51
|
Rigg RA, Healy LD, Chu TT, Ngo ATP, Mitrugno A, Zilberman-Rudenko J, Aslan JE, Hinds MT, Vecchiarelli LD, Morgan TK, Gruber A, Temple KJ, Lindsley CW, Duvernay MT, Hamm HE, McCarty OJT. Protease-activated receptor 4 activity promotes platelet granule release and platelet-leukocyte interactions. Platelets 2018; 30:126-135. [PMID: 30560697 DOI: 10.1080/09537104.2017.1406076] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Human platelets express two protease-activated receptors (PARs), PAR1 (F2R) and PAR4 (F2RL3), which are activated by a number of serine proteases that are generated during pathological events and cause platelet activation. Recent interest has focused on PAR4 as a therapeutic target, given PAR4 seems to promote experimental thrombosis and procoagulant microparticle formation, without a broadly apparent role in hemostasis. However, it is not yet known whether PAR4 activity plays a role in platelet-leukocyte interactions, which are thought to contribute to both thrombosis and acute or chronic thrombo-inflammatory processes. We sought to determine whether PAR4 activity contributes to granule secretion from activated platelets and platelet-leukocyte interactions. We performed in vitro and ex vivo studies of platelet granule release and platelet-leukocyte interactions in the presence of PAR4 agonists including PAR4 activating peptide, thrombin, cathepsin G, and plasmin in combination with small-molecule PAR4 antagonists. Activation of human platelets with thrombin, cathepsin G, or plasmin potentiated platelet dense granule secretion that was specifically impaired by PAR4 inhibitors. Platelet-leukocyte interactions and platelet P-selectin exposure the following stimulation with PAR4 agonists were also impaired by activated PAR4 inhibition in either a purified system or in whole blood. These results indicate PAR4-specific promotion of platelet granule release and platelet-leukocyte aggregate formation and suggest that pharmacological control of PAR4 activity could potentially attenuate platelet granule release or platelet-leukocyte interaction-mediated pathological processes.
Collapse
Affiliation(s)
- Rachel A Rigg
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Laura D Healy
- b Department of Cell, Developmental & Cancer Biology , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Tiffany T Chu
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Anh T P Ngo
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Annachiara Mitrugno
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Jevgenia Zilberman-Rudenko
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Joseph E Aslan
- d Department of Biochemistry and Molecular Biology , School of Medicine, Oregon Health & Science University , Portland , OR , USA.,e Knight Cardiovascular Institute , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Monica T Hinds
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Lisa Dirling Vecchiarelli
- f Department of Pathology , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Terry K Morgan
- f Department of Pathology , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - András Gruber
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA.,c Division of Hematology & Medical Oncology , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Kayla J Temple
- g Department of Pharmacology , Vanderbilt University School of Medicine , Nashville , TN , USA.,h Vanderbilt Center for Neuroscience Drug Discovery , Nashville , TN , USA
| | - Craig W Lindsley
- g Department of Pharmacology , Vanderbilt University School of Medicine , Nashville , TN , USA.,h Vanderbilt Center for Neuroscience Drug Discovery , Nashville , TN , USA
| | - Matthew T Duvernay
- g Department of Pharmacology , Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Heidi E Hamm
- g Department of Pharmacology , Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Owen J T McCarty
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA.,b Department of Cell, Developmental & Cancer Biology , School of Medicine, Oregon Health & Science University , Portland , OR , USA.,c Division of Hematology & Medical Oncology , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| |
Collapse
|
52
|
Chang HY, Yazdani A, Li X, Douglas KAA, Mantzoros CS, Karniadakis GE. Quantifying Platelet Margination in Diabetic Blood Flow. Biophys J 2018; 115:1371-1382. [PMID: 30224049 PMCID: PMC6170725 DOI: 10.1016/j.bpj.2018.08.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/23/2018] [Accepted: 08/24/2018] [Indexed: 12/23/2022] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) develop thrombotic abnormalities strongly associated with cardiovascular diseases. In addition to the changes of numerous coagulation factors such as elevated levels of thrombin and fibrinogen, the abnormal rheological effects of red blood cells (RBCs) and platelets flowing in blood are crucial in platelet adhesion and thrombus formation in T2DM. An important process contributing to the latter is the platelet margination. We employ the dissipative particle dynamics method to seamlessly model cells, plasma, and vessel walls. We perform a systematic study on RBC and platelet transport in cylindrical vessels by considering different cell shapes, sizes, and RBC deformabilities in healthy and T2DM blood, as well as variable flowrates and hematocrit. In particular, we use cellular-level RBC and platelet models with parameters derived from patient-specific data and present a sensitivity study. We find T2DM RBCs, which are less deformable compared to normal RBCs, lower the transport of platelets toward the vessel walls, whereas platelets with higher mean volume (often observed in T2DM) lead to enhanced margination. Furthermore, increasing the flowrate or hematocrit enhances platelet margination. We also investigated the effect of platelet shape and observed a nonmonotonic variation with the highest near-wall concentration corresponding to platelets with a moderate aspect ratio of 0.38. We examine the role of white blood cells (WBCs), whose count is increased notably in T2DM patients. We find that WBC rolling or WBC adhesion tends to decrease platelet margination due to hydrodynamic effects. To the best of our knowledge, such simulations of blood including all blood cells have not been performed before, and our quantitative findings can help separate the effects of hydrodynamic interactions from adhesive interactions and potentially shed light on the associated pathological processes in T2DM such as increased inflammatory response, platelet activation and adhesion, and ultimately thrombus formation.
Collapse
Affiliation(s)
- Hung-Yu Chang
- Division of Applied Mathematics, Brown University, Providence, Rhode Island
| | - Alireza Yazdani
- Division of Applied Mathematics, Brown University, Providence, Rhode Island
| | - Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island
| | - Konstantinos A A Douglas
- S. Lepida Biomedical Laboratory, Athens, Greece; Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
53
|
Strongly Coupled Morphological Features of Aortic Aneurysms Drive Intraluminal Thrombus. Sci Rep 2018; 8:13273. [PMID: 30185838 PMCID: PMC6125404 DOI: 10.1038/s41598-018-31637-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/15/2018] [Indexed: 01/13/2023] Open
Abstract
Over 75% of abdominal aortic aneurysms harbor an intraluminal thrombus, and increasing evidence suggests that biologically active thrombus contributes to the natural history of these potentially lethal lesions. Thrombus formation depends on the local hemodynamics, which in turn depends on morphological features of the aneurysm and near vasculature. We previously presented a hemodynamically motivated “thrombus formation potential” that predicts where and when thrombus might form. Herein, we combine detailed studies of the three-dimensional hemodynamics with methods of sparse grid collocation and interpolation via kriging to examine roles of five key morphological features of aneurysms on thrombus formation: lesion diameter, axial position, length, curvature, and renal artery position. Computational simulations suggest that maximum diameter is a key determinant of thrombogenicity, but other morphological features modulate this dependence. More distally located lesions tend to have a higher thrombus formation potential and shorter lesions tend to have a higher potential than longer lesions, given the same aneurysmal dilatation. Finally, movement of vortical structures through the infrarenal aorta and lesion can significantly affect thrombogenicity. Formation of intraluminal thrombus within an evolving abdominal aortic aneurysm thus depends on coupled morphological features, not all intuitive, and computational simulations can be useful for predicting thrombogenesis.
Collapse
|
54
|
Rizzi M, Albisetti M. Treatment of arterial thrombosis in children: Methods and mechanisms. Thromb Res 2018; 169:113-119. [DOI: 10.1016/j.thromres.2018.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/05/2018] [Indexed: 12/17/2022]
|
55
|
Xu S, Xu Z, Kim OV, Litvinov RI, Weisel JW, Alber M. Model predictions of deformation, embolization and permeability of partially obstructive blood clots under variable shear flow. J R Soc Interface 2018; 14:rsif.2017.0441. [PMID: 29142014 DOI: 10.1098/rsif.2017.0441] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/19/2017] [Indexed: 01/20/2023] Open
Abstract
Thromboembolism, one of the leading causes of morbidity and mortality worldwide, is characterized by formation of obstructive intravascular clots (thrombi) and their mechanical breakage (embolization). A novel two-dimensional multi-phase computational model is introduced that describes active interactions between the main components of the clot, including platelets and fibrin, to study the impact of various physiologically relevant blood shear flow conditions on deformation and embolization of a partially obstructive clot with variable permeability. Simulations provide new insights into mechanisms underlying clot stability and embolization that cannot be studied experimentally at this time. In particular, model simulations, calibrated using experimental intravital imaging of an established arteriolar clot, show that flow-induced changes in size, shape and internal structure of the clot are largely determined by two shear-dependent mechanisms: reversible attachment of platelets to the exterior of the clot and removal of large clot pieces. Model simulations predict that blood clots with higher permeability are more prone to embolization with enhanced disintegration under increasing shear rate. In contrast, less permeable clots are more resistant to rupture due to shear rate-dependent clot stiffening originating from enhanced platelet adhesion and aggregation. These results can be used in future to predict risk of thromboembolism based on the data about composition, permeability and deformability of a clot under specific local haemodynamic conditions.
Collapse
Affiliation(s)
- Shixin Xu
- Department of Mathematics, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Oleg V Kim
- Department of Mathematics, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan 420008, Russian Federation
| | - John W Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark Alber
- Department of Mathematics, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA .,Department of Internal Medicine, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA.,Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
56
|
Zhang Z, Li Z, Chen L, Wang Y. The effects of inhaled NO on plasma vasoactive factor and CTnI level in rabbits with acute massive pulmonary embolism. Acta Cir Bras 2018; 33:577-587. [DOI: 10.1590/s0102-865020180070000003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/09/2018] [Indexed: 11/22/2022] Open
|
57
|
Zhang R, Zhou Y, Yan S, Zhang S, Ding X, Lou M. Slow Collateral Flow Is Associated with Thrombus Extension in Patients with Acute Large-Artery Occlusion. AJNR Am J Neuroradiol 2018; 39:1088-1092. [PMID: 29622554 DOI: 10.3174/ajnr.a5614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/06/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE It is still poorly understood about the dynamic changes of the thrombus after intravenous thrombolysis and how the remaining thrombus affects clinical outcome in human stroke. Collateral flow was assumed to help to deliver endo/exogenous tissue-type plasminogen activator to the clot. We aimed to analyze the impact of collateral flow on the dynamic changes of the thrombus in patients with acute large-artery occlusion who received intravenous thrombolysis. MATERIALS AND METHODS We reviewed consecutive patients with acute ischemic stroke with M1 segment or distal internal carotid artery occlusion who underwent multimodal MR imaging or CT perfusion before and 24 hours after intravenous thrombolysis without recanalization. Patients were divided into 3 groups (thrombus extension, shortening, and no change) according to thrombus-length change between baseline and 24 hours. Collateral flow was measured with arrival time delay and the collateral scoring system. Poor outcome was defined as a 3-month modified Rankin Scale score of ≥3. RESULTS Among 51 patients, 18 (35.3%) had thrombus extension, 14 (27%) had thrombus shortening, and 19 (37.3%) had thrombus without change. Arrival time delay was independently associated with thrombus extension (OR = 1.499; 95% CI, 1.053-2.135; P = .025). Similarly, the collateral score on the peak artery phase was independently associated with thrombus extension (OR = 0.456; 95% CI, 0.211-0.984; P = .045), whereas baseline National Institutes of Health Stroke Scale score (OR = 0.768; 95% CI, 0.614-0.961; P = .021) and baseline thrombus length (OR = 1.193; 95% CI, 1.021-1.394; P = .026) were associated with thrombus shortening. All patients with thrombus extension had poor outcomes. CONCLUSIONS Slow collateral flow was related to thrombus extension in patients with large-artery occlusion without recanalization after intravenous thrombolysis.
Collapse
Affiliation(s)
- R Zhang
- From the Departments of Neurology (R.Z., Y.Z., S.Y., S.Z., M.L.)
| | - Y Zhou
- From the Departments of Neurology (R.Z., Y.Z., S.Y., S.Z., M.L.)
| | - S Yan
- From the Departments of Neurology (R.Z., Y.Z., S.Y., S.Z., M.L.)
| | - S Zhang
- From the Departments of Neurology (R.Z., Y.Z., S.Y., S.Z., M.L.)
| | - X Ding
- Radiology (X.D.), Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - M Lou
- From the Departments of Neurology (R.Z., Y.Z., S.Y., S.Z., M.L.) .,Zhejiang University Brain Research Institute (M.L.), Hangzhou, China
| |
Collapse
|
58
|
Thrombosis-on-a-chip: Prospective impact of microphysiological models of vascular thrombosis. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 5:29-34. [DOI: 10.1016/j.cobme.2017.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
59
|
Tsiklidis E, Sims C, Sinno T, Diamond SL. Multiscale systems biology of trauma-induced coagulopathy. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1418. [PMID: 29485252 DOI: 10.1002/wsbm.1418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 01/26/2023]
Abstract
Trauma with hypovolemic shock is an extreme pathological state that challenges the body to maintain blood pressure and oxygenation in the face of hemorrhagic blood loss. In conjunction with surgical actions and transfusion therapy, survival requires the patient's blood to maintain hemostasis to stop bleeding. The physics of the problem are multiscale: (a) the systemic circulation sets the global blood pressure in response to blood loss and resuscitation therapy, (b) local tissue perfusion is altered by localized vasoregulatory mechanisms and bleeding, and (c) altered blood and vessel biology resulting from the trauma as well as local hemodynamics control the assembly of clotting components at the site of injury. Building upon ongoing modeling efforts to simulate arterial or venous thrombosis in a diseased vasculature, computer simulation of trauma-induced coagulopathy is an emerging approach to understand patient risk and predict response. Despite uncertainties in quantifying the patient's dynamic injury burden, multiscale systems biology may help link blood biochemistry at the molecular level to multiorgan responses in the bleeding patient. As an important goal of systems modeling, establishing early metrics of a patient's high-dimensional trajectory may help guide transfusion therapy or warn of subsequent later stage bleeding or thrombotic risks. This article is categorized under: Analytical and Computational Methods > Computational Methods Biological Mechanisms > Regulatory Biology Models of Systems Properties and Processes > Mechanistic Models.
Collapse
Affiliation(s)
- Evan Tsiklidis
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carrie Sims
- Department of Trauma Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Talid Sinno
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott L Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
60
|
Yazdani A, Li H, Bersi MR, Di Achille P, Insley J, Humphrey JD, Karniadakis GE. Data-driven Modeling of Hemodynamics and its Role on Thrombus Size and Shape in Aortic Dissections. Sci Rep 2018; 8:2515. [PMID: 29410467 PMCID: PMC5802786 DOI: 10.1038/s41598-018-20603-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/22/2018] [Indexed: 11/21/2022] Open
Abstract
Aortic dissection is a pathology that manifests due to microstructural defects in the aortic wall. Blood enters the damaged wall through an intimal tear, thereby creating a so-called false lumen and exposing the blood to thrombogenic intramural constituents such as collagen. The natural history of this acute vascular injury thus depends, in part, on thrombus formation, maturation, and possible healing within the false lumen. A key question is: Why do some false lumens thrombose completely while others thrombose partially or little at all? An ability to predict the location and extent of thrombus in subjects with dissection could contribute significantly to clinical decision-making, including interventional design. We develop, for the first time, a data-driven particle-continuum model for thrombus formation in a murine model of aortic dissection. In the proposed model, we simulate a final-value problem in lieu of the original initial-value problem with significantly fewer particles that may grow in size upon activation, thus representing the local concentration of blood-borne species. Numerical results confirm that geometry and local hemodynamics play significant roles in the acute progression of thrombus. Despite geometrical differences between murine and human dissections, mouse models can provide considerable insight and have gained popularity owing to their reproducibility. Our results for three classes of geometrically different false lumens show that thrombus forms and extends to a greater extent in regions with lower bulk shear rates. Dense thrombi are less likely to form in high-shear zones and in the presence of strong vortices. The present data-driven study suggests that the proposed model is robust and can be employed to assess thrombus formation in human aortic dissections.
Collapse
Affiliation(s)
- Alireza Yazdani
- Division of Applied Mathematics, Brown University, Providence, RI, 02912, USA.
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, RI, 02912, USA
| | - Matthew R Bersi
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Paolo Di Achille
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Joseph Insley
- Argonne National Laboratory, Argonne, IL 60439; Northern Illinois University, DeKalb, IL, 60115, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | | |
Collapse
|
61
|
Chen Z, He L, Li L, Chen L. The P2X7 purinergic receptor: An emerging therapeutic target in cardiovascular diseases. Clin Chim Acta 2018; 479:196-207. [PMID: 29366837 DOI: 10.1016/j.cca.2018.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 10/24/2022]
Abstract
The P2X7 purinergic receptor, a calcium permeable cationic channel, is activated by extracellular ATP. Most studies show that P2X7 receptor plays an important role in the nervous system diseases, immune response, osteoporosis and cancer. Mounting evidence indicates that P2X7 receptor is also associated with cardiovascular disease. For example, the P2X7 receptor activated by ATP can attenuate myocardial ischemia-reperfusion injury. By contrast, inhibition of P2X7 receptor decreases arrhythmia after myocardial infarction, prolongs cardiac survival after a long term heart transplant, alleviates the dilated cardiomyopathy and the autoimmune myocarditis process. The P2X7 receptor also mitigates vascular diseases including atherosclerosis, hypertension, thrombosis and diabetic retinopathy. This review focuses on the latest research on the role and therapeutic potential of P2X7 receptor in cardiovascular diseases.
Collapse
Affiliation(s)
- Zhe Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Lu He
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
| |
Collapse
|
62
|
Albadawi H, Witting AA, Pershad Y, Wallace A, Fleck AR, Hoang P, Khademhosseini A, Oklu R. Animal models of venous thrombosis. Cardiovasc Diagn Ther 2017; 7:S197-S206. [PMID: 29399523 DOI: 10.21037/cdt.2017.08.10] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Venous thrombosis (VT) is a prevalent clinical condition with significant adverse sequela or mortality. Anticoagulation and pharmacologic or pharmacomechanical thrombolytic therapies are the mainstays of VT treatment. An understanding of thrombosis biology will allow for more effective VT-tailored diagnosis and therapy. In vivo models of thrombosis provide indispensable tools to study the pathogenesis of thrombus formation and to evaluate novel therapeutic or preventive adjuncts for VT management or prevention. In this article, we review the most prominent in vivo models of VT created in rodents and swine species and outline how each model can serve as a useful tool to promote our understanding of VT pathogenesis and to examine novel therapies.
Collapse
Affiliation(s)
- Hassan Albadawi
- Department of Radiology, Division of Vascular & Interventional Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Avery A Witting
- Department of Radiology, Division of Vascular & Interventional Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Yash Pershad
- Department of Radiology, Division of Vascular & Interventional Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Alex Wallace
- Department of Radiology, Mayo Clinic, Phoenix, AZ, USA
| | | | - Peter Hoang
- Department of Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Brigham and Women's Hospital & Harvard Medical School, Cambridge, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rahmi Oklu
- Department of Radiology, Division of Vascular & Interventional Radiology, Mayo Clinic, Phoenix, AZ, USA.,Biomaterials Innovation Research Center, Brigham and Women's Hospital & Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
63
|
Ochocinska MJ, Zlokovic BV, Searson PC, Crowder AT, Kraig RP, Ljubimova JY, Mainprize TG, Banks WA, Warren RQ, Kindzelski A, Timmer W, Liu CH. NIH workshop report on the trans-agency blood-brain interface workshop 2016: exploring key challenges and opportunities associated with the blood, brain and their interface. Fluids Barriers CNS 2017; 14:12. [PMID: 28457227 PMCID: PMC5410699 DOI: 10.1186/s12987-017-0061-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/08/2017] [Indexed: 01/01/2023] Open
Abstract
A trans-agency workshop on the blood–brain interface (BBI), sponsored by the National Heart, Lung and Blood Institute, the National Cancer Institute and the Combat Casualty Care Research Program at the Department of Defense, was conducted in Bethesda MD on June 7–8, 2016. The workshop was structured into four sessions: (1) blood sciences; (2) exosome therapeutics; (3) next generation in vitro blood–brain barrier (BBB) models; and (4) BBB delivery and targeting. The first day of the workshop focused on the physiology of the blood and neuro-vascular unit, blood or biofluid-based molecular markers, extracellular vesicles associated with brain injury, and how these entities can be employed to better evaluate injury states and/or deliver therapeutics. The second day of the workshop focused on technical advances in in vitro models, BBB manipulations and nanoparticle-based drug carrier designs, with the goal of improving drug delivery to the central nervous system. The presentations and discussions underscored the role of the BBI in brain injury, as well as the role of the BBB as both a limiting factor and a potential conduit for drug delivery to the brain. At the conclusion of the meeting, the participants discussed challenges and opportunities confronting BBI translational researchers. In particular, the participants recommended using BBI translational research to stimulate advances in diagnostics, as well as targeted delivery approaches for detection and therapy of both brain injury and disease.
Collapse
Affiliation(s)
- Margaret J Ochocinska
- National Heart, Lung, and Blood Institute, National Institutes of Health, 6701 Rockledge Dr., Room 9149, Bethesda, MD, 20892-7950, USA.
| | | | | | | | | | | | | | | | - Ronald Q Warren
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrei Kindzelski
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - William Timmer
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christina H Liu
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
64
|
Abstract
Despite the introduction of direct oral anticoagulants (DOACs), the search for more effective and safer antithrombotic strategies continues. Better understanding of the pathogenesis of thrombosis has fostered 2 new approaches to achieving this goal. First, evidence that thrombin may be as important as platelets to thrombosis at sites of arterial injury and that platelets contribute to venous thrombosis has prompted trials comparing anticoagulants with aspirin for secondary prevention in arterial thrombosis and aspirin with anticoagulants for primary and secondary prevention of venous thrombosis. These studies will help identify novel treatment strategies. Second, emerging data that naturally occurring polyphosphates activate the contact system and that this system is critical for thrombus stabilization and growth have identified factor XII (FXII) and FXI as targets for new anticoagulants that may be even safer than the DOACs. Studies are needed to determine whether FXI or FXII is the better target and to compare the efficacy and safety of these new strategies with current standards of care for the prevention or treatment of thrombosis. Focusing on these advances, this article outlines how treatment strategies for thrombosis are evolving and describes the rationale and approaches to targeting FXII and FXI. These emerging anticoagulant strategies should address unmet needs and reduce the systemic underuse of anticoagulation because of the fear of bleeding.
Collapse
|
65
|
Affiliation(s)
- Jeffrey I. Weitz
- From the Thrombosis and Atherosclerosis Research Institute and Departments of Medicine and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - John W. Eikelboom
- From the Thrombosis and Atherosclerosis Research Institute and Departments of Medicine and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|