51
|
Circulation Research
Thematic Synopsis. Circ Res 2012; 111:e205-29. [DOI: 10.1161/circresaha.112.280941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
52
|
Tong C, Morrison A, Mattison S, Qian S, Bryniarski M, Rankin B, Wang J, Thomas DP, Li J. Impaired SIRT1 nucleocytoplasmic shuttling in the senescent heart during ischemic stress. FASEB J 2012; 27:4332-42. [PMID: 23024374 DOI: 10.1096/fj.12-216473] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A "longevity " gene, sirtuin 1 (SIRT1), can attenuate age-dependent induction of left ventricular dysfunction. This study aimed to characterize the role of SIRT1 in the tolerance of aged heart to ischemic insults. Male C57BL/6 young (4-6 mo) and aged (24-26 mo) mice were used to determine the role of SIRT1 in myocardial ischemia/reperfusion (I/R) tolerance. SIRT1 localization was assessed by confocal microscopy. Immunoblotting was used to evaluate SIRT1 expression and translocation. The results demonstrated that SIRT1 is expressed predominantly as a sumoylated form in cardiomyocyte nuclei. Moreover, cardiac overexpression of desumoylase, sentrin-specific protease 2 (SENP2), significantly reduces nuclear sumoylated SIRT1 levels (P<0.05). Interestingly, I/R stress leads to desumoylation and translocation of nuclear SIRT1 into the cytoplasm in aged but not in young hearts. SIRT1 activity in ischemic young hearts was 3.2-fold higher than that seen in ischemic aged hearts, which suggests that aging causes impaired nucleocytoplasmic shuttling and activation of SIRT1 during ischemic stress. The infarct size in aged and Sirt1(+/-) knockout hearts was higher than that observed in young and Sirt1(+/+) WT littermate hearts, respectively (all P<0.05). SIRT1 agonist, SRT1720, reduced myocardial infarction in both aged and Sirt1(+/-) hearts. Therefore, impaired cardiac SIRT1 activity plays a critical role in the observed increase in susceptibility of the aged heart to I/R injury. SIRT1 agonist can restore this aging-related loss of cardioprotection.
Collapse
Affiliation(s)
- Chao Tong
- 1615 Biomedical Research Bldg., Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences University at Buffalo-SUNY, 3435 Main St., Buffalo, NY 14214, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
|
54
|
Affiliation(s)
- Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Location 466 UH Science Center, Houston, TX 77204-5001, USA.
| | | |
Collapse
|
55
|
Yang Y, Zhang CY. Sensitive Detection of Intracellular Sumoylation via SNAP Tag-Mediated Translation and RNA Polymerase-Based Amplification. Anal Chem 2012; 84:1229-34. [DOI: 10.1021/ac2032113] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yong Yang
- Single-molecule Detection and Imaging Laboratory, Shenzhen
Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chun-yang Zhang
- Single-molecule Detection and Imaging Laboratory, Shenzhen
Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
56
|
Enhanced desumoylation in murine hearts by overexpressed SENP2 leads to congenital heart defects and cardiac dysfunction. J Mol Cell Cardiol 2011; 52:638-49. [PMID: 22155005 DOI: 10.1016/j.yjmcc.2011.11.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 11/16/2011] [Accepted: 11/18/2011] [Indexed: 12/29/2022]
Abstract
Sumoylation is a posttranslational modification implicated in a variety of cellular activities, and its role in a number of human pathogeneses such as cleft lip/palate has been well documented. However, the importance of the SUMO conjugation pathway in cardiac development and functional disorders is newly emerging. We previously reported that knockout of SUMO-1 in mice led to congenital heart diseases (CHDs). To further investigate the effects of imbalanced SUMO conjugation on heart development and function and its underlying mechanisms, we generated transgenic (Tg) mice with cardiac-specific expression of SENP2, a SUMO-specific protease that deconjugates sumoylated proteins, to evaluate the impact of desumoylation on heart development and function. Overexpression of SENP2 resulted in premature death of mice with CHDs-atrial septal defects (ASDs) and/or ventricular septal defects (VSDs). Immunobiochemistry revealed diminished cardiomyocyte proliferation in SENP2-Tg mouse hearts compared with that in wild type (WT) hearts. Surviving SENP2-Tg mice showed growth retardation, and developed cardiomyopathy with impaired cardiac function with aging. Cardiac-specific overexpression of the SUMO-1 transgene reduced the incidence of cardiac structural phenotypes in the sumoylation defective mice. Moreover, cardiac overexpression of SENP2 in the mice with Nkx2.5 haploinsufficiency promoted embryonic lethality and severity of CHDs, indicating the functional interaction between SENP2 and Nkx2.5 in vivo. Our findings indicate the indispensability of a balanced SUMO pathway for proper cardiac development and function. This article is part of a Special Issue entitled 'Post-translational Modification SI'.
Collapse
|
57
|
|
58
|
Kho C, Lee A, Jeong D, Oh JG, Chaanine AH, Kizana E, Park WJ, Hajjar RJ. SUMO1-dependent modulation of SERCA2a in heart failure. Nature 2011; 477:601-5. [PMID: 21900893 PMCID: PMC3443490 DOI: 10.1038/nature10407] [Citation(s) in RCA: 288] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 08/01/2011] [Indexed: 12/23/2022]
Abstract
SR Ca2+ ATPase 2a (SERCA2a) is a critical ATPase responsible for Ca2+ re-uptake during excitation-contraction coupling. Impaired SR Ca2+ uptake resulting from decreased expression and reduced activity of SERCA2a is a hallmark of heart failure (HF)1. Accordingly, restoration of SERCA2a expression by gene transfer has proven to be effective in improving cardiac function in HF patients2 as well as in animal models3. The small ubiquitin-related modifier (SUMO) can be conjugated to lysine residues of target proteins4, which is involved in most cellular process5. Here, we show that SERCA2a is SUMOylated at lysine 480 and 585 and that this SUMOylation is essential for preserving SERCA2a ATPase activity and stability. The levels of SUMO1 and SUMOylation of SERCA2a itself were greatly reduced in failing hearts. SUMO1 restitution by adeno-associated virus-mediated gene delivery maintained protein abundance of SERCA2a and significantly improved cardiac function in HF mice. This effect was comparable to SERCA2a gene delivery. Moreover, SUMO1 overexpression in isolated cardiomyocytes augmented contractility and accelerated Ca2+ decay. Transgene-mediated SUMO1 overexpression rescued pressure overload-induced cardiac dysfunction concomitantly with increased SERCA2a function. By contrast, down-regulation of SUMO1 using shRNA accelerated pressure overload-induced deterioration of cardiac function and was accompanied by decreased SERCA2a function. However, knockdown of SERCA2a resulted in severe contractile dysfunction both in vitro and in vivo, which was not rescued by overexpression of SUMO1. Taken together, our data show that SUMOylation is a critical post-translational modification that regulates SERCA2a function and provides a platform for the design of novel therapeutic strategies for HF.
Collapse
Affiliation(s)
- Changwon Kho
- Cardiovascular Research Center, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, Box 1030, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Wang J. Cardiac function and disease: emerging role of small ubiquitin-related modifier. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2011; 3:446-57. [PMID: 21197655 PMCID: PMC3110591 DOI: 10.1002/wsbm.130] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Small ubiquitin-related modifiers, or SUMOs, have emerged as versatile regulators of many biological functions that do so by covalent attachment to a variety of substrates via enzymatic reactions. SUMO conjugation has also been shown to be involved in a number of human pathogenic processes. More recent advances in the SUMO field have indicated a potential role for SUMO conjugation pathway in cardiogenesis. This advanced review will describe the basic features of the SUMO conjugation pathway and will summarize the most recent studies implicating the influence of the sumoylation pathway in cardiac function under both physiological and pathological conditions. WIREs Syst Biol Med 2011 3 446-457 DOI: 10.1002/wsbm.130
Collapse
Affiliation(s)
- Jun Wang
- Center for Stem Cell Engineering, Department of Basic Research Laboratories, Texas Heart Institute, Houston, TX, USA.
| |
Collapse
|
60
|
Kim EY, Chen L, Ma Y, Yu W, Chang J, Moskowitz IP, Wang J. Expression of sumoylation deficient Nkx2.5 mutant in Nkx2.5 haploinsufficient mice leads to congenital heart defects. PLoS One 2011; 6:e20803. [PMID: 21677783 PMCID: PMC3108998 DOI: 10.1371/journal.pone.0020803] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 05/12/2011] [Indexed: 12/16/2022] Open
Abstract
Nkx2.5 is a cardiac specific homeobox gene critical for normal heart development. We previously identified Nkx2.5 as a target of sumoylation, a posttranslational modification implicated in a variety of cellular activities. Sumoylation enhanced Nkx2.5 activity via covalent attachment to the lysine residue 51, the primary SUMO acceptor site. However, how sumoylation regulates the activity of Nkx2.5 in vivo remains unknown. We generated transgenic mice overexpressing sumoylation deficient mutant K51R (conversion of lysine 51 to arginine) specifically in mouse hearts under the control of cardiac α-myosin heavy chain (α-MHC) promoter (K51R-Tg). Expression of the Nkx2.5 mutant transgene in the wild type murine hearts did not result in any overt cardiac phenotype. However, in the presence of Nkx2.5 haploinsufficiency, cardiomyocyte-specific expression of the Nkx2.5 K51R mutant led to congenital heart diseases (CHDs), accompanied with decreased cardiomyocyte proliferation. Also, a number of human CHDs-associated Nkx2.5 mutants exhibited aberrant sumoylation. Our work demonstrates that altered sumoylation status may underlie the development of human CHDs associated with Nkx2.5 mutants.
Collapse
Affiliation(s)
- Eun Young Kim
- Program in Genes and Development, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Li Chen
- Department of Basic Research Laboratories, Texas Heart Institute, Houston, Texas, United States of America
| | - Yanlin Ma
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Wei Yu
- Department of Biochemistry and Molecular Biology, University of Houston, Houston, Texas, United States of America
| | - Jiang Chang
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Ivan P. Moskowitz
- Departments of Pediatrics and Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Jun Wang
- Department of Basic Research Laboratories, Texas Heart Institute, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
61
|
Wang J, Chen L, Wen S, Zhu H, Yu W, Moskowitz IP, Shaw GM, Finnell RH, Schwartz RJ. Defective sumoylation pathway directs congenital heart disease. ACTA ACUST UNITED AC 2011; 91:468-76. [PMID: 21563299 DOI: 10.1002/bdra.20816] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/17/2011] [Accepted: 02/25/2011] [Indexed: 12/17/2022]
Abstract
Congenital heart defects (CHDs) are the most common of all birth defects, yet molecular mechanism(s) underlying highly prevalent atrial septal defects (ASDs) and ventricular septal defects (VSDs) have remained elusive. We demonstrate the indispensability of "balanced" posttranslational small ubiquitin-like modifier (SUMO) conjugation-deconjugation pathway for normal cardiac development. Both hetero- and homozygous SUMO-1 knockout mice exhibited ASDs and VSDs with high mortality rates, which were rescued by cardiac reexpression of the SUMO-1 transgene. Because SUMO-1 was also involved in cleft lip/palate in human patients, the previous findings provided a powerful rationale to question whether SUMO-1 was mutated in infants born with cleft palates and ASDs. Sequence analysis of DNA from newborn screening blood spots revealed a single 16 bp substitution in the SUMO-1 regulatory promoter of a patient displaying both oral-facial clefts and ASDs. Diminished sumoylation activity whether by genetics, environmental toxins, and/or pharmaceuticals may significantly contribute to susceptibility to the induction of congenital heart disease worldwide. Birth Defects Research (Part A) 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jun Wang
- Center for Stem Cell Engineering, Texas Heart Institute, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Roles of Small Ubiquitin-Related Modifiers in Male Reproductive Function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 288:227-59. [DOI: 10.1016/b978-0-12-386041-5.00006-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|