51
|
Rengo G, Pagano G, Filardi PP, Femminella GD, Parisi V, Cannavo A, Liccardo D, Komici K, Gambino G, D'Amico ML, de Lucia C, Paolillo S, Trimarco B, Vitale DF, Ferrara N, Koch WJ, Leosco D. Prognostic Value of Lymphocyte G Protein-Coupled Receptor Kinase-2 Protein Levels in Patients With Heart Failure. Circ Res 2016; 118:1116-24. [PMID: 26884616 DOI: 10.1161/circresaha.115.308207] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/16/2016] [Indexed: 01/08/2023]
Abstract
RATIONALE Sympathetic nervous system hyperactivity is associated with poor prognosis in patients with heart failure (HF), yet routine assessment of sympathetic nervous system activation is not recommended for clinical practice. Myocardial G protein-coupled receptor kinase-2 (GRK2) is upregulated in HF patients, causing dysfunctional β-adrenergic receptor signaling. Importantly, myocardial GRK2 levels correlate with levels found in peripheral lymphocytes of HF patients. OBJECTIVE The independent prognostic value of blood GRK2 measurements in HF patients has never been investigated; thus, the purpose of this study was to evaluate whether lymphocyte GRK2 levels predict clinical outcome in HF patients. METHODS AND RESULTS We prospectively studied 257 HF patients with mean left ventricular ejection fraction of 31.4±8.5%. At the time of enrollment, plasma norepinephrine, serum NT-proBNP, and lymphocyte GRK2 levels, as well as clinical and instrumental variables were measured. The prognostic value of GRK2 to predict cardiovascular (CV) death and all-cause mortality was assessed using the Cox proportional hazard model including demographic, clinical, instrumental, and laboratory data. Over a mean follow-up period of 37.5±20.2 months (range, 3-60 months), there were 102 CV deaths. Age, left ventricular ejection fraction, New York Heart Association class, chronic obstructive pulmonary disease, chronic kidney disease, N-terminal-pro brain natriuretic peptide, and lymphocyte GRK2 protein levels were independent predictors of CV mortality in HF patients. GRK2 levels showed an additional prognostic and clinical value over demographic and clinical variables. The independent prognostic value of lymphocyte GRK2 levels was also confirmed for all-cause mortality. CONCLUSIONS Lymphocyte GRK2 protein levels can independently predict prognosis in patients with HF.
Collapse
Affiliation(s)
- Giuseppe Rengo
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Gennaro Pagano
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Pasquale Perrone Filardi
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Grazia Daniela Femminella
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Valentina Parisi
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Alessandro Cannavo
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Daniela Liccardo
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Klara Komici
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Giuseppina Gambino
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Maria Loreta D'Amico
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Claudio de Lucia
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Stefania Paolillo
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Bruno Trimarco
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Dino Franco Vitale
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Nicola Ferrara
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Walter J Koch
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.).
| | - Dario Leosco
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.).
| |
Collapse
|
52
|
Cannavo A, Liccardo D, Lymperopoulos A, Gambino G, D'Amico ML, Rengo F, Koch WJ, Leosco D, Ferrara N, Rengo G. β Adrenergic Receptor Kinase C-Terminal Peptide Gene-Therapy Improves β2-Adrenergic Receptor-Dependent Neoangiogenesis after Hindlimb Ischemia. J Pharmacol Exp Ther 2016; 356:503-13. [PMID: 26604244 PMCID: PMC6047230 DOI: 10.1124/jpet.115.228411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/18/2015] [Indexed: 01/15/2023] Open
Abstract
After hindlimb ischemia (HI), increased catecholamine levels within the ischemic muscle can cause dysregulation of β2-adrenergic receptor (β2AR) signaling, leading to reduced revascularization. Indeed, in vivo β2AR overexpression via gene therapy enhances angiogenesis in a rat model of HI. G protein-coupled receptor kinase 2 (GRK2) is a key regulator of βAR signaling, and β adrenergic receptor kinase C-terminal peptide (βARKct), a peptide inhibitor of GRK2, has been shown to prevent βAR down-regulation and to protect cardiac myocytes and stem cells from ischemic injury through restoration of β2AR protective signaling (i.e., protein kinase B/endothelial nitric oxide synthase). Herein, we tested the potential therapeutic effects of adenoviral-mediated βARKct gene transfer in an experimental model of HI and its effects on βAR signaling and on endothelial cell (EC) function in vitro. Accordingly, in this study, we surgically induced HI in rats by femoral artery resection (FAR). Fifteen days of ischemia resulted in significant βAR down-regulation that was paralleled by an approximately 2-fold increase in GRK2 levels in the ischemic muscle. Importantly, in vivo gene transfer of the βARKct in the hindlimb of rats at the time of FAR resulted in a marked improvement of hindlimb perfusion, with increased capillary and βAR density in the ischemic muscle, compared with control groups. The effect of βARKct expression was also assessed in vitro in cultured ECs. Interestingly, ECs expressing the βARKct fenoterol, a β2AR-agonist, induced enhanced β2AR proangiogenic signaling and increased EC function. Our results suggest that βARKct gene therapy and subsequent GRK2 inhibition promotes angiogenesis in a model of HI by preventing ischemia-induced β2AR down-regulation.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (A.C., D.Li., G.G., M.L.D.A., D.Le., N.F., G.R.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., D.Li., W.J.K.); Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, Florida (A.L.); Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme BN, Italy (F.R., G.R.)
| | - Daniela Liccardo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (A.C., D.Li., G.G., M.L.D.A., D.Le., N.F., G.R.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., D.Li., W.J.K.); Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, Florida (A.L.); Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme BN, Italy (F.R., G.R.)
| | - Anastasios Lymperopoulos
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (A.C., D.Li., G.G., M.L.D.A., D.Le., N.F., G.R.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., D.Li., W.J.K.); Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, Florida (A.L.); Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme BN, Italy (F.R., G.R.)
| | - Giuseppina Gambino
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (A.C., D.Li., G.G., M.L.D.A., D.Le., N.F., G.R.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., D.Li., W.J.K.); Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, Florida (A.L.); Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme BN, Italy (F.R., G.R.)
| | - Maria Loreta D'Amico
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (A.C., D.Li., G.G., M.L.D.A., D.Le., N.F., G.R.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., D.Li., W.J.K.); Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, Florida (A.L.); Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme BN, Italy (F.R., G.R.)
| | - Franco Rengo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (A.C., D.Li., G.G., M.L.D.A., D.Le., N.F., G.R.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., D.Li., W.J.K.); Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, Florida (A.L.); Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme BN, Italy (F.R., G.R.)
| | - Walter J Koch
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (A.C., D.Li., G.G., M.L.D.A., D.Le., N.F., G.R.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., D.Li., W.J.K.); Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, Florida (A.L.); Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme BN, Italy (F.R., G.R.)
| | - Dario Leosco
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (A.C., D.Li., G.G., M.L.D.A., D.Le., N.F., G.R.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., D.Li., W.J.K.); Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, Florida (A.L.); Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme BN, Italy (F.R., G.R.)
| | - Nicola Ferrara
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (A.C., D.Li., G.G., M.L.D.A., D.Le., N.F., G.R.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., D.Li., W.J.K.); Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, Florida (A.L.); Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme BN, Italy (F.R., G.R.)
| | - Giuseppe Rengo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy (A.C., D.Li., G.G., M.L.D.A., D.Le., N.F., G.R.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., D.Li., W.J.K.); Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, Florida (A.L.); Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme BN, Italy (F.R., G.R.)
| |
Collapse
|
53
|
Kallikrein-related peptidase 8 is expressed in myocardium and induces cardiac hypertrophy. Sci Rep 2016; 7:20024. [PMID: 26823023 PMCID: PMC4731818 DOI: 10.1038/srep20024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022] Open
Abstract
The tissue kallikrein-related peptidase family (KLK) is a group of trypsin- and chymotrypsin-like serine proteases that share a similar homology to parent tissue kallikrein (KLK1). KLK1 is identified in heart and has anti-hypertrophic effects. However, whether other KLK family members play a role in regulating cardiac function remains unknown. In the present study, we demonstrated for the first time that KLK8 was expressed in myocardium. KLK8 expression was upregulated in left ventricle of cardiac hypertrophy models. Both intra-cardiac adenovirus-mediated and transgenic-mediated KLK8 overexpression led to cardiac hypertrophy in vivo. In primary neonatal rat cardiomyocytes, KLK8 knockdown inhibited phenylephrine (PE)-induced cardiomyocyte hypertrophy, whereas KLK8 overexpression promoted cardiomyocyte hypertrophy via a serine protease activity-dependent but kinin receptor-independent pathway. KLK8 overexpression increased epidermal growth factor (EGF) production, which was blocked by the inhibitors of serine protease. EGF receptor (EGFR) antagonist and EGFR knockdown reversed the hypertrophy induced by KLK8 overexpression. KLK8-induced cardiomyocyte hypertrophy was also significantly decreased by blocking the protease-activated receptor 1 (PAR1) or PAR2 pathway. Our data suggest that KLK8 may promote cardiomyocyte hypertrophy through EGF signaling- and PARs-dependent but a kinin receptor-independent pathway. It is implied that different KLK family members can subtly regulate cardiac function and remodeling.
Collapse
|
54
|
Bernardo BC, Blaxall BC. From Bench to Bedside: New Approaches to Therapeutic Discovery for Heart Failure. Heart Lung Circ 2016; 25:425-34. [PMID: 26993094 DOI: 10.1016/j.hlc.2016.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/06/2016] [Indexed: 01/10/2023]
Abstract
Heart failure is a significant global health problem, which is becoming worse as the population ages, and remains one of the biggest burdens on our economy. Despite significant advances in cardiovascular medicine, management and surgery, mortality rates remain high, with almost half of patients with heart failure dying within five years of diagnosis. As a multifactorial clinical syndrome, heart failure still represents an epidemic threat, highlighting the need for deeper insights into disease mechanisms and the development of innovative therapeutic strategies for both treatment and prevention. In this review, we discuss conventional heart failure therapies and highlight new pharmacological agents targeting pathophysiological features of the failing heart, for example, non-coding RNAs, angiotensin receptor-neprilysin inhibitors, cardiac myosin activators, BGP-15 and molecules targeting GRK2 including M119, gallein and paroxetine. Finally, we address the disparity between phase II and phase III clinical trials that prevent the translation of emerging HF therapies into new and approved therapies.
Collapse
Affiliation(s)
- Bianca C Bernardo
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Burns C Blaxall
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
55
|
Schumacher SM, Gao E, Zhu W, Chen X, Chuprun JK, Feldman AM, Tesmer JJG, Koch WJ. Paroxetine-mediated GRK2 inhibition reverses cardiac dysfunction and remodeling after myocardial infarction. Sci Transl Med 2016; 7:277ra31. [PMID: 25739765 DOI: 10.1126/scitranslmed.aaa0154] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heart failure (HF) is a disease of epidemic proportion and is associated with exceedingly high health care costs. G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) kinase 2 (GRK2), which is up-regulated in the failing human heart, appears to play a critical role in HF progression in part because enhanced GRK2 activity promotes dysfunctional adrenergic signaling and myocyte death. Recently, we found that the selective serotonin reuptake inhibitor (SSRI) paroxetine could inhibit GRK2 with selectivity over other GRKs. Wild-type mice were treated for 4 weeks with paroxetine starting at 2 weeks after myocardial infarction (MI). These mice were compared with mice treated with fluoxetine, which does not inhibit GRK2, to control for the SSRI effects of paroxetine. All mice exhibited similar left ventricular (LV) dysfunction before treatment; however, although the control and fluoxetine groups had continued degradation of function, the paroxetine group had considerably improved LV function and structure, and several hallmarks of HF were either inhibited or reversed. Use of genetically engineered mice indicated that paroxetine was working through GRK2 inhibition. The beneficial effects of paroxetine were markedly greater than those of β-blocker therapy, a current standard of care in human HF. These data demonstrate that paroxetine-mediated inhibition of GRK2 improves cardiac function after MI and represents a potential repurposing of this drug, as well as a starting point for innovative small-molecule GRK2 inhibitor development.
Collapse
Affiliation(s)
- Sarah M Schumacher
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA. Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Weizhong Zhu
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Xiongwen Chen
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - J Kurt Chuprun
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA. Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Arthur M Feldman
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - John J G Tesmer
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Walter J Koch
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA. Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
56
|
Abstract
Heightened cardiac adrenergic nervous system (ANS) activity and progression of left ventricular (LV) remodeling are temporally related in patients with systolic heart failure. Whether cardiac ANS activation directly contributes to or merely accompanies LV remodeling remains an unresolved issue. Human and experimental data that directly link cardiac ANS activation to LV remodeling and worsening heart failure are first reviewed, including cardiac norepinephrine spillover. Alterations of beta adrenergic receptor signaling pathways are then addressed with emphasis on the mechanisms that may mediate the beneficial effect of beta adrenergic receptor blockade on LV remodeling. Lastly, alternative approaches to beta adrenergic receptor blockade for lessening cardiac ANS activation and reversing cardiac ANS-induced LV remodeling are discussed. A large body of work now links LV remodeling to cardiac ANS activation. However, the precise mechanisms that link cardiac ANS activation to LV remodeling are still to be fully understood. Fully understanding of these mechanisms may uncover new therapeutic approaches.
Collapse
|
57
|
Regulation of cellular oxidative stress and apoptosis by G protein-coupled receptor kinase-2; The role of NADPH oxidase 4. Cell Signal 2015; 28:190-203. [PMID: 26631573 DOI: 10.1016/j.cellsig.2015.11.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/13/2015] [Accepted: 11/25/2015] [Indexed: 11/23/2022]
Abstract
Cardiac myocyte oxidative stress and apoptosis are considered important mechanisms for the development of heart failure (HF). Chronic HF is characterized by increased circulating catecholamines to augment cardiac output. Long-term stimulation of myocardial β-adrenergic receptors (β-ARs) is deleterious in cardiac myocytes, however, the potential mechanisms underlying increased cell death are unclear. We hypothesize that GRK2, a critical regulator of myocardial β-AR signaling, plays an important role in mediating cellular oxidative stress and apoptotic cell death in response to β-agonist stimulation. Stimulation of H9c2 cells with a non-selective β-agonist, isoproterenol (Iso) caused increased oxidative stress and apoptosis. There was also increased Nox4 expression, but no change in Nox2, the primary NADPH isoforms and major sources of ROS generation in cardiac myocytes. Adenoviral-mediated overexpression of GRK2 led to similar increases in ROS production and apoptosis as seen with Iso stimulation. These increases in oxidative stress were abolished by pre-treatment with the non-specific Nox inhibitor, apocynin, or siRNA knockdown of Nox4. Adenoviral-mediated expression of a GRK2 inhibitor prevented ROS production and apoptosis in response to Iso stimulation. β-Arrestins are signaling proteins that function downstream of GRK2 in β-AR uncoupling. Adenoviral-mediated overexpression of β-arrestins increased ROS production and Nox4 expression. Chronic β-agonist stimulation in mice increased Nox4 expression and apoptosis compared to PBS or AngII treatment. These data demonstrate that GRK2 may play an important role in regulating oxidative stress and apoptosis in cardiac myocytes and provides an additional novel mechanism for the beneficial effects of cardiac-targeted GRK2 inhibition to prevent the development of HF.
Collapse
|
58
|
Koch WJ, Patterson K. Walter J. Koch: two decades, one mission. Circ Res 2015; 117:917-20. [PMID: 26541680 DOI: 10.1161/circresaha.115.307772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
59
|
Philip JL, Razzaque MA, Han M, Li J, Theccanat T, Xu X, Akhter SA. Regulation of mitochondrial oxidative stress by β-arrestins in cultured human cardiac fibroblasts. Dis Model Mech 2015; 8:1579-89. [PMID: 26449263 PMCID: PMC4728312 DOI: 10.1242/dmm.019968] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 08/24/2015] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress in cardiac fibroblasts (CFs) promotes transformation to myofibroblasts and collagen synthesis leading to myocardial fibrosis, a precursor to heart failure (HF). NADPH oxidase 4 (Nox4) is a major source of cardiac reactive oxygen species (ROS); however, mechanisms of Nox4 regulation are unclear. β-arrestins are scaffold proteins that signal in G-protein-dependent and -independent pathways; for example, in ERK activation. We hypothesize that β-arrestins regulate oxidative stress in a Nox4-dependent manner and increase fibrosis in HF. CFs were isolated from normal and failing adult human left ventricles. Mitochondrial ROS/superoxide production was quantitated using MitoSox. β-arrestin and Nox4 expressions were manipulated using adenoviral overexpression or short interfering RNA (siRNA)-mediated knockdown. Mitochondrial oxidative stress and Nox4 expression in CFs were significantly increased in HF. Nox4 knockdown resulted in inhibition of mitochondrial superoxide production and decreased basal and TGF-β-stimulated collagen and α-SMA expression. CF β-arrestin expression was upregulated fourfold in HF. β-arrestin knockdown in failing CFs decreased ROS and Nox4 expression by 50%. β-arrestin overexpression in normal CFs increased mitochondrial superoxide production twofold. These effects were prevented by inhibition of either Nox or ERK. Upregulation of Nox4 seemed to be a primary mechanism for increased ROS production in failing CFs, which stimulates collagen deposition. β-arrestin expression was upregulated in HF and plays an important and newly identified role in regulating mitochondrial superoxide production via Nox4. The mechanism for this effect seems to be ERK-mediated. Targeted inhibition of β-arrestins in CFs might decrease oxidative stress as well as pathological cardiac fibrosis. Summary: β-arrestins regulate oxidative stress in a Nox4-dependent manner leading to increased extracellular-matrix protein synthesis by cardiac fibroblasts (CFs). Targeted inhibition of β-arrestins in CFs might decrease pathological fibrosis.
Collapse
Affiliation(s)
- Jennifer L Philip
- Department of Surgery, Division of Cardiothoracic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Md Abdur Razzaque
- Department of Surgery, Division of Cardiothoracic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Mei Han
- Department of Surgery, Division of Cardiothoracic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Jinju Li
- Section of Cardiac and Thoracic Surgery, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tiju Theccanat
- Section of Cardiac and Thoracic Surgery, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Xianyao Xu
- Department of Surgery, Division of Cardiothoracic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Shahab A Akhter
- Department of Surgery, Division of Cardiothoracic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| |
Collapse
|
60
|
McCrink KA, Brill A, Lymperopoulos A. Adrenal G protein-coupled receptor kinase-2 in regulation of sympathetic nervous system activity in heart failure. World J Cardiol 2015; 7:539-543. [PMID: 26413230 PMCID: PMC4577680 DOI: 10.4330/wjc.v7.i9.539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/22/2015] [Accepted: 07/14/2015] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF), the number one cause of death in the western world, is caused by the insufficient performance of the heart leading to tissue underperfusion in response to an injury or insult. It comprises complex interactions between important neurohormonal mechanisms that try but ultimately fail to sustain cardiac output. The most prominent such mechanism is the sympathetic (adrenergic) nervous system (SNS), whose activity and outflow are greatly elevated in HF. SNS hyperactivity confers significant toxicity to the failing heart and markedly increases HF morbidity and mortality via excessive activation of adrenergic receptors, which are G protein-coupled receptors. Thus, ligand binding induces their coupling to heterotrimeric G proteins that transduce intracellular signals. G protein signaling is turned-off by the agonist-bound receptor phosphorylation courtesy of G protein-coupled receptor kinases (GRKs), followed by βarrestin binding, which prevents the GRK-phosphorylated receptor from further interaction with the G proteins and simultaneously leads it inside the cell (receptor sequestration). Recent evidence indicates that adrenal GRK2 and βarrestins can regulate adrenal catecholamine secretion, thereby modulating SNS activity in HF. The present review gives an account of all these studies on adrenal GRKs and βarrestins in HF and discusses the exciting new therapeutic possibilities for chronic HF offered by targeting these proteins pharmacologically.
Collapse
|
61
|
Abstract
G-protein-coupled receptor kinases (GRKs) are serine/threonine protein kinases originally discovered for their role in G-protein-coupled receptor (GPCR) phosphorylation. Recent studies have demonstrated a much broader function for this kinase family including phosphorylation of cytosolic substrates involved in cell signaling pathways stimulated by GPCRs, as well as by non-GPCRs. In addition, GRKs modulate signaling via phosphorylation-independent functions. Because of these various biochemical functions, GRKs have been shown to affect critical physiological and pathophysiological processes, and thus are considered as drug targets in diseases such as heart failure. Role of GRKs in inflammation and inflammatory diseases is an evolving area of research and several studies including work from our lab in the recent years have demonstrated critical role of GRKs in the immune system. In this review, we discuss the classical and the newly emerging functions of GRKs in the immune system and their role in inflammation and disease processes.
Collapse
|
62
|
Larsen MJ, Larsen SD, Fribley A, Grembecka J, Homan K, Mapp A, Haak A, Nikolovska-Coleska Z, Stuckey JA, Sun D, Sherman DH. The role of HTS in drug discovery at the University of Michigan. Comb Chem High Throughput Screen 2015; 17:210-30. [PMID: 24409957 DOI: 10.2174/1386207317666140109121546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/05/2013] [Accepted: 01/07/2014] [Indexed: 12/17/2022]
Abstract
High throughput screening (HTS) is an integral part of a highly collaborative approach to drug discovery at the University of Michigan. The HTS lab is one of four core centers that provide services to identify, produce, screen and follow-up on biomedical targets for faculty. Key features of this system are: protein cloning and purification, protein crystallography, small molecule and siRNA HTS, medicinal chemistry and pharmacokinetics. Therapeutic areas that have been targeted include anti-bacterial, metabolic, neurodegenerative, cardiovascular, anti-cancer and anti-viral. The centers work in a coordinated, interactive environment to affordably provide academic investigators with the technology, informatics and expertise necessary for successful drug discovery. This review provides an overview of these centers at the University of Michigan, along with case examples of successful collaborations with faculty.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - David H Sherman
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
63
|
GPCR signaling and cardiac function. Eur J Pharmacol 2015; 763:143-8. [PMID: 25981298 DOI: 10.1016/j.ejphar.2015.05.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 03/30/2015] [Accepted: 05/11/2015] [Indexed: 12/27/2022]
Abstract
G protein-coupled receptors (GPCRs), such as β-adrenergic and angiotensin II receptors, located in the membranes of all three major cardiac cell types, i.e. myocytes, fibroblasts and endothelial cells, play crucial roles in regulating cardiac function and morphology. Their importance in cardiac physiology and disease is reflected by the fact that, collectively, they represent the direct targets of over a third of the currently approved cardiovascular drugs used in clinical practice. Over the past few decades, advances in elucidation of their structure, function and the signaling pathways they elicit, specifically in the heart, have led to identification of an increasing number of new molecular targets for heart disease therapy. Here, we review these signaling modalities employed by GPCRs known to be expressed in the cardiac myocyte membranes and to directly modulate cardiac contractility. We also highlight drugs and drug classes that directly target these GPCRs to modulate cardiac function, as well as molecules involved in cardiac GPCR signaling that have the potential of becoming novel drug targets for modulation of cardiac function in the future.
Collapse
|
64
|
Rinaldi B, Donniacuo M, Sodano L, Gritti G, Martuscelli E, Orlandi A, Rafaniello C, Rossi F, Calzetta L, Capuano A, Matera MG. Effects of chronic treatment with the new ultra-long-acting β2 -adrenoceptor agonist indacaterol alone or in combination with the β1 -adrenoceptor blocker metoprolol on cardiac remodelling. Br J Pharmacol 2015; 172:3627-37. [PMID: 25825265 DOI: 10.1111/bph.13148] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 03/21/2015] [Accepted: 03/26/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE The ability of a chronic treatment with indacaterol, a new ultra-long-acting β2 -adrenoceptor agonist, to reverse cardiac remodelling and its effects in combination with metoprolol, a selective β1 -adrenoceptor antagonist, were investigated on myocardial infarction in a rat model of heart failure (HF). EXPERIMENTAL APPROACH We investigated the effects of indacaterol and metoprolol, administered alone or in combination, on myocardial histology, β-adrenoceptor-mediated pathways, markers of remodelling and haemodynamic parameters in a rat model of HF. Five groups of rats were assessed: sham-operated rats; HF rats; HF + indacaterol 0.3 mg·kg(-1) ·day(-1) ; HF + metoprolol 100 mg·kg(-1) ·day(-1) ; HF + metoprolol + indacaterol. All pharmacological treatments continued for 15 weeks. KEY RESULTS Treatment with either indacaterol or metoprolol significantly reduced the infarct size in HF rats. However, the combination of indacaterol and metoprolol reduced the infarct size even further, reduced both BP and heart rate, reversed the decrease in ejection fraction, normalized left ventricular systolic and diastolic internal diameters, normalized the decreased β1 adrenoceptor mRNA expression as well as cardiac cAMP levels and reduced cardiac GPCR kinase 2 expression, compared with the untreated HF group. CONCLUSION AND IMPLICATIONS The results of our study demonstrated an additive interaction between indacaterol and metoprolol in normalizing and reversing cardiac remodelling in our experimental model of HF. The translation of these findings to clinical practice might be of interest, as this combination of drugs could be safer and more effective in patients suffering from HF and COPD.
Collapse
Affiliation(s)
- Barbara Rinaldi
- Centre of Excellence for Cardiovascular Diseases, Second University of Naples, Naples, Italy.,Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - Maria Donniacuo
- Centre of Excellence for Cardiovascular Diseases, Second University of Naples, Naples, Italy
| | - Loredana Sodano
- Centre of Excellence for Cardiovascular Diseases, Second University of Naples, Naples, Italy
| | - Giulia Gritti
- Centre of Excellence for Cardiovascular Diseases, Second University of Naples, Naples, Italy
| | - Eugenio Martuscelli
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Concetta Rafaniello
- Centre of Excellence for Cardiovascular Diseases, Second University of Naples, Naples, Italy.,Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - Francesco Rossi
- Centre of Excellence for Cardiovascular Diseases, Second University of Naples, Naples, Italy.,Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - Luigino Calzetta
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Annalisa Capuano
- Centre of Excellence for Cardiovascular Diseases, Second University of Naples, Naples, Italy.,Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - Maria Gabriella Matera
- Centre of Excellence for Cardiovascular Diseases, Second University of Naples, Naples, Italy
| |
Collapse
|
65
|
Sato PY, Chuprun JK, Schwartz M, Koch WJ. The evolving impact of g protein-coupled receptor kinases in cardiac health and disease. Physiol Rev 2015; 95:377-404. [PMID: 25834229 PMCID: PMC4551214 DOI: 10.1152/physrev.00015.2014] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are important regulators of various cellular functions via activation of intracellular signaling events. Active GPCR signaling is shut down by GPCR kinases (GRKs) and subsequent β-arrestin-mediated mechanisms including phosphorylation, internalization, and either receptor degradation or resensitization. The seven-member GRK family varies in their structural composition, cellular localization, function, and mechanism of action (see sect. II). Here, we focus our attention on GRKs in particular canonical and novel roles of the GRKs found in the cardiovascular system (see sects. III and IV). Paramount to overall cardiac function is GPCR-mediated signaling provided by the adrenergic system. Overstimulation of the adrenergic system has been highly implicated in various etiologies of cardiovascular disease including hypertension and heart failure. GRKs acting downstream of heightened adrenergic signaling appear to be key players in cardiac homeostasis and disease progression, and herein we review the current data on GRKs related to cardiac disease and discuss their potential in the development of novel therapeutic strategies in cardiac diseases including heart failure.
Collapse
Affiliation(s)
- Priscila Y Sato
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - J Kurt Chuprun
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Mathew Schwartz
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| |
Collapse
|
66
|
Ohashi W, Hattori Y. [GRK2 as a potential therapeutic target for septic ARDS]. Nihon Yakurigaku Zasshi 2015; 145:122-8. [PMID: 25765493 DOI: 10.1254/fpj.145.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
67
|
Tham YK, Bernardo BC, Ooi JYY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 2015; 89:1401-38. [DOI: 10.1007/s00204-015-1477-x] [Citation(s) in RCA: 371] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 12/18/2022]
|
68
|
Rengo G, Pagano G, Paolillo S, de Lucia C, Femminella GD, Liccardo D, Cannavo A, Formisano R, Petraglia L, Komici K, Rengo F, Trimarco B, Ferrara N, Leosco D, Perrone-Filardi P. Impact of diabetes mellitus on lymphocyte GRK2 protein levels in patients with heart failure. Eur J Clin Invest 2015; 45:187-95. [PMID: 25545706 DOI: 10.1111/eci.12395] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 12/20/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Diabetes mellitus (DM) is associated with impaired prognosis in patients with heart failure (HF), but pathogenic mechanisms are unclear. In the failing heart, elevated β-adrenergic receptor (β-AR) activation by catecholamines causes G-protein-coupled receptor kinase-2 (GRK2) upregulation which is responsible for β-AR signalling dysfunction. Importantly, GRK2 expression, measured in peripheral lymphocytes of HF patients, correlates with levels of this kinase in the failing myocardium reflecting the loss of hemodynamic function. Moreover, HF-related GRK2 protein overexpression promotes insulin resistance by interfering with insulin signalling. The aim of this study was to assess lymphocyte GRK2 protein levels in HF patients with and without DM. METHODS AND MATERIALS Patients with a diagnosis of HF were enrolled in the study. All subjects underwent a complete clinical examination (including NYHA functional class assessment and echocardiography) and blood draw for serum N-terminal pro-brain natriuretic peptide (NT-proBNP), lymphocyte GRK2 and plasma norepinephrine (NE) levels. Demographic data including age, sex, medications, cardiovascular risk factors and presence of comorbidities were also collected. RESULTS Two hundred and sixty-eight patients with HF (left ventricular ejection fraction [LVEF] 30.6 ± 7.6%) with and without DM were enrolled. No differences between the two groups were found in terms of demography, HF aetiology, LVEF, NYHA class, NE and NT-proBNP. GRK2 was significantly higher in patients with DM compared to non-DM. At multivariate linear regression analysis, LVEF, NE, NT-proBNP and diabetes came out to be independent predictors of GRK2 levels in the overall study population. CONCLUSION In HF patients, DM is associated with significantly more elevated lymphocyte GRK2 protein levels, likely reflecting more compromised cardiac β-AR signalling/function, despite similar hemodynamic status and neuro-hormonal activation compared to patients without DM. These findings contribute to explain the negative prognostic impact of DM in patients with HF.
Collapse
Affiliation(s)
- Giuseppe Rengo
- IRCCS, Scientific Institute of Telese Terme (BN), Salvatore Maugeri Foundation, Telese Terme, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Guidelines for translational research in heart failure. J Cardiovasc Transl Res 2015; 8:3-22. [PMID: 25604959 DOI: 10.1007/s12265-015-9606-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/06/2015] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) remains a major cause of death and hospitalization worldwide. Despite medical advances, the prognosis of HF remains poor and new therapeutic approaches are urgently needed. The development of new therapies for HF is hindered by inappropriate or incomplete preclinical studies. In these guidelines, we present a number of recommendations to enhance similarity between HF animal models and the human condition in order to reduce the chances of failure in subsequent clinical trials. We propose different approaches to address safety as well as efficacy of new therapeutic products. We also propose that good practice rules are followed from the outset so that the chances of eventual approval by regulatory agencies increase. We hope that these guidelines will help improve the translation of results from animal models to humans and thereby contribute to more successful clinical trials and development of new therapies for HF.
Collapse
|
70
|
Homan KT, Tesmer JJG. Molecular basis for small molecule inhibition of G protein-coupled receptor kinases. ACS Chem Biol 2015; 10:246-56. [PMID: 24984143 PMCID: PMC4301174 DOI: 10.1021/cb5003976] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Small molecules that inhibit the protein kinase A, G, and C (AGC) family of serine/threonine kinases can exert profound effects on cell homeostasis and thereby regulate fundamental processes such as heart rate, blood pressure, and metabolism, but there is not yet a clinically approved drug in the United States selective for a member of this family. One subfamily of AGC kinases, the G protein-coupled receptor (GPCR) kinases (GRKs), initiates the desensitization of active GPCRs. Of these, GRK2 has been directly implicated in the progression of heart failure. Thus, there is great interest in the identification of GRK2-specific chemical probes that can be further developed into therapeutics. Herein, we compare crystal structures of small molecule inhibitors in complex with GRK2 to those of highly selective compounds in complex with Rho-associated coiled-coil containing kinase 1 (ROCK1), a closely related AGC kinase. This analysis suggests that reduced hydrogen-bond formation with the hinge of the kinase domain, occupation of the hydrophobic subsite, and, consequently, higher buried surface area are key drivers of potency and selectivity among GRK inhibitors.
Collapse
Affiliation(s)
- Kristoff T. Homan
- Life Sciences Institute,
Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John J. G. Tesmer
- Life Sciences Institute,
Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
71
|
Abstract
SIGNIFICANCE Heart failure (HF) is a common end point for many underlying cardiovascular diseases. Down-regulation and desensitization of β-adrenergic receptors (β-AR) caused by G-protein-coupled receptor (GPCR) kinase 2 (GRK2) are prominent features of HF. Recent Advances and Critical Issues: Significant progress has been made to understand the pathological role of GRK2 in the heart both as a GPCR kinase and as a molecule that can exert GPCR-independent effects. Inhibition of cardiac GRK2 has proved to be therapeutic in the failing heart and may offer synergistic and additional benefits to β-blocker therapy. However, the mechanisms of how GRK2 directly contributes to the pathogenesis of HF need further investigation, and additional verification of the mechanistic details are needed before GRK2 inhibition can be used for the treatment of HF. FUTURE DIRECTIONS The newly identified characteristics of GRK2, including the S-nitrosylation of GRK2 and the localization of GRK2 on mitochondria, merit further investigation. They may contribute to it being a pro-death kinase and result in HF under stressed conditions through regulation of intracellular signaling, including cardiac reduction-oxidation (redox) balance. A thorough understanding of the functions of GRK2 in the heart is necessary in order to finalize it as a candidate for drug development.
Collapse
Affiliation(s)
- Zheng Maggie Huang
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine , Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
72
|
|
73
|
Femminella GD, Barrese V, Ferrara N, Rengo G. Tailoring therapy for heart failure: the pharmacogenomics of adrenergic receptor signaling. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:267-73. [PMID: 25276090 PMCID: PMC4175026 DOI: 10.2147/pgpm.s49799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heart failure is one of the leading causes of mortality in Western countries, and β-blockers are a cornerstone of its treatment. However, the response to these drugs is variable among individuals, which might be explained, at least in part, by genetic differences. Pharmacogenomics is the study of genetic contributions to drug response variability in order to provide evidence for a tailored therapy in an individual patient. Several studies have investigated the pharmacogenomics of the adrenergic receptor system and its role in the context of the use of β-blockers in treating heart failure. In this review, we will focus on the most significant polymorphisms described in the literature involving adrenergic receptors and adrenergic receptor-related proteins, as well as genetic variations influencing β-blocker metabolism.
Collapse
Affiliation(s)
| | - Vincenzo Barrese
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy ; Division of Biomedical Sciences, St George's University of London, London, UK
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University, Naples, Italy ; "Salvatore Maugeri" Foundation - IRCCS - Scientific Institute of Telese Terme, Telese Terme, Benevento, Italy
| | - Giuseppe Rengo
- "Salvatore Maugeri" Foundation - IRCCS - Scientific Institute of Telese Terme, Telese Terme, Benevento, Italy
| |
Collapse
|
74
|
Zacchigna S, Zentilin L, Giacca M. Adeno-associated virus vectors as therapeutic and investigational tools in the cardiovascular system. Circ Res 2014; 114:1827-46. [PMID: 24855205 DOI: 10.1161/circresaha.114.302331] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of vectors based on the small parvovirus adeno-associated virus has gained significant momentum during the past decade. Their high efficiency of transduction of postmitotic tissues in vivo, such as heart, brain, and retina, renders these vectors extremely attractive for several gene therapy applications affecting these organs. Besides functional correction of different monogenic diseases, the possibility to drive efficient and persistent transgene expression in the heart offers the possibility to develop innovative therapies for prevalent conditions, such as ischemic cardiomyopathy and heart failure. Therapeutic genes are not only restricted to protein-coding complementary DNAs but also include short hairpin RNAs and microRNA genes, thus broadening the spectrum of possible applications. In addition, several spontaneous or engineered variants in the virus capsid have recently improved vector efficiency and expanded their tropism. Apart from their therapeutic potential, adeno-associated virus vectors also represent outstanding investigational tools to explore the function of individual genes or gene combinations in vivo, thus providing information that is conceptually similar to that obtained from genetically modified animals. Finally, their single-stranded DNA genome can drive homology-directed gene repair at high efficiency. Here, we review the main molecular characteristics of adeno-associated virus vectors, with a particular view to their applications in the cardiovascular field.
Collapse
Affiliation(s)
- Serena Zacchigna
- From the Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (S.Z., L.Z., M.G.); and Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy (S.Z., M.G.)
| | - Lorena Zentilin
- From the Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (S.Z., L.Z., M.G.); and Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy (S.Z., M.G.)
| | - Mauro Giacca
- From the Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (S.Z., L.Z., M.G.); and Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy (S.Z., M.G.).
| |
Collapse
|
75
|
de Lucia C, Femminella GD, Gambino G, Pagano G, Allocca E, Rengo C, Silvestri C, Leosco D, Ferrara N, Rengo G. Adrenal adrenoceptors in heart failure. Front Physiol 2014; 5:246. [PMID: 25071591 PMCID: PMC4084669 DOI: 10.3389/fphys.2014.00246] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 06/13/2014] [Indexed: 01/08/2023] Open
Abstract
Heart failure (HF) is a chronic clinical syndrome characterized by the reduction in left ventricular (LV) function and it represents one of the most important causes of morbidity and mortality worldwide. Despite considerable advances in pharmacological treatment, HF represents a severe clinical and social burden. Sympathetic outflow, characterized by increased circulating catecholamines (CA) biosynthesis and secretion, is peculiar in HF and sympatholytic treatments (as β-blockers) are presently being used for the treatment of this disease. Adrenal gland secretes Epinephrine (80%) and Norepinephrine (20%) in response to acetylcholine stimulation of nicotinic cholinergic receptors on the chromaffin cell membranes. This process is regulated by adrenergic receptors (ARs): α2ARs inhibit CA release through coupling to inhibitory Gi-proteins, and β ARs (mainly β2ARs) stimulate CA release through coupling to stimulatory Gs-proteins. All ARs are G-protein-coupled receptors (GPCRs) and GPCR kinases (GRKs) regulate their signaling and function. Adrenal GRK2-mediated α2AR desensitization and downregulation are increased in HF and seem to be a fundamental regulator of CA secretion from the adrenal gland. Consequently, restoration of adrenal α2AR signaling through the inhibition of GRK2 is a fascinating sympatholytic therapeutic strategy for chronic HF. This strategy could have several significant advantages over existing HF pharmacotherapies minimizing side-effects on extra-cardiac tissues and reducing the chronic activation of the renin–angiotensin–aldosterone and endothelin systems. The role of adrenal ARs in regulation of sympathetic hyperactivity opens interesting perspectives in understanding HF pathophysiology and in the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Claudio de Lucia
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Grazia D Femminella
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Giuseppina Gambino
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Gennaro Pagano
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Elena Allocca
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Carlo Rengo
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy ; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme Telese Terme, Italy
| | - Candida Silvestri
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Dario Leosco
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Nicola Ferrara
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy ; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme Telese Terme, Italy
| | - Giuseppe Rengo
- Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme Telese Terme, Italy
| |
Collapse
|
76
|
Woodall MC, Ciccarelli M, Woodall BP, Koch WJ. G protein-coupled receptor kinase 2: a link between myocardial contractile function and cardiac metabolism. Circ Res 2014; 114:1661-70. [PMID: 24812353 DOI: 10.1161/circresaha.114.300513] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Heart failure (HF) causes a tremendous burden on the worldwide healthcare system, affecting >23 million people. There are many cardiovascular disorders that contribute to the development of HF and multiple risk factors that accelerate its occurrence, but regardless of its underlying cause, HF is characterized by a marked decrease in myocardial contractility and loss of pump function. One biomarker molecule consistently shown to be upregulated in human HF and several animal models is G protein-coupled receptor kinase-2 (GRK2), a kinase originally discovered to be involved in G protein-coupled receptor desensitization, especially β-adrenergic receptors. Higher levels of GRK2 can impair β-adrenergic receptor-mediated inotropic reserve and its inhibition, or molecular reduction has shown to improve pump function in several animal models including a preclinical pig model of HF. Recently, nonclassical roles for GRK2 in cardiovascular disease have been described, including negative regulation of insulin signaling, a role in myocyte cell survival and apoptotic signaling, and it has been shown to be localized in/on mitochondria. These new roles of GRK2 suggest that GRK2 may be a nodal link in the myocyte, influencing both cardiac contractile function and cell metabolism and survival and contributing to HF independent of its canonical role in G protein-coupled receptor desensitization. In this review, classical and nonclassical roles for GRK2 will be discussed, focusing on recently discovered roles for GRK2 in cardiomyocyte metabolism and the effects that these roles may have on myocardial contractile function and HF development.
Collapse
Affiliation(s)
- Meryl C Woodall
- From the Department of Pharmacology, Center for Translational Medicine, Temple University, Philadelphia, PA (M.C.W., B.P.W., W.J.K.); and Department of Medicine and Surgery, University of Salerno, Salerno, Italy (M.C.)
| | | | | | | |
Collapse
|
77
|
Fargnoli AS, Mu A, Katz MG, Williams RD, Margulies KB, Weiner DB, Yang S, Bridges CR. Anti-inflammatory loaded poly-lactic glycolic acid nanoparticle formulations to enhance myocardial gene transfer: an in-vitro assessment of a drug/gene combination therapeutic approach for direct injection. J Transl Med 2014; 12:171. [PMID: 24934216 PMCID: PMC4068839 DOI: 10.1186/1479-5876-12-171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/10/2014] [Indexed: 12/21/2022] Open
Abstract
Background Cardiac gene therapy for heart disease is a major translational research area with potential, yet problems with safe and efficient gene transfer into cardiac muscle remain unresolved. Existing methodology to increase vector uptake include modifying the viral vector, non-viral particle encapsulation and or delivery with device systems. These advanced methods have made improvements, however fail to address the key problem of inflammation in the myocardium, which is known to reduce vector uptake and contribute to immunogenic adverse events. Here we propose an alternative method to co-deliver anti-inflammatory drugs in a controlled release polymer with gene product to improve therapeutic effects. Methods A robust, double emulsion production process was developed to encapsulate drugs into nanoparticles. Briefly in this proof of concept study, aspirin and prednisolone anti-inflammatory drugs were encapsulated in various poly-lactic glycolic acid polymer (PLGA) formulations. The resultant particle systems were characterized, co-delivered with GFP plasmid, and evaluated in harvested myocytes in culture for uptake. Results High quality nanoparticles were harvested from multiple production runs, with an average 64 ± 10 mg yield. Four distinct particle drug system combinations were characterized and evaluated in vitro: PLGA(50:50) Aspirin, PLGA(65:35) Prednisolone, PLGA(65:35) Aspirin and PLGA(50:50) Prednisolone Particles consisted of spherical shape with a narrow size distribution 265 ± 104 nm as found in scanning electron microscopy imaging. Prednisolone particles regardless of PLGA type were found on average ≈ 100 nm smaller than the aspirin types. All four groups demonstrated high zeta potential stability and re-constitution testing prior to in vitro. In vitro results demonstrated co uptake of GFP plasmid (green) and drug loaded particles (red) in culture with no incidence of toxicity. Conclusions Nano formulated anti-inflammatories in combination with standalone gene product therapy may offer a clinical solution to maximize cardiac gene therapy product effects while minimizing the risk of the host response in the inflammatory myocardial environment.
Collapse
Affiliation(s)
- Anthony S Fargnoli
- Thoracic and Cardiovascular Surgery, Sanger Heart & Vascular Institute, Carolinas Healthcare System, Charlotte, NC, USA.
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Katz MG, Fargnoli AS, Williams RD, Bridges CR. Gene therapy delivery systems for enhancing viral and nonviral vectors for cardiac diseases: current concepts and future applications. Hum Gene Ther 2014; 24:914-27. [PMID: 24164239 DOI: 10.1089/hum.2013.2517] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene therapy is one of the most promising fields for developing new treatments for the advanced stages of ischemic and monogenetic, particularly autosomal or X-linked recessive, cardiomyopathies. The remarkable ongoing efforts in advancing various targets have largely been inspired by the results that have been achieved in several notable gene therapy trials, such as the hemophilia B and Leber's congenital amaurosis. Rate-limiting problems preventing successful clinical application in the cardiac disease area, however, are primarily attributable to inefficient gene transfer, host responses, and the lack of sustainable therapeutic transgene expression. It is arguable that these problems are directly correlated with the choice of vector, dose level, and associated cardiac delivery approach as a whole treatment system. Essentially, a delicate balance exists in maximizing gene transfer required for efficacy while remaining within safety limits. Therefore, the development of safe, effective, and clinically applicable gene delivery techniques for selected nonviral and viral vectors will certainly be invaluable in obtaining future regulatory approvals. The choice of gene transfer vector, dose level, and the delivery system are likely to be critical determinants of therapeutic efficacy. It is here that the interactions between vector uptake and trafficking, delivery route means, and the host's physical limits must be considered synergistically for a successful treatment course.
Collapse
Affiliation(s)
- Michael G Katz
- Sanger Heart and Vascular Institute , Cannon Research Center, Carolinas HealthCare System, Charlotte, NC 28203
| | | | | | | |
Collapse
|
79
|
Scimia MC, Cannavo A, Koch WJ. Gene therapy for heart disease: molecular targets, vectors and modes of delivery to myocardium. Expert Rev Cardiovasc Ther 2014; 11:999-1013. [PMID: 23984926 DOI: 10.1586/14779072.2013.818813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Despite the numerous hurdles that gene therapy has encountered along the way, clinical trials over the last few years are showing promising results in many fields of medicine, including cardiology, where many targets are moving toward clinical development. In this review, the authors discuss the current state of the art in terms of clinical and preclinical development. They also examine vector technology and available vector-delivery strategies.
Collapse
Affiliation(s)
- Maria Cecilia Scimia
- Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, 3500 N Broad St, MERB 941, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
80
|
Kamal FA, Mickelsen DM, Wegman KM, Travers JG, Moalem J, Hammes SR, Smrcka AV, Blaxall BC. Simultaneous adrenal and cardiac g-protein-coupled receptor-gβγ inhibition halts heart failure progression. J Am Coll Cardiol 2014; 63:2549-2557. [PMID: 24703913 DOI: 10.1016/j.jacc.2014.02.587] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/10/2014] [Accepted: 02/25/2014] [Indexed: 12/29/2022]
Abstract
OBJECTIVES The authors propose simultaneous inhibition of Gβγ signaling in the heart and the adrenal gland as a novel therapeutic approach for heart failure (HF). BACKGROUND Elevated sympathetic nervous system activity is a salient characteristic of HF progression. It causes pathologic desensitization of β-adrenergic receptors (β-AR), facilitated predominantly through Gβγ-mediated signaling. The adrenal glands are key contributors to the chronically elevated plasma catecholamine levels observed in HF, where adrenal α2-AR feedback inhibitory function is impaired also through Gβγ-mediated signaling. METHODS We investigated the efficacy of a small molecule Gβγ inhibitor, gallein, in a clinically relevant, pressure-overload model of HF. RESULTS Daily gallein treatment (10 mg/kg/day), initiated 4 weeks after transverse aortic constriction, improved survival and cardiac function and attenuated cardiac remodeling. Mechanistically, gallein restored β-AR membrane density in cardiomyocytes, attenuated Gβγ-mediated G-protein-coupled receptor kinase 2-phosphoinositide 3-kinase γ membrane recruitment, and reduced Akt (protein kinase B) and glycogen synthase kinase 3β phosphorylation. Gallein also reduced circulating plasma catecholamine levels and catecholamine production in isolated mouse adrenal glands by restoring adrenal α2-AR feedback inhibition. In human adrenal endocrine tumors (pheochromocytoma), gallein attenuated catecholamine secretion, as well as G-protein-coupled receptor kinase 2 expression and membrane translocation. CONCLUSIONS These data suggest small molecule Gβγ inhibition as a systemic pharmacologic therapy for HF by simultaneously normalizing pathologic adrenergic/Gβγ signaling in both the heart and the adrenal gland. Our data also suggest important endocrine/cardiovascular interactions and a possible role for small molecule Gβγ inhibition in treating endocrine tumors such as pheochromocytoma, in addition to HF.
Collapse
Affiliation(s)
- Fadia A Kamal
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Deanne M Mickelsen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Katherine M Wegman
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joshua G Travers
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jacob Moalem
- Department of Surgery, University of Rochester Medical Center, Rochester, New York; Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Stephen R Hammes
- Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Alan V Smrcka
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Burns C Blaxall
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
81
|
Cannavo A, Rengo G, Liccardo D, Pironti G, Scimia MC, Scudiero L, De Lucia C, Ferrone M, Leosco D, Zambrano N, Koch WJ, Trimarco B, Esposito G. Prothymosin alpha protects cardiomyocytes against ischemia-induced apoptosis via preservation of Akt activation. Apoptosis 2014; 18:1252-61. [PMID: 23857453 DOI: 10.1007/s10495-013-0876-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The human prothymosin alpha (PTα) gene encodes a 12.5 kDa highly acidic nuclear protein that is widely expressed in mammalian tissues including the heart and importantly, is detectable also in blood serum. During apoptosis or necrosis, PTα changes its nuclear localization and is able to exert an important cytoprotective effect. Since the role of PTα in the heart has never been evaluated, the aim of the present study was to investigate the effects of PTα on cardiomyocytes during ischemic injury. Our data show that seven after myocardial infarction (MI), PTα expression levels are significantly increased both in blood serum and in cardiac tissue, and notably we observe that PTα translocates from the nuclei to cytoplasm and plasma membrane of cardiomyocytes following MI. Furthermore, in vitro experiments in cardiomyocytes, confirm that after 6 h of simulated ischemia (SI), PTα protein levels are upregulated compared to normoxic cells. Importantly, treatment of cardiomyocytes with a recombinant PTα (rPTα), during SI results in a significant decrease in the apoptotic response and in a robust increase in cell survival. Moreover, these effects are accompanied to a significant preservation of the activated levels of the anti-apoptotic serine-threonine kinase Akt. Consistent with our in vitro observation, rPTα-treated MI mice exhibit a strong reduction in infarct size at 24 h, compared to the MI control group and at the molecular level, PTα treatment induces activation of Akt. The present study provides for the first time the demonstration that PTα offers cardioprotection against ischemic injury by an Akt-dependent mechanism.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Abete P, Testa G, Della-Morte D, Gargiulo G, Galizia G, de Santis D, Magliocca A, Basile C, Cacciatore F. Treatment for chronic heart failure in the elderly: current practice and problems. Heart Fail Rev 2014; 18:529-51. [PMID: 23124913 DOI: 10.1007/s10741-012-9363-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Treatment for chronic heart failure (CHF) is strongly focused on evidence-based medicine. However, large trials are often far away from the "real world" of geriatric patients and their messages are poorly transferable to the clinical management of CHF elderly patients. Precipitating factors and especially non-cardiac comorbidity may decompensate CHF in the elderly. More importantly, drugs of first choice, such as angiotensin-converting enzyme inhibitors and β-blockers, are still underused and effective drugs on diastolic dysfunction are not available. Poor adherence to therapy, especially for cognitive and depression disorders, worsens the management. Electrical therapy is indicated, but attention to the older age groups with reduced life expectancy has to be paid. Physical exercise, stem cells, gene delivery, and new devices are encouraging, but definitive results are still not available. Palliative care plays a key role to the end-stage of the disease. Follow-up of CHF elderly patient is very important but tele-medicine is the future. Finally, self-care management, caregiver training, and multidimensional team represent the critical point of the treatment for CHF elderly patients.
Collapse
Affiliation(s)
- Pasquale Abete
- Dipartimento di Medicina Clinica, Scienze Cardiovascolari ed Immunologiche, Cattedra di Geriatria, Università degli Studi di Napoli Federico II, 80131 Naples, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Watari K, Nakaya M, Kurose H. Multiple functions of G protein-coupled receptor kinases. J Mol Signal 2014; 9:1. [PMID: 24597858 PMCID: PMC3973964 DOI: 10.1186/1750-2187-9-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/25/2014] [Indexed: 02/07/2023] Open
Abstract
Desensitization is a physiological feedback mechanism that blocks detrimental effects of persistent stimulation. G protein-coupled receptor kinase 2 (GRK2) was originally identified as the kinase that mediates G protein-coupled receptor (GPCR) desensitization. Subsequent studies revealed that GRK is a family composed of seven isoforms (GRK1–GRK7). Each GRK shows a differential expression pattern. GRK1, GRK4, and GRK7 are expressed in limited tissues. In contrast, GRK2, GRK3, GRK5, and GRK6 are ubiquitously expressed throughout the body. The roles of GRKs in GPCR desensitization are well established. When GPCRs are activated by their agonists, GRKs phosphorylate serine/threonine residues in the intracellular loops and the carboxyl-termini of GPCRs. Phosphorylation promotes translocation of β-arrestins to the receptors and inhibits further G protein activation by interrupting receptor-G protein coupling. The binding of β-arrestins to the receptors also helps to promote receptor internalization by clathrin-coated pits. Thus, the GRK-catalyzed phosphorylation and subsequent binding of β-arrestin to GPCRs are believed to be the common mechanism of GPCR desensitization and internalization. Recent studies have revealed that GRKs are also involved in the β-arrestin-mediated signaling pathway. The GRK-mediated phosphorylation of the receptors plays opposite roles in conventional G protein- and β-arrestin-mediated signaling. The GRK-catalyzed phosphorylation of the receptors results in decreased G protein-mediated signaling, but it is necessary for β-arrestin-mediated signaling. Agonists that selectively activate GRK/β-arrestin-dependent signaling without affecting G protein signaling are known as β-arrestin-biased agonists. Biased agonists are expected to have potential therapeutic benefits for various diseases due to their selective activation of favorable physiological responses or avoidance of the side effects of drugs. Furthermore, GRKs are recognized as signaling mediators that are independent of either G protein- or β-arrestin-mediated pathways. GRKs can phosphorylate non-GPCR substrates, and this is found to be involved in various physiological responses, such as cell motility, development, and inflammation. In addition to these effects, our group revealed that GRK6 expressed in macrophages mediates the removal of apoptotic cells (engulfment) in a kinase activity-dependent manner. These studies revealed that GRKs block excess stimulus and also induce cellular responses. Here, we summarized the involvement of GRKs in β-arrestin-mediated and G protein-independent signaling pathways.
Collapse
Affiliation(s)
| | | | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
84
|
Wang D, Zhong L, Nahid MA, Gao G. The potential of adeno-associated viral vectors for gene delivery to muscle tissue. Expert Opin Drug Deliv 2014; 11:345-364. [PMID: 24386892 PMCID: PMC4098646 DOI: 10.1517/17425247.2014.871258] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Muscle-directed gene therapy is rapidly gaining attention primarily because muscle is an easily accessible target tissue and is also associated with various severe genetic disorders. Localized and systemic delivery of recombinant adeno-associated virus (rAAV) vectors of several serotypes results in very efficient transduction of skeletal and cardiac muscles, which has been achieved in both small and large animals, as well as in humans. Muscle is the target tissue in gene therapy for many muscular dystrophy diseases, and may also be exploited as a biofactory to produce secretory factors for systemic disorders. Current limitations of using rAAVs for muscle gene transfer include vector size restriction, potential safety concerns such as off-target toxicity and the immunological barrier composing of pre-existing neutralizing antibodies and CD8(+) T-cell response against AAV capsid in humans. AREAS COVERED In this article, we will discuss basic AAV vector biology and its application in muscle-directed gene delivery, as well as potential strategies to overcome the aforementioned limitations of rAAV for further clinical application. EXPERT OPINION Delivering therapeutic genes to large muscle mass in humans is arguably the most urgent unmet demand in treating diseases affecting muscle tissues throughout the whole body. Muscle-directed, rAAV-mediated gene transfer for expressing antibodies is a promising strategy to combat deadly infectious diseases. Developing strategies to circumvent the immune response following rAAV administration in humans will facilitate clinical application.
Collapse
Affiliation(s)
- Dan Wang
- University of Massachusetts Medical School, Gene Therapy Center, 368 Plantation Street, AS6-2049, Worcester, MA 01605, USA
- University of Massachusetts Medical School, Department of Microbiology and Physiology Systems, Worcester, MA 01605, USA
| | - Li Zhong
- University of Massachusetts Medical School, Gene Therapy Center, 368 Plantation Street, AS6-2049, Worcester, MA 01605, USA
- University of Massachusetts Medical School, Division of Hematology/Oncology, Department of Pediatrics, Worcester, MA 01605, USA
| | - M Abu Nahid
- University of Massachusetts Medical School, Gene Therapy Center, 368 Plantation Street, AS6-2049, Worcester, MA 01605, USA
- University of Massachusetts Medical School, Department of Microbiology and Physiology Systems, Worcester, MA 01605, USA
| | - Guangping Gao
- University of Massachusetts Medical School, Gene Therapy Center, 368 Plantation Street, AS6-2049, Worcester, MA 01605, USA
- University of Massachusetts Medical School, Department of Microbiology and Physiology Systems, Worcester, MA 01605, USA
- Sichuan University, West China Hospital, State Key Laboratory of Biotherapy, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
85
|
The road ahead: working towards effective clinical translation of myocardial gene therapies. Ther Deliv 2014; 5:39-51. [PMID: 24341816 DOI: 10.4155/tde.13.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
During the last two decades the fields of molecular and cellular cardiology, and more recently molecular cardiac surgery, have developed rapidly. The concept of delivering cDNA encoding a therapeutic gene to cardiomyocytes using a vector system with substantial cardiac tropism, allowing for long-term expression of a therapeutic protein, has moved from hypothesis to bench to clinical application. However, the clinical results to date are still disappointing. The ideal gene transfer method should be explored in clinically relevant animal models of heart disease to evaluate the relative roles of specific molecular pathways in disease pathogenesis, helping to validate the potential targets for therapeutic intervention. Successful clinical cardiovascular gene therapy also requires the use of nonimmunogenic cardiotropic vectors capable of expressing the requisite amount of therapeutic protein in vivo and in situ. Depending on the desired application either regional or global myocardial gene delivery is required. Cardiac-specific delivery techniques incorporating mapping technologies for regional delivery and highly efficient methodologies for global delivery should improve the precision and specificity of gene transfer to the areas of interest and minimize collateral organ gene expression.
Collapse
|
86
|
Abstract
INTRODUCTION Cardiovascular gene therapy is the third most popular application for gene therapy, representing 8.4% of all gene therapy trials as reported in 2012 estimates. Gene therapy in cardiovascular disease is aiming to treat heart failure from ischemic and non-ischemic causes, peripheral artery disease, venous ulcer, pulmonary hypertension, atherosclerosis and monogenic diseases, such as Fabry disease. AREAS COVERED In this review, we will focus on elucidating current molecular targets for the treatment of ventricular dysfunction following myocardial infarction (MI). In particular, we will focus on the treatment of i) the clinical consequences of it, such as heart failure and residual myocardial ischemia and ii) etiological causes of MI (coronary vessels atherosclerosis, bypass venous graft disease, in-stent restenosis). EXPERT OPINION We summarise the scheme of the review and the molecular targets either already at the gene therapy clinical trial phase or in the pipeline. These targets will be discussed below. Following this, we will focus on what we believe are the 4 prerequisites of success of any gene target therapy: safety, expression, specificity and efficacy (SESE).
Collapse
Affiliation(s)
- Maria C Scimia
- Temple University, Translational Medicine/Pharmacology , 3500 N. Broad Street, Philadelphia, 19140 , USA
| | | | | |
Collapse
|
87
|
Femminella GD, de Lucia C, Iacotucci P, Formisano R, Petraglia L, Allocca E, Ratto E, D'Amico L, Rengo C, Pagano G, Bonaduce D, Rengo G, Ferrara N. Neuro-hormonal effects of physical activity in the elderly. Front Physiol 2013; 4:378. [PMID: 24391595 PMCID: PMC3868730 DOI: 10.3389/fphys.2013.00378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/04/2013] [Indexed: 01/14/2023] Open
Abstract
Thanks to diagnostic and therapeutic advances, the elderly population is continuously increasing in the western countries. Accordingly, the prevalence of most chronic age-related diseases will increase considerably in the next decades, thus it will be necessary to implement effective preventive measures to face this epidemiological challenge. Among those, physical activity exerts a crucial role, since it has been proven to reduce the risk of cardiovascular diseases, diabetes, obesity, cognitive impairment and cancer. The favorable effects of exercise on cardiovascular homeostasis can be at least in part ascribed to the modulation of the neuro-hormonal systems implicated in cardiovascular pathophysiology. In the elderly, exercise has been shown to affect catecholamine secretion and biosynthesis, to positively modulate the renin-angiotensin-aldosterone system and to reduce the levels of plasma brain natriuretic peptides. Moreover, drugs modulating the neuro-hormonal systems may favorably affect physical capacity in the elderly. Thus, efforts should be made to actually make physical activity become part of the therapeutic tools in the elderly.
Collapse
Affiliation(s)
- Grazia D Femminella
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Claudio de Lucia
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Paola Iacotucci
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Roberto Formisano
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Laura Petraglia
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Elena Allocca
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Enza Ratto
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Loreta D'Amico
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Carlo Rengo
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy ; Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN) Telese Terme, Italy
| | - Gennaro Pagano
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Domenico Bonaduce
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy ; Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN) Telese Terme, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy ; Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN) Telese Terme, Italy
| |
Collapse
|
88
|
Leosco D, Parisi V, Femminella GD, Formisano R, Petraglia L, Allocca E, Bonaduce D. Effects of exercise training on cardiovascular adrenergic system. Front Physiol 2013; 4:348. [PMID: 24348425 PMCID: PMC3842896 DOI: 10.3389/fphys.2013.00348] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/12/2013] [Indexed: 12/20/2022] Open
Abstract
In heart failure (HF), exercise has been shown to modulate cardiac sympathetic hyperactivation which is one of the earliest features of neurohormonal derangement in this syndrome and correlates with adverse outcome. An important molecular alteration related to chronic sympathetic overstimulation in HF is represented by cardiac β-adrenergic receptor (β-AR) dysfunction. It has been demonstrated that exercise reverses β-AR dysfunction by restoring cardiac receptor membrane density and G-protein-dependent adenylyl cyclase activation. In particular, several evidence indicate that exercise reduces levels of cardiac G-protein coupled receptor kinase-2 (GRK2) which is known to be involved in both β1-AR and β2-AR dysregulation in HF. Similar alterations of β-AR system have been described also in the senescent heart. It has also been demonstrated that exercise training restores adrenal GRK2/α-2AR/catecholamine (CA) production axis. At vascular level, exercise shows a therapeutic effect on age-related impairment of vascular reactivity to adrenergic stimulation and restores β-AR-dependent vasodilatation by increasing vascular β-AR responsiveness and reducing endothelial GRK2 activity. Sympathetic nervous system overdrive is thought to account for >50% of all cases of hypertension and a lack of balance between parasympathetic and sympathetic modulation has been observed in hypertensive subjects. Non-pharmacological, lifestyle interventions have been associated with reductions in SNS overactivity and blood pressure in hypertension. Several evidence have highlighted the blood pressure lowering effects of aerobic endurance exercise in patients with hypertension and the significant reduction in sympathetic neural activity has been reported as one of the main mechanisms explaining the favorable effects of exercise on blood pressure control.
Collapse
Affiliation(s)
- Dario Leosco
- Department of Translational Medical Sciences, University of Naples "Federico II," Naples, Italy
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples "Federico II," Naples, Italy
| | - Grazia D Femminella
- Department of Translational Medical Sciences, University of Naples "Federico II," Naples, Italy
| | - Roberto Formisano
- Department of Translational Medical Sciences, University of Naples "Federico II," Naples, Italy
| | - Laura Petraglia
- Department of Translational Medical Sciences, University of Naples "Federico II," Naples, Italy
| | - Elena Allocca
- Department of Translational Medical Sciences, University of Naples "Federico II," Naples, Italy
| | - Domenico Bonaduce
- Department of Translational Medical Sciences, University of Naples "Federico II," Naples, Italy
| |
Collapse
|
89
|
Bathgate-Siryk A, Dabul S, Pandya K, Walklett K, Rengo G, Cannavo A, De Lucia C, Liccardo D, Gao E, Leosco D, Koch WJ, Lymperopoulos A. Negative impact of β-arrestin-1 on post-myocardial infarction heart failure via cardiac and adrenal-dependent neurohormonal mechanisms. Hypertension 2013; 63:404-12. [PMID: 24218435 DOI: 10.1161/hypertensionaha.113.02043] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
β-Arrestin (βarr)-1 and β-arrestin-2 (βarrs) are universal G-protein-coupled receptor adapter proteins that negatively regulate cardiac β-adrenergic receptor (βAR) function via βAR desensitization and downregulation. In addition, they mediate G-protein-independent βAR signaling, which might be beneficial, for example, antiapoptotic, for the heart. However, the specific role(s) of each βarr isoform in cardiac βAR dysfunction, the molecular hallmark of chronic heart failure (HF), remains unknown. Furthermore, adrenal βarr1 exacerbates HF by chronically enhancing adrenal production and hence circulating levels of aldosterone and catecholamines. Herein, we sought to delineate specific roles of βarr1 in post-myocardial infarction (MI) HF by testing the effects of βarr1 genetic deletion on normal and post-MI cardiac function and morphology. We studied βarr1 knockout (βarr1KO) mice alongside wild-type controls under normal conditions and after surgical MI. Normal (sham-operated) βarr1KO mice display enhanced βAR-dependent contractility and post-MI βarr1KO mice enhanced overall cardiac function (and βAR-dependent contractility) compared with wild type. Post-MI βarr1KO mice also show increased survival and decreased cardiac infarct size, apoptosis, and adverse remodeling, as well as circulating catecholamines and aldosterone, compared with post-MI wild type. The underlying mechanisms, on one hand, improved cardiac βAR signaling and function, as evidenced by increased βAR density and procontractile signaling, via reduced cardiac βAR desensitization because of cardiac βarr1 absence, and, on the other hand, decreased production leading to lower circulating levels of catecholamines and aldosterone because of adrenal βarr1 absence. Thus, βarr1, via both cardiac and adrenal effects, is detrimental for cardiac structure and function and significantly exacerbates post-MI HF.
Collapse
Affiliation(s)
- Ashley Bathgate-Siryk
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, 3200 S University Dr, HPD Bldg/Room 1338, Fort Lauderdale, FL 33328.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Cho SY, Lee BH, Jung H, Yun CS, Ha JD, Kim HR, Chae CH, Lee JH, Seo HW, Oh KS. Design and synthesis of novel 3-(benzo[d]oxazol-2-yl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)pyridin-2-amine derivatives as selective G-protein-coupled receptor kinase-2 and -5 inhibitors. Bioorg Med Chem Lett 2013; 23:6711-6. [PMID: 24210504 DOI: 10.1016/j.bmcl.2013.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/14/2013] [Accepted: 10/18/2013] [Indexed: 10/26/2022]
Abstract
G-protein-coupled receptor kinase (GRK)-2 and -5 are emerging therapeutic targets for the treatment of cardiovascular disease. In our efforts to discover novel small molecules to inhibit GRK-2 and -5, a class of compound based on 3-(benzo[d]oxazol-2-yl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)pyridin-2-amine was identified as a novel hit by high throughput screening campaign. Structural modification of parent benzoxazole scaffolds by introducing substituents on phenyl displayed potent inhibitory activities toward GRK-2 and -5.
Collapse
Affiliation(s)
- Sung Yun Cho
- Research Center for Medicinal Chemistry, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 305-343, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Huang ZM, Gao E, Fonseca FV, Hayashi H, Shang X, Hoffman NE, Chuprun JK, Tian X, Tilley DG, Madesh M, Lefer DJ, Stamler JS, Koch WJ. Convergence of G protein-coupled receptor and S-nitrosylation signaling determines the outcome to cardiac ischemic injury. Sci Signal 2013; 6:ra95. [PMID: 24170934 DOI: 10.1126/scisignal.2004225] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Heart failure caused by ischemic heart disease is a leading cause of death in the developed world. Treatment is currently centered on regimens involving G protein-coupled receptors (GPCRs) or nitric oxide (NO). These regimens are thought to target distinct molecular pathways. We showed that these pathways were interdependent and converged on the effector GRK2 (GPCR kinase 2) to regulate myocyte survival and function. Ischemic injury coupled to GPCR activation, including GPCR desensitization and myocyte loss, required GRK2 activation, and we found that cardioprotection mediated by inhibition of GRK2 depended on endothelial nitric oxide synthase (eNOS) and was associated with S-nitrosylation of GRK2. Conversely, the cardioprotective effects of NO bioactivity were absent in a knock-in mouse with a form of GRK2 that cannot be S-nitrosylated. Because GRK2 and eNOS inhibit each other, the balance of the activities of these enzymes in the myocardium determined the outcome to ischemic injury. Our findings suggest new insights into the mechanism of action of classic drugs used to treat heart failure and new therapeutic approaches to ischemic heart disease.
Collapse
Affiliation(s)
- Z Maggie Huang
- 1Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
Heart failure (HF), the leading cause of death in the western world, develops when a cardiac injury or insult impairs the ability of the heart to pump blood and maintain tissue perfusion. It is characterized by a complex interplay of several neurohormonal mechanisms that become activated in the syndrome to try and sustain cardiac output in the face of decompensating function. Perhaps the most prominent among these neurohormonal mechanisms is the adrenergic (or sympathetic) nervous system (ANS), whose activity and outflow are enormously elevated in HF. Acutely, and if the heart works properly, this activation of the ANS will promptly restore cardiac function. However, if the cardiac insult persists over time, chances are the ANS will not be able to maintain cardiac function, the heart will progress into a state of chronic decompensated HF, and the hyperactive ANS will continue to push the heart to work at a level much higher than the cardiac muscle can handle. From that point on, ANS hyperactivity becomes a major problem in HF, conferring significant toxicity to the failing heart and markedly increasing its morbidity and mortality. The present review discusses the role of the ANS in cardiac physiology and in HF pathophysiology, the mechanisms of regulation of ANS activity and how they go awry in chronic HF, methods of measuring ANS activity in HF, the molecular alterations in heart physiology that occur in HF, along with their pharmacological and therapeutic implications, and, finally, drugs and other therapeutic modalities used in HF treatment that target or affect the ANS and its effects on the failing heart.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft. Lauderdale, FL 33328-2018, USA.
| | | | | |
Collapse
|
93
|
Siryk-Bathgate A, Dabul S, Lymperopoulos A. Current and future G protein-coupled receptor signaling targets for heart failure therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:1209-22. [PMID: 24143078 PMCID: PMC3797606 DOI: 10.2147/dddt.s35905] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although there have been significant advances in the therapy of heart failure in recent decades, such as the introduction of β-blockers and antagonists of the renin–angiotensin–aldosterone system, this devastating disease still carries tremendous morbidity and mortality in the western world. G protein-coupled receptors, such as β-adrenergic and angiotensin II receptors, located in the membranes of all three major cardiac cell types, ie, myocytes, fibroblasts, and endothelial cells, play crucial roles in regulation of cardiac function in health and disease. Their importance is reflected by the fact that, collectively, they represent the direct targets of over one-third of the currently approved cardiovascular drugs used in clinical practice. Over the past few decades, advances in elucidation of the signaling pathways they elicit, specifically in the heart, have led to identification of an increasing number of new molecular targets for heart failure therapy. Here, we review these possible targets for heart failure therapy that have emerged from studies of cardiac G protein-coupled receptor signaling in health and disease, with a particular focus on the main cardiac G protein-coupled receptor types, ie, the β-adrenergic and the angiotensin II type 1 receptors. We also highlight key issues that need to be addressed to improve the chances of success of novel therapies directed against these targets.
Collapse
Affiliation(s)
- Ashley Siryk-Bathgate
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, USA
| | | | | |
Collapse
|
94
|
Rengo G, Parisi V, Femminella GD, Pagano G, de Lucia C, Cannavo A, Liccardo D, Giallauria F, Scala O, Zincarelli C, Perrone Filardi P, Ferrara N, Leosco D. Molecular aspects of the cardioprotective effect of exercise in the elderly. Aging Clin Exp Res 2013; 25:487-97. [PMID: 23949971 DOI: 10.1007/s40520-013-0117-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/09/2013] [Indexed: 01/01/2023]
Abstract
Aging is a well-recognized risk factor for several different forms of cardiovascular disease. However, mechanisms by which aging exerts its negative effect on outcome have been only partially clarified. Numerous evidence indicate that aging is associated with alterations of several mechanisms whose integrity confers protective action on the heart and vasculature. The present review aims to focus on the beneficial effects of exercise, which plays a pivotal role in primary and secondary prevention of cardiovascular diseases, in counteracting age-related deterioration of protective mechanisms that are crucially involved in the homeostasis of cardiovascular system. In this regard, animal and human studies indicate that exercise training is able: (1) to improve the inotropic reserve of the aging heart through restoration of cardiac β-adrenergic receptor signaling; (2) to rescue the mechanism of cardiac preconditioning and angiogenesis whose integrity has been shown to confer cardioprotection against ischemia and to improve post-myocardial infarction left ventricular remodeling; (3) to counteract age-related reduction of antioxidant systems that is associated to decreased cellular resistance to reactive oxygen species accumulation. Moreover, this review also describes the molecular effects induced by different exercise training protocols (endurance vs. resistance) in the attempt to better explain what kind of exercise strategy could be more efficacious to improve cardiovascular performance in the elderly population.
Collapse
Affiliation(s)
- Giuseppe Rengo
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, via Sergio Pansini, 5, 80131, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Ciccarelli M, Sorriento D, Franco A, Fusco A, Giudice CD, Annunziata R, Cipolletta E, Monti MG, Dorn GW, Trimarco B, Iaccarino G. Endothelial G protein-coupled receptor kinase 2 regulates vascular homeostasis through the control of free radical oxygen species. Arterioscler Thromb Vasc Biol 2013; 33:2415-24. [PMID: 23950144 PMCID: PMC4262246 DOI: 10.1161/atvbaha.113.302262] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The role of endothelial G protein-coupled receptor kinase 2 (GRK2) was investigated in mice with selective deletion of the kinase in the endothelium (Tie2-CRE/GRK2(fl/fl)). APPROACH AND RESULTS Aortas from Tie2-CRE/GRK2(fl/fl) presented functional and structural alterations as compared with control GRK2(fl/fl) mice. In particular, vasoconstriction was blunted to different agonists, and collagen and elastic rearrangement and macrophage infiltration were observed. In primary cultured endothelial cells deficient for GRK2, mitochondrial reactive oxygen species was increased, leading to expression of cytokines. Chronic treatment with a reactive oxygen species scavenger in mice corrected the vascular phenotype by recovering vasoconstriction, structural abnormalities, and reducing macrophage infiltration. CONCLUSIONS These results demonstrate that GRK2 removal compromises vascular phenotype and integrity by increasing endothelial reactive oxygen species production.
Collapse
Affiliation(s)
- Michele Ciccarelli
- University of Salerno, Salerno, Italy
- Temple University, Philadelphia, USA
| | | | | | | | | | | | | | | | | | | | - Guido Iaccarino
- University of Salerno, Salerno, Italy
- IRCCS “multimedica”, Milan, Italy
| |
Collapse
|
96
|
Cannavo A, Liccardo D, Koch WJ. Targeting cardiac β-adrenergic signaling via GRK2 inhibition for heart failure therapy. Front Physiol 2013; 4:264. [PMID: 24133451 PMCID: PMC3783981 DOI: 10.3389/fphys.2013.00264] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/06/2013] [Indexed: 12/23/2022] Open
Abstract
Cardiac cells, like those of the other tissues, undergo regulation through membrane-bound proteins known as G protein-coupled receptors (GPCRs). β-adrenergic receptors (βARs) are key GPCRs expressed on cardiomyocytes and their role is crucial in cardiac physiology since they regulate inotropic and chronotropic responses of the sympathetic nervous system (SNS). In compromised conditions such as heart failure (HF), chronic βAR hyperstimulation occurs via SNS activation resulting in receptor dysregulation and down-regulation and consequently there is a marked reduction of myocardial inotropic reserve and continued loss of pump function. Data accumulated over the last two decades indicates that a primary culprit in initiating and maintain βAR dysfunction in the injured and stressed heart is GPCR kinase 2 (GRK2), which was originally known as βARK1 (for βAR kinase). GRK2 is up-regulated in the failing heart due to chronic SNS activity and targeting this kinase has emerged as a novel therapeutic strategy in HF. Indeed, its inhibition or genetic deletion in several disparate animal models of HF including a pre-clinical pig model has shown that GRK2 targeting improves functional and morphological parameters of the failing heart. Moreover, non-βAR properties of GRK2 appear to also contribute to its pathological effects and thus, its inhibition will likely complement existing therapies such as βAR blockade. This review will explore recent research regarding GRK2 inhibition; in particular it will focus on the GRK2 inhibitor peptide known as βARKct, which represents new hope in the treatment against HF progression.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Center for Translational Medicine, Department of Pharmacology, Temple UniversityPhiladelphia, PA, USA
| | - Daniela Liccardo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of NaplesNaples, Italy
| | - Walter J. Koch
- Center for Translational Medicine, Department of Pharmacology, Temple UniversityPhiladelphia, PA, USA
| |
Collapse
|
97
|
Cardiac progenitor cells engineered with βARKct have enhanced β-adrenergic tolerance. Mol Ther 2013; 22:178-85. [PMID: 24002692 DOI: 10.1038/mt.2013.200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/21/2013] [Indexed: 01/08/2023] Open
Abstract
Stem cell survival and retention in myocardium after injury following adoptive transfer is low. Elevated catecholamine levels coinciding with myocardial injury adversely affect cardiac progenitor cell (CPC) survival. The G protein-coupled receptor kinase 2 (GRK2)-derived inhibitory peptide, βARKct, enhance myocyte contractility, survival, and normalize the neurohormonal axis in failing heart, however salutary effects of βARKct on CPC survival and proliferation are unknown. Herein, we investigated whether the protective effects of βARKct expression seen in the failing heart relate to CPCs. Modified CPCs expressing βARKct enhanced AKT/eNOS signaling through protective β2-adrenergic receptors (β2-ARs). In addition, to the actions of βARKct expression on β2- AR signaling, pharmacologic inhibition of GRK2 also increased β2-AR signaling in nonengineered CPCs (lacking βARKct) but had limited effects in βARKct engineered CPCs providing evidence for the strength of the βARKct in inhibiting GRK2 in these cells. Increased proliferation and metabolic activity were observed in βARKct-engineered CPCs following catecholamine stimulation indicating improved adrenergic tolerance. βARKct modification of CPCs increased survival and proliferation following adoptive transfer in an acute myocardial infarction model concomitant with increased expression of β-AR. Thus, βARKct engineering of CPCs promotes survival and proliferation of injected cells following myocardial infarction, which includes improved β-adrenergic tolerance essential for stem cell survival.
Collapse
|
98
|
Gao WQ, Han CG, Lu XC, Liu YX, Hui HP, Wang H. GRK 2 level in peripheral blood lymphocytes of elderly patients with acute myocardial infarction. J Geriatr Cardiol 2013; 10:281-285. [PMID: 24133517 PMCID: PMC3796703 DOI: 10.3969/j.issn.1671-5411.2013.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/22/2013] [Accepted: 06/22/2013] [Indexed: 06/02/2023] Open
Abstract
OBJECTIVE To investigate the G protein-coupled receptor kinase 2 (GRK 2) level in peripheral blood lymphocytes with cardiac function in elderly patients with acute myocardial infarction. METHODS This study enrolled 40 patients with acute ST-segment elevation myocardial infarction (STEMI) and 40 patients with unstable angina. All patients were 65 years or older. Cardiac function was evaluated by echocardiography, and the GRK 2 level in peripheral blood lymphocytes was measured. Patients with STEMI were followed up for 2 years. RESULTS The GRK 2 level in peripheral blood lymphocytes was significantly higher in patients with STEMI than in patients with unstable angina, and was negatively correlated with left ventricular ejection fraction, cardiac output, stroke volume, and left ventricular fractional shortening. The GRK 2 level was significantly elevated in some patients with acute STEMI and poor cardiac function. CONCLUSIONS Increased GRK 2 level in patients with acute STEMI may contribute to poor myocardial systolic function and myocardial remodeling. Measurement of the GRK 2 level in peripheral blood lymphocytes may assist in the evaluation of cardiac function and myocardial remodeling in elderly patients with acute STEMI.
Collapse
Affiliation(s)
- Wen-Qian Gao
- The First Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | | | - Xiao-Chun Lu
- The First Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yong-Xue Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Hai-Peng Hui
- The First Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Hao Wang
- The First Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
99
|
Pleger ST, Brinks H, Ritterhoff J, Raake P, Koch WJ, Katus HA, Most P. Heart failure gene therapy: the path to clinical practice. Circ Res 2013; 113:792-809. [PMID: 23989720 PMCID: PMC11848682 DOI: 10.1161/circresaha.113.300269] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 06/26/2013] [Indexed: 01/08/2023]
Abstract
Gene therapy, aimed at the correction of key pathologies being out of reach for conventional drugs, bears the potential to alter the treatment of cardiovascular diseases radically and thereby of heart failure. Heart failure gene therapy refers to a therapeutic system of targeted drug delivery to the heart that uses formulations of DNA and RNA, whose products determine the therapeutic classification through their biological actions. Among resident cardiac cells, cardiomyocytes have been the therapeutic target of numerous attempts to regenerate systolic and diastolic performance, to reverse remodeling and restore electric stability and metabolism. Although the concept to intervene directly within the genetic and molecular foundation of cardiac cells is simple and elegant, the path to clinical reality has been arduous because of the challenge on delivery technologies and vectors, expression regulation, and complex mechanisms of action of therapeutic gene products. Nonetheless, since the first demonstration of in vivo gene transfer into myocardium, there have been a series of advancements that have driven the evolution of heart failure gene therapy from an experimental tool to the threshold of becoming a viable clinical option. The objective of this review is to discuss the current state of the art in the field and point out inevitable innovations on which the future evolution of heart failure gene therapy into an effective and safe clinical treatment relies.
Collapse
Affiliation(s)
- Sven T. Pleger
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Henriette Brinks
- Department of Cardiac and Vascular Surgery, University Hospital Bern, 3010 Bern, Switzerland
| | - Julia Ritterhoff
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Philip Raake
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Walter J. Koch
- Center for Translational Medicine, Department of Pharmacology, Temple University, Philadelphia, PA 19122, USA
| | - Hugo A. Katus
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Patrick Most
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Philadelphia, PA 19107, USA
| |
Collapse
|
100
|
Cannavo A, Rengo G, Liccardo D, Pagano G, Zincarelli C, De Angelis MC, Puglia R, Di Pietro E, Rabinowitz JE, Barone MV, Cirillo P, Trimarco B, Palmer TM, Ferrara N, Koch WJ, Leosco D, Rapacciuolo A. β1-adrenergic receptor and sphingosine-1-phosphate receptor 1 (S1PR1) reciprocal downregulation influences cardiac hypertrophic response and progression to heart failure: protective role of S1PR1 cardiac gene therapy. Circulation 2013; 128:1612-22. [PMID: 23969695 DOI: 10.1161/circulationaha.113.002659] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The sphingosine-1-phosphate receptor 1 (S1PR1) and β1-adrenergic receptor (β1AR) are G-protein-coupled receptors expressed in the heart. These 2 receptors have opposing actions on adenylyl cyclase because of differential G-protein coupling. Importantly, both of these receptors can be regulated by the actions of G-protein-coupled receptor kinase-2, which triggers desensitization and downregulation processes. Although classic signaling paradigms suggest that simultaneous activation of β1ARs and S1PR1s in a myocyte would simply result in opposing action on cAMP production, in this report we have uncovered a direct interaction between these 2 receptors, with regulatory involvement of G-protein-coupled receptor kinase-2. METHODS AND RESULTS In HEK (human embryonic kidney) 293 cells overexpressing both β1AR and S1PR1, we demonstrated that β1AR downregulation can occur after stimulation with sphingosine-1-phosphate (an S1PR1 agonist), whereas S1PR1 downregulation can be triggered by isoproterenol (a β-adrenergic receptor agonist) treatment. This cross talk between these 2 distinct G-protein-coupled receptors appears to have physiological significance, because they interact and show reciprocal regulation in mouse hearts undergoing chronic β-adrenergic receptor stimulation and in a rat model of postischemic heart failure. CONCLUSIONS We demonstrate that restoration of cardiac plasma membrane levels of S1PR1 produces beneficial effects that counterbalance the deleterious β1AR overstimulation in heart failure.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Division of Geriatrics, Department of Translational Medical Sciences (A.C., G.R., D.L., G.P., N.F., D.L.), Department of Pediatrics and European Laboratory for the Investigation of Food-Induced Diseases (M.V.B.), and Division of Cardiology, Department of Advanced Biomedical Sciences (M.C.D.A., R.P., E.D.P., P.C., B.T., A.R.), Federico II University, Naples, Italy; Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., J.E.R., W.J.K.); Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., C.Z., N.F.); and the Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (T.M.P.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|