51
|
Zhao QY, Peng YB, Luo XJ, Luo X, Xu H, Wei MY, Jiang QJ, Li WE, Ma LQ, Xu JC, Liu XC, Zang DA, She YS, Zhu H, Shen J, Zhao P, Xue L, Yu MF, Chen W, Zhang P, Fu X, Chen J, Nie X, Shen C, Chen S, Chen S, Chen J, Hu S, Zou C, Qin G, Fang Y, Ding J, Ji G, Zheng YM, Song T, Wang YX, Liu QH. Distinct Effects of Ca 2+ Sparks on Cerebral Artery and Airway Smooth Muscle Cell Tone in Mice and Humans. Int J Biol Sci 2017; 13:1242-1253. [PMID: 29104491 PMCID: PMC5666523 DOI: 10.7150/ijbs.21475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/10/2017] [Indexed: 11/21/2022] Open
Abstract
The effects of Ca2+ sparks on cerebral artery smooth muscle cells (CASMCs) and airway smooth muscle cells (ASMCs) tone, as well as the underlying mechanisms, are not clear. In this investigation, we elucidated the underlying mechanisms of the distinct effects of Ca2+ sparks on cerebral artery smooth muscle cells (CASMCs) and airway smooth muscle cells (ASMCs) tone. In CASMCs, owing to the functional loss of Ca2+-activated Cl- (Clca) channels, Ca2+ sparks activated large-conductance Ca2+-activated K+ channels (BKs), resulting in a decreases in tone against a spontaneous depolarization-caused high tone in the resting state. In ASMCs, Ca2+ sparks induced relaxation through BKs and contraction via Clca channels. However, the integrated result was contraction because Ca2+ sparks activated BKs prior to Clca channels and Clca channels-induced depolarization was larger than BKs-caused hyperpolarization. However, the effects of Ca2+ sparks on both cell types were determined by L-type voltage-dependent Ca2+ channels (LVDCCs). In addition, compared with ASMCs, CASMCs had great and higher amplitude Ca2+ sparks, a higher density of BKs, and higher Ca2+ and voltage sensitivity of BKs. These differences enhanced the ability of Ca2+ sparks to decrease CASMC and to increase ASMC tone. The higher Ca2+ and voltage sensitivity of BKs in CASMCs than ASMCs were determined by the β1 subunits. Moreover, Ca2+ sparks showed the similar effects on human CASMC and ASMC tone. In conclusions, Ca2+ sparks decrease CASMC tone and increase ASMC tone, mediated by BKs and Clca channels, respectively, and finally determined by LVDCCs.
Collapse
Affiliation(s)
- Qing-Yang Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yong-Bo Peng
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiao-Jing Luo
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xi Luo
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Hao Xu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ming-Yu Wei
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Qiu-Ju Jiang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Wen-Er Li
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Li-Qun Ma
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jin-Chao Xu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiao-Cao Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Dun-An Zang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yu-San She
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - He Zhu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ping Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Lu Xue
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Meng-Fei Yu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Weiwei Chen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ping Zhang
- Department of Cerebral Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, China
| | - Xiangning Fu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, China
| | - Jingyu Chen
- Wuxi &Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Xiaowei Nie
- Wuxi &Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Chenyou Shen
- Wuxi &Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, China
| | - Shanshan Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, China
| | - Jingcao Chen
- Department of Cerebral Surgery, Zhongnan Hospital, Wuhan University Medical College, Wuhan, 430071, Hubei, China
| | - Sheng Hu
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, 430079, Hubei, China
| | - Chunbin Zou
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine & School of Engineering, University of Alabama Birmingham, AL, 35294, USA
| | - Ying Fang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiuping Ding
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guangju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Tengyao Song
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Qing-Hua Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
52
|
Aleksandrowicz M, Dworakowska B, Dolowy K, Kozniewska E. Restoration of the response of the middle cerebral artery of the rat to acidosis in hyposmotic hyponatremia by the opener of large-conductance calcium sensitive potassium channels (BK Ca). J Cereb Blood Flow Metab 2017; 37:3219-3230. [PMID: 28058990 PMCID: PMC5584697 DOI: 10.1177/0271678x16685575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hyposmotic hyponatremia (the decrease of extracellular concentration of sodium ions from 145 to 121 mM and the decrease of hyposmolality from 300 to 250 mOsm/kg H2O) impairs response of the middle cerebral artery (MCA) to acetylcholine and NO donor (S-nitroso-N-acetyl-DL-penicillamine). Since acidosis activates a similar intracellular signaling pathway, the present study was designed to verify the hypothesis that the response of the MCA to acidosis is impaired during acute hyposmotic hyponatremia due to abnormal NO-related signal transduction in vascular smooth muscle cells. Studies performed on isolated, cannulated, and pressurized rat MCA revealed that hyposmotic hyponatremia impaired the response of the MCA to acidosis and this was associated with hyposmolality rather than with decreased sodium ion concentration. Response to acidosis was restored by the BKCa but not by the KATP channel activator. Patch-clamp electrophysiology performed on myocytes freshly isolated from MCAs, demonstrated that hyposmotic hyponatremia does not affect BKCa currents but decreases the voltage-dependency of the activation of the BKCa channels in the presence of a specific opener of these channels. Our study suggests that reduced sensitivity of BKCa channels in the MCA to agonists results in the lack of response of this artery to acidosis during acute hyposmotic hyponatremia.
Collapse
Affiliation(s)
- Marta Aleksandrowicz
- 1 Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Beata Dworakowska
- 2 Department of Biophysics, Warsaw University of Life Sciences, Warsaw, Poland
| | - Krzysztof Dolowy
- 2 Department of Biophysics, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewa Kozniewska
- 1 Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,3 Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
53
|
Soni H, Peixoto-Neves D, Matthews AT, Adebiyi A. TRPV4 channels contribute to renal myogenic autoregulation in neonatal pigs. Am J Physiol Renal Physiol 2017; 313:F1136-F1148. [PMID: 28768667 DOI: 10.1152/ajprenal.00300.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/20/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022] Open
Abstract
Myogenic response, a phenomenon in which resistance size arteries and arterioles swiftly constrict or dilate in response to an acute elevation or reduction, respectively, in intravascular pressure is a key component of renal autoregulation mechanisms. Although it is well established that the renal system is functionally immature in neonates, mechanisms that regulate neonatal renal blood flow (RBF) remain poorly understood. In this study, we investigated the hypothesis that members of the transient receptor potential vanilloid (TRPV) channels are molecular components of renal myogenic constriction in newborns. We show that unlike TRPV1-3, TRPV4 channels are predominantly expressed in neonatal pig preglomerular vascular smooth muscle cells (SMCs). Intracellular Ca2+ concentration ([Ca2+]i) elevation induced by osmotic cell swelling was attenuated by TRPV4, L-type Ca2+, and stretch-activated Ca2+ channel blockers but not phospholipase A2 inhibitor. Blockade of TRPV4 channels reversed steady-state myogenic tone and inhibited pressure-induced membrane depolarization, [Ca2+]i elevation, and constriction in distal interlobular arteries. A step increase in arterial pressure induced efficient autoregulation of renal cortical perfusion and total RBF in anesthetized and mechanically ventilated neonatal pigs. Moreover, intrarenal arterial infusion of the TRPV4 channel blockers HC 067047 and RN 1734 attenuated renal autoregulation in the pigs. These data suggest that renal myogenic autoregulation is functional in neonates. Our findings also indicate that TRPV4 channels are mechanosensors in neonatal pig preglomerular vascular SMCs and contribute to renal myogenic autoregulation.
Collapse
Affiliation(s)
- Hitesh Soni
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Dieniffer Peixoto-Neves
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Anberitha T Matthews
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Adebowale Adebiyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
54
|
Fedigan S, Bradley E, Webb T, Large RJ, Hollywood MA, Thornbury KD, McHale NG, Sergeant GP. Effects of new-generation TMEM16A inhibitors on calcium-activated chloride currents in rabbit urethral interstitial cells of Cajal. Pflugers Arch 2017; 469:1443-1455. [PMID: 28733893 DOI: 10.1007/s00424-017-2028-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/21/2017] [Accepted: 07/03/2017] [Indexed: 12/18/2022]
Abstract
Interstitial cells of Cajal (ICC) isolated from the rabbit urethra exhibit Ca2+-activated Cl- currents (I ClCa) that are important for the development of urethral tone. Here, we examined if TMEM16A (ANO1) contributed to this activity by examining the effect of "new-generation" TMEM16A inhibitors, CACCinh-A01 and T16Ainh-A01, on I ClCa recorded from freshly isolated rabbit urethral ICC (RUICC) and on contractions of intact strips of rabbit urethra smooth muscle. Real-time quantitative PCR experiments demonstrated that TMEM16A was highly expressed in rabbit urethra smooth muscle, in comparison to TMEM16B and TMEM16F. Single-cell RT-PCR experiments revealed that only TMEM16A was expressed in freshly isolated RUICC. Depolarization-evoked I ClCa in isolated RUICC, recorded using voltage clamp, were inhibited by CACCinh-A01 and T16Ainh-A01 with IC50 values of 1.2 and 3.4 μM, respectively. Similarly, spontaneous transient inward currents (STICs) recorded from RUICC voltage clamped at -60 mV and spontaneous transient depolarizations (STDs), recorded in current clamp, were also inhibited by CACCinh-A01 and T16Ainh-A01. In contrast, spontaneous Ca2+ waves in isolated RUICC were only partially reduced by CACCinh-A01 and T16Ainh-A01. Finally, neurogenic contractions of strips of rabbit urethra smooth muscle (RUSM), evoked by electric field stimulation (EFS), were also significantly reduced by CACCinh-A01 and T16Ainh-A01. These data are consistent with the idea that TMEM16A is involved with CACCs in RUICC and in contraction of rabbit urethral smooth muscle.
Collapse
Affiliation(s)
- Stephen Fedigan
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Eamonn Bradley
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Timothy Webb
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Roddy J Large
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Mark A Hollywood
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Keith D Thornbury
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Noel G McHale
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Gerard P Sergeant
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland.
| |
Collapse
|
55
|
|
56
|
Pires PW, Ko E, Pritchard HA, Rudokas M, Yamasaki E, Earley S. The angiotensin II receptor type 1b is the primary sensor of intraluminal pressure in cerebral artery smooth muscle cells. J Physiol 2017; 595:4735-4753. [PMID: 28475214 PMCID: PMC5509855 DOI: 10.1113/jp274310] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/03/2017] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS The angiotensin II receptor type 1b (AT1 Rb ) is the primary sensor of intraluminal pressure in cerebral arteries. Pressure or membrane-stretch induced stimulation of AT1 Rb activates the TRPM4 channel and results in inward transient cation currents that depolarize smooth muscle cells, leading to vasoconstriction. Activation of either AT1 Ra or AT1 Rb with angiotensin II stimulates TRPM4 currents in cerebral artery myocytes and vasoconstriction of cerebral arteries. The expression of AT1 Rb mRNA is ∼30-fold higher than AT1 Ra in whole cerebral arteries and ∼45-fold higher in isolated cerebral artery smooth muscle cells. Higher levels of expression are likely to account for the obligatory role of AT1 Rb for pressure-induced vasoconstriction. ABSTRACT: Myogenic vasoconstriction, which reflects the intrinsic ability of smooth muscle cells to contract in response to increases in intraluminal pressure, is critically important for the autoregulation of blood flow. In smooth muscle cells from cerebral arteries, increasing intraluminal pressure engages a signalling cascade that stimulates cation influx through transient receptor potential (TRP) melastatin 4 (TRPM4) channels to cause membrane depolarization and vasoconstriction. Substantial evidence indicates that the angiotensin II receptor type 1 (AT1 R) is inherently mechanosensitive and initiates this signalling pathway. Rodents express two types of AT1 R - AT1 Ra and AT1 Rb - and conflicting studies provide support for either isoform as the primary sensor of intraluminal pressure in peripheral arteries. We hypothesized that mechanical activation of AT1 Ra increases TRPM4 currents to induce myogenic constriction of cerebral arteries. However, we found that development of myogenic tone was greater in arteries from AT1 Ra knockout animals compared with controls. In patch-clamp experiments using native cerebral arterial myocytes, membrane stretch-induced cation currents were blocked by the TRPM4 inhibitor 9-phenanthrol in both groups. Further, the AT1 R blocker losartan (1 μm) diminished myogenic tone and blocked stretch-induced cation currents in cerebral arteries from both groups. Activation of AT1 R with angiotensin II (30 nm) also increased TRPM4 currents in smooth muscle cells and constricted cerebral arteries from both groups. Expression of AT1 Rb mRNA was ∼30-fold greater than AT1 Ra in cerebral arteries, and knockdown of AT1 Rb selectively diminished myogenic constriction. We conclude that AT1 Rb , acting upstream of TRPM4 channels, is the primary sensor of intraluminal pressure in cerebral artery smooth muscle cells.
Collapse
Affiliation(s)
- Paulo W. Pires
- Department of Pharmacology, Center for Cardiovascular Research, University of NevadaReno School of MedicineRenoNV89557‐0318USA
| | - Eun‐A. Ko
- Department of Physiology and Cell Biology, University of NevadaReno School of MedicineRenoNV89557‐0318USA
| | - Harry A.T. Pritchard
- Department of Pharmacology, Center for Cardiovascular Research, University of NevadaReno School of MedicineRenoNV89557‐0318USA
| | - Michael Rudokas
- Department of Pharmacology, Center for Cardiovascular Research, University of NevadaReno School of MedicineRenoNV89557‐0318USA
| | - Evan Yamasaki
- Department of Pharmacology, Center for Cardiovascular Research, University of NevadaReno School of MedicineRenoNV89557‐0318USA
| | - Scott Earley
- Department of Pharmacology, Center for Cardiovascular Research, University of NevadaReno School of MedicineRenoNV89557‐0318USA
| |
Collapse
|
57
|
Strege PR, Gibbons SJ, Mazzone A, Bernard CE, Beyder A, Farrugia G. EAVK segment "c" sequence confers Ca 2+-dependent changes to the kinetics of full-length human Ano1. Am J Physiol Gastrointest Liver Physiol 2017; 312:G572-G579. [PMID: 28336549 PMCID: PMC5495914 DOI: 10.1152/ajpgi.00429.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/07/2017] [Accepted: 03/15/2017] [Indexed: 01/31/2023]
Abstract
Anoctamin1 (Ano1 and TMEM16A) is a calcium-activated chloride channel specifically expressed in the interstitial cells of Cajal (ICC) of the gastrointestinal tract muscularis propria. Ano1 is necessary for normal electrical slow waves and ICC proliferation. The full-length human Ano1 sequence includes an additional exon, exon "0," at the NH2 terminus. Ano1 with exon 0 [Ano1(0)] had a lower EC50 for intracellular calcium ([Ca2+]i) and faster chloride current (ICl) kinetics. The Ano1 alternative splice variant with segment "c" encoding exon 13 expresses on the first intracellular loop four additional amino acid residues, EAVK, which alter ICl at low [Ca2+]i Exon 13 is expressed in 75-100% of Ano1 transcripts in most human tissues but only 25% in the human stomach. Our aim was to determine the effect of EAVK deletion on Ano1(0)ICl parameters. By voltage-clamp electrophysiology, we examined ICl in HEK293 cells transiently expressing Ano1(0) with or without the EAVK sequence [Ano1(0)ΔEAVK]. The EC50 values of activating and deactivating ICl for [Ca2+]i were 438 ± 7 and 493 ± 9 nM for Ano1(0) but higher for Ano1(0)ΔEAVK at 746 ± 47 and 761 ± 26 nM, respectively. Meanwhile, the EC50 values for the ratio of instantaneous to steady-state ICl were not different between variants. Congruently, the time constant of activation was slower for Ano1(0)ΔEAVK than Ano1(0) currents at intermediate [Ca2+]i These results suggest that EAVK decreases the calcium sensitivity of Ano1(0) current activation and deactivation by slowing activation kinetics. Differential expression of EAVK in the human stomach may function as a switch to increase sensitivity to [Ca2+]i via faster gating of Ano1.NEW & NOTEWORTHY Calcium-activated chloride channel anoctamin1 (Ano1) is necessary for normal slow waves in the gastrointestinal interstitial cells of Cajal. Exon 0 encodes the NH2 terminus of full-length human Ano1 [Ano1(0)], while exon 13 encodes residues EAVK on its first intracellular loop. Splice variants lack EAVK more often in the stomach than other tissues. Ano1(0) without EAVK [Ano1(0)ΔEAVK] has reduced sensitivity for intracellular calcium, attributable to slower kinetics. Differential expression of EAVK may function as a calcium-sensitive switch in the human stomach.
Collapse
|
58
|
Motherwell JM, Azimi MS, Spicer K, Alves NG, Hodges NA, Breslin JW, Katakam PVG, Murfee WL. Evaluation of Arteriolar Smooth Muscle Cell Function in an Ex Vivo Microvascular Network Model. Sci Rep 2017; 7:2195. [PMID: 28526859 PMCID: PMC5438412 DOI: 10.1038/s41598-017-02272-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/10/2017] [Indexed: 12/18/2022] Open
Abstract
An emerging challenge in tissue engineering biomimetic models is recapitulating the physiological complexity associated with real tissues. Recently, our laboratory introduced the rat mesentery culture model as an ex vivo experimental platform for investigating the multi-cellular dynamics involved in angiogenesis within an intact microvascular network using time-lapse imaging. A critical question remains whether the vessels maintain their functionality. The objective of this study was to determine whether vascular smooth muscle cells in cultured microvascular networks maintain the ability to constrict. Adult rat mesenteric tissues were harvested and cultured for three days in either MEM or MEM plus 10% serum. On Day 0 and Day 3 live microvascular networks were visualized with FITC conjugated BSI-lectin labeling and arteriole diameters were compared before and five minutes after topical exposure to vasoconstrictors (50 mM KCl and 20 nM Endothelin-1). Arterioles displayed a vasoconstriction response to KCl and endothelin for each experimental group. However, the Day 3 serum cultured networks were angiogenic, characterized by increased vessel density, and displayed a decreased vasoconstriction response compared to Day 0 networks. The results support the physiological relevance of the rat mesentery culture model as a biomimetic tool for investigating microvascular growth and function ex vivo.
Collapse
Affiliation(s)
- Jessica M Motherwell
- Tulane University, Department of Biomedical Engineering, New Orleans, LA, 70118, United States
| | - Mohammad S Azimi
- Tulane University, Department of Biomedical Engineering, New Orleans, LA, 70118, United States
| | - Kristine Spicer
- Tulane University, Department of Biomedical Engineering, New Orleans, LA, 70118, United States
| | - Natascha G Alves
- University of South Florida, Department of Molecular Pharmacology and Physiology, Tampa, FL, 33612, United States
| | - Nicholas A Hodges
- Tulane University, Department of Biomedical Engineering, New Orleans, LA, 70118, United States
| | - Jerome W Breslin
- University of South Florida, Department of Molecular Pharmacology and Physiology, Tampa, FL, 33612, United States
| | - Prasad V G Katakam
- Tulane University, Department of Pharmacology, New Orleans, LA, 70112, United States
| | - Walter L Murfee
- Tulane University, Department of Biomedical Engineering, New Orleans, LA, 70118, United States.
| |
Collapse
|
59
|
Kamaleddin MA. Molecular, biophysical, and pharmacological properties of calcium-activated chloride channels. J Cell Physiol 2017; 233:787-798. [PMID: 28121009 DOI: 10.1002/jcp.25823] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/15/2022]
Abstract
Calcium-activated chloride channels (CaCCs) are a family of anionic transmembrane ion channels. They are mainly responsible for the movement of Cl- and other anions across the biological membranes, and they are widely expressed in different tissues. Since the Cl- flow into or out of the cell plays a crucial role in hyperpolarizing or depolarizing the cells, respectively, the impact of intracellular Ca2+ concentration on these channels is attracting a lot of attentions. After summarizing the molecular, biophysical, and pharmacological properties of CaCCs, the role of CaCCs in normal cellular functions will be discussed, and I will emphasize how dysregulation of CaCCs in pathological conditions can account for different diseases. A better understanding of CaCCs and a pivotal regulatory role of Ca2+ can shed more light on the therapeutic strategies for different neurological disorders that arise from chloride dysregulation, such as asthma, cystic fibrosis, and neuropathic pain.
Collapse
Affiliation(s)
- Mohammad Amin Kamaleddin
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
60
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
61
|
Bigiani A. Calcium Homeostasis Modulator 1-Like Currents in Rat Fungiform Taste Cells Expressing Amiloride-Sensitive Sodium Currents. Chem Senses 2017; 42:343-359. [DOI: 10.1093/chemse/bjx013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
62
|
Hong K, Zhao G, Hong Z, Sun Z, Yang Y, Clifford PS, Davis MJ, Meininger GA, Hill MA. Mechanical activation of angiotensin II type 1 receptors causes actin remodelling and myogenic responsiveness in skeletal muscle arterioles. J Physiol 2016; 594:7027-7047. [PMID: 27531064 PMCID: PMC5134373 DOI: 10.1113/jp272834] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Candesartan, an inverse agonist of the type 1 angiotensin II receptor (AT1 R), causes a concentration-dependent inhibition of pressure-dependent myogenic tone consistent with previous reports of mechanosensitivity of this G protein-coupled receptor. Mechanoactivation of the AT1 R occurs independently of local angiotensin II production and the type 2 angiotensin receptor. Mechanoactivation of the AT1 R stimulates actin polymerization by a protein kinase C-dependent mechanism, but independently of a change in intracellular Ca2+ . Using atomic force microscopy, changes in single vascular smooth muscle cell cortical actin are observed to remodel following mechanoactivation of the AT1 R. ABSTRACT The Gq/11 protein-coupled angiotensin II type 1 receptor (AT1 R) has been shown to be activated by mechanical stimuli. In the vascular system, evidence supports the AT1 R being a mechanosensor that contributes to arteriolar myogenic constriction. The aim of this study was to determine if AT1 R mechanoactivation affects myogenic constriction in skeletal muscle arterioles and to determine underlying cellular mechanisms. Using pressure myography to study rat isolated first-order cremaster muscle arterioles the AT1 R inhibitor candesartan (10-7 -10-5 m) showed partial but concentration-dependent inhibition of myogenic reactivity. Inhibition was demonstrated by a rightward shift in the pressure-diameter relationship over the intraluminal pressure range, 30-110 mmHg. Pressure-induced changes in global vascular smooth muscle intracellular Ca2+ (using Fura-2) were similar in the absence or presence of candesartan, indicating that AT1 R-mediated myogenic constriction relies on Ca2+ -independent downstream signalling. The diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) reversed the inhibitory effect of candesartan, while this rescue effect was prevented by the protein kinase C (PKC) inhibitor GF 109203X. Both candesartan and PKC inhibition caused increased G-actin levels, as determined by Western blotting of vessel lysates, supporting involvement of cytoskeletal remodelling. At the single vascular smooth muscle cell level, atomic force microscopy showed that cell swelling (stretch) with hypotonic buffer also caused thickening of cortical actin fibres and this was blocked by candesartan. Collectively, the present studies support growing evidence for novel modes of activation of the AT1 R in arterioles and suggest that mechanically activated AT1 R generates diacylglycerol, which in turn activates PKC which induces the actin cytoskeleton reorganization that is required for pressure-induced vasoconstriction.
Collapse
Affiliation(s)
- Kwangseok Hong
- Dalton Cardiovascular Research CentreUniversity of MissouriColumbiaMO65211USA
- Department of Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMO65211USA
- Robert M. Berne Cardiovascular Research Centre and Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVA22908USA
| | - Guiling Zhao
- College of Applied Health SciencesUniversity of Illinois at ChicagoChicagoIL60612USA
| | - Zhongkui Hong
- Dalton Cardiovascular Research CentreUniversity of MissouriColumbiaMO65211USA
- Department of Biomedical EngineeringUniversity of South DakotaSioux FallsSD57107USA
| | - Zhe Sun
- Dalton Cardiovascular Research CentreUniversity of MissouriColumbiaMO65211USA
- Department of Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMO65211USA
| | - Yan Yang
- Dalton Cardiovascular Research CentreUniversity of MissouriColumbiaMO65211USA
| | - Philip S. Clifford
- College of Applied Health SciencesUniversity of Illinois at ChicagoChicagoIL60612USA
| | - Michael J. Davis
- Dalton Cardiovascular Research CentreUniversity of MissouriColumbiaMO65211USA
- Department of Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMO65211USA
| | - Gerald A. Meininger
- Dalton Cardiovascular Research CentreUniversity of MissouriColumbiaMO65211USA
- Department of Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMO65211USA
| | - Michael A. Hill
- Dalton Cardiovascular Research CentreUniversity of MissouriColumbiaMO65211USA
- Department of Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMO65211USA
| |
Collapse
|
63
|
Ma K, Wang H, Yu J, Wei M, Xiao Q. New Insights on the Regulation of Ca 2+ -Activated Chloride Channel TMEM16A. J Cell Physiol 2016; 232:707-716. [PMID: 27682822 DOI: 10.1002/jcp.25621] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/27/2016] [Indexed: 12/16/2022]
Abstract
TMEM16A, also known as anoctamin 1, is a recently identified Ca2+ -activated chloride channel and the first member of a 10-member TMEM16 family. TMEM16A dysfunction is implicated in many diseases such as cancer, hypertension, and cystic fibrosis. TMEM16A channels are well known to be dually regulated by voltage and Ca2+ . In addition, recent studies have revealed that TMEM16A channels are regulated by many molecules such as calmodulin, protons, cholesterol, and phosphoinositides, and a diverse range of stimuli such as thermal and mechanical stimuli. A better understanding of the regulatory mechanisms of TMEM16A is important to understand its physiological and pathological role. Recently, the crystal structure of a TMEM16 family member from the fungus Nectria haematococcaten (nhTMEM16) is discovered, and provides valuable information for studying the structure and function of TMEM16A. In this review, we discuss the structure and function of TMEM16A channels based on the crystal structure of nhTMEM16A and focus on the regulatory mechanisms of TMEM16A channels. J. Cell. Physiol. 232: 707-716, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| | - Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| | - Jiankun Yu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| |
Collapse
|
64
|
Boedtkjer E, Matchkov VV, Boedtkjer DMB, Aalkjaer C. Negative News: Cl− and HCO3− in the Vascular Wall. Physiology (Bethesda) 2016; 31:370-83. [DOI: 10.1152/physiol.00001.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cl− and HCO3− are the most prevalent membrane-permeable anions in the intra- and extracellular spaces of the vascular wall. Outwardly directed electrochemical gradients for Cl− and HCO3− permit anion channel opening to depolarize vascular smooth muscle and endothelial cells. Transporters and channels for Cl− and HCO3− also modify vascular contractility and structure independently of membrane potential. Transport of HCO3− regulates intracellular pH and thereby modifies the activity of enzymes, ion channels, and receptors. There is also evidence that Cl− and HCO3− transport proteins affect gene expression and protein trafficking. Considering the extensive implications of Cl− and HCO3− in the vascular wall, it is critical to understand how these ions are transported under physiological conditions and how disturbances in their transport can contribute to disease development. Recently, sensing mechanisms for Cl− and HCO3− have been identified in the vascular wall where they modify ion transport and vasomotor function, for instance, during metabolic disturbances. This review discusses current evidence that transport (e.g., via NKCC1, NBCn1, Ca2+-activated Cl− channels, volume-regulated anion channels, and CFTR) and sensing (e.g., via WNK and RPTPγ) of Cl− and HCO3− influence cardiovascular health and disease.
Collapse
Affiliation(s)
| | | | - Donna M. B. Boedtkjer
- Department of Biomedicine, Aarhus University, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark; and
| | - Christian Aalkjaer
- Department of Biomedicine, Aarhus University, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
65
|
Wang Q, Leo MD, Narayanan D, Kuruvilla KP, Jaggar JH. Local coupling of TRPC6 to ANO1/TMEM16A channels in smooth muscle cells amplifies vasoconstriction in cerebral arteries. Am J Physiol Cell Physiol 2016; 310:C1001-9. [PMID: 27147559 DOI: 10.1152/ajpcell.00092.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/28/2016] [Indexed: 11/22/2022]
Abstract
Anoctamin-1 [ANO1, also known as transmembrane protein 16A (TMEM16A)] is a Ca(2+)-activated Cl(-) channel expressed in arterial myocytes that regulates membrane potential and contractility. Signaling mechanisms that control ANO1 activity in arterial myocytes are poorly understood. In cerebral artery myocytes, ANO1 channels are activated by local Ca(2+) signals generated by plasma membrane nonselective cation channels, but the molecular identity of these proteins is unclear. Arterial myocytes express several different nonselective cation channels, including multiple members of the transient receptor potential receptor (TRP) family. The goal of this study was to identify localized ion channels that control ANO1 currents in cerebral artery myocytes. Coimmunoprecipitation and immunofluorescence resonance energy transfer microscopy experiments indicate that ANO1 and canonical TRP 6 (TRPC6) channels are present in the same macromolecular complex and localize in close spatial proximity in the myocyte plasma membrane. In contrast, ANO1 is not near TRPC3, TRP melastatin 4, or inositol trisphosphate receptor 1 channels. Hyp9, a selective TRPC6 channel activator, stimulated Cl(-) currents in myocytes that were blocked by T16Ainh-A01, an ANO1 inhibitor, ANO1 knockdown using siRNA, and equimolar replacement of intracellular EGTA with BAPTA, a fast Ca(2+) chelator that abolishes local Ca(2+) signaling. Hyp9 constricted pressurized cerebral arteries, and this response was attenuated by T16Ainh-A01. In contrast, T16Ainh-A01 did not alter depolarization-induced (60 mM K(+)) vasoconstriction. These data indicate that TRPC6 channels generate a local intracellular Ca(2+) signal that activates nearby ANO1 channels in myocytes to stimulate vasoconstriction.
Collapse
Affiliation(s)
- Qian Wang
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - M Dennis Leo
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Damodaran Narayanan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Korah P Kuruvilla
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
66
|
Zhang CH, Wang P, Liu DH, Chen CP, Zhao W, Chen X, Chen C, He WQ, Qiao YN, Tao T, Sun J, Peng YJ, Lu P, Zheng K, Craige SM, Lifshitz LM, Keaney JF, Fogarty KE, ZhuGe R, Zhu MS. The molecular basis of the genesis of basal tone in internal anal sphincter. Nat Commun 2016; 7:11358. [PMID: 27101932 PMCID: PMC4844698 DOI: 10.1038/ncomms11358] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/16/2016] [Indexed: 02/06/2023] Open
Abstract
Smooth muscle sphincters exhibit basal tone and control passage of contents through organs such as the gastrointestinal tract; loss of this tone leads to disorders such as faecal incontinence. However, the molecular mechanisms underlying this tone remain unknown. Here, we show that deletion of myosin light-chain kinases (MLCK) in the smooth muscle cells from internal anal sphincter (IAS-SMCs) abolishes basal tone, impairing defecation. Pharmacological regulation of ryanodine receptors (RyRs), L-type voltage-dependent Ca2+ channels (VDCCs) or TMEM16A Ca2+-activated Cl− channels significantly changes global cytosolic Ca2+ concentration ([Ca2+]i) and the tone. TMEM16A deletion in IAS-SMCs abolishes the effects of modulators for TMEM16A or VDCCs on a RyR-mediated rise in global [Ca2+]i and impairs the tone and defecation. Hence, MLCK activation in IAS-SMCs caused by a global rise in [Ca2+]i via a RyR-TMEM16A-VDCC signalling module sets the basal tone. Targeting this module may lead to new treatments for diseases like faecal incontinence. The molecular basis of the basal tone generated by internal anal sphincters (IAS) is largely unknown. Here, the authors show that the tone arises from a global rise in intracellular Ca2+ in smooth muscle cells via a Ryanodine receptor-TMEM16A-L-type Ca2+ channel-MLC kinase pathway, suggesting a potential therapy for IAS motility disorders.
Collapse
Affiliation(s)
- Cheng-Hai Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Pei Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Dong-Hai Liu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Cai-Ping Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Wei Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Xin Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Chen Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Wei-Qi He
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China.,CAM-SU Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Yan-Ning Qiao
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Tao Tao
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Jie Sun
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Ya-Jing Peng
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Ping Lu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Kaizhi Zheng
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Siobhan M Craige
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - John F Keaney
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Kevin E Fogarty
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China.,Innovation Center for Cardiovascular Disorders, Beijing 100029, China
| |
Collapse
|
67
|
Bannister JP, Bulley S, Leo MD, Kidd MW, Jaggar JH. Rab25 influences functional Cav1.2 channel surface expression in arterial smooth muscle cells. Am J Physiol Cell Physiol 2016; 310:C885-93. [PMID: 27076616 DOI: 10.1152/ajpcell.00345.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/24/2016] [Indexed: 11/22/2022]
Abstract
Plasma membrane-localized CaV1.2 channels are the primary calcium (Ca(2+)) influx pathway in arterial smooth muscle cells (myocytes). CaV1.2 channels regulate several cellular functions, including contractility and gene expression, but the trafficking pathways that control the surface expression of these proteins are unclear. Similarly, expression and physiological functions of small Rab GTPases, proteins that control vesicular trafficking in arterial myocytes, are poorly understood. Here, we investigated Rab proteins that control functional surface abundance of CaV1.2 channels in cerebral artery myocytes. Western blotting indicated that Rab25, a GTPase previously associated with apical recycling endosomes, is expressed in cerebral artery myocytes. Immunofluorescence Förster resonance energy transfer (immunoFRET) microscopy demonstrated that Rab25 locates in close spatial proximity to CaV1.2 channels in myocytes. Rab25 knockdown using siRNA reduced CaV1.2 surface and intracellular abundance in arteries, as determined using arterial biotinylation. In contrast, CaV1.2 was not located nearby Rab11A or Rab4 and CaV1.2 protein was unaltered by Rab11A or Rab4A knockdown. Rab25 knockdown resulted in CaV1.2 degradation by a mechanism involving both lysosomal and proteasomal pathways and reduced whole cell CaV1.2 current density but did not alter voltage dependence of current activation or inactivation in isolated myocytes. Rab25 knockdown also inhibited depolarization (20-60 mM K(+)) and pressure-induced vasoconstriction (myogenic tone) in cerebral arteries. These data indicate that Rab25 is expressed in arterial myocytes where it promotes surface expression of CaV1.2 channels to control pressure- and depolarization-induced vasoconstriction.
Collapse
Affiliation(s)
- John P Bannister
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Simon Bulley
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - M Dennis Leo
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Michael W Kidd
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
68
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
69
|
Karlin A. Membrane potential and Ca2+ concentration dependence on pressure and vasoactive agents in arterial smooth muscle: A model. ACTA ACUST UNITED AC 2016; 146:79-96. [PMID: 26123196 PMCID: PMC4485026 DOI: 10.1085/jgp.201511380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A mathematical model incorporating junctional and stretch-activated microdomains and 37 protein components describes the myogenic response in arterial smooth muscle cells. Arterial smooth muscle (SM) cells respond autonomously to changes in intravascular pressure, adjusting tension to maintain vessel diameter. The values of membrane potential (Vm) and sarcoplasmic Ca2+ concentration (Cain) within minutes of a change in pressure are the results of two opposing pathways, both of which use Ca2+ as a signal. This works because the two Ca2+-signaling pathways are confined to distinct microdomains in which the Ca2+ concentrations needed to activate key channels are transiently higher than Cain. A mathematical model of an isolated arterial SM cell is presented that incorporates the two types of microdomains. The first type consists of junctions between cisternae of the peripheral sarcoplasmic reticulum (SR), containing ryanodine receptors (RyRs), and the sarcolemma, containing voltage- and Ca2+-activated K+ (BK) channels. These junctional microdomains promote hyperpolarization, reduced Cain, and relaxation. The second type is postulated to form around stretch-activated nonspecific cation channels and neighboring Ca2+-activated Cl− channels, and promotes the opposite (depolarization, increased Cain, and contraction). The model includes three additional compartments: the sarcoplasm, the central SR lumen, and the peripheral SR lumen. It incorporates 37 protein components. In addition to pressure, the model accommodates inputs of α- and β-adrenergic agonists, ATP, 11,12-epoxyeicosatrienoic acid, and nitric oxide (NO). The parameters of the equations were adjusted to obtain a close fit to reported Vm and Cain as functions of pressure, which have been determined in cerebral arteries. The simulations were insensitive to ±10% changes in most of the parameters. The model also simulated the effects of inhibiting RyR, BK, or voltage-activated Ca2+ channels on Vm and Cain. Deletion of BK β1 subunits is known to increase arterial–SM tension. In the model, deletion of β1 raised Cain at all pressures, and these increases were reversed by NO.
Collapse
Affiliation(s)
- Arthur Karlin
- Department of Biochemistry and Molecular Biophysics, Department of Physiology and Cellular Biophysics, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
70
|
LI RONGSHAN, WANG YONG, CHEN HUISHEN, JIANG FANGYONG, TU QIANG, LI WENJUN, YIN RUIXING. TMEM16A contributes to angiotensin II-induced cerebral vasoconstriction via the RhoA/ROCK signaling pathway. Mol Med Rep 2016; 13:3691-9. [DOI: 10.3892/mmr.2016.4979] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 01/20/2016] [Indexed: 11/06/2022] Open
|
71
|
Abstract
Ca2+-activated Cl− channels (CaCCs) are a class of Cl− channels activated by intracellular Ca2+ that are known to mediate numerous physiological functions. In 2008, the molecular identity of CaCCs was found to be anoctamin 1 (ANO1/TMEM16A). Its roles have been studied in electrophysiological, histological, and genetic aspects. ANO1 is known to mediate Cl− secretion in secretory epithelia such as airways, salivary glands, intestines, renal tubules, and sweat glands. ANO1 is a heat sensor activated by noxious heat in somatosensory neurons and mediates acute pain sensation as well as chronic pain. ANO1 is also observed in vascular as well as airway smooth muscles, controlling vascular tone as well as airway hypersensitivity. ANO1 is upregulated in numerous types of cancers and thus thought to be involved in tumorigenesis. ANO1 is also found in proliferating cells. In addition to ANO1, involvement of its paralogs in pathophysiological conditions was also reported. ANO2 is involved in olfaction, whereas ANO6 works as a scramblase whose mutation causes a rare bleeding disorder, the Scott syndrome. ANO5 is associated with muscle and bone diseases. Recently, an X-ray crystal structure of a fungal TMEM16 was reported, which explains a precise molecular gating mechanism as well as ion conduction or phospholipid transport across the plasma membrane.
Collapse
|
72
|
Modulating Ca²⁺ signals: a common theme for TMEM16, Ist2, and TMC. Pflugers Arch 2015; 468:475-90. [PMID: 26700940 DOI: 10.1007/s00424-015-1767-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022]
Abstract
Since the discovery of TMEM16A (anoctamin 1, ANO1) as Ca(2+)-activated Cl(-) channel, the protein was found to serve different physiological functions, depending on the type of tissue. Subsequent reports on other members of the anoctamin family demonstrated a broad range of yet poorly understood properties. Compromised anoctamin function is causing a wide range of diseases, such as hearing loss (ANO2), bleeding disorder (ANO6), ataxia and dystonia (ANO3, 10), persistent borrelia and mycobacteria infection (ANO10), skeletal syndromes like gnathodiaphyseal dysplasia and limb girdle muscle dystrophy (ANO5), and cancer (ANO1, 6, 7). Animal models demonstrate CF-like airway disease, asthma, and intestinal hyposecretion (ANO1). Although present data indicate that ANO1 is a Ca(2+)-activated Cl(-) channel, it remains unclear whether all anoctamins form plasma membrane-localized or intracellular chloride channels. We find Ca(2+)-activated Cl(-) currents appearing by expression of most anoctamin paralogs, including the Nectria haematococca homologue nhTMEM16 and the yeast homologue Ist2. As recent studies show a role of anoctamins, Ist2, and the related transmembrane channel-like (TMC) proteins for intracellular Ca(2+) signaling, we will discuss the role of these proteins in generating compartmentalized Ca(2+) signals, which may give a hint as to the broad range of cellular functions of anoctamins.
Collapse
|
73
|
Zhang W, Schmelzeisen S, Parthier D, Frings S, Möhrlen F. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex. PLoS One 2015; 10:e0142160. [PMID: 26558388 PMCID: PMC4641602 DOI: 10.1371/journal.pone.0142160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/19/2015] [Indexed: 01/18/2023] Open
Abstract
Calcium-activated chloride channels of the anoctamin (alias TMEM16) protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum.
Collapse
Affiliation(s)
- Weiping Zhang
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Steffen Schmelzeisen
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Daniel Parthier
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Stephan Frings
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Frank Möhrlen
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
74
|
Yu Y, Kuan AS, Chen TY. Calcium-calmodulin does not alter the anion permeability of the mouse TMEM16A calcium-activated chloride channel. ACTA ACUST UNITED AC 2015; 144:115-24. [PMID: 24981232 PMCID: PMC4076522 DOI: 10.1085/jgp.201411179] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ca2+-calmodulin fails to affect TMEM16A anion permeability. The transmembrane protein TMEM16A forms a Ca2+-activated Cl− channel that is permeable to many anions, including SCN−, I−, Br−, Cl−, and HCO3−, and has been implicated in various physiological functions. Indeed, controlling anion permeation through the TMEM16A channel pore may be critical in regulating the pH of exocrine fluids such as the pancreatic juice. The anion permeability of the TMEM16A channel pore has recently been reported to be modulated by Ca2+-calmodulin (CaCaM), such that the pore of the CaCaM-bound channel shows a reduced ability to discriminate between anions as measured by a shift of the reversal potential under bi-ionic conditions. Here, using a mouse TMEM16A clone that contains the two previously identified putative CaM-binding motifs, we were unable to demonstrate such CaCaM-dependent changes in the bi-ionic potential. We confirmed the activity of CaCaM used in our study by showing CaCaM modulation of the olfactory cyclic nucleotide–gated channel. We suspect that the different bi-ionic potentials that were obtained previously from whole-cell recordings in low and high intracellular [Ca2+] may result from different degrees of bi-ionic potential shift secondary to a series resistance problem, an ion accumulation effect, or both.
Collapse
Affiliation(s)
- Yawei Yu
- Center for Neuroscience and Department of Neurology, University of California, Davis, Davis, CA 95618
| | - Ai-Seon Kuan
- Center for Neuroscience and Department of Neurology, University of California, Davis, Davis, CA 95618
| | - Tsung-Yu Chen
- Center for Neuroscience and Department of Neurology, University of California, Davis, Davis, CA 95618
| |
Collapse
|
75
|
Tykocki NR, Nelson MT. Location, Location, Location: Juxtaposed calcium-signaling microdomains as a novel model of the vascular smooth muscle myogenic response. J Gen Physiol 2015. [PMID: 26216858 PMCID: PMC4516781 DOI: 10.1085/jgp.201511468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, VT 05405
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, VT 05405 Institute of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, England, UK
| |
Collapse
|
76
|
Eugenol dilates rat cerebral arteries by inhibiting smooth muscle cell voltage-dependent calcium channels. J Cardiovasc Pharmacol 2015; 64:401-6. [PMID: 24921632 DOI: 10.1097/fjc.0000000000000131] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plants high in eugenol, a phenylpropanoid compound, are used as folk medicines to alleviate diseases including hypertension. Eugenol has been demonstrated to relax conduit and ear arteries and reduce systemic blood pressure, but mechanisms involved are unclear. Here, we studied eugenol regulation of resistance-size cerebral arteries that control regional brain blood pressure and flow and investigated mechanisms involved. We demonstrate that eugenol dilates arteries constricted by either pressure or membrane depolarization (60 mM K) in a concentration-dependent manner. Experiments performed using patch-clamp electrophysiology demonstrated that eugenol inhibited voltage-dependent calcium (Ca) currents, when using Ba as a charge carrier, in isolated cerebral artery smooth muscle cells. Eugenol inhibition of voltage-dependent Ca currents involved pore block, a hyperpolarizing shift (∼-10 mV) in voltage-dependent inactivation, an increase in the proportion of steady-state inactivating current, and acceleration of inactivation rate. In summary, our data indicate that eugenol dilates cerebral arteries by means of multimodal inhibition of voltage-dependent Ca channels.
Collapse
|
77
|
Dam VS, Boedtkjer DMB, Aalkjaer C, Matchkov V. The bestrophin- and TMEM16A-associated Ca(2+)- activated Cl(–) channels in vascular smooth muscles. Channels (Austin) 2015; 8:361-9. [PMID: 25478625 PMCID: PMC4203738 DOI: 10.4161/chan.29531] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The presence of Ca2+-activated Cl– currents (ICl(Ca)) in vascular smooth muscle cells (VSMCs) is well established. ICl(Ca) are supposedly important for arterial contraction by linking changes in [Ca2+]i and membrane depolarization. Bestrophins and some members of the TMEM16 protein family were recently associated with ICl(Ca). Two distinct ICl(Ca) are characterized in VSMCs; the cGMP-dependent ICl(Ca) dependent upon bestrophin expression and the ‘classical’ Ca2+-activated Cl– current, which is bestrophin-independent. Interestingly, TMEM16A is essential for both the cGMP-dependent and the classical ICl(Ca). Furthermore, TMEM16A has a role in arterial contraction while bestrophins do not. TMEM16A’s role in the contractile response cannot be explained however only by a simple suppression of the depolarization by Cl– channels. It is suggested that TMEM16A expression modulates voltage-gated Ca2+ influx in a voltage-independent manner and recent studies also demonstrate a complex role of TMEM16A in modulating other membrane proteins.
Collapse
|
78
|
Leblanc N, Forrest AS, Ayon RJ, Wiwchar M, Angermann JE, Pritchard HAT, Singer CA, Valencik ML, Britton F, Greenwood IA. Molecular and functional significance of Ca(2+)-activated Cl(-) channels in pulmonary arterial smooth muscle. Pulm Circ 2015; 5:244-68. [PMID: 26064450 DOI: 10.1086/680189] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/22/2014] [Indexed: 12/31/2022] Open
Abstract
Increased peripheral resistance of small distal pulmonary arteries is a hallmark signature of pulmonary hypertension (PH) and is believed to be the consequence of enhanced vasoconstriction to agonists, thickening of the arterial wall due to remodeling, and increased thrombosis. The elevation in arterial tone in PH is attributable, at least in part, to smooth muscle cells of PH patients being more depolarized and displaying higher intracellular Ca(2+) levels than cells from normal subjects. It is now clear that downregulation of voltage-dependent K(+) channels (e.g., Kv1.5) and increased expression and activity of voltage-dependent (Cav1.2) and voltage-independent (e.g., canonical and vanilloid transient receptor potential [TRPC and TRPV]) Ca(2+) channels play an important role in the functional remodeling of pulmonary arteries in PH. This review focuses on an anion-permeable channel that is now considered a novel excitatory mechanism in the systemic and pulmonary circulations. It is permeable to Cl(-) and is activated by a rise in intracellular Ca(2+) concentration (Ca(2+)-activated Cl(-) channel, or CaCC). The first section outlines the biophysical and pharmacological properties of the channel and ends with a description of the molecular candidate genes postulated to encode for CaCCs, with particular emphasis on the bestrophin and the newly discovered TMEM16 and anoctamin families of genes. The second section provides a review of the various sources of Ca(2+) activating CaCCs, which include stimulation by mobilization from intracellular Ca(2+) stores and Ca(2+) entry through voltage-dependent and voltage-independent Ca(2+) channels. The third and final section summarizes recent findings that suggest a potentially important role for CaCCs and the gene TMEM16A in PH.
Collapse
Affiliation(s)
- Normand Leblanc
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Abigail S Forrest
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Ramon J Ayon
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Michael Wiwchar
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Jeff E Angermann
- School of Community Health Sciences, University of Nevada, Reno, Nevada, USA
| | - Harry A T Pritchard
- Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, St. George's University of London, London, United Kingdom
| | - Cherie A Singer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Maria L Valencik
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Fiona Britton
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Iain A Greenwood
- Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, St. George's University of London, London, United Kingdom
| |
Collapse
|
79
|
Pritchard HAT, Leblanc N, Albert AP, Greenwood IA. Inhibitory role of phosphatidylinositol 4,5-bisphosphate on TMEM16A-encoded calcium-activated chloride channels in rat pulmonary artery. Br J Pharmacol 2015; 171:4311-21. [PMID: 24834965 DOI: 10.1111/bph.12778] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/22/2014] [Accepted: 05/07/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Calcium-activated chloride channels (CaCCs) are key depolarizing mechanisms that have an important role in vascular smooth muscle contraction. Here, we investigated whether these channels are regulated by phosphatidylinositol (4,5) bisphosphate [P(4,5)P2 ], a known regulator of various ion channels. EXPERIMENTAL APPROACH Calcium-activated Cl(-) currents (IClCa ) were recorded by patch clamp electrophysiology of rat isolated pulmonary artery smooth muscle cells. TMEM16A protein-phosphoinositide interaction was studied by co-immunoprecipitation and phosphoinositide binding arrays on protein lysates from whole pulmonary arteries and HEK293 cells overexpressing TMEM16A, the molecular correlate. KEY RESULTS PI(4,5)P2 and other phospholipids were shown to bind directly to TMEM16A isolated from whole pulmonary artery (PA) and TMEM16A-eGFP expressed in HEK293 cells. Agents that reduced PI(4,5)P2 levels through different routes [PLC activation, PI4K inhibition, PI(4,5)P2 scavenging and absorption] all increased IClCa evoked by solutions containing clamped-free [Ca(2+) ], whereas enrichment of activating solutions with PI(4,5)P2 inhibited IClca in PA smooth muscle cells with approximately 50% reduction at 1 μM. CONCLUSIONS AND IMPLICATIONS These data are the first to show a negative regulation of TMEM16A-encoded CaCCs by PI(4,5)P2 and propose that control of PI(4,5)P2 levels is a key determinant of arterial physiology.
Collapse
Affiliation(s)
- H A T Pritchard
- Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, St George's, University of London, London, UK
| | | | | | | |
Collapse
|
80
|
Hill-Eubanks DC, Gonzales AL, Sonkusare SK, Nelson MT. Vascular TRP channels: performing under pressure and going with the flow. Physiology (Bethesda) 2015; 29:343-60. [PMID: 25180264 DOI: 10.1152/physiol.00009.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial cells and smooth muscle cells of resistance arteries mediate opposing responses to mechanical forces acting on the vasculature, promoting dilation in response to flow and constriction in response to pressure, respectively. In this review, we explore the role of TRP channels, particularly endothelial TRPV4 and smooth muscle TRPC6 and TRPM4 channels, in vascular mechanosensing circuits, placing their putative mechanosensitivity in context with other proposed upstream and downstream signaling pathways.
Collapse
Affiliation(s)
| | - Albert L Gonzales
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | | | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| |
Collapse
|
81
|
Peixoto-Neves D, Wang Q, Leal-Cardoso JH, Rossoni LV, Jaggar JH. Eugenol dilates mesenteric arteries and reduces systemic BP by activating endothelial cell TRPV4 channels. Br J Pharmacol 2015; 172:3484-94. [PMID: 25832173 DOI: 10.1111/bph.13156] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 01/27/2015] [Accepted: 03/15/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Eugenol, a vanilloid molecule found in some dietary plants, relaxes vasculature in part via an endothelium-dependent process; however, the mechanisms involved are unclear. Here, we investigated the endothelial cell-mediated mechanism by which eugenol modulates rat mesenteric artery contractility and systemic BP. EXPERIMENTAL APPROACH The isometric tension of rat mesenteric arteries (size 200-300 μm) was measured using wire myography; non-selective cation currents (ICat ) were recorded in endothelial cells using patch clamp electrophysiology. Mean arterial pressure (MAP) and heart rate (HR) were determined in anaesthetized rats. KEY RESULTS Eugenol relaxed endothelium-intact arteries in a concentration-dependent manner and this effect was attenuated by endothelium denudation. L-NAME, a NOS inhibitor, a combination of TRAM-34 and apamin, selective blockers of intermediate and small conductance Ca(2+) -activated K(+) channels, respectively, and HC-067047, a TRPV4 channel inhibitor, but not indomethacin, a COX inhibitor, reduced eugenol-induced relaxation in endothelium-intact arteries. Eugenol activated HC-067047-sensitive ICat in mesenteric artery endothelial cells. Short interfering RNA (siRNA)-mediated TRPV4 knockdown abolished eugenol-induced ICat activation. An i.v. injection of eugenol caused an immediate, transient reduction in both MAP and HR, which was followed by prolonged, sustained hypotension in anaesthetized rats. This sustained hypotension was blocked by HC-067047. CONCLUSIONS AND IMPLICATIONS Eugenol activates TRPV4 channels in mesenteric artery endothelial cells, leading to vasorelaxation, and reduces systemic BP in vivo. Eugenol may be therapeutically useful as an antihypertensive agent and is a viable molecular candidate from which to develop second-generation TRPV4 channel activators that reduce BP.
Collapse
Affiliation(s)
- Dieniffer Peixoto-Neves
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA.,Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Qian Wang
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jose H Leal-Cardoso
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Luciana V Rossoni
- Laboratório de Fisiologia Vascular, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
82
|
Gui D, Li Y, Chen X. Alterations of TMEM16a allostery in human retinal microarterioles in long-standing hypertension. IUBMB Life 2015; 67:348-54. [PMID: 25914185 DOI: 10.1002/iub.1376] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/08/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Dongmei Gui
- Department of Ophthalmology; Sheng Jing Hospital of China Medical University; Shenyang China
| | - Yanfeng Li
- The Second Department of Neurosurgery; The People's Hospital of Liaoning Province; Shenyang China
| | - Xiaolong Chen
- Department of Ophthalmology; Sheng Jing Hospital of China Medical University; Shenyang China
| |
Collapse
|
83
|
Matchkov VV, Boedtkjer DM, Aalkjaer C. The role of Ca2+ activated Cl− channels in blood pressure control. Curr Opin Pharmacol 2015; 21:127-37. [DOI: 10.1016/j.coph.2015.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 12/17/2022]
|
84
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
85
|
Burris SK, Wang Q, Bulley S, Neeb ZP, Jaggar JH. 9-Phenanthrol inhibits recombinant and arterial myocyte TMEM16A channels. Br J Pharmacol 2015; 172:2459-68. [PMID: 25573456 DOI: 10.1111/bph.13077] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 12/19/2014] [Accepted: 12/23/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE In arterial smooth muscle cells (myocytes), intravascular pressure stimulates membrane depolarization and vasoconstriction (the myogenic response). Ion channels proposed to mediate pressure-induced depolarization include several transient receptor potential (TRP) channels, including TRPM4, and transmembrane protein 16A (TMEM16A), a Ca(2+) -activated Cl(-) channel (CaCC). 9-Phenanthrol, a putative selective TRPM4 channel inhibitor, abolishes myogenic tone in cerebral arteries, suggesting that either TRPM4 is essential for pressure-induced depolarization, upstream of activation of other ion channels or that 9-phenanthrol is non-selective. Here, we tested the hypothesis that 9-phenanthrol is also a TMEM16A channel blocker, an ion channel for which few inhibitors have been identified. EXPERIMENTAL APPROACH Patch clamp electrophysiology was used to measure rat cerebral artery myocyte and human recombinant TMEM16A (rTMEM16A) currents or currents generated by recombinant bestrophin-1, another Ca(2+) -activated Cl(-) channel, expressed in HEK293 cells. KEY RESULTS 9-Phenanthrol blocked myocyte TMEM16A currents activated by either intracellular Ca(2+) or Eact , a TMEM16A channel activator. In contrast, 9-phenanthrol did not alter recombinant bestrophin-1 currents. 9-Phenanthrol reduced arterial myocyte TMEM16A currents with an IC50 of ∼12 μM. Cell-attached patch recordings indicated that 9-phenanthrol reduced single rTMEM16A channel open probability and mean open time, and increased mean closed time without affecting the amplitude. CONCLUSIONS AND IMPLICATIONS These data identify 9-phenanthrol as a novel TMEM16A channel blocker and provide an explanation for the previous observation that 9-phenanthrol abolishes myogenic tone when both TRPM4 and TMEM16A channels contribute to this response. 9-Phenanthrol may be a promising candidate from which to develop TMEM16A channel-specific inhibitors.
Collapse
Affiliation(s)
- Sarah K Burris
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | | | |
Collapse
|
86
|
Hübner CA, Schroeder BC, Ehmke H. Regulation of vascular tone and arterial blood pressure: role of chloride transport in vascular smooth muscle. Pflugers Arch 2015; 467:605-14. [DOI: 10.1007/s00424-014-1684-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 01/01/2023]
|
87
|
Bulley S, Jaggar JH. Cl⁻ channels in smooth muscle cells. Pflugers Arch 2014; 466:861-72. [PMID: 24077695 DOI: 10.1007/s00424-013-1357-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
In smooth muscle cells (SMCs), the intracellular chloride ion (Cl−) concentration is high due to accumulation by Cl−/HCO3− exchange and Na+–K+–Cl− cotransportation. The equilibrium potential for Cl− (ECl) is more positive than physiological membrane potentials (Em), with Cl− efflux inducing membrane depolarization. Early studies used electrophysiology and nonspecific antagonists to study the physiological relevance of Cl− channels in SMCs. More recent reports have incorporated molecular biological approaches to identify and determine the functional significance of several different Cl− channels. Both "classic" and cGMP-dependent calcium (Ca2+)-activated (ClCa) channels and volume-sensitive Cl− channels are present, with TMEM16A/ANO1, bestrophins, and ClC-3, respectively, proposed as molecular candidates for these channels. The cystic fibrosis transmembrane conductance regulator (CFTR) has also been described in SMCs. This review will focus on discussing recent progress made in identifying each of these Cl− channels in SMCs, their physiological functions, and contribution to diseases that modify contraction, apoptosis, and cell proliferation.
Collapse
|
88
|
Sui Y, Sun M, Wu F, Yang L, Di W, Zhang G, Zhong L, Ma Z, Zheng J, Fang X, Ma T. Inhibition of TMEM16A expression suppresses growth and invasion in human colorectal cancer cells. PLoS One 2014; 9:e115443. [PMID: 25541940 PMCID: PMC4277312 DOI: 10.1371/journal.pone.0115443] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/23/2014] [Indexed: 12/12/2022] Open
Abstract
Metastasis leads to poor prognosis in colorectal cancer patients, and there is a growing need for new therapeutic targets. TMEM16A (ANO1, DOG1 or TAOS2) has recently been identified as a calcium-activated chloride channel (CaCC) and is reported to be overexpressed in several malignancies; however, its expression and function in colorectal cancer (CRC) remains unclear. In this study, we found expression of TMEM16A mRNA and protein in high-metastatic-potential SW620, HCT116 and LS174T cells, but not in primary HCT8 and SW480 cells, using RT-PCR, western blotting and immunofluorescence labeling. Patch-clamp recordings detected CaCC currents regulated by intracellular Ca(2+) and voltage in SW620 cells. Knockdown of TMEM16A by short hairpin RNAs (shRNA) resulted in the suppression of growth, migration and invasion of SW620 cells as detected by MTT, wound-healing and transwell assays. Mechanistically, TMEM16A depletion was accompanied by the dysregulation of phospho-MEK, phospho-ERK1/2 and cyclin D1 expression. Flow cytometry analysis showed that SW620 cells were inhibited from the G1 to S phase of the cell cycle in the TMEM16A shRNA group compared with the control group. In conclusion, our results indicate that TMEM16A CaCC is involved in growth, migration and invasion of metastatic CRC cells and provide evidence for TMEM16A as a potential drug target for treating metastatic colorectal carcinoma.
Collapse
Affiliation(s)
- Yujie Sui
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Meiyan Sun
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Fei Wu
- Department of Gynecology and Obstetrics, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Longfei Yang
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Weihua Di
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Guizhen Zhang
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Lili Zhong
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Zhiming Ma
- Department of General Surgery, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Jinhao Zheng
- Department of General Surgery, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Xuedong Fang
- Department of General Surgery, Jilin University Bethune Second Hospital, Changchun, P. R. China
- Department of General Surgery, China-Japan Friendship Hospital of Jilin University, Changchun, P. R. China
- * E-mail: (XDF); (THM)
| | - Tonghui Ma
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
- College of Basic Medical Sciences, Dalian Medical University, Dalian, P. R. China
- * E-mail: (XDF); (THM)
| |
Collapse
|
89
|
Ippolito C, Segnani C, Errede M, Virgintino D, Colucci R, Fornai M, Antonioli L, Blandizzi C, Dolfi A, Bernardini N. An integrated assessment of histopathological changes of the enteric neuromuscular compartment in experimental colitis. J Cell Mol Med 2014; 19:485-500. [PMID: 25521239 PMCID: PMC4407593 DOI: 10.1111/jcmm.12428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/14/2014] [Indexed: 12/19/2022] Open
Abstract
Bowel inflammatory fibrosis has been largely investigated, but an integrated assessment of remodelling in inflamed colon is lacking. This study evaluated tissue and cellular changes occurring in colonic wall upon induction of colitis, with a focus on neuromuscular compartment. Colitis was elicited in rats by 2,4-dinitrobenzenesulfonic acid (DNBS). After 6 and 21 days, the following parameters were assessed on paraffin sections from colonic samples: tissue injury and inflammatory infiltration by histology; collagen and elastic fibres by histochemistry; HuC/D, glial fibrillar acidic protein (GFAP), proliferating cell nuclear antigen (PCNA), nestin, substance P (SP), von Willebrand factor, c-Kit and transmembrane 16A/Anoctamin1 (TMEM16A/ANO1) by immunohistochemistry. TMEM16A/ANO1 was also examined in isolated colonic smooth muscle cells (ICSMCs). On day 6, inflammatory alterations and fibrosis were present in DNBS-treated rats; colonic wall thickening and fibrotic remodelling were evident on day 21. Colitis was associated with both an increase in collagen fibres and a decrease in elastic fibres. Moreover, the neuromuscular compartment of inflamed colon displayed a significant decrease in neuron density and increase in GFAP/PCNA-positive glia of myenteric ganglia, enhanced expression of neural SP, blood vessel remodelling, reduced c-Kit- and TMEM16A/ANO1-positive interstitial cells of Cajal (ICCs), as well as an increase in TMEM16A/ANO1 expression in muscle tissues and ICSMCs. The present findings provide an integrated view of the inflammatory and fibrotic processes occurring in the colonic neuromuscular compartment of rats with DNBS-induced colitis. These morphological alterations may represent a suitable basis for understanding early pathophysiological events related to bowel inflammatory fibrosis.
Collapse
Affiliation(s)
- Chiara Ippolito
- Unit of Histology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Jin X, Shah S, Du X, Zhang H, Gamper N. Activation of Ca(2+) -activated Cl(-) channel ANO1 by localized Ca(2+) signals. J Physiol 2014; 594:19-30. [PMID: 25398532 PMCID: PMC4704509 DOI: 10.1113/jphysiol.2014.275107] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/08/2014] [Indexed: 12/13/2022] Open
Abstract
Ca2+‐activated chloride channels (CaCCs) regulate numerous physiological processes including epithelial transport, smooth muscle contraction and sensory processing. Anoctamin‐1 (ANO1, TMEM16A) is a principal CaCC subunit in many cell types, yet our understanding of the mechanisms of ANO1 activation and regulation are only beginning to emerge. Ca2+ sensitivity of ANO1 is rather low and at negative membrane potentials the channel requires several micromoles of intracellular Ca2+ for activation. However, global Ca2+ levels in cells rarely reach such levels and, therefore, there must be mechanisms that focus intracellular Ca2+ transients towards the ANO1 channels. Recent findings indeed indicate that ANO1 channels often co‐localize with sources of intracellular Ca2+ signals. Interestingly, it appears that in many cell types ANO1 is particularly tightly coupled to the Ca2+ release sites of the intracellular Ca2+ stores. Such preferential coupling may represent a general mechanism of ANO1 activation in native tissues.
Collapse
Affiliation(s)
- Xin Jin
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sihab Shah
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Xiaona Du
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Nikita Gamper
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
91
|
Bernstein K, Vink JY, Fu XW, Wakita H, Danielsson J, Wapner R, Gallos G. Calcium-activated chloride channels anoctamin 1 and 2 promote murine uterine smooth muscle contractility. Am J Obstet Gynecol 2014; 211:688.e1-10. [PMID: 24928056 PMCID: PMC4253652 DOI: 10.1016/j.ajog.2014.06.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/21/2014] [Accepted: 06/06/2014] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To determine the presence of calcium activated chloride channels anoctamin 1 (ANO1) and 2 (ANO2) in human and murine uterine smooth muscle (MUSM) and evaluate the physiologic role for these ion channels in murine myometrial contractility. STUDY DESIGN We performed reverse transcription polymerase chain reaction to determine whether ANO1 and 2 are expressed in human and murine uterine tissue to validate the study of this protein in mouse models. Immunohistochemical staining of ANO1 and 2 was then performed to determine protein expression in murine myometrial tissue. The function of ANO1 and 2 in murine uterine tissue was evaluated using electrophysiologic studies, organ bath, and calcium flux experiments. RESULTS ANO1 and 2 are expressed in human and MUSM cells. Functional studies show that selective antagonism of these channels promotes relaxation of spontaneous MUSM contractions. Blockade of ANO1 and 2 inhibits both agonist-induced and spontaneous transient inward currents and abolishes G-protein coupled receptor (oxytocin) mediated elevations in intracellular calcium. CONCLUSION The calcium activated chloride channels ANO1 and 2 are present in human and murine myometrial tissue and may provide novel potential therapeutic targets to achieve effective tocolysis.
Collapse
Affiliation(s)
- Kyra Bernstein
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Joy Y Vink
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Xiao Wen Fu
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Hiromi Wakita
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Jennifer Danielsson
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - George Gallos
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY.
| |
Collapse
|
92
|
Hiram R, Rizcallah E, Sirois C, Sirois M, Morin C, Fortin S, Rousseau E. Resolvin D1 reverses reactivity and Ca2+ sensitivity induced by ET-1, TNF-α, and IL-6 in the human pulmonary artery. Am J Physiol Heart Circ Physiol 2014; 307:H1547-58. [PMID: 25281570 DOI: 10.1152/ajpheart.00452.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pulmonary hypertension (PH) is a rare and progressive disease characterized by an inflammatory status and vessel wall remodeling, resulting in increased pulmonary artery resistance. During the last decade, treatments have been proposed; most of them target the endothelial pathways that stimulate smooth muscle cell relaxation. However, PH remains associated with significant morbidity. We hypothesized that inflammation plays a crucial role in the severity of the abnormal vasoconstriction in PH. The goal of this study was to assess the effects of resolvin D1 (RvD1), a potent anti-inflammatory agent, on the pharmacological reactivity of human pulmonary arteries (HPAs) via an in vitro model of induced hyperreactivity. The effects of RvD1 and monoacylglyceride compounds were measured on contractile activity and Ca(2+) sensitivity developed by HPAs that had been pretreated (or not) under proinflammatory conditions with either 10 ng/ml TNF-α or 10 ng/ml IL-6 or under hyperreactive conditions with 5 nM endothelin-1. The results demonstrated that, compared with controls, 24-h pretreatment with TNF-α, IL-6, or endothelin-1 increased reactivity and Ca(2+) sensitivity of HPAs as revealed by agonist challenges with 80 mM KCl, 1 μM serotonin (5-hydroxytryptamine), 30 nM U-46619, and 1 μM phorbol 12,13-dibutyrate. However, 300 nM RvD1 as well as 1 μM monoacylglyceride-docosapentaenoic acid monoglyceride strongly reversed the overresponsiveness induced by both proinflammatory and hyperreactive treatments. In pretreated pulmonary artery smooth muscle cells, Western blot analyses revealed that RvD1 treatment decreased the phosphorylation level of CPI-17 and expression of transmembrane protein member 16A while increasing the detection of G protein-coupled receptor 32. The present data demonstrate that RvD1, a trihydroxylated docosahexaenoic acid derivative, decreases induced overreactivity in HPAs via a reduction in CPI-17 phosphorylation and transmembrane protein member 16A expression.
Collapse
Affiliation(s)
- Roddy Hiram
- Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Edmond Rizcallah
- Department of Pathology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Chantal Sirois
- Service of Thoracic Surgery Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - Marco Sirois
- Service of Thoracic Surgery Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - Caroline Morin
- Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, Quebec, Canada; SCF Pharma, Ste-Luce, Quebec, Canada
| | | | - Eric Rousseau
- Department of Pathology, Université de Sherbrooke, Sherbrooke, Quebec, Canada;
| |
Collapse
|
93
|
TRPM4 channels couple purinergic receptor mechanoactivation and myogenic tone development in cerebral parenchymal arterioles. J Cereb Blood Flow Metab 2014; 34:1706-14. [PMID: 25099756 PMCID: PMC4269733 DOI: 10.1038/jcbfm.2014.139] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/05/2014] [Accepted: 07/07/2014] [Indexed: 11/09/2022]
Abstract
Cerebral parenchymal arterioles (PAs) have a critical role in assuring appropriate blood flow and perfusion pressure within the brain. They are unique in contrast to upstream pial arteries, as defined by their critical roles in neurovascular coupling, distinct sensitivities to chemical stimulants, and enhanced myogenic tone development. The objective of the present study was to reveal some of the unique mechanisms of myogenic tone regulation in the cerebral microcirculation. Here, we report that in vivo suppression of TRPM4 (transient receptor potential) channel expression, or inhibition of TRPM4 channels with 9-phenanthrol substantially reduced myogenic tone of isolated PAs, supporting a key role of TRPM4 channels in PA myogenic tone development. Further, downregulation of TRPM4 channels inhibited vasoconstriction induced by the specific P2Y4 and P2Y6 receptor ligands (UTPγS and UDP) by 37% and 42%, respectively. In addition, 9-phenanthrol substantially attenuated purinergic ligand-induced membrane depolarization and constriction of PAs, and inhibited ligand-evoked TRPM4 channel activation in isolated PA myocytes. In concert with our previous work showing the essential contributions of P2Y4 and P2Y6 receptors to myogenic regulation of PAs, the current results point to TRPM4 channels as an important link between mechanosensitive P2Y receptor activation and myogenic constriction of cerebral PAs.
Collapse
|
94
|
Olschewski A, Papp R, Nagaraj C, Olschewski H. Ion channels and transporters as therapeutic targets in the pulmonary circulation. Pharmacol Ther 2014; 144:349-68. [PMID: 25108211 DOI: 10.1016/j.pharmthera.2014.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
Pulmonary circulation is a low pressure, low resistance, high flow system. The low resting vascular tone is maintained by the concerted action of ion channels, exchangers and pumps. Under physiological as well as pathophysiological conditions, they are targets of locally secreted or circulating vasodilators and/or vasoconstrictors, leading to changes in expression or to posttranslational modifications. Both structural changes in the pulmonary arteries and a sustained increase in pulmonary vascular tone result in pulmonary vascular remodeling contributing to morbidity and mortality in pediatric and adult patients. There is increasing evidence demonstrating the pivotal role of ion channels such as K(+) and Cl(-) or transient receptor potential channels in different cell types which are thought to play a key role in vasoconstrictive remodeling. This review focuses on ion channels, exchangers and pumps in the pulmonary circulation and summarizes their putative pathophysiological as well as therapeutic role in pulmonary vascular remodeling. A better understanding of the mechanisms of their actions may allow for the development of new options for attenuating acute and chronic pulmonary vasoconstriction and remodeling treating the devastating disease pulmonary hypertension.
Collapse
Affiliation(s)
- Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Austria.
| | - Rita Papp
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Austria
| |
Collapse
|
95
|
Sun M, Sui Y, Li L, Su W, Hao F, Zhu Q, Di W, Gao H, Ma T. Anoctamin 1 calcium-activated chloride channel downregulates estrogen production in mouse ovarian granulosa cells. Endocrinology 2014; 155:2787-96. [PMID: 24823391 DOI: 10.1210/en.2013-2155] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Calcium-dependent chloride conductances have been described in chicken and human granulosa cells (GCs) and may be involved in steroidogenesis. However, the molecular identities of corresponding chloride channels remain unknown. The purpose of this study was to explore the expression and function of the Anoctamin 1 (ANO1) calcium-activated chloride channel (CaCC) in mouse ovary. ANO1 mRNA and protein expression was identified in mouse ovary GCs by RT-PCR, immunoblot, and immunostaining. Patch-clamp analysis on freshly isolated GCs identified an outwardly rectifying Ca(2+)-activated Cl(-) current that was completely blocked by a selective ANO1 inhibitor T16Ainh-A01. Knockdown of ANO1 mRNA or incubation with a selective inhibitor T16Ainh-A01 enhanced estradiol production, whereas a selective ANO1 activator Eact significantly inhibited estradiol production in primary cultured GCs. The ANO1 expression or activation increases the phosphorylation of ERK1/2 and decreases aromatase expression. The ANO1 expression level is remarkably higher at the proestrous and estrous stages in the estrous cycle. In vivo study indicated a profound induction of ANO1 expression in ovarian GCs by pregnant mare serum gonadotropin (PMSG) that can be further augmented by hCG treatment, suggesting that both FSH and LH may upregulate ANO1 expression at the proestrous and estrous stages. ANO1 expression was remarkably reduced in DHEA-induced PCOS ovary. These data identified for the first time the expression of ANO1 Ca(2+) activated Cl(-) channel in mouse ovarian GCs and determined its negative regulation on estrogen production possibly through MEK-ERK signaling cascade. The present study provided new insights into the molecular mechanisms for the regulation of folliculogenesis and ovulation.
Collapse
Affiliation(s)
- Meiyan Sun
- Central Research Laboratory (M.S., Y.S., W.S., Q.Z., W.D., H.G., T.M.), Jilin University Bethune Second Hospital, Changchun, 130041 Peoples Republic of China; College of Basic Medical Sciences (T.M.), Dalian Medical University, Dalian, 116044 Peoples Republic of China; Department of Laboratory Medicine (M.S., F.H.), Jilin Medical College, Jilin, 132013 Peoples Republic of China; and Department of Cell Biology (L.L.), Liaoning Medical University, Liaoning, 121001 Peoples Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Harraz OF, Abd El-Rahman RR, Bigdely-Shamloo K, Wilson SM, Brett SE, Romero M, Gonzales AL, Earley S, Vigmond EJ, Nygren A, Menon BK, Mufti RE, Watson T, Starreveld Y, Furstenhaupt T, Muellerleile PR, Kurjiaka DT, Kyle BD, Braun AP, Welsh DG. Ca(V)3.2 channels and the induction of negative feedback in cerebral arteries. Circ Res 2014; 115:650-61. [PMID: 25085940 DOI: 10.1161/circresaha.114.304056] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RATIONALE T-type (CaV3.1/CaV3.2) Ca(2+) channels are expressed in rat cerebral arterial smooth muscle. Although present, their functional significance remains uncertain with findings pointing to a variety of roles. OBJECTIVE This study tested whether CaV3.2 channels mediate a negative feedback response by triggering Ca(2+) sparks, discrete events that initiate arterial hyperpolarization by activating large-conductance Ca(2+)-activated K(+) channels. METHODS AND RESULTS Micromolar Ni(2+), an agent that selectively blocks CaV3.2 but not CaV1.2/CaV3.1, was first shown to depolarize/constrict pressurized rat cerebral arteries; no effect was observed in CaV3.2(-/-) arteries. Structural analysis using 3-dimensional tomography, immunolabeling, and a proximity ligation assay next revealed the existence of microdomains in cerebral arterial smooth muscle which comprised sarcoplasmic reticulum and caveolae. Within these discrete structures, CaV3.2 and ryanodine receptor resided in close apposition to one another. Computational modeling revealed that Ca(2+) influx through CaV3.2 could repetitively activate ryanodine receptor, inducing discrete Ca(2+)-induced Ca(2+) release events in a voltage-dependent manner. In keeping with theoretical observations, rapid Ca(2+) imaging and perforated patch clamp electrophysiology demonstrated that Ni(2+) suppressed Ca(2+) sparks and consequently spontaneous transient outward K(+) currents, large-conductance Ca(2+)-activated K(+) channel mediated events. Additional functional work on pressurized arteries noted that paxilline, a large-conductance Ca(2+)-activated K(+) channel inhibitor, elicited arterial constriction equivalent, and not additive, to Ni(2+). Key experiments on human cerebral arteries indicate that CaV3.2 is present and drives a comparable response to moderate constriction. CONCLUSIONS These findings indicate for the first time that CaV3.2 channels localize to discrete microdomains and drive ryanodine receptor-mediated Ca(2+) sparks, enabling large-conductance Ca(2+)-activated K(+) channel activation, hyperpolarization, and attenuation of cerebral arterial constriction.
Collapse
Affiliation(s)
- Osama F Harraz
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Rasha R Abd El-Rahman
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Kamran Bigdely-Shamloo
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Sean M Wilson
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Suzanne E Brett
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Monica Romero
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Albert L Gonzales
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Scott Earley
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Edward J Vigmond
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Anders Nygren
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Bijoy K Menon
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Rania E Mufti
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Tim Watson
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Yves Starreveld
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Tobias Furstenhaupt
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Philip R Muellerleile
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - David T Kurjiaka
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Barry D Kyle
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Andrew P Braun
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Donald G Welsh
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.). dwelsh@ucalgary
| |
Collapse
|
97
|
Gonzales AL, Yang Y, Sullivan MN, Sanders L, Dabertrand F, Hill-Eubanks DC, Nelson MT, Earley S. A PLCγ1-dependent, force-sensitive signaling network in the myogenic constriction of cerebral arteries. Sci Signal 2014; 7:ra49. [PMID: 24866019 DOI: 10.1126/scisignal.2004732] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Maintaining constant blood flow in the face of fluctuations in blood pressure is a critical autoregulatory feature of cerebral arteries. An increase in pressure within the artery lumen causes the vessel to constrict through depolarization and contraction of the encircling smooth muscle cells. This pressure-sensing mechanism involves activation of two types of transient receptor potential (TRP) channels: TRPC6 and TRPM4. We provide evidence that the activation of the γ1 isoform of phospholipase C (PLCγ1) is critical for pressure sensing in cerebral arteries. Inositol 1,4,5-trisphosphate (IP3), generated by PLCγ1 in response to pressure, sensitized IP3 receptors (IP3Rs) to Ca(2+) influx mediated by the mechanosensitive TRPC6 channel, synergistically increasing IP3R-mediated Ca(2+) release to activate TRPM4 currents, leading to smooth muscle depolarization and constriction of isolated cerebral arteries. Proximity ligation assays demonstrated colocalization of PLCγ1 and TRPC6 with TRPM4, suggesting the presence of a force-sensitive, local signaling network comprising PLCγ1, TRPC6, TRPM4, and IP3Rs. Src tyrosine kinase activity was necessary for stretch-induced TRPM4 activation and myogenic constriction, consistent with the ability of Src to activate PLCγ isoforms. We conclude that contraction of cerebral artery smooth muscle cells requires the integration of pressure-sensing signaling pathways and their convergence on IP3Rs, which mediate localized Ca(2+)-dependent depolarization through the activation of TRPM4.
Collapse
Affiliation(s)
- Albert L Gonzales
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA. Department of Pharmacology, University of Vermont, Burlington, VT 05405, USA
| | - Ying Yang
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Michelle N Sullivan
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Lindsey Sanders
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Fabrice Dabertrand
- Department of Pharmacology, University of Vermont, Burlington, VT 05405, USA
| | | | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, VT 05405, USA. Institute of Cardiovascular Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Scott Earley
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557-0318, USA.
| |
Collapse
|
98
|
Hoffmann EK, Holm NB, Lambert IH. Functions of volume-sensitive and calcium-activated chloride channels. IUBMB Life 2014; 66:257-67. [PMID: 24771413 DOI: 10.1002/iub.1266] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 01/23/2023]
Abstract
The review describes molecular and functional properties of the volume regulated anion channel and Ca(2+)-dependent Cl(-) channels belonging to the anoctamin family with emphasis on physiological importance of these channels in regulation of cell volume, cell migration, cell proliferation, and programmed cell death. Finally, we discuss the role of Cl(-) channels in various diseases.
Collapse
Affiliation(s)
- Else Kay Hoffmann
- Department of Biology, University of Copenhagen, 13 Universitetsparken, Copenhagen Ø, Denmark
| | | | | |
Collapse
|
99
|
Yu K, Zhu J, Qu Z, Cui YY, Hartzell HC. Activation of the Ano1 (TMEM16A) chloride channel by calcium is not mediated by calmodulin. ACTA ACUST UNITED AC 2014; 143:253-67. [PMID: 24420770 PMCID: PMC4001774 DOI: 10.1085/jgp.201311047] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Calcium-mediated activation of the TMEM16A chloride channel does not depend on changes in phosphorylation status or the calcium-binding protein calmodulin. The Ca2+-activated Cl channel anoctamin-1 (Ano1; Tmem16A) plays a variety of physiological roles, including epithelial fluid secretion. Ano1 is activated by increases in intracellular Ca2+, but there is uncertainty whether Ca2+ binds directly to Ano1 or whether phosphorylation or additional Ca2+-binding subunits like calmodulin (CaM) are required. Here we show that CaM is not necessary for activation of Ano1 by Ca2+ for the following reasons. (a) Exogenous CaM has no effect on Ano1 currents in inside-out excised patches. (b) Overexpression of Ca2+-insensitive mutants of CaM have no effect on Ano1 currents, whereas they eliminate the current mediated by the small-conductance Ca2+-activated K+ (SK2) channel. (c) Ano1 does not coimmunoprecipitate with CaM, whereas SK2 does. Furthermore, Ano1 binds very weakly to CaM in pull-down assays. (d) Ano1 is activated in excised patches by low concentrations of Ba2+, which does not activate CaM. In addition, we conclude that reversible phosphorylation/dephosphorylation is not required for current activation by Ca2+ because the current can be repeatedly activated in excised patches in the absence of ATP or other high-energy compounds. Although Ano1 is blocked by the CaM inhibitor trifluoperazine (TFP), we propose that TFP inhibits the channel in a CaM-independent manner because TFP does not inhibit Ano1 when applied to the cytoplasmic side of excised patches. These experiments lead us to conclude that CaM is not required for activation of Ano1 by Ca2+. Although CaM is not required for channel opening by Ca2+, work of other investigators suggests that CaM may have effects in modulating the biophysical properties of the channel.
Collapse
Affiliation(s)
- Kuai Yu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | | | | | | | | |
Collapse
|
100
|
Heinze C, Seniuk A, Sokolov MV, Huebner AK, Klementowicz AE, Szijártó IA, Schleifenbaum J, Vitzthum H, Gollasch M, Ehmke H, Schroeder BC, Hübner CA. Disruption of vascular Ca2+-activated chloride currents lowers blood pressure. J Clin Invest 2014; 124:675-86. [PMID: 24401273 DOI: 10.1172/jci70025] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 10/24/2013] [Indexed: 01/23/2023] Open
Abstract
High blood pressure is the leading risk factor for death worldwide. One of the hallmarks is a rise of peripheral vascular resistance, which largely depends on arteriole tone. Ca2+-activated chloride currents (CaCCs) in vascular smooth muscle cells (VSMCs) are candidates for increasing vascular contractility. We analyzed the vascular tree and identified substantial CaCCs in VSMCs of the aorta and carotid arteries. CaCCs were small or absent in VSMCs of medium-sized vessels such as mesenteric arteries and larger retinal arterioles. In small vessels of the retina, brain, and skeletal muscle, where contractile intermediate cells or pericytes gradually replace VSMCs, CaCCs were particularly large. Targeted disruption of the calcium-activated chloride channel TMEM16A, also known as ANO1, in VSMCs, intermediate cells, and pericytes eliminated CaCCs in all vessels studied. Mice lacking vascular TMEM16A had lower systemic blood pressure and a decreased hypertensive response following vasoconstrictor treatment. There was no difference in contractility of medium-sized mesenteric arteries; however, responsiveness of the aorta and small retinal arterioles to the vasoconstriction-inducing drug U46619 was reduced. TMEM16A also was required for peripheral blood vessel contractility, as the response to U46619 was attenuated in isolated perfused hind limbs from mutant mice. Out data suggest that TMEM16A plays a general role in arteriolar and capillary blood flow and is a promising target for the treatment of hypertension.
Collapse
|