal controls. The old rats were divided into three groups, i.e. controls and two gene-transfer groups (Kir6.1 + SUR2B and Kir6.2 + SUR2B). The intracavernosal pressure (ICP) response to cavernosal nerve stimulation was assessed after intracorporal injection with naked cDNA of the K(ATP) channel. The transgene expression of the K(ATP) channel was examined by reverse transcription-polymerase chain reaction (RT-PCR) in rats transfected with cDNA of Kir 6.1 and 6.2. RESULTS The transferred gene of the K(ATP) channel was functionally active and appropriate for gene transfer. The mean (sem) ratio of ICP to systemic blood pressure in the gene-transfer groups, at 79.4 (1)% and 76.5 (2.6)% (both eight rats) was significantly higher than that in age-matched control rats, at 59.4 (3.3)% (eight), and similar to that in the young control rats, at 77.1 (2.7)% (nine). The RT-PCR showed expression of Kir6.1 and 6.2 genes in the transfected groups. CONCLUSION In vivo gene transfer of the K(ATP) channel can physiologically restore erectile function in aged rats, and might be applicable to the development of new forms of therapy for treating human erectile dysfunction.
Collapse
Affiliation(s)
- Insuk So
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
74
|
Zarei MM, Song M, Wilson RJ, Cox N, Colom LV, Knaus HG, Stefani E, Toro L. Endocytic trafficking signals in KCNMB2 regulate surface expression of a large conductance voltage and Ca2+-activated K+ channel. Neuroscience 2007; 147:80-9. [PMID: 17521822 DOI: 10.1016/j.neuroscience.2007.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 04/05/2007] [Accepted: 04/06/2007] [Indexed: 11/22/2022]
Abstract
Large conductance voltage and calcium-activated K(+) channels play critical roles in neuronal excitability and vascular tone. Previously, we showed that coexpression of the transmembrane beta2 subunit, KCNMB2, with the human pore-forming alpha subunit of the large conductance voltage and Ca(2+)-activated K(+) channel (hSlo) yields inactivating currents similar to those observed in hippocampal neurons [Hicks GA, Marrion NV (1998) Ca(2+)-dependent inactivation of large conductance Ca(2+)-activated K(+) (BK) channels in rat hippocampal neurones produced by pore block from an associated particle. J Physiol (Lond) 508 (Pt 3):721-734; Wallner M, Meera P, Toro L (1999b) Molecular basis of fast inactivation in voltage and Ca(2+)-activated K(+) channels: A transmembrane beta-subunit homolog. Proc Natl Acad Sci U S A 96:4137-4142]. Herein, we report that coexpression of beta2 subunit with hSlo can also modulate hSlo surface expression levels in HEK293T cells. We found that, when expressed alone, beta2 subunit appears to reach the plasma membrane but also displays a distinct intracellular punctuated pattern that resembles endosomal compartments. beta2 Subunit coexpression with hSlo causes two biological effects: i) a shift of hSlo's intracellular expression pattern from a relatively diffuse to a distinct punctated cytoplasmic distribution overlapping beta2 expression; and ii) a decrease of hSlo surface expression that surpassed an observed small decrease in total hSlo expression levels. beta2 Site-directed mutagenesis studies revealed two putative endocytic signals at the C-terminus of beta2 that can control expression levels of hSlo. In contrast, a beta2 N-terminal consensus endocytic signal had no effect on hSlo expression levels. Thus, beta2 subunit not only can influence hSlo currents but also has the ability to limit hSlo surface expression levels via an endocytic mechanism. This new mode of beta2 modulation of hSlo may depend on particular coregulatory mechanisms in different cell types.
Collapse
Affiliation(s)
- M M Zarei
- Department of Anesthesiology, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
Aging is one of the main risk factors for the development of atherosclerosis and, therefore, for coronary artery disease. Age-associated remodeling of the vascular wall includes luminal enlargement, intimal and medial thickening, and increased vascular stiffness. As aging occurs, smooth muscle cells (SMCs) progressively migrate from the tunica media and accumulate into the tunica intima. Aging also associates with changes of SMC proliferative and apoptotic behavior and response to growth factors, such as transforming growth factor-beta1. Aging induces a reduction in the density of the alpha-subunit of Ca(2+)-activated K(+) channels in coronary smooth muscle and increases the response to endothelial constrictor factors and K(+). Accordingly, we have recently shown that the vasodilatory effect of male sex hormone testosterone, which is mediated through large conductance Ca(2+)-activated K(+) channel opening action, decreases with age. Apart from age-associated remodeling of the vascular wall, endothelial function declines with age. This is most obvious from the attenuation of endothelium-dependent dilator responses, which is a consequence of the alteration in the expression and/or activity of the endothelial nitric oxide (NO) synthase, upregulation of the inducible NO synthase, and increased formation of reactive oxygen species. In fact, in the course of aging, there is an alteration in the equilibrium between relaxing and contracting factors released by the endothelium. Hence, there is a progressive reduction in the participation of NO and endothelium-derived hyperpolarizing factor (EDHF) associated with increased participation of oxygen-derived free radicals and cyclooxygenase-derived prostanoids. Also, the endothelin-1 and angiotensin II pathways may play a role in age-related endothelial dysfunction. Aging is also associated with a reduction in the regenerative capacity of the endothelium and endothelial senescence, which is characterized by an increased rate of endothelial cell apoptosis. Thus, aging elicits several changes in the vascular endothelium gradually altering its phenotype from an anti- to a proatherosclerotic one. In conclusion, it becomes increasingly evident that the blood vessel structural and functional disturbances, which characterize vascular aging, make a major contribution to aging-related target organ damage. The use of drugs, including antioxidant therapy, lipid-lowering drugs, and estrogens, seems to be promising.
Collapse
Affiliation(s)
- Oguzhan Yildiz
- Department of Pharmacology, Gülhane Military Medical Academy, Medical School, 06018 Etlik, Ankara, Turkey.
| |
Collapse
|
76
|
Davies KP, Stanevsky Y, Tar MT, Moses T, Chang JS, Chance MR, Melman A. Ageing causes cytoplasmic retention of MaxiK channels in rat corporal smooth muscle cells. Int J Impot Res 2007; 19:371-7. [PMID: 17287835 PMCID: PMC2043378 DOI: 10.1038/sj.ijir.3901541] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The MaxiK channel plays a critical role in the regulation of corporal smooth muscle tone and thereby erectile function. Given that ageing results in a decline in erectile function, we determined changes in the expression of MaxiK, which might impact erectile function. Quantitative-polymerase chain reaction demonstrated that although there is no significant change in transcription of the alpha- and beta-subunits that comprise the MaxiK channel, there are significant changes in the expression of transcripts encoding different splice variants. One transcript, SV1, is 13-fold increased in expression in the ageing rat corpora. SV1 has previously been reported to trap other isoforms of the MaxiK channel in the cytoplasm. Correlating with increased expression of SV1, we observed in older rats there is approximately a 13-fold decrease in MaxiK protein in the corpora cell membrane and a greater proportion is retained in the cytoplasm (approximately threefold). These experiments demonstrate that ageing of the corpora is accompanied by changes in alternative splicing and cellular localization of the MaxiK channel.
Collapse
Affiliation(s)
- K P Davies
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
77
|
Saponara S, Testai L, Iozzi D, Martinotti E, Martelli A, Chericoni S, Sgaragli G, Fusi F, Calderone V. (+/-)-Naringenin as large conductance Ca(2+)-activated K+ (BKCa) channel opener in vascular smooth muscle cells. Br J Pharmacol 2006; 149:1013-21. [PMID: 17088866 PMCID: PMC2014637 DOI: 10.1038/sj.bjp.0706951] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
UNLABELLED BACKGROUND AND PURPOSE. The aim of this study was to investigate, in vascular smooth muscle cells, the mechanical and electrophysiological effects of (+/-)-naringenin. EXPERIMENTAL APPROACH Aorta ring preparations and single tail artery myocytes were employed for functional and patch-clamp experiments, respectively. KEY RESULTS (+/-)-Naringenin induced concentration-dependent relaxation in endothelium-denuded rat aortic rings pre-contracted with either 20 mM KCl or noradrenaline (pIC(50) values of 4.74 and 4.68, respectively). Tetraethylammonium, iberiotoxin, 4-aminopyridine and 60 mM KCl antagonised (+/-)-naringenin-induced vasorelaxation, while glibenclamide did not produce any significant antagonism. Naringin [(+/-)-naringenin 7-beta-neohesperidoside] caused a concentration-dependent relaxation of rings pre-contracted with 20 mM KCl, although its potency and efficacy were significantly lower than those of (+/-)-naringenin. In rat tail artery myocytes, (+/-)-naringenin increased large conductance Ca(2+)-activated K(+) (BK(Ca)) currents in a concentration-dependent manner; this stimulation was iberiotoxin-sensitive and fully reversible upon drug wash-out. (+/-)-Naringenin accelerated the activation kinetics of BK(Ca) current, shifted, by 22 mV, the voltage dependence of the activation curve to more negative potentials, and decreased the slope of activation. (+/-)-Naringenin-induced stimulation of BK(Ca) current was insensitive either to changes in the intracellular Ca(2+) concentration or to the presence, in the pipette solution, of the fast Ca(2+) chelator BAPTA. However, such stimulation was diminished when the K(+) gradient across the membrane was reduced. CONCLUSIONS AND IMPLICATIONS The vasorelaxant effect of the naturally-occurring flavonoid (+/-)-naringenin on endothelium-denuded vessels was due to the activation of BK(Ca) channels in myocytes.
Collapse
Affiliation(s)
- S Saponara
- Dipartimento di Scienze Biomediche, Università degli Studi di Siena Siena, Italy
| | - L Testai
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università degli Studi di Pisa Pisa, Italy
| | - D Iozzi
- Dipartimento di Scienze Biomediche, Università degli Studi di Siena Siena, Italy
| | - E Martinotti
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università degli Studi di Pisa Pisa, Italy
| | - A Martelli
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università degli Studi di Pisa Pisa, Italy
| | - S Chericoni
- Dipartimento di Chimica Bioorganica e Biofarmacia, Università degli Studi di Pisa Pisa, Italy
| | - G Sgaragli
- Dipartimento di Scienze Biomediche, Università degli Studi di Siena Siena, Italy
| | - F Fusi
- Dipartimento di Scienze Biomediche, Università degli Studi di Siena Siena, Italy
- Author for correspondence:
| | - V Calderone
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università degli Studi di Pisa Pisa, Italy
| |
Collapse
|
78
|
Lam HD, Lemay AM, Kelly J, Hill CE. Loss of Kv and MaxiK currents associated with increased MRP1 expression in small cell lung carcinoma. J Cell Physiol 2006; 209:535-41. [PMID: 16883578 DOI: 10.1002/jcp.20761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Regulatory volume decrease and exocrine secretion studies suggest a functional relationship between K+ and organic anion efflux. To test the hypothesis that the expression of K+ channels and MRP1 is reciprocally related, we employed the patch clamp and RT-PCR techniques on weakly (H69) and strongly MRP1-expressing (H69AR) small cell lung cancer cells. H69AR cells do not express the time- and voltage-dependent delayed rectifying K+ current (Kv) reported earlier in H69 cells and confirmed here. About 80% of the Kv current in H69 cells inactivated at 0 mV, allowing us to identify other K+ currents present in these cells. Whole-cell currents from cells dialyzed and bathed in K-gluconate as the major ions exhibited inward rectification in both cell types. Inwardly rectifying (Kir) currents in both H69 and H69AR cells showed time-dependent activation and slow inactivation at large negative potentials. H69 cells also express a threefold larger Ca2+ -stimulated K+ -selective and iberiotoxin-sensitive current relative to H69AR cells. In excised inside-out patches exposed to 145 mM symmetrical K+ solutions, H69 cells expressed a voltage- and Ca2+ -sensitive large conductance (128 +/- 5 pS) K+ channel (MaxiK). MaxiK-like currents were not observed at the whole-cell or single-channel level in H69AR cells. RT-PCR identified MaxiKalpha transcripts in H69 but not H69AR cells. These results indicate that two K+ currents (MaxiK and Kv) and the organic anion transporter MRP1 are reciprocally expressed in H69 and H69AR cells.
Collapse
Affiliation(s)
- Hung D Lam
- GI Diseases Research Unit, Hotel Dieu Hospital and Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
79
|
Sawmiller DR, Ashtari M, Urueta H, Leschinsky M, Henning RJ. Mechanisms of vasoactive intestinal peptide-elicited coronary vasodilation in the isolated perfused rat heart. Neuropeptides 2006; 40:349-55. [PMID: 17030371 DOI: 10.1016/j.npep.2006.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 07/24/2006] [Accepted: 07/26/2006] [Indexed: 11/22/2022]
Abstract
The present study investigated the potential role of vasoactive intestinal peptide (VIP) receptors, VPAC1 and VPAC2, in VIP-elicited coronary vasodilation of the isolated perfused rat heart. Additional studies determined the role of ATP-sensitive (K(ATP)) and voltage-gated K(+) (K(V)) channels in the VIP-elicited coronary vasodilation. Both the selective VPAC1 agonist, K15,R16,L27VIPl-7GRF8-27, and the selective VPAC2 agonist, RO25-1553, decreased coronary vascular resistance (CVR) in a dose-dependent manner, with EC(50) values of 1.67x10(-9)M and 7.11x10(-9)M, respectively (VPAC1 vs VPAC2 agonist, P<0.05). K15,R16,L27VIP1-7GRF8-27 and RO25-1553 maximally reduced CVR by -42+/-4% and -39+/-6% at 1x10(-8) and 3x10(-8)M, respectively. VIP at 1x10(-10)M decreased CVR by -14+/-2% in the absence (vehicle), by -11+/-3% in the presence of the nonselective VIP receptor antagonist VIP10-28 (1x10(-7)M; P>0.05 vs. vehicle) and by only -4+/-2% in the presence of the selective VPAC2 receptor antagonist PACAP6-38 (1x10(-7)M; P<0.05 vs. vehicle). In additional studies, VIP at 1x10(-10)M decreased CVR by -22+/-1% in the absence (control) and by only -10+/-2% in the presence of the nonselective K(+) channel blocker tetrabutylammonium (3x10(-4)M; P<0.05 vs. control). VIP reduced CVR by -4+/-1% in the presence of the K(ATP) channel blocker glibenclamide (3x10(-6)M; P<0.05 vs control) and by -28+/-2% in the presence of the K(V) channel blocker 4-aminopyridine (3x10(-4)M; P>0.05 vs control). Thus, selective VPAC1 and VPAC2 receptor activation in the coronary circulation produces vasodilation and the VIP-elicited coronary vasodilation involves activation of VPAC2 receptors and K(ATP) but not K(V) channels. In addition, VIP10-28 does not effectively block coronary vascular VIP receptors.
Collapse
MESH Headings
- Animals
- Coronary Circulation/drug effects
- Coronary Vessels/drug effects
- Heart/drug effects
- In Vitro Techniques
- KATP Channels
- Male
- Potassium Channel Blockers/pharmacology
- Potassium Channels, Inwardly Rectifying/drug effects
- Potassium Channels, Voltage-Gated/drug effects
- Rats
- Rats, Sprague-Dawley
- Receptors, Vasoactive Intestinal Peptide, Type II/agonists
- Receptors, Vasoactive Intestinal Peptide, Type II/antagonists & inhibitors
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Receptors, Vasoactive Intestinal Polypeptide, Type I/agonists
- Receptors, Vasoactive Intestinal Polypeptide, Type I/antagonists & inhibitors
- Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics
- Vasoactive Intestinal Peptide/pharmacology
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Darrell R Sawmiller
- Department of Internal Medicine/Cardiology, University of South Florida Health Science Center, Tampa, FL 33612-4799, USA.
| | | | | | | | | |
Collapse
|
80
|
Weisleder N, Ma JJ. Ca2+ sparks as a plastic signal for skeletal muscle health, aging, and dystrophy. Acta Pharmacol Sin 2006; 27:791-8. [PMID: 16787561 DOI: 10.1111/j.1745-7254.2006.00384.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Ca2+ sparks are the elementary units of intracellular Ca2+ signaling in striated muscle cells revealed as localized Ca2+ release events from sarcoplasmic reticulum (SR) by confocal microscopy. While Ca2+ sparks are well defined in cardiac muscle, there has been a general belief that these localized Ca2+ release events are rare in intact adult mammalian skeletal muscle. Several laboratories determined that Ca2+ sparks in mammalian skeletal muscle could only be observed in large numbers when the sarcolemmal membranes are permeabilized or the SR Ca2+ content is artificially manipulated, thus the cellular and molecular mechanisms underlying the regulation of Ca2+ sparks in skeletal muscle remain largely unexplored. Recently, we discovered that membrane deformation generated by osmotic stress induced a robust Ca2+ spark response confined in close spatial proximity to the sarcolemmal membrane in intact mouse muscle fibers. In addition to Ca2+ sparks, prolonged Ca2+ transients, termed Ca2+ bursts, are also identified in intact skeletal muscle. These induced Ca2+ release events are reversible and repeatable, revealing a plastic nature in young muscle fibers. In contrast, induced Ca2+ sparks in aged muscle are transient and cannot be re-stimulated. Dystrophic muscle fibers display uncontrolled Ca2+ sparks, where osmotic stress-induced Ca2+ sparks are not reversible and they are no longer spatially restricted to the sarcolemmal membrane. An understanding of the mechanisms that underlie generation of osmotic stress-induced Ca2+ sparks in skeletal muscle, and how these mechanisms are altered in pathology, will contribute to our understanding of the regulation of Ca2+ homeostasis in muscle physiology and pathophysiology.
Collapse
Affiliation(s)
- Noah Weisleder
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
81
|
Ledoux J, Werner ME, Brayden JE, Nelson MT. Calcium-activated potassium channels and the regulation of vascular tone. Physiology (Bethesda) 2006; 21:69-78. [PMID: 16443824 DOI: 10.1152/physiol.00040.2005] [Citation(s) in RCA: 320] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Different calcium signals in the endothelium and smooth muscle target different types of Ca2+-sensitive K+ channels to modulate vascular function. These differential calcium signals and targets represent multilayered opportunities for prevention and/or treatment of vascular dysfunctions.
Collapse
Affiliation(s)
- Jonathan Ledoux
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont, USA
| | | | | | | |
Collapse
|
82
|
Abstract
The basic functional unit of the large-conductance, voltage- and Ca2+-activated K+ (MaxiK, BK, BKCa) channel is a tetramer of the pore-forming alpha-subunit (MaxiKalpha) encoded by a single gene, Slo, holding multiple alternative exons. Depending on the tissue, MaxiKalpha can associate with modulatory beta-subunits (beta1-beta4) increasing its functional diversity. As MaxiK senses and regulates membrane voltage and intracellular Ca2+, it links cell excitability with cell signalling and metabolism. Thus, MaxiK is a key regulator of vital body functions, like blood flow, uresis, immunity and neurotransmission. Epilepsy with paroxysmal dyskinesia syndrome has been recognized as a MaxiKalpha-related disorder caused by a gain-of-function C-terminus mutation. This channel region is also emerging as a key recognition module containing sequences for MaxiKalpha interaction with its surrounding signalling partners, and its targeting to cell-specific microdomains. The growing list of interacting proteins highlights the possibility that associations with the C-terminus of MaxiKalpha are dynamic and depending on each cellular environment. We speculate that the molecular multiplicity of the C-terminus (and intracellular loops) dictated by alternative exons may modulate or create additional interacting sites in a tissue-specific manner. A challenge is the dissection of MaxiK macromolecular signalling complexes in different tissues and their temporal association/dissociation according to the stimulus.
Collapse
Affiliation(s)
- Rong Lu
- Dept. Anesthesiology, UCLA, BH-509A CHS, Box 957115, Los Angeles, CA 90095-7115, USA.
| | | | | | | | | | | |
Collapse
|
83
|
Tanaka Y, Koike K, Toro L. MaxiK channel roles in blood vessel relaxations induced by endothelium-derived relaxing factors and their molecular mechanisms. J Smooth Muscle Res 2005; 40:125-53. [PMID: 15655302 DOI: 10.1540/jsmr.40.125] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The endothelium of blood vessels plays a crucial role in the regulation of blood flow by controlling mechanical functions of underlying vascular smooth muscle. The regulation by the endothelium of vascular smooth muscle relaxation and contraction is mainly achieved via the release of vasoactive substances upon stimulation with neurohumoural substances and physical stimuli. Nitric oxide (NO) and prostaglandin I2 (prostacyclin, PGI2) are representative endothelium-derived chemicals that exhibit powerful blood vessel relaxation. NO action involves activation of soluble guanylyl cyclase and PGI2 action is initiated by the stimulation of a cell-surface receptor (IP receptor, IPR) that is coupled with Gs-protein-adenylyl cyclase cascade. Many studies on the mechanisms by which NO and PGI2 elicit blood vessel relaxation have highlighted a role of the large conductance, Ca2+-activated K+ (MaxiK, BKCa) channel in smooth muscle as their common downstream effector. Furthermore, their molecular mechanisms have been unravelled to include new routes different from the conventionally approved intracellular pathways. MaxiK channel might also serve as a target for endothelium-derived hyperpolarizing factor (EDHF), the non-NO, non-PGI2 endothelium-derived relaxing factor in some blood vessels. In this brief article, we review how MaxiK channel serves as an endothelium-vascular smooth muscle transducer to communicate the chemical signals generated in the endothelium to control blood vessel mechanical functions and discuss their molecular mechanisms.
Collapse
Affiliation(s)
- Yoshio Tanaka
- Department of Chemical Pharmacology, Toho University School of Pharmaceutical Sciences, Funabashi-City Chiba 274-8510, Japan.
| | | | | |
Collapse
|
84
|
Werner ME, Zvara P, Meredith AL, Aldrich RW, Nelson MT. Erectile dysfunction in mice lacking the large-conductance calcium-activated potassium (BK) channel. J Physiol 2005; 567:545-56. [PMID: 16020453 PMCID: PMC1474195 DOI: 10.1113/jphysiol.2005.093823] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Penile erection is dependent on the nitric oxide (NO)/cGMP-dependent protein kinase I (PKGI) pathway. One important target of PKGI in smooth muscle is the large-conductance, calcium-activated potassium (BK) channel, which upon activation hyperpolarizes the smooth muscle cell membrane, causing relaxation. Relaxation of arterial and corpus cavernosum smooth muscle (CCSM) is necessary to increase blood flow into the corpora cavernosa that leads to penile tumescence. We investigated the functional role of BK channels in the corpus cavernosum utilizing a knock-out mouse lacking the Slo gene (Slo-/-) responsible for the pore-forming subunit of the BK channel. Whole-cell currents were recorded from isolated CCSM cells of Slo+/+ and Slo-/- mice. Iberiotoxin-sensitive voltage- and [Ca2+]-activated K+ currents, the latter activated by local transient calcium releases (calcium sparks), were present in Slo+/+ CCSM cells, but absent in Slo-/- cells. CCSM strips from Slo-/- mice demonstrated a four-fold increase in phasic contractions, in the presence of phenylephrine. Nerve-evoked relaxations of precontracted strips were reduced by 50%, both in strips from Slo-/- mice and by blocking BK channels with iberiotoxin in the Slo+/+ strips. Consistent with the in vitro results, in vivo intracavernous pressure exhibited pronounced oscillations in Slo-/- mice, but not in Slo+/+ mice. Furthermore, intracavernous pressure increases to nerve stimulation, in vivo, were reduced by 22% in Slo-/- mice. These results indicate that the BK channel has an important role in erectile function, and loss of the BK channel leads to erectile dysfunction.
Collapse
Affiliation(s)
- Matthias E Werner
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
85
|
Abstract
The present review is an attempt to put into perspective the available information on the putative changes in cellular mechanisms of the contractile properties of the aging gastrointestinal (GI) smooth muscle. Information on smooth muscle of the GI tract is scanty. Smooth muscle cells from old rats (32 months old) exhibit limited cell length distribution and diminished contractility. The observed reduced contractile response may be due to the effect of aging on signal transduction pathways, especially an inhibition of the tyrosine kinase-Src kinase pathway, a reduced activation of the PKCalpha pathway, a reduced association of contractile proteins (HSP27-tropomyosin, HSP27-actin, and actin-myosin). Levels of HSP27-phosphorylation are also reduced compared to adult rats. Regulation of GI motility is a complex mechanism of signal transduction and interaction of signaling and contractile proteins. It is suggested that further studies to elucidate the role of HSP27 in aging smooth muscle of the GI tract are needed.
Collapse
Affiliation(s)
- Khalil N Bitar
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
86
|
Yildiz O, Seyrek M, Un I, Gul H, Candemir G, Yildirim V. The Relationship Between Risk Factors and Testosterone-Induced Relaxations in Human Internal Mammary Artery. J Cardiovasc Pharmacol 2005; 45:4-7. [PMID: 15613972 DOI: 10.1097/00005344-200501000-00002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In human internal mammary artery (IMA), testosterone induces vasodilation that shows marked variability among patients. We aimed to investigate the relationship of this variability with cardiovascular risk factors. Cumulative relaxations to testosterone after precontraction with KCl were examined in IMA segments from patients with identified cardiovascular risk factors such as hypercholesterolemia, diabetes, hypertension, smoking, age, gender, body mass index (BMI), and number of occluded vessels. Testosterone responses were significantly diminished in subjects with 3 compared with 1 risk factor. Hypercholesterolemia independently influenced testosterone responses by significantly decreasing its maximum, and smoking significantly decreased the sensitivity to testosterone. Thus, the variability observed in testosterone-induced vascular relaxations may in part be related to differences in risk factors present among the individuals studied.
Collapse
Affiliation(s)
- Oguzhan Yildiz
- Department of Pharmacology, Gulhane Military Medical Academy, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
87
|
Dimitropoulou C, White RE, Ownby DR, Catravas JD. Estrogen reduces carbachol-induced constriction of asthmatic airways by stimulating large-conductance voltage and calcium-dependent potassium channels. Am J Respir Cell Mol Biol 2004; 32:239-47. [PMID: 15626773 DOI: 10.1165/rcmb.2004-0331oc] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Both the incidence and severity of asthma in women are influenced by fluctuations in estrogen (E(2)) levels, raising the possibility that E(2)s may reduce the hyperresponsiveness that is characteristic of asthma. We examined the effect of E(2) and its downstream signaling pathways in isolated mouse bronchial and tracheal rings passively sensitized either with serum from patients with atopic asthma (ATR) or with serum from control subjects (CTR). ATR exhibited significantly higher sensitivity to carbachol than CTR. Pretreatment of ATR with E(2) shifted the carbachol concentration-response curve (CCRC) toward that of CTR. The E(2) effect was abolished by the nitric oxide synthase inhibitor, L-nitroarginine methyl ester, the soluble guanyl cyclase inhibitor, quinoxalin-1, or the protein kinase G inhibitor, KT5823. Inhibition of the large-conductance, calcium-activated potassium (BK(Ca)) channel activity with iberiotoxin also attenuated the E(2) effect on ATR. In patch-clamp studies, E(2) increased by 50-fold the BK(Ca) channel activity in freshly isolated airway smooth muscle cells. This increase was completely blocked by KT5823. These studies suggest that, at physiologic concentrations, E(2) can prevent cholinergic-induced constriction of asthmatic tracheal rings by activating the nitric oxide-cGMP-protein kinase G pathway to increase BK(Ca) channel activity.
Collapse
Affiliation(s)
- Christiana Dimitropoulou
- Department of Pharmacology and Toxicology, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912-2300, USA.
| | | | | | | |
Collapse
|
88
|
Oshiro T, Takahashi H, Ohsaga A, Ebihara S, Sasaki H, Maruyama Y. Delayed expression of large conductance K+ channels reshaping agonist-induced currents in mouse pancreatic acinar cells. J Physiol 2004; 563:379-91. [PMID: 15611028 PMCID: PMC1665597 DOI: 10.1113/jphysiol.2004.077834] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epithelial secretory cells display cell-specific mechanisms of fluid secretion and express large conductance voltage- and Ca2+-activated K+ (Maxi-K) channels that generate the membrane negativity for effective Cl- exit to the lumen. Rat and mouse pancreatic acinar cells had been thought to be peculiar in this sense because of the previously reported lack of Maxi-K channels. However, this view is not entirely correct as evidenced in the present paper. Searching for their presence in pancreatic acinar cells in mice from 5 to 84 weeks of age with patch-clamp current measurements, we demonstrated that the expression of Maxi-K channels is regulated in an age-associated manner after birth. The expression started at approximately 12 postnatal weeks and increased steadily up to 84 weeks. In support of this, RT-PCR could not detect mSlo mRNA, the Maxi-K gene, at either 7 or 8 weeks but could at 58 and 64 postnatal weeks. These results suggest that a key steering element for fluid secretion, the Maxi-K channel, is progressively re-organized in rodent pancreas. A pancreatic secretagogue, acetylcholine, evoked Maxi-K channel current overlapping to various degrees on the previously known current response. This suggests that the rise in internal Ca2+ activates Maxi-K channels which reshape the mode of secretagogue-evoked current response and contribute to Cl- driving in fluid secretion in an age-associated fashion.
Collapse
Affiliation(s)
- Takako Oshiro
- Department of Physiology 1, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
89
|
Nishimaru K, Eghbali M, Stefani E, Toro L. Function and clustered expression of MaxiK channels in cerebral myocytes remain intact with aging. Exp Gerontol 2004; 39:831-9. [PMID: 15130678 DOI: 10.1016/j.exger.2004.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2003] [Accepted: 01/21/2004] [Indexed: 11/15/2022]
Abstract
The incidence of stroke increases significantly in the aging population where stroke related deaths boost at >75 years and survivors are often permanently disabled. Aging is known to decrease cerebral blood flow likely due to an increase in arterial tone. Although MaxiK channels are key regulators of cerebral arterial tone their pattern of expression and function in cerebral blood vessels during aging is unknown. Using specific antibodies against the alpha-subunit of MaxiK channels and current recordings, we now demonstrate that in aging cerebral myocytes, MaxiK channels remain healthy. Furthermore, we show for the first time that in the vasculature, MaxiK channels are expressed in clusters. Clusters have an estimated radius of approximately 200 nm in young rats (3-5 month old Fisher 344 rats) which remains normal in old (25-30 month rats) cerebral myocytes. Consistent with a healthy MaxiK channel expression in old cerebral arteries, MaxiK current density, kinetics and Ca(2+) sensitivity were practically identical in young and old myocytes. Sensitivity to nanomolar concentrations of dehydrosoyasaponin-I that activates channels formed by alpha and beta subunits is also the same in young and old myocytes. These results demonstrate that MaxiK channels maintain normal expression during cerebral aging which is in sharp contrast to our previous finding of loss of expression in aging coronary arteries. It seems therefore, that cerebral myocytes have developed a protective anti-aging mechanism leading to the continued expression of MaxiK channels.
Collapse
MESH Headings
- Age Factors
- Aging/physiology
- Animals
- Calcium/metabolism
- Cerebral Arteries/metabolism
- Cerebral Arteries/physiology
- Immunohistochemistry/methods
- Large-Conductance Calcium-Activated Potassium Channel alpha Subunits
- Large-Conductance Calcium-Activated Potassium Channels
- Male
- Membrane Potentials/physiology
- Muscle Cells/drug effects
- Muscle Cells/metabolism
- Muscle Cells/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Oleanolic Acid/analogs & derivatives
- Oleanolic Acid/metabolism
- Peptides/pharmacology
- Potassium Channels, Calcium-Activated/analysis
- Potassium Channels, Calcium-Activated/drug effects
- Rats
- Rats, Inbred F344
- Saponins/metabolism
- Toxins, Biological/pharmacology
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- Kazuhide Nishimaru
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, BH-509A CHS, Box 957115, Los Angeles, CA 90095-7115, USA
| | | | | | | |
Collapse
|
90
|
Calderone V, Chericoni S, Martinelli C, Testai L, Nardi A, Morelli I, Breschi MC, Martinotti E. Vasorelaxing effects of flavonoids: investigation on the possible involvement of potassium channels. Naunyn Schmiedebergs Arch Pharmacol 2004; 370:290-8. [PMID: 15378228 DOI: 10.1007/s00210-004-0964-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 07/09/2004] [Indexed: 12/24/2022]
Abstract
A flavonoid-rich diet has been associated with a lower incidence of cardiovascular diseases, probably because of the antioxidant and vasoactive properties of flavonoids. Indeed, many flavonoids show vasorelaxing properties, due to different and often not yet completely clarified mechanisms of action. Among them, the activation of vascular potassium channels has been indicated as a possible pathway, accounting, at least in part, for the vasodilatory action of some flavonoid derivatives, such as apigenin and dioclein. Therefore, this work aims at evaluating, on in vitro isolated rat aortic rings, the endothelium-independent vasorelaxing effects of a number of flavonoid derivatives, to identify a possible activation of calcium-activated and/or ATP-sensitive potassium channels and to indicate some possible structure-activity relationships. Among the several flavonoids submitted to the pharmacological assay, only baicalein and quercetagetin were almost completely ineffective, while quercetin, hesperidin, quercitrin and rhoifolin exhibited only a partial vasorelaxing effect. On the contrary, acacetin, apigenin, chrysin, hesperetin, luteolin, pinocembrin, 4'-hydroxyflavanone, 5-hydroxyflavone, 5-methoxyflavone, 6-hydroxyflavanone and 7-hydroxyflavone, belonging to the chemical classes of flavones and flavanones, showed full vasorelaxing effects. The vasodilatory activity of hesperetin, luteolin, 5-hydroxyflavone and 7-hydroxyflavone were antagonised by tetraethylammonium chloride, indicating the possible involvement of calcium-activated potassium channels. Moreover, iberiotoxin clearly antagonised the effects of 5-hydroxyflavone, indicating the probable importance of a structural requirement (the hydroxy group in position 5) for a possible interaction with large-conductance, calcium-activated potassium channels. Finally, glibenclamide inhibited the vasorelaxing action of luteolin and 5-hydroxyflavone, suggesting that ATP-sensitive potassium channels may also be involved in their mechanism of action.
Collapse
Affiliation(s)
- Vincenzo Calderone
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Nishimaru K, Eghbali M, Lu R, Marijic J, Stefani E, Toro L. Functional and molecular evidence of MaxiK channel beta1 subunit decrease with coronary artery ageing in the rat. J Physiol 2004; 559:849-62. [PMID: 15272033 PMCID: PMC1665167 DOI: 10.1113/jphysiol.2004.068676] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Large-conductance, voltage- and Ca2+ -activated K+ channels (MaxiK, BK) are key regulators of vascular tone. Vascular MaxiK are formed by the pore-forming alpha subunit and the modulatory beta1 subunit, which imprints unique kinetics, Ca2+/voltage sensitivities and pharmacology to the channel. As age progresses, alpha subunit functional expression and protein levels diminish in coronary myocytes. However, whether ageing modifies beta1 subunit expression or the mechanism of alpha subunit reduction is unknown. Thus, we examined functional and pharmacological characteristics of MaxiK, as well as alpha and beta1 transcript levels in coronary myocytes from young and old F344 rats. The mechanism of age-dependent alpha subunit protein reduction involves its transcript downregulation. A corresponding loss of beta1 transcripts was also detected in old myocytes, suggesting a proportional age-dependent decrease of beta1 to alpha subunit protein. Indeed, MaxiK channel properties, defined by coassembly of beta1 and alpha subunits, were equivalent in young versus old, for example in terms of (i) activation kinetics, (ii) sensitivity to Ca2+ levels > 1 microm (iii) dehydrosoyasaponin-I-induced activation, and (iv) iberiotoxin blockade. Consistent with less MaxiK expression/function in older myocytes, the ability of iberiotoxin to contract coronary rings was reduced approximately 50% with ageing confirming our previous findings. 5-Hydroxytryptamine (5-HT) contractile efficacy was reduced by iberiotoxin pretreatment in young > old coronary arteries (explained by larger iberiotoxin-induced contraction and decreased dynamic range for 5-HT contraction in young versus old) with no apparent differences in nitroglycerine-induced relaxation. We propose that the age-related MaxiK reduction involves a parallel decrease of alpha and beta1 functional expression via a transcript downregulatory mechanism; a major impact on basal and possibly stimulated coronary contraction may contribute to altered coronary flow regulation and coronary morbidity in the elderly.
Collapse
Affiliation(s)
- Kazuhide Nishimaru
- Division of Molecular Medicine, Department of Anaesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1778, USA
| | | | | | | | | | | |
Collapse
|
92
|
Zarei MM, Eghbali M, Alioua A, Song M, Knaus HG, Stefani E, Toro L. An endoplasmic reticulum trafficking signal prevents surface expression of a voltage- and Ca2+-activated K+ channel splice variant. Proc Natl Acad Sci U S A 2004; 101:10072-7. [PMID: 15226510 PMCID: PMC454166 DOI: 10.1073/pnas.0302919101] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein delivery to restricted plasma membrane domains is exquisitely regulated at different stages of the cell trafficking machinery. Traffic control involves the recognition of export/retention/retrieval signals in the endoplasmic reticulum (ER)/Golgi complex that will determine protein fate. A splice variant (SV), SV1, of the voltage- and Ca(2+)-activated K(+) channel alpha-subunit accumulates the channel in the ER, preventing its surface expression. We show that SV1 insert contains a nonbasic, hydrophobic retention/retrieval motif, CVLF, that does not interfere with proper folding and tetramerization of SV1. Localization of proteins in the ER by CVLF is independent of its position; originally, on the first internal loop, SV1 insert or CVLF perform equally well if placed at the middle or end of the alpha-subunit intracellular carboxyl terminus. Also, CVLF is able to restrict the traffic of an independently expressed transmembrane protein, beta 1-subunit. CVLF is present in proteins across species and in lower organisms. Thus, CVLF may have evolved to serve as a regulator of cellular traffic.
Collapse
Affiliation(s)
- M M Zarei
- Department of Anesthesiology, University of California, Los Angeles, 90095, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Biagi G, Giorgi I, Livi O, Nardi A, Calderone V, Martelli A, Martinotti E, LeRoy Salerni O. Synthesis and biological activity of novel substituted benzanilides as potassium channel activators. V. Eur J Med Chem 2004; 39:491-8. [PMID: 15183907 DOI: 10.1016/j.ejmech.2004.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 02/09/2004] [Accepted: 02/11/2004] [Indexed: 11/19/2022]
Abstract
As part of our program toward designing potassium channel openers, the synthesis of a novel series of substituted benzanilides and their vasodilating activity are presented. The facile synthetic pathway generally involves coupling between the appropriate benzoyl chloride and commercial available anilines, followed by the selective or non-selective cleavage of methyl ether substituent(s), affording the corresponding phenol or bisphenol derivatives. The pharmacological evaluation of these structurally novel potential BK-openers on vascular contractile activity was studied in vitro, using isolated rat aortic rings pre-contracted with KCl 20 mM. Some derivatives were found to be potent smooth muscle relaxants and the vasodilation effects of these compounds were inhibited by tetraethylammonium (TEA) and iberiotoxin (IbTX), suggesting that the opening of BK channels is prevalent in the mechanism of action of these compounds. The best compound of the series was N-(2-hydroxy-5-phenyl)-(2-methoxy-5-chloro)-benzamide (16b) showing a full vasorelaxant efficacy and almost nanomolar potency index.
Collapse
Affiliation(s)
- Giuliana Biagi
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Adams DJ, Hill MA. Potassium Channels and Membrane Potential in the Modulation of Intracellular Calcium in Vascular Endothelial Cells. J Cardiovasc Electrophysiol 2004; 15:598-610. [PMID: 15149433 DOI: 10.1046/j.1540-8167.2004.03277.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The endothelium plays a vital role in the control of vascular functions, including modulation of tone; permeability and barrier properties; platelet adhesion and aggregation; and secretion of paracrine factors. Critical signaling events in many of these functions involve an increase in intracellular free Ca(2+) concentration ([Ca(2+)](i)). This rise in [Ca(2+)](i) occurs via an interplay between several mechanisms, including release from intracellular stores, entry from the extracellular space through store depletion and second messenger-mediated processes, and the establishment of a favorable electrochemical gradient. The focus of this review centers on the role of potassium channels and membrane potential in the creation of a favorable electrochemical gradient for Ca(2+) entry. In addition, evidence is examined for the existence of various classes of potassium channels and the possible influence of regional variation in expression and experimental conditions.
Collapse
Affiliation(s)
- David J Adams
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia.
| | | |
Collapse
|
95
|
Simonsen AH, Sheykhzade M, Berg Nyborg NC. Age- and endothelium-dependent changes in coronary artery reactivity to serotonin and calcium. Vascul Pharmacol 2004; 41:43-9. [PMID: 15196474 DOI: 10.1016/j.vph.2003.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Accepted: 12/30/2003] [Indexed: 11/28/2022]
Abstract
The influence of ageing and endothelium removal on the sensitivity and contractile response of rat coronary arteries to intracellular Ca2+ ([Ca2+]i) during activation with serotonin (5-HT) and membrane depolarisation with 125 mM K+ was investigated. The sensitivity and contractile response of coronary arteries to 5-HT were significantly higher in 2-year-old than in 3-month-old rats. The receptor responsible for the 5-HT-induced contractions in coronary arteries belongs to a population of 5-HT2 receptors in both young and old rats based on the Schild plot. The resting levels of [Ca2+]i and active tension were both increased by age and endothelium removal. During depolarisation with 125 mM K+, the sensitivity to [Ca2+]i and maximal tension induced by [Ca2+]i were not affected by age or endothelium. During activation with 10 microM 5-HT, the maximal tension induced by [Ca2+]i was increased by age but not affected by endothelium, whereas the sensitivity to [Ca2+]i was increased by endothelium removal. In conclusion, ageing is associated with an increased sensitivity to 5-HT in rat coronary small arteries. The increased sensitivity to 5-HT seems to involve an augmented contractile response to [Ca 2+]i in 5-HT-activated coronary arteries and a diminished endothelial basal vasodilator function.
Collapse
Affiliation(s)
- Anja Hviid Simonsen
- Department of Pharmacology, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark
| | | | | |
Collapse
|
96
|
Fountain SJ, Cheong A, Flemming R, Mair L, Sivaprasadarao A, Beech DJ. Functional up-regulation of KCNA gene family expression in murine mesenteric resistance artery smooth muscle. J Physiol 2004; 556:29-42. [PMID: 14742730 PMCID: PMC1664901 DOI: 10.1113/jphysiol.2003.058594] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study focused on the hypothesis that KCNA genes (which encode K(V)alpha1 voltage-gated K(+) channels) have enhanced functional expression in smooth muscle cells of a primary determinant of peripheral resistance - the small mesenteric artery. Real-time PCR methodology was developed to measure cell type-specific in situ gene expression. Profiles were determined for arterial myocyte expression of RNA species encoding K(V)alpha1 subunits as well as K(V)beta1, K(V)alpha2.1, K(V)gamma9.3, BK(Ca)alpha1 and BK(Ca)beta1. The seven major KCNA genes were expressed and more readily detected in endothelium-denuded mesenteric resistance artery compared with thoracic aorta; quantification revealed dramatic differential expression of one to two orders of magnitude. There was also four times more RNA encoding K(V)alpha2.1 but less or similar amounts encoding K(V)beta1, K(V)gamma9.3, BK(Ca)alpha1 and BK(Cabeta)1. Patch-clamp recordings from freshly isolated smooth muscle cells revealed dominant K(V)alpha1 K(+) current and current density twice as large in mesenteric cells. Therefore, we suggest the increased RNA production of the resistance artery impacts on physiological function, although there is quantitatively less K(+) current than might be expected. The mechanism conferring up-regulated expression of KCNA genes may be common to all the gene family and play a functional role in the physiological control of blood pressure.
Collapse
Affiliation(s)
- S J Fountain
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
97
|
Thengchaisri N, Kuo L. Hydrogen peroxide induces endothelium-dependent and -independent coronary arteriolar dilation: role of cyclooxygenase and potassium channels. Am J Physiol Heart Circ Physiol 2003; 285:H2255-63. [PMID: 14613908 DOI: 10.1152/ajpheart.00487.2003] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrogen peroxide, a relatively stable reactive oxygen species, is known to elicit vasodilation, but its underlying mechanism remains elusive. Here, we examined the role of endothelial nitric oxide (NO), prostaglandin, cytochrome P-450-derived metabolites, and smooth muscle potassium channels in coronary arteriolar dilation to abluminal H2O2. Pig subepicardial coronary arterioles (50-100 microm) were isolated and pressurized without flow for in vitro study. Arterioles developed basal tone and dilated dose dependently to H2O2 (1-100 microM). Disruption of th endothelium and inhibition of cyclooxygenase (COX) by indomethacin produced identical attenuation of vasodilation to H2O2. Conversely, the vasodilation to H2O2 was not affected by either the NO synthase inhibitor NG-nitro-l-arginine methyl ester or the cytochrome P-450 enzyme blocker miconazole. Inhibition of the COX-1, but not the COX-2 pathway, attenuated H2O2-induced dilation similarly to indomethacin. The production of prostaglandin E2 (PGE2), but not prostaglandin I2, from coronary arterioles was significantly increased by H2O2. Furthermore, inhibition of PGE2 receptors with AH-6809 attenuated vasodilation to H2O2 similar to that produced by indomethacin. In the absence of a functional endothelium, H2O2-induced dilation was attenuated, in an identical manner, by a depolarizing agent KCl and a calcium-activated potassium (KCa) channel inhibitor iberiotoxin. However, PGE2-induced dilation was not affected by iberiotoxin. The endothelium-independent dilation to H2O2 was also insensitive to the inhibition of guanylyl cyclase, lipoxygenase, ATP-sensitive potassium channels, and inward rectifier potassium channels. These results suggest that H2O2 induces endothelium-dependent vasodilation through COX-1-mediated release of PGE2 and also directly relaxes smooth muscle by hyperpolarization through KCa channel activation.
Collapse
Affiliation(s)
- Naris Thengchaisri
- Department of Medical Physiology, Cardiovascular Research Institute, College of Medicine, Texas A&M Univ. System Health Science Center, College Station, TX 77843-1114, USA
| | | |
Collapse
|
98
|
Geary GG, Buchholz JN. Selected contribution: Effects of aging on cerebrovascular tone and [Ca2+]i. J Appl Physiol (1985) 2003; 95:1746-54. [PMID: 12819223 DOI: 10.1152/japplphysiol.00275.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lower limits of cerebral blood flow autoregulation shift toward high pressures in aged compared with young rats. Intraluminal pressure stimulates contractile mechanisms in cerebral arteries that might, in part, cause an age-dependent shift in autoregulation. The present project tested two hypotheses. First, cerebral artery tone is greater in isolated arteries from aged compared with mature adult rats. Second, aging decreases the modulatory effect of endothelium-derived nitric oxide (NO) and increases vascular smooth muscle Ca2+ sensitivity. Isolated segments of middle cerebral arteries from male 6-, 12-, 20-, and 24-mo-old Fischer 344 rats were cannulated and loaded with fura-2. Diameter and Ca2+ responses to increasing pressure were measured in HEPES, during NO synthase inhibition [NG-nitro-l-arginine methyl ester (l-NAME)], and after removal of the endothelium. Cerebral artery tone (with endothelium) increased with age. Only at the lowest pressure (20 and 40 mmHg) was intracellular Ca2+ concentration ([Ca2+]i) greater in arteries from 24-mo-old rats compared with the other age groups. l-NAME-sensitive constriction increased significantly in arteries from 6- to 20-mo-old rats but declined significantly thereafter in arteries from 24-mo-old rats. [Ca2+]i was less in arteries from 24-mo-old rats compared with the other groups after treatment with l-NAME. Another endothelial-derived factor, insensitive to l-NAME, also decreased significantly with age. For example, at 60 mmHg, the l-NAME-insensitive constriction decreased from 47 +/- 10, 42 +/- 5, 21 +/- 2, and 3 +/- 1 microm in 6-, 12-, 20-, and 24-mo-old rats, respectively. Our data suggest that aging alters cerebral artery tone and [Ca2+]i responses through endothelial-derived NO synthase-sensitive and -insensitive mechanisms. The combined effect of greater cerebral artery tone with less endothelium-dependent modulation may in part contribute to the age-dependent shift in cerebral blood flow autoregulation.
Collapse
Affiliation(s)
- Greg G Geary
- Depts. of Physiology and Pharmacology, School of Medicine, Loma Linda Univ., Loma Linda, CA 92350.
| | | |
Collapse
|
99
|
Matz RL, Andriantsitohaina R. Age-related endothelial dysfunction : potential implications for pharmacotherapy. Drugs Aging 2003; 20:527-50. [PMID: 12749750 DOI: 10.2165/00002512-200320070-00005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging per se is associated with abnormalities of the vascular wall linked to both structural and functional changes that can take place at the level of the extracellular matrix, the vascular smooth muscle and the endothelium of blood vessels. Endothelial dysfunction is generally defined as a decrease in the capacity of the endothelium to dilate blood vessels in response to physical and chemical stimuli. It is one of the characteristic changes that occur with age, independently of other known cardiovascular risk factors. This may account in part for the increased incidence of cardiovascular events in elderly people that can be reversed by restoring endothelial function. A better understanding of the mechanisms involved and the aetiopathogenesis of this process will help in the search for new therapeutic agents.Age-dependent alteration of endothelium-dependent relaxation seems to be a widespread phenomenon both in conductance and resistance arteries from several species. In the course of aging, there is an alteration in the equilibrium between relaxing and contracting factors released by the endothelium. Hence, there is a progressive reduction in the participation of nitric oxide and endothelium-derived hyperpolarising factor associated with increased participation of oxygen-derived free radicals and cyclo-oxygenase-derived prostanoids. Also, the endothelin-1 and angiotensin II pathways may play a role in age-related endothelial dysfunction. The use of drugs acting at different levels of these signalling cascades, including antioxidant therapy, lipid-lowering drugs and estrogens, seems to be promising.
Collapse
Affiliation(s)
- Rachel L Matz
- Biochemisches Institut, Fachbereich Humanmedizin, Justus Liebig Universität, Giessen, Germany
| | | |
Collapse
|
100
|
Gauthier KM, Liu C, Popovic A, Albarwani S, Rusch NJ. Freshly isolated bovine coronary endothelial cells do not express the BK Ca channel gene. J Physiol 2002; 545:829-36. [PMID: 12482889 PMCID: PMC2290710 DOI: 10.1113/jphysiol.2002.029843] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent reports have suggested that different types of Ca(2+)-activated K(+) channels may be selectively expressed either in the vascular endothelial cells (ECs) or smooth muscle cells (SMCs) of a single artery. In this study, we directly compared mRNA, protein and functional expression of the high-conductance Ca(2+)-activated K(+) (BK(Ca)) channel between freshly isolated ECs and SMCs from bovine coronary arteries. Fresh ECs and SMCs were enzymatically isolated, and their separation verified by immunofluorescent detection of alpha-actin and platelet/endothelium cell adhesion molecule (PECAM) proteins, respectively. Subsequently, studies using a sequence-specific antibody directed against the pore-forming alpha-subunit of the BK(Ca) channel only detected its expression in the SMCs, whereas PECAM-positive ECs were devoid of the alpha-subunit protein. Additionally, multicell RT-PCR performed using cDNA derived from either SMCs or ECs only detected mRNA encoding the BK(Ca) alpha-subunit in the SMCs. Finally, whole-cell recordings of outward K(+) current detected a prominent iberiotoxin-sensitive BK(Ca) current in SMCs that was absent in ECs, and the BK(Ca) channel opener NS 1619 only enhanced K(+) current in the SMCs. Thus, bovine coronary SMCs densely express BK(Ca) channels whereas adjacent ECs in the same artery appear to lack the expression of the BK(Ca) channel gene. These findings indicate a cell-specific distribution of Ca(2+)-activated K(+) channels in SMCs and ECs from a single arterial site.
Collapse
Affiliation(s)
- Kathryn M Gauthier
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|