51
|
Tita C, Gilbert EM, Van Bakel AB, Grzybowski J, Haas GJ, Jarrah M, Dunlap SH, Gottlieb SS, Klapholz M, Patel PC, Pfister R, Seidler T, Shah KB, Zieliński T, Venuti RP, Cowart D, Foo SY, Vishnevsky A, Mitrovic V. A Phase 2a dose-escalation study of the safety, tolerability, pharmacokinetics and haemodynamic effects of BMS-986231 in hospitalized patients with heart failure with reduced ejection fraction. Eur J Heart Fail 2017; 19:1321-1332. [PMID: 28677877 PMCID: PMC6607490 DOI: 10.1002/ejhf.897] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 12/28/2022] Open
Abstract
Aims This study was designed to evaluate the safety, tolerability and haemodynamic effects of BMS‐986231, a novel second‐generation nitroxyl donor with potential inotropic, lusitropic and vasodilatory effects in patients hospitalized with decompensated heart failure and reduced ejection fraction (HFrEF). Methods and results Forty‐six patients hospitalized with decompensated HFrEF were enrolled into four sequential dose‐escalation cohorts in this double‐blind, randomized, placebo‐controlled Phase 2a study. Patients with baseline pulmonary capillary wedge pressure (PCWP) of ≥20 mmHg and a cardiac index of ≤2.5 L/min/m2 received one 6‐h i.v. infusion of BMS‐986231 (at 3, 5, 7 or 12 µg/kg/min) or placebo. BMS‐986231 produced rapid and sustained reductions in PCWP, as well as consistent reductions in time‐averaged pulmonary arterial systolic pressure, pulmonary arterial diastolic pressure and right atrial pressure. BMS‐986231 increased non‐invasively measured time‐averaged stroke volume index, cardiac index and cardiac power index values, and decreased total peripheral vascular resistance. There was no evidence of increased heart rate, drug‐related arrhythmia or symptomatic hypotension with BMS‐986231. Analyses of adverse events throughout the 30‐day follow‐up did not identify any toxicities specific to BMS‐986231, with the potential exception of infrequent mild‐to‐moderate headaches during infusion. There were no treatment‐related serious adverse events. Conclusions BMS‐986231 demonstrated a favourable safety and haemodynamic profile in patients hospitalized with advanced heart failure. Based on preclinical data and these study's findings, it is possible that the haemodynamic benefits may be mediated by inotropic and/or lusitropic as well as vasodilatory effects. The therapeutic potential of BMS‐986231 should be further assessed in patients with heart failure.
Collapse
Affiliation(s)
- Cristina Tita
- Division of Cardiovascular Medicine, Department of Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Edward M Gilbert
- Division of Cardiology, Faculty of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Adrian B Van Bakel
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Jacek Grzybowski
- Department of Cardiomyopathy, Institute of Cardiology, Warsaw, Poland
| | - Garrie J Haas
- Division of Cardiology and Vascular Medicine, Faculty of Medicine, Ohio State University, Columbus, OH, USA
| | - Mohammad Jarrah
- Department of Cardiology, King Abdullah University Hospital, Irbid, Jordan
| | - Stephanie H Dunlap
- Division of Cardiology, Faculty of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Stephen S Gottlieb
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marc Klapholz
- Division of Cardiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Parag C Patel
- Department of Transplant, Mayo Clinic, Jacksonville, FL, USA
| | - Roman Pfister
- Department III of Internal Medicine, Heart Centre, University Hospital of Cologne, Cologne, Germany
| | - Tim Seidler
- Division of Cardiology and Pulmonology, Medical University of Göttingen, Göttingen, Germany
| | - Keyur B Shah
- Department of Cardiology, Faculty of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Tomasz Zieliński
- Department of Heart Failure and Transplantology, Institute of Cardiology, Warsaw, Poland
| | - Robert P Venuti
- formerly of Cardioxyl Pharmaceuticals, Inc., Chapel Hill, NC, USA
| | - Douglas Cowart
- formerly of Cardioxyl Pharmaceuticals, Inc., Chapel Hill, NC, USA
| | - Shi Yin Foo
- formerly of Cardioxyl Pharmaceuticals, Inc., Chapel Hill, NC, USA
| | - Alexander Vishnevsky
- Intensive Care Unit, Cardiology Department, Pokrovskaya City Hospital, St Petersburg, Russia
| | - Veselin Mitrovic
- Department of Cardiology, Kerckhoff-Klinik, Bad Nauheim, Germany
| |
Collapse
|
52
|
Altara R, Giordano M, Nordén ES, Cataliotti A, Kurdi M, Bajestani SN, Booz GW. Targeting Obesity and Diabetes to Treat Heart Failure with Preserved Ejection Fraction. Front Endocrinol (Lausanne) 2017; 8:160. [PMID: 28769873 PMCID: PMC5512012 DOI: 10.3389/fendo.2017.00160] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major unmet medical need that is characterized by the presence of multiple cardiovascular and non-cardiovascular comorbidities. Foremost among these comorbidities are obesity and diabetes, which are not only risk factors for the development of HFpEF, but worsen symptoms and outcome. Coronary microvascular inflammation with endothelial dysfunction is a common denominator among HFpEF, obesity, and diabetes that likely explains at least in part the etiology of HFpEF and its synergistic relationship with obesity and diabetes. Thus, pharmacological strategies to supplement nitric oxide and subsequent cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signaling may have therapeutic promise. Other potential approaches include exercise and lifestyle modifications, as well as targeting endothelial cell mineralocorticoid receptors, non-coding RNAs, sodium glucose transporter 2 inhibitors, and enhancers of natriuretic peptide protective NO-independent cGMP-initiated and alternative signaling, such as LCZ696 and phosphodiesterase-9 inhibitors. Additionally, understanding the role of adipokines in HFpEF may lead to new treatments. Identifying novel drug targets based on the shared underlying microvascular disease process may improve the quality of life and lifespan of those afflicted with both HFpEF and obesity or diabetes, or even prevent its occurrence.
Collapse
Affiliation(s)
- Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
- *Correspondence: Raffaele Altara,
| | - Mauro Giordano
- Department of Medical, Surgical, Neurological, Metabolic and Geriatrics Sciences, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Einar S. Nordén
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
- Bjørknes College, Oslo, Norway
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
| | - Mazen Kurdi
- Faculty of Sciences, Department of Chemistry and Biochemistry, Lebanese University, Hadath, Lebanon
| | - Saeed N. Bajestani
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Ophthalmology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
53
|
Dulce RA, Kulandavelu S, Schulman IH, Fritsch J, Hare JM. Nitric Oxide Regulation of Cardiovascular Physiology and Pathophysiology. Nitric Oxide 2017. [DOI: 10.1016/b978-0-12-804273-1.00024-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
54
|
Kemp-Harper BK, Horowitz JD, Ritchie RH. Therapeutic Potential of Nitroxyl (HNO) Donors in the Management of Acute Decompensated Heart Failure. Drugs 2016; 76:1337-48. [DOI: 10.1007/s40265-016-0631-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
55
|
Bianco CL, Toscano JP, Bartberger MD, Fukuto JM. The chemical biology of HNO signaling. Arch Biochem Biophys 2016; 617:129-136. [PMID: 27555493 DOI: 10.1016/j.abb.2016.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/15/2022]
Abstract
Nitroxyl (HNO) is a simple molecule with significant potential as a pharmacological agent. For example, its use in the possible treatment of heart failure has received recent attention due to its unique therapeutic properties. Recent progress has been made on the elucidation of the mechanisms associated with its biological signaling. Importantly, the biochemical mechanisms described for HNO bioactivity are consistent with its unique and novel chemical properties/reactivity. To date, much of the biology of HNO can be associated with interactions and modification of important regulatory thiol proteins. Herein will be provided a description of HNO chemistry and how this chemistry translates to some of its reported biological effects.
Collapse
Affiliation(s)
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael D Bartberger
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Jon M Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, USA.
| |
Collapse
|
56
|
Miao Z, King SB. Recent advances in the chemical biology of nitroxyl (HNO) detection and generation. Nitric Oxide 2016; 57:1-14. [PMID: 27108951 PMCID: PMC4910183 DOI: 10.1016/j.niox.2016.04.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/18/2016] [Indexed: 01/01/2023]
Abstract
Nitroxyl or azanone (HNO) represents the redox-related (one electron reduced and protonated) relative of the well-known biological signaling molecule nitric oxide (NO). Despite the close structural similarity to NO, defined biological roles and endogenous formation of HNO remain unclear due to the high reactivity of HNO with itself, soft nucleophiles and transition metals. While significant work has been accomplished in terms of the physiology, biology and chemistry of HNO, important and clarifying work regarding HNO detection and formation has occurred within the last 10 years. This review summarizes advances in the areas of HNO detection and donation and their application to normal and pathological biology. Such chemical biological tools allow a deeper understanding of biological HNO formation and the role that HNO plays in a variety of physiological systems.
Collapse
Affiliation(s)
- Zhengrui Miao
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA
| | - S Bruce King
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA.
| |
Collapse
|
57
|
Meng T, Bu W, Ren X, Chen X, Yu J, Eckenhoff RG, Gao WD. Molecular mechanism of anesthetic-induced depression of myocardial contraction. FASEB J 2016; 30:2915-25. [PMID: 27170289 DOI: 10.1096/fj.201600290rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/26/2016] [Indexed: 01/22/2023]
Abstract
Isoflurane and propofol are known to depress cardiac contraction, but the molecular mechanisms involved are not known. In this study, we determined whether decreasing myofilament Ca(2+) responsiveness underlies anesthesia-induced depression of contraction and uncovered the molecular targets of isoflurane and propofol. Force and intracellular Ca(2+) ([Ca(2+)]i) were measured in rat trabeculae superfused with Krebs-Henseleit solution, with or without propofol or isoflurane. Photoaffinity labeling of myofilament proteins with meta-Azi-propofol (AziPm) and Azi-isoflurane (Azi-iso) and molecular docking were also used. Both propofol and isoflurane dose dependently depressed force from low doses (propofol, 27 ± 6 μM; isoflurane, 1.0 ± 0.1%) to moderate doses (propofol, 87 ± 4 μM; isoflurane, 3.0 ± 0.25%), without significant alteration [Ca(2+)]i During steady-state activations in both intact and skinned preparations, propofol and isoflurane depressed maximum Ca(2+)-activated force and increased the [Ca(2+)]i required for 50% of activation. Myofibrils photolabeled with AziPm and Azi-iso identified myosin, actin, and myosin light chain as targets of the anesthetics. Several adducted residues in those proteins were located in conformationally sensitive regions that underlie contractile function. Thus, propofol and isoflurane decrease force development by directly depressing myofilament Ca(2+) responsiveness and have binding sites in key regions for contraction in both actin and myosin.-Meng, T., Bu, W., Ren, X., Chen, X., Yu, J., Eckenhoff, R. G., Gao, W. D. Molecular mechanism of anesthetic-induced depression of myocardial contraction.
Collapse
Affiliation(s)
- Tao Meng
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Weiming Bu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xianfeng Ren
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Xinzhong Chen
- Department of Cardiac Surgery, Tongji University Medical Center, Wuhan, China; and
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
58
|
Kovács Á, Alogna A, Post H, Hamdani N. Is enhancing cGMP-PKG signalling a promising therapeutic target for heart failure with preserved ejection fraction? Neth Heart J 2016; 24:268-74. [PMID: 26924822 PMCID: PMC4796050 DOI: 10.1007/s12471-016-0814-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/21/2016] [Indexed: 01/09/2023] Open
Abstract
Heart failure with preserved ejection fraction, i.e. HFpEF, is highly prevalent in ageing populations, accounting for more than 50 % of all cases of heart failure in Western societies, and is closely associated with comorbidities such as obesity, diabetes and arterial hypertension. However, all large multicentre trials of potential HFpEF treatments conducted to date have failed to produce positive outcomes. These disappointing results suggest that a 'one size fits all' strategy may be ill-suited to HFpEF and support the use of tailored, personalised therapeutic approaches with specific treatments designed for specific comorbidity-related HFpEF phenotypes. The accumulation of a multitude of cardiovascular comorbidities over time leads to increased systemic inflammation, oxidative stress and coronary microvascular endothelial inflammation, eventually resulting in degradation of cyclic guanosine monophosphate (cGMP) via multiple pathways, thereby reducing protein kinase G (PKG) activity. The importance of cGMP-PKG pathway modulation is supported by growing evidence that suggests that this pathway may be a promising therapeutic target, evidence that is mainly based on its role in the phosphorylation of the giant cytoskeletal protein titin. This review will focus on the preclinical and early clinical evidence in the field of cGMP-enhancing therapies and PKG activation.
Collapse
Affiliation(s)
- Á Kovács
- Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | - A Alogna
- Department of Cardiology, Charité Berlin Campus Virchow, Berlin, Germany
| | - H Post
- Department of Cardiology, Charité Berlin Campus Virchow, Berlin, Germany
| | - N Hamdani
- Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
59
|
Sun J, Aponte AM, Menazza S, Gucek M, Steenbergen C, Murphy E. Additive cardioprotection by pharmacological postconditioning with hydrogen sulfide and nitric oxide donors in mouse heart: S-sulfhydration vs. S-nitrosylation. Cardiovasc Res 2016; 110:96-106. [PMID: 26907390 DOI: 10.1093/cvr/cvw037] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/12/2016] [Indexed: 11/14/2022] Open
Abstract
Hydrogen sulfide (H2S), as a gaseous signalling molecule, has been found to play important roles in postconditioning (PostC)-induced cardioprotection. Similar to nitric oxide (NO)-mediated protein S-nitrosylation (SNO), recent studies suggest that H2S could regulate protein function through another redox-based post-translational modification on protein cysteine residue(s), i.e. S-sulfhydration (SSH). In this study, we examined whether there are changes in protein SSH associated with cardioprotection induced by treatment with H2S on reperfusion. In addition, we also examined whether there is cross talk between H2S and NO. Compared with control, treatment on reperfusion with NaHS (H2S donor, 100 µmol/L) significantly reduced post-ischaemic contractile dysfunction and infarct size. A comparable cardioprotective effect could be also achieved by reperfusion treatment with SNAP (NO donor, 10 µmol/L). Interestingly, simultaneous reperfusion with both donors had an additive protective effect. In addition, C-PTIO (NO scavenger, 20 µmol/L) eliminated the protection induced by NaHS and also the additive protection by SNAP + NaHS together. Using a modified biotin switch method, we observed a small increase in SSH following NaHS treatment on reperfusion. We also found that NaHS treatment on reperfusion increases SNO to a level comparable to that with SNAP treatment. In addition, there was an additive increase in SNO but not SSH when SNAP and NaHS were added together at reperfusion. Thus, part of the benefit of NaHS is an increase in SNO, and the magnitude of the protective effect is related to the magnitude of the increase in SNO.
Collapse
Affiliation(s)
- Junhui Sun
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Building 10/Room 8N206, Bethesda, MD 20892, USA
| | - Angel M Aponte
- Proteomics Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara Menazza
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Building 10/Room 8N206, Bethesda, MD 20892, USA
| | - Marjan Gucek
- Proteomics Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Charles Steenbergen
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Elizabeth Murphy
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Building 10/Room 8N206, Bethesda, MD 20892, USA
| |
Collapse
|
60
|
Novel Perspectives in Redox Biology and Pathophysiology of Failing Myocytes: Modulation of the Intramyocardial Redox Milieu for Therapeutic Interventions-A Review Article from the Working Group of Cardiac Cell Biology, Italian Society of Cardiology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6353469. [PMID: 26881035 PMCID: PMC4736421 DOI: 10.1155/2016/6353469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022]
Abstract
The prevalence of heart failure (HF) is still increasing worldwide, with enormous human, social, and economic costs, in spite of huge efforts in understanding pathogenetic mechanisms and in developing effective therapies that have transformed this syndrome into a chronic disease. Myocardial redox imbalance is a hallmark of this syndrome, since excessive reactive oxygen and nitrogen species can behave as signaling molecules in the pathogenesis of hypertrophy and heart failure, leading to dysregulation of cellular calcium handling, of the contractile machinery, of myocardial energetics and metabolism, and of extracellular matrix deposition. Recently, following new interesting advances in understanding myocardial ROS and RNS signaling pathways, new promising therapeutical approaches with antioxidant properties are being developed, keeping in mind that scavenging ROS and RNS tout court is detrimental as well, since these molecules also play a role in physiological myocardial homeostasis.
Collapse
|
61
|
HNO/Thiol Biology as a Therapeutic Target. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2016. [DOI: 10.1007/978-3-319-30705-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
62
|
Interaction of Hydrogen Sulfide with Nitric Oxide in the Cardiovascular System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:6904327. [PMID: 26640616 PMCID: PMC4657111 DOI: 10.1155/2016/6904327] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/21/2015] [Indexed: 01/07/2023]
Abstract
Historically acknowledged as toxic gases, hydrogen sulfide (H2S) and nitric oxide (NO) are now recognized as the predominant members of a new family of signaling molecules, “gasotransmitters” in mammals. While H2S is biosynthesized by three constitutively expressed enzymes (CBS, CSE, and 3-MST) from L-cysteine and homocysteine, NO is generated endogenously from L-arginine by the action of various isoforms of NOS. Both gases have been transpired as the key and independent regulators of many physiological functions in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The analogy between these two gasotransmitters is evident not only from their paracrine mode of signaling, but also from the identical and/or shared signaling transduction pathways. With the plethora of research in the pathophysiological role of gasotransmitters in various systems, the existence of interplay between these gases is being widely accepted. Chemical interaction between NO and H2S may generate nitroxyl (HNO), which plays a specific effective role within the cardiovascular system. In this review article, we have attempted to provide current understanding of the individual and interactive roles of H2S and NO signaling in mammalian cardiovascular system, focusing particularly on heart contractility, cardioprotection, vascular tone, angiogenesis, and oxidative stress.
Collapse
|
63
|
Ramirez-Correa GA, Ma J, Slawson C, Zeidan Q, Lugo-Fagundo NS, Xu M, Shen X, Gao WD, Caceres V, Chakir K, DeVine L, Cole RN, Marchionni L, Paolocci N, Hart GW, Murphy AM. Removal of Abnormal Myofilament O-GlcNAcylation Restores Ca2+ Sensitivity in Diabetic Cardiac Muscle. Diabetes 2015; 64:3573-87. [PMID: 26109417 PMCID: PMC4587639 DOI: 10.2337/db14-1107] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 05/14/2015] [Indexed: 11/13/2022]
Abstract
Contractile dysfunction and increased deposition of O-linked β-N-acetyl-d-glucosamine (O-GlcNAc) in cardiac proteins are a hallmark of the diabetic heart. However, whether and how this posttranslational alteration contributes to lower cardiac function remains unclear. Using a refined β-elimination/Michael addition with tandem mass tags (TMT)-labeling proteomic technique, we show that CpOGA, a bacterial analog of O-GlcNAcase (OGA) that cleaves O-GlcNAc in vivo, removes site-specific O-GlcNAcylation from myofilaments, restoring Ca(2+) sensitivity in streptozotocin (STZ) diabetic cardiac muscles. We report that in control rat hearts, O-GlcNAc and O-GlcNAc transferase (OGT) are mainly localized at the Z-line, whereas OGA is at the A-band. Conversely, in diabetic hearts O-GlcNAc levels are increased and OGT and OGA delocalized. Consistent changes were found in human diabetic hearts. STZ diabetic hearts display increased physical interactions of OGA with α-actin, tropomyosin, and myosin light chain 1, along with reduced OGT and increased OGA activities. Our study is the first to reveal that specific removal of O-GlcNAcylation restores myofilament response to Ca(2+) in diabetic hearts and that altered O-GlcNAcylation is due to the subcellular redistribution of OGT and OGA rather than to changes in their overall activities. Thus, preventing sarcomeric OGT and OGA displacement represents a new possible strategy for treating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Genaro A Ramirez-Correa
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Junfeng Ma
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS
| | - Quira Zeidan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nahyr S Lugo-Fagundo
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mingguo Xu
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Xiaoxu Shen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Viviane Caceres
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Khalid Chakir
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lauren DeVine
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Robert N Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Luigi Marchionni
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gerald W Hart
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Anne M Murphy
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
64
|
Kalász J, Pásztor ET, Fagyas M, Balogh Á, Tóth A, Csató V, Édes I, Papp Z, Borbély A. Myeloperoxidase impairs the contractile function in isolated human cardiomyocytes. Free Radic Biol Med 2015; 84:116-127. [PMID: 25770662 DOI: 10.1016/j.freeradbiomed.2015.02.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/02/2015] [Accepted: 02/25/2015] [Indexed: 01/09/2023]
Abstract
We set out to characterize the mechanical effects of myeloperoxidase (MPO) in isolated left-ventricular human cardiomyocytes. Oxidative myofilament protein modifications (sulfhydryl (SH)-group oxidation and carbonylation) induced by the peroxidase and chlorinating activities of MPO were additionally identified. The specificity of the MPO-evoked functional alterations was tested with an MPO inhibitor (MPO-I) and the antioxidant amino acid Met. The combined application of MPO and its substrate, hydrogen peroxide (H2O2), largely reduced the active force (Factive), increased the passive force (Fpassive), and decreased the Ca(2+) sensitivity of force production (pCa50) in permeabilized cardiomyocytes. H2O2 alone had significantly smaller effects on Factive and Fpassive and did not alter pCa50. The MPO-I blocked both the peroxidase and the chlorinating activities, whereas Met selectively inhibited the chlorinating activity of MPO. All of the MPO-induced functional effects could be prevented by the MPO-I and Met. Both H2O2 alone and MPO + H2O2 reduced the SH content of actin and increased the carbonylation of actin and myosin-binding protein C to the same extent. Neither the SH oxidation nor the carbonylation of the giant sarcomeric protein titin was affected by these treatments. MPO activation induces a cardiomyocyte dysfunction by affecting Ca(2+)-regulated active and Ca(2+)-independent passive force production and myofilament Ca(2+) sensitivity, independent of protein SH oxidation and carbonylation. The MPO-induced deleterious functional alterations can be prevented by the MPO-I and Met. Inhibition of MPO may be a promising therapeutic target to limit myocardial contractile dysfunction during inflammation.
Collapse
Affiliation(s)
- Judit Kalász
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Enikő T Pásztor
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Miklós Fagyas
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ágnes Balogh
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Tóth
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Viktória Csató
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - István Édes
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Borbély
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| |
Collapse
|
65
|
Breitkreuz M, Hamdani N. A change of heart: oxidative stress in governing muscle function? Biophys Rev 2015; 7:321-341. [PMID: 28510229 DOI: 10.1007/s12551-015-0175-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/08/2015] [Indexed: 02/07/2023] Open
Abstract
Redox/cysteine modification of proteins that regulate calcium cycling can affect contraction in striated muscles. Understanding the nature of these modifications would present the possibility of enhancing cardiac function through reversible cysteine modification of proteins, with potential therapeutic value in heart failure with diastolic dysfunction. Both heart failure and muscular dystrophy are characterized by abnormal redox balance and nitrosative stress. Recent evidence supports the synergistic role of oxidative stress and inflammation in the progression of heart failure with preserved ejection fraction, in concert with endothelial dysfunction and impaired nitric oxide-cyclic guanosine monophosphate-protein kinase G signalling via modification of the giant protein titin. Although antioxidant therapeutics in heart failure with diastolic dysfunction have no marked beneficial effects on the outcome of patients, it, however, remains critical to the understanding of the complex interactions of oxidative/nitrosative stress with pro-inflammatory mechanisms, metabolic dysfunction, and the redox modification of proteins characteristic of heart failure. These may highlight novel approaches to therapeutic strategies for heart failure with diastolic dysfunction. In this review, we provide an overview of oxidative stress and its effects on pathophysiological pathways. We describe the molecular mechanisms driving oxidative modification of proteins and subsequent effects on contractile function, and, finally, we discuss potential therapeutic opportunities for heart failure with diastolic dysfunction.
Collapse
Affiliation(s)
- Martin Breitkreuz
- Department of Cardiovascular Physiology, Ruhr University Bochum, MA 3/56, 44780, Bochum, Germany
| | - Nazha Hamdani
- Department of Cardiovascular Physiology, Ruhr University Bochum, MA 3/56, 44780, Bochum, Germany.
| |
Collapse
|
66
|
Hydrogen sulfide in pharmacology and medicine – An update. Pharmacol Rep 2015; 67:647-58. [DOI: 10.1016/j.pharep.2015.01.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/05/2015] [Indexed: 12/17/2022]
|
67
|
Abstract
Acute heart failure (AHF) emerges as a major and growing epidemiological concern with high morbidity and mortality rates. Current therapies in patients with acute heart failure rely on different strategies. Patients with hypotension, hypoperfusion, or shock require inotropic support, whereas diuretics and vasodilators are recommended in patients with systemic or pulmonary congestion. Traditionally inotropic agents, referred to as Ca2+ mobilizers load the cardiomyocyte with Ca2+ and thereby increase oxygen consumption and risk for arrhythmias. These limitations of traditional inotropes may be avoided by sarcomere targeted agents. Direct activation of the cardiac sarcomere may be achieved by either sensitizing the cardiac myofilaments to Ca2+ or activating directly the cardiac myosin. In this review, we focus on sarcomere targeted inotropic agents, emphasizing their mechanisms of action and overview the most relevant clinical considerations.
Collapse
|
68
|
Abstract
The loss of contractile function is a hallmark of heart failure. Although increasing intracellular Ca(2+) is a possible strategy for improving contraction, current inotropic agents that achieve this by raising intracellular cAMP levels, such as β-agonists and phosphodiesterase inhibitors, are generally deleterious when administered as long-term therapy due to arrhythmia and myocardial damage. Nitroxyl donors have been shown to improve cardiac function in normal and failing dogs, and in isolated cardiomyocytes they increase fractional shortening and Ca(2+) transients, independently from cAMP/PKA or cGMP/PKG signaling. Instead, nitroxyl targets cysteines in the EC-coupling machinery and myofilament proteins, reversibly modifying them to enhance Ca(2+) handling and myofilament Ca(2+) sensitivity. Phase I-IIa trials with CXL-1020, a novel pure HNO donor, reported declines in left and right heart filling pressures and systemic vascular resistance, and increased cardiac output and stroke volume index. These findings support the concept of nitroxyl donors as attractive agents for the treatment of acute decompensated heart failure.
Collapse
|
69
|
New acyloxy nitroso compounds with improved water solubility and nitroxyl (HNO) release kinetics and inhibitors of platelet aggregation. Bioorg Med Chem 2015; 23:6069-77. [PMID: 26228501 DOI: 10.1016/j.bmc.2015.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/03/2015] [Accepted: 04/09/2015] [Indexed: 11/22/2022]
Abstract
New acyloxy nitroso compounds, 4-nitrosotetrahydro-2H-pyran-4-yl 2,2,2-trichloroacetate and 4-nitrosotetrahydro-2H-pyran-4-yl 2,2-dichloropropanoate were prepared. These compounds release HNO under neutral conditions with half-lives between 50 and 120min, identifying these HNO donors as kinetically intermediate to the much slower acetate derivative and the faster trifluoroacetic acid derivative. These compounds or HNO-derived from these compounds react with thiols, including glutathione, thiol-containing enzymes and heme-containing proteins in a similar fashion to other acyloxy nitroso compounds. HNO released from these acyloxy nitroso compounds inhibits activated platelet aggregation. These acyloxy nitroso compounds augment the range of release for this group of HNO donors and should be valuable tools in the further study of HNO biology.
Collapse
|
70
|
Zhu G, Groneberg D, Sikka G, Hori D, Ranek MJ, Nakamura T, Takimoto E, Paolocci N, Berkowitz DE, Friebe A, Kass DA. Soluble guanylate cyclase is required for systemic vasodilation but not positive inotropy induced by nitroxyl in the mouse. Hypertension 2014; 65:385-92. [PMID: 25452469 DOI: 10.1161/hypertensionaha.114.04285] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitroxyl (HNO), the reduced and protonated form of nitric oxide (NO·), confers unique physiological effects including vasorelaxation and enhanced cardiac contractility. These features have spawned current pharmaceutical development of HNO donors as heart failure therapeutics. HNO interacts with selective redox sensitive cysteines to effect signaling but is also proposed to activate soluble guanylate cyclase (sGC) in vitro to induce vasodilation and potentially enhance contractility. Here, we tested whether sGC stimulation is required for these HNO effects in vivo and if HNO also modifies a redox-sensitive cysteine (C42) in protein kinase G-1α to control vasorelaxation. Intact mice and isolated arteries lacking the sGC-β subunit (sGCKO, results in full sGC deficiency) or expressing solely a redox-dead C42S mutant protein kinase G-1α were exposed to the pure HNO donor, CXL-1020. CXL-1020 induced dose-dependent systemic vasodilation while increasing contractility in controls; however, vasodilator effects were absent in sGCKO mice whereas contractility response remained. The CXL-1020 dose reversing 50% of preconstricted force in aortic rings was ≈400-fold greater in sGCKO than controls. Cyclic-GMP and cAMP levels were unaltered in myocardium exposed to CXL-1020, despite its inotropic-vasodilator activity. In protein kinase G-1α(C42S) mice, CXL-1020 induced identical vasorelaxation in vivo and in isolated aortic and mesenteric vessels as in littermate controls. In both groups, dilation was near fully blocked by pharmacologically inhibiting sGC. Thus, sGC and cGMP-dependent signaling are necessary and sufficient for HNO-induced vasodilation in vivo but are not required for positive inotropic action. Redox modulation of protein kinase G-1α is not a mechanism for HNO-mediated vasodilation.
Collapse
Affiliation(s)
- Guangshuo Zhu
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Dieter Groneberg
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Gautam Sikka
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Daijiro Hori
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Mark J Ranek
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Taishi Nakamura
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Eiki Takimoto
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Nazareno Paolocci
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Dan E Berkowitz
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - Andreas Friebe
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD
| | - David A Kass
- From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore MD (G.Z., M.J.R., T.N., E.T., N.P., D.A.K.); Institut of Vegetative Physiology, Julius Maximilians-Universität Würzburg, Würzburg, Germany (D.G., A.F.); and Departments of Anesthesia (G.S., D.E.B.) and Surgery (D.H.), Johns Hopkins Medical Institutions, Baltimore MD.
| |
Collapse
|
71
|
Gellert M, Hanschmann EM, Lepka K, Berndt C, Lillig CH. Redox regulation of cytoskeletal dynamics during differentiation and de-differentiation. Biochim Biophys Acta Gen Subj 2014; 1850:1575-87. [PMID: 25450486 DOI: 10.1016/j.bbagen.2014.10.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND The cytoskeleton, unlike the bony vertebrate skeleton or the exoskeleton of invertebrates, is a highly dynamic meshwork of protein filaments that spans through the cytosol of eukaryotic cells. Especially actin filaments and microtubuli do not only provide structure and points of attachments, but they also shape cells, they are the basis for intracellular transport and distribution, all types of cell movement, and--through specific junctions and points of adhesion--join cells together to form tissues, organs, and organisms. SCOPE OF REVIEW The fine tuned regulation of cytoskeletal dynamics is thus indispensible for cell differentiation and all developmental processes. Here, we discussed redox signalling mechanisms that control this dynamic remodeling. Foremost, we emphasised recent discoveries that demonstrated reversible thiol and methionyl switches in the regulation of actin dynamics. MAJOR CONCLUSIONS Thiol and methionyl switches play an essential role in the regulation of cytoskeletal dynamics. GENERAL SIGNIFICANCE The dynamic remodeling of the cytoskeleton is controlled by various redox switches. These mechanisms are indispensible during development and organogenesis and might contribute to numerous pathological conditions. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Manuela Gellert
- Institut für Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Eva-Maria Hanschmann
- Institut für Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Klaudia Lepka
- Klinik für Neurologie, Medizinische Fakultät, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Carsten Berndt
- Klinik für Neurologie, Medizinische Fakultät, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Christopher Horst Lillig
- Institut für Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ernst-Moritz-Arndt-Universität, Greifswald, Germany.
| |
Collapse
|
72
|
Beckendorf L, Linke WA. Emerging importance of oxidative stress in regulating striated muscle elasticity. J Muscle Res Cell Motil 2014; 36:25-36. [PMID: 25373878 PMCID: PMC4352196 DOI: 10.1007/s10974-014-9392-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/03/2014] [Indexed: 12/11/2022]
Abstract
The contractile function of striated muscle cells is altered by oxidative/nitrosative stress, which can be observed under physiological conditions but also in diseases like heart failure or muscular dystrophy. Oxidative stress causes oxidative modifications of myofilament proteins and can impair myocyte contractility. Recent evidence also suggests an important effect of oxidative stress on muscle elasticity and passive stiffness via modifications of the giant protein titin. In this review we provide a short overview of known oxidative modifications in thin and thick filament proteins and then discuss in more detail those oxidative stress-related modifications altering titin stiffness directly or indirectly. Direct modifications of titin include reversible disulfide bonding within the cardiac-specific N2-Bus domain, which increases titin stiffness, and reversible S-glutathionylation of cryptic cysteines in immunoglobulin-like domains, which only takes place after the domains have unfolded and which reduces titin stiffness in cardiac and skeletal muscle. Indirect effects of oxidative stress on titin can occur via reversible modifications of protein kinase signalling pathways (especially the NO-cGMP-PKG axis), which alter the phosphorylation level of certain disordered titin domains and thereby modulate titin stiffness. Oxidative stress also activates proteases such as matrix-metalloproteinase-2 and (indirectly via increasing the intracellular calcium level) calpain-1, both of which cleave titin to irreversibly reduce titin-based stiffness. Although some of these mechanisms require confirmation in the in vivo setting, there is evidence that oxidative stress-related modifications of titin are relevant in the context of biomarker design and represent potential targets for therapeutic intervention in some forms of muscle and heart disease.
Collapse
Affiliation(s)
- Lisa Beckendorf
- Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, MA 3/56, 44780, Bochum, Germany
| | | |
Collapse
|
73
|
Ramirez-Correa GA, Frazier AH, Zhu G, Zhang P, Rappold T, Kooij V, Bedja D, Snyder GA, Lugo-Fagundo NS, Hariharan R, Li Y, Shen X, Gao WD, Cingolani OH, Takimoto E, Foster DB, Murphy AM. Cardiac troponin I Pro82Ser variant induces diastolic dysfunction, blunts β-adrenergic response, and impairs myofilament cooperativity. J Appl Physiol (1985) 2014; 118:212-23. [PMID: 25324519 DOI: 10.1152/japplphysiol.00463.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Troponin I (TnI) variant Pro82Ser (cTnIP82S) was initially considered a disease-causing mutation; however, later studies suggested the contrary. We tested the hypothesis of whether a causal link exists between cTnIP82S and cardiac structural and functional remodeling, such as during aging or chronic pressure overload. A cardiac-specific transgenic (Tg) mouse model of cTnIP82S was created to test this hypothesis. During aging, Tg cTnIP82S displayed diastolic dysfunction, characterized by longer isovolumetric relaxation time, and impaired ejection and relaxation time. In young, Tg mice in vivo pressure-volume loops and intact trabecular preparations revealed normal cardiac contractility at baseline. However, upon β-adrenergic stimulation, a blunted contractile reserve and no hastening in left ventricle relaxation were evident in vivo, whereas, in isolated muscles, Ca(2+) transient amplitude isoproterenol dose-response was blunted. In addition, when exposed to chronic pressure overload, Tg mice show exacerbated hypertrophy and decreased contractility compared with age-matched non-Tg littermates. At the molecular level, this mutation significantly impairs myofilament cooperative activation. Importantly, this occurs in the absence of alterations in TnI or myosin-binding protein C phosphorylation. The cTnIP82S variant occurs near a region of interactions with troponin T; therefore, structural changes in this region could explain its meaningful effects on myofilament cooperativity. Our data indicate that cTnIP82S mutation modifies age-dependent diastolic dysfunction and impairs overall contractility after β-adrenergic stimulation or chronic pressure overload. Thus cTnIP82S variant should be regarded as a disease-modifying factor for dysfunction and adverse remodeling with aging and chronic pressure overload.
Collapse
Affiliation(s)
- Genaro A Ramirez-Correa
- Department of Pediatrics and Division of Pediatric Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aisha H Frazier
- Department of Pediatrics and Division of Pediatric Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Guangshuo Zhu
- Department of Medicine and Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pingbo Zhang
- The Hopkins Bayview Proteomics Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas Rappold
- The Hopkins Bayview Proteomics Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Viola Kooij
- The Hopkins Bayview Proteomics Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Djahida Bedja
- Department of Comparative Medicine and Comparative Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Greg A Snyder
- Institute of Human Virology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Nahyr S Lugo-Fagundo
- Department of Pediatrics and Division of Pediatric Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Raena Hariharan
- Department of Pediatrics and Division of Pediatric Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yuejin Li
- Department of Pediatrics and Division of Pediatric Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xiaoxu Shen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Oscar H Cingolani
- Department of Medicine and Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eiki Takimoto
- Department of Medicine and Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - D Brian Foster
- Department of Medicine and Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anne M Murphy
- Department of Pediatrics and Division of Pediatric Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| |
Collapse
|
74
|
Pagliaro P, Gattullo D, Penna C. Nitroglycerine and sodium trioxodinitrate: from the discovery to the preconditioning effect. J Cardiovasc Med (Hagerstown) 2014; 14:698-704. [PMID: 23695182 DOI: 10.2459/jcm.0b013e3283621ac6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The history began in the 19th century with Ascanio Sobrero (1812-1888), the discoverer of glycerol trinitrate (nitroglycerine, NTG), and with Angelo Angeli (1864-1931), the discoverer of sodium trioxodinitrate (Angeli's salt). It is likely that Angeli and Sobrero never met, but their two histories will join each other more than a century later. In fact, it has been discovered that both NTG and Angeli's salt are able to induce a preconditioning effect. As NTG has a long history as an antianginal drug its newly discovered property as a preconditioning agent has also been tested in humans. Angeli's salt properties as a preconditioning and inotropic agent have only been tested in animals so far.
Collapse
Affiliation(s)
- Pasquale Pagliaro
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino, Italy
| | | | | |
Collapse
|
75
|
Comparison of HNO reactivity with tryptophan and cysteine in small peptides. Bioorg Med Chem Lett 2014; 24:3710-3. [DOI: 10.1016/j.bmcl.2014.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 11/19/2022]
|
76
|
Sag CM, Santos CX, Shah AM. Redox regulation of cardiac hypertrophy. J Mol Cell Cardiol 2014; 73:103-11. [DOI: 10.1016/j.yjmcc.2014.02.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 02/07/2023]
|
77
|
Affiliation(s)
- Gizem Keceli
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - John P. Toscano
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
78
|
Shen X, Bhatt N, Xu J, Meng T, Aon MA, O'Rourke B, Berkowitz DE, Cortassa S, Gao WD. Effect of isoflurane on myocardial energetic and oxidative stress in cardiac muscle from Zucker diabetic fatty rat. J Pharmacol Exp Ther 2014; 349:21-8. [PMID: 24431470 PMCID: PMC3965886 DOI: 10.1124/jpet.113.211144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/14/2014] [Indexed: 11/22/2022] Open
Abstract
The effect of inhalational anesthetics on myocardial contraction and energetics in type 2 diabetes mellitus is unknown. We investigated the effect of isoflurane (ISO) on force and intracellular Ca(2+) transient (iCa), myocardial oxygen consumption (MVo(2)), and energetics/redox behavior in trabecular muscles from Zucker diabetic fatty (ZDF) rats. At baseline, force and corresponding iCa were lower in ZDF trabeculae than in controls. ISO decreased force in both groups in a dose-dependent manner. ISO did not affect iCa amplitude in controls, but ISO > 1.5% significantly reduced iCa amplitude in ZDF trabeculae. ISO-induced force depression fully recovered as a result of increased iCa when external Ca(2+) was raised in controls. However, both force and iCa remained low in ZDF muscle at elevated external Ca(2+). In controls, force, iCa, and MVo(2) increased when stimulation frequency was increased from 0.5 to 1.5 Hz. ZDF muscles, however, exhibited blunted responses in force and iCa and decreased MVo(2). Oxidative stress levels were unchanged in control muscles but increased significantly in ZDF muscles after exposure to ISO. Finally, the depressive effect of ISO was prevented by 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (Tempol) in ZDF muscles. These findings suggest that ISO dose-dependently attenuates force in control and ZDF muscles with differential effect on iCa. The mechanism of force depression by ISO in controls is mainly decreased myofilament Ca(2+) sensitivity, whereas in ZDF muscles the ISO-induced decrease in contraction is due to worsening oxidative stress, which inhibits iCa and force development.
Collapse
Affiliation(s)
- Xiaoxu Shen
- Cardiology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China (X.S.); Division of Cardiology, Department of Medicine (N.B., M.A.A., B.O., S.C.), and Department of Anesthesiology and Critical Care Medicine (T.M., D.E.B., W.D.G.), The Johns Hopkins University School of Medicine, Baltimore, Maryland; and Department of Anesthesiology, 1st Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (J.X.)
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Tarone G, Balligand JL, Bauersachs J, Clerk A, De Windt L, Heymans S, Hilfiker-Kleiner D, Hirsch E, Iaccarino G, Knöll R, Leite-Moreira AF, Lourenço AP, Mayr M, Thum T, Tocchetti CG. Targeting myocardial remodelling to develop novel therapies for heart failure. Eur J Heart Fail 2014; 16:494-508. [DOI: 10.1002/ejhf.62] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/02/2014] [Accepted: 01/18/2014] [Indexed: 02/04/2023] Open
Affiliation(s)
- Guido Tarone
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute; Università di Torino; Torino Italy
| | - Jean-Luc Balligand
- Institut de Recherche Expérimentale et Clinique (IREC), Pole de Pharmacologie et Thérapeutique (UCL-FATH) and Department of Medicine, Cliniques Saint-Luc; Université catholique de Louvain; Bruxelles Belgium
| | - Johann Bauersachs
- Department of Cardiology and Angiology; Medizinische Hochschule-Hannover; Hannover Germany
| | - Angela Clerk
- School of Biological Sciences; University of Reading; Reading UK
| | - Leon De Windt
- Department of Cardiology, CARIM School for Cardiovascular Diseases; Maastricht University; Maastricht The Netherlands
| | - Stephane Heymans
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM); Maastricht University; The Netherlands
| | - Denise Hilfiker-Kleiner
- Molecular Cardiology, Department of Cardiology and Angiology; Medizinische Hochschule-Hannover; Hannover Germany
| | - Emilio Hirsch
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute; Università di Torino; Torino Italy
| | - Guido Iaccarino
- Facoltà di Medicina; Università di Salerno; Salerno Italy
- IRCCS ‘Multimedica’; Milano Italy
| | - Ralph Knöll
- National Heart & Lung Institute; Imperial College London; London UK
| | - Adelino F. Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine; University of Porto; Porto Portugal
| | - André P. Lourenço
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine; University of Porto; Porto Portugal
| | - Manuel Mayr
- King's British Heart Foundation Centre; King's College London; London UK
| | - Thomas Thum
- National Heart & Lung Institute; Imperial College London; London UK
- Institute of Molecular and Translational Therapeutic Strategies; Hannover Medical School; Hannover Germany
| | | |
Collapse
|
80
|
Simon JN, Duglan D, Casadei B, Carnicer R. Nitric oxide synthase regulation of cardiac excitation-contraction coupling in health and disease. J Mol Cell Cardiol 2014; 73:80-91. [PMID: 24631761 DOI: 10.1016/j.yjmcc.2014.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 02/07/2023]
Abstract
Significant advances in our understanding of the ability of nitric oxide synthases (NOS) to modulate cardiac function have provided key insights into the role NOS play in the regulation of excitation-contraction (EC) coupling in health and disease. Through both cGMP-dependent and cGMP-independent (e.g. S-nitrosylation) mechanisms, NOS have the ability to alter intracellular Ca(2+) handling and the myofilament response to Ca(2+), thereby impacting the systolic and diastolic performance of the myocardium. Findings from experiments using nitric oxide (NO) donors and NOS inhibition or gene deletion clearly implicate dysfunctional NOS as a critical contributor to many cardiovascular disease states. However, studies to date have only partially addressed NOS isoform-specific effects and, more importantly, how subcellular localization of NOS influences ion channels involved in myocardial EC coupling and excitability. In this review, we focus on the contribution of each NOS isoform to cardiac dysfunction and on the role of uncoupled NOS activity in common cardiac disease states, including heart failure, diabetic cardiomyopathy, ischemia/reperfusion injury and atrial fibrillation. We also review evidence that clearly indicates the importance of NO in cardioprotection. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System".
Collapse
Affiliation(s)
- Jillian N Simon
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Drew Duglan
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Barbara Casadei
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Ricardo Carnicer
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
81
|
Abstract
Approximately half of heart failure patients have a normal ejection fraction, a condition designated as heart failure with preserved ejection fraction (HFpEF). This heart failure subtype disproportionately affects women and the elderly and is commonly associated with other cardiovascular comorbidities, such as hypertension and diabetes. HFpEF is increasing at a steady rate and is predicted to become the leading cause of heart failure within a decade. HFpEF is characterized by impaired diastolic function, thought to be due to concentric remodeling of the heart along with increased stiffness of both the extracellular matrix and myofilaments. In addition, oxidative stress and inflammation are thought to have a role in HFpEF progression, along with endothelial dysfunction and impaired nitric oxide-cyclic guanosine monophosphate-protein kinase G signaling. Surprisingly a number of clinical studies have failed to demonstrate any benefit of drugs effective in heart failure with systolic dysfunction in HFpEF patients. Thus, HFpEF is one of the largest unmet needs in cardiovascular medicine, and there is a substantial need for new therapeutic approaches and strategies that target mechanisms specific for HFpEF. This conclusion is underscored by the recently reported disappointing results of the RELAX trial, which assessed the use of phosphodiesterase-5 inhibitor sildenafil for treating HFpEF. In animal models, endothelial nitric oxide synthase activators and If current inhibitors have shown benefit in improving diastolic function, and there is a rationale for assessing matrix metalloproteinase 9 inhibitors and nitroxyl donors. LCZ696, a combination drug of angiotensin II receptor blocker and neprilysin inhibitor, and the aldosterone receptor antagonist spironolactone are currently in clinical trial for treating HFpEF. Here we present an overview of the etiology and diagnosis of HFpEF that segues into a discussion of new therapeutic approaches emerging from basic research and drugs currently in clinical trial that primarily target diastolic dysfunction or imbalanced ventricular-arterial coupling.
Collapse
|
82
|
Sivakumaran V, Stanley BA, Tocchetti CG, Ballin JD, Caceres V, Zhou L, Keceli G, Rainer PP, Lee DI, Huke S, Ziolo MT, Kranias EG, Toscano JP, Wilson GM, O'Rourke B, Kass DA, Mahaney JE, Paolocci N. HNO enhances SERCA2a activity and cardiomyocyte function by promoting redox-dependent phospholamban oligomerization. Antioxid Redox Signal 2013; 19:1185-97. [PMID: 23919584 PMCID: PMC3785857 DOI: 10.1089/ars.2012.5057] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIMS Nitroxyl (HNO) interacts with thiols to act as a redox-sensitive modulator of protein function. It enhances sarcoplasmic reticular Ca(2+) uptake and myofilament Ca(2+) sensitivity, improving cardiac contractility. This activity has led to clinical testing of HNO donors for heart failure. Here we tested whether HNO alters the inhibitory interaction between phospholamban (PLN) and the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) in a redox-dependent manner, improving Ca(2+) handling in isolated myocytes/hearts. RESULTS Ventriculocytes, sarcoplasmic reticulum (SR) vesicles, and whole hearts were isolated from control (wildtype [WT]) or PLN knockout (pln(-/-)) mice. Compared to WT, pln(-/-) myocytes displayed enhanced resting sarcomere shortening, peak Ca(2+) transient, and blunted β-adrenergic responsiveness. HNO stimulated shortening, relaxation, and Ca(2+) transient in WT cardiomyocytes, and evoked positive inotropy/lusitropy in intact hearts. These changes were markedly blunted in pln(-/-) cells/hearts. HNO enhanced SR Ca(2+) uptake in WT but not pln(-/-) SR-vesicles. Spectroscopic studies in insect cell microsomes expressing SERCA2a±PLN showed that HNO increased Ca(2+)-dependent SERCA2a conformational flexibility but only when PLN was present. In cardiomyocytes, HNO achieved this effect by stabilizing PLN in an oligomeric disulfide bond-dependent configuration, decreasing the amount of free inhibitory monomeric PLN available. INNOVATION HNO-dependent redox changes in myocyte PLN oligomerization relieve PLN inhibition of SERCA2a. CONCLUSIONS PLN plays a central role in HNO-induced enhancement of SERCA2a activity, leading to increased inotropy/lusitropy in intact myocytes and hearts. PLN remains physically associated with SERCA2a; however, less monomeric PLN is available resulting in decreased inhibition of the enzyme. These findings offer new avenues to improve Ca(2+) handling in failing hearts.
Collapse
Affiliation(s)
- Vidhya Sivakumaran
- 1 Division of Cardiology, Johns Hopkins Medical Institutions , Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Sabbah HN, Tocchetti CG, Wang M, Daya S, Gupta RC, Tunin RS, Mazhari R, Takimoto E, Paolocci N, Cowart D, Colucci WS, Kass DA. Nitroxyl (HNO): A novel approach for the acute treatment of heart failure. Circ Heart Fail 2013; 6:1250-8. [PMID: 24107588 DOI: 10.1161/circheartfailure.113.000632] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The nitroxyl (HNO) donor, Angeli's salt, exerts positive inotropic, lusitropic, and vasodilator effects in vivo that are cAMP independent. Its clinical usefulness is limited by chemical instability and cogeneration of nitrite which itself has vascular effects. Here, we report on effects of a novel, stable, pure HNO donor (CXL-1020) in isolated myoctyes and intact hearts in experimental models and in patients with heart failure (HF). METHODS AND RESULTS CXL-1020 converts solely to HNO and inactive CXL-1051 with a t1/2 of 2 minutes. In adult mouse ventricular myocytes, it dose dependently increased sarcomere shortening by 75% to 210% (50-500 μmol/L), with a ≈30% rise in the peak Ca(2+) transient only at higher doses. Neither inhibition of protein kinase A nor soluble guanylate cyclase altered this contractile response. Unlike isoproterenol, CXL-1020 was equally effective in myocytes from normal or failing hearts. In anesthetized dogs with coronary microembolization-induced HF, CXL-1020 reduced left ventricular end-diastolic pressure and myocardial oxygen consumption while increasing ejection fraction from 27% to 40% and maximal ventricular power index by 42% (both P<0.05). In conscious dogs with tachypacing-induced HF, CXL-1020 increased contractility assessed by end-systolic elastance and provided venoarterial dilation. Heart rate was minimally altered. In patients with systolic HF, CXL-1020 reduced both left and right heart filling pressures and systemic vascular resistance, while increasing cardiac and stroke volume index. Heart rate was unchanged, and arterial pressure declined modestly. CONCLUSIONS These data show the functional efficacy of a novel pure HNO donor to enhance myocardial function and present first-in-man evidence for its potential usefulness in HF. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifiers: NCT01096043, NCT01092325.
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, MI
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Keceli G, Moore CD, Labonte JW, Toscano JP. NMR detection and study of hydrolysis of HNO-derived sulfinamides. Biochemistry 2013; 52:7387-96. [PMID: 24073927 DOI: 10.1021/bi401110f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitroxyl (HNO), a potential heart failure therapeutic, is known to post-translationally modify cysteine residues. Among reactive nitrogen oxide species, the modification of cysteine residues to sulfinamides [RS(O)NH2] is unique to HNO. We have applied (15)N-edited (1)H NMR techniques to detect the HNO-induced thiol to sulfinamide modification in several small organic molecules, peptides, and the cysteine protease, papain. Relevant reactions of sulfinamides involve reduction to free thiols in the presence of excess thiol and hydrolysis to form sulfinic acids [RS(O)OH]. We have investigated sulfinamide hydrolysis at physiological pH and temperature. Studies with papain and a related model peptide containing the active site thiol suggest that sulfinamide hydrolysis can be enhanced in a protein environment. These findings are also supported by modeling studies. In addition, analysis of peptide sulfinamides at various pH values suggests that hydrolysis becomes more facile under acidic conditions.
Collapse
Affiliation(s)
- Gizem Keceli
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | | | | | | |
Collapse
|
85
|
Mitroka S, Shoman ME, DuMond JF, Bellavia L, Aly OM, Abdel-Aziz M, Kim-Shapiro DB, King SB. Direct and nitroxyl (HNO)-mediated reactions of acyloxy nitroso compounds with the thiol-containing proteins glyceraldehyde 3-phosphate dehydrogenase and alkyl hydroperoxide reductase subunit C. J Med Chem 2013; 56:6583-92. [PMID: 23895568 DOI: 10.1021/jm400057r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nitroxyl (HNO) reacts with thiols, and this reactivity requires the use of donors with 1-nitrosocyclohexyl acetate, pivalate, and trifluoroacetate, forming a new group. These acyloxy nitroso compounds inhibit glyceraldehyde 3-phosphate dehydrogenase (GAPDH) by forming a reduction reversible active site disulfide and a reduction irreversible sulfinic acid or sulfinamide modification at Cys244. Addition of these acyloxy nitroso compounds to AhpC C165S yields a sulfinic acid and sulfinamide modification. A potential mechanism for these transformations includes nucleophilic addition of the protein thiol to a nitroso compound to yield an N-hydroxysulfenamide, which reacts with thiol to give disulfide or rearranges to sulfinamides. Known HNO donors produce the unsubstituted protein sulfinamide as the major product, while the acetate and pivalate give substituted sulfinamides that hydrolyze to sulfinic acids. These results suggest that nitroso compounds form a general class of thiol-modifying compounds, allowing their further exploration.
Collapse
Affiliation(s)
- Susan Mitroka
- Department of Chemistry and ‡Department of Physics, Wake Forest University , Winston-Salem, North Carolina 27109, United States
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
Oxidative stress accompanies a wide spectrum of clinically important cardiac disorders, including ischemia/reperfusion, diabetes mellitus, and hypertensive heart disease. Although reactive oxygen species (ROS) can activate signaling pathways that contribute to ischemic preconditioning and cardioprotection, high levels of ROS induce structural modifications of the sarcomere that impact on pump function and the pathogenesis of heart failure. However, the precise nature of the redox-dependent change in contractility is determined by the source/identity of the oxidant species, the level of oxidative stress, and the chemistry/position of oxidant-induced posttranslational modifications on individual proteins within the sarcomere. This review focuses on various ROS-induced posttranslational modifications of myofilament proteins (including direct oxidative modifications of myofilament proteins, myofilament protein phosphorylation by ROS-activated signaling enzymes, and myofilament protein cleavage by ROS-activated proteases) that have been implicated in the control of cardiac contractility.
Collapse
Affiliation(s)
- Susan F Steinberg
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, 630 W. 168 St, New York, NY 10032, USA.
| |
Collapse
|
87
|
Donzelli S, Fischer G, King BS, Niemann C, DuMond JF, Heeren J, Wieboldt H, Baldus S, Gerloff C, Eschenhagen T, Carrier L, Böger RH, Espey MG. Pharmacological characterization of 1-nitrosocyclohexyl acetate, a long-acting nitroxyl donor that shows vasorelaxant and antiaggregatory effects. J Pharmacol Exp Ther 2013; 344:339-47. [PMID: 23211362 PMCID: PMC3558825 DOI: 10.1124/jpet.112.199836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/19/2012] [Indexed: 11/22/2022] Open
Abstract
Nitroxyl (HNO) donors have potential benefit in the treatment of heart failure and other cardiovascular diseases. 1-Nitrosocyclohexyl acetate (NCA), a new HNO donor, in contrast to the classic HNO donors Angeli's salt and isopropylamine NONOate, predominantly releases HNO and has a longer half-life. This study investigated the vasodilatative properties of NCA in isolated aortic rings and human platelets and its mechanism of action. NCA was applied on aortic rings isolated from wild-type mice and apolipoprotein E-deficient mice and in endothelial-denuded aortae. The mechanism of action of HNO was examined by applying NCA in the absence and presence of the HNO scavenger glutathione (GSH) and inhibitors of soluble guanylyl cyclase (sGC), adenylyl cyclase (AC), calcitonin gene-related peptide receptor (CGRP), and K(+) channels. NCA induced a concentration-dependent relaxation (EC(50), 4.4 µM). This response did not differ between all groups, indicating an endothelium-independent relaxation effect. The concentration-response was markedly decreased in the presence of excess GSH; the nitric oxide scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide had no effect. Inhibitors of sGC, CGRP, and voltage-dependent K(+) channels each significantly impaired the vasodilator response to NCA. In contrast, inhibitors of AC, ATP-sensitive K(+) channels, or high-conductance Ca(2+)-activated K(+) channels did not change the effects of NCA. NCA significantly reduced contractile response and platelet aggregation mediated by the thromboxane A(2) mimetic 9,11-dideoxy-11α,9α-epoxymethanoprostaglandin F(2)(α) in a cGMP-dependent manner. In summary, NCA shows vasoprotective effects and may have a promising profile as a therapeutic agent in vascular dysfunction, warranting further evaluation.
Collapse
Affiliation(s)
- Sonia Donzelli
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf., Martinistr. 52, D-20246 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
|