51
|
Chai H, Cheng W, Xu L, Gui H, He J, Miao P. Fabrication of Polymeric Ferrocene Nanoparticles for Electrochemical Aptasensing of Protein with Target-Catalyzed Hairpin Assembly. Anal Chem 2019; 91:9940-9945. [DOI: 10.1021/acs.analchem.9b01673] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hua Chai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People’s Republic of China
- Jihua Laboratory, Foshan 528200, People’s Republic of China
| | - Wenbo Cheng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People’s Republic of China
- Tianjin Guokeyigong Science and Technology Development Co., Ltd., Tianjin 300399, People’s Republic of China
| | - Lei Xu
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou 215123, People’s Republic of China
| | - Huiqiang Gui
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou 215123, People’s Republic of China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou 215123, People’s Republic of China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People’s Republic of China
- Jihua Laboratory, Foshan 528200, People’s Republic of China
| |
Collapse
|
52
|
Posthuma JJ, Posma JJN, van Oerle R, Leenders P, van Gorp RH, Jaminon AMG, Mackman N, Heitmeier S, Schurgers LJ, Ten Cate H, Spronk HMH. Targeting Coagulation Factor Xa Promotes Regression of Advanced Atherosclerosis in Apolipoprotein-E Deficient Mice. Sci Rep 2019; 9:3909. [PMID: 30846818 PMCID: PMC6405752 DOI: 10.1038/s41598-019-40602-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/20/2019] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis is a progressive inflammatory vascular disorder, complicated by plaque rupture and subsequently atherothrombosis. In vitro studies indicate that key clotting proteases, such as factor Xa (FXa), can promote atherosclerosis, presumably mediated through protease activated receptors (PARs). Although experimental studies showed reduced onset of atherosclerosis upon FXa inhibition, the effect on pre-existing plaques has never been studied. Therefore, we investigated effects of FXa inhibition by rivaroxaban on both newly-formed and pre-existing atherosclerotic plaques in apolipoprotein-e deficient (ApoE-/-) mice. Female ApoE-/- mice (age: 8-9 weeks, n = 10/group) received western type diet (WTD) or WTD supplemented with rivaroxaban (1.2 mg/g) for 14 weeks. In a second arm, mice received a WTD for 14 weeks, followed by continuation with either WTD or WTD supplemented with rivaroxaban (1.2 mg/g) for 6 weeks (total 20 weeks). Atherosclerotic burden in aortic arch was assessed by haematoxilin & eosin immunohistochemistry (IHC); plaque vulnerability was examined by IHC against macrophages, collagen, vascular smooth muscle cells (VSMC) and matrix metalloproteinases (MMPs). In addition, PAR1 and -2 expressions and their main activators thrombin and FXa in the plaque were determined in the plaque. Administration of rivaroxaban at human therapeutic concentrations reduced the onset of atherosclerosis (-46%, p < 0.05), and promoted a regression of pre-existing plaques in the carotids (-24%, p < 0.001). In addition, the vulnerability of pre-existing plaques was reduced by FXa inhibition as reflected by reduced macrophages (-39.03%, p < 0.05), enhanced collagen deposition (+38.47%, p < 0.05) and diminished necrotic core (-31.39%, p < 0.05). These findings were accompanied with elevated vascular smooth muscle cells and reduced MMPs. Furthermore, expression of PARs and their activators, thrombin and FXa was diminished after rivaroxaban treatment. Pharmacological inhibition of FXa promotes regression of advanced atherosclerotic plaques and enhances plaque stability. These data suggest that inhibition of FXa may be beneficial in prevention and regression of atherosclerosis, possibly mediated through reduced activation of PARs.
Collapse
Affiliation(s)
- Jelle J Posthuma
- Laboratory for Clinical Thrombosis and Haemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Surgery, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Jens J N Posma
- Laboratory for Clinical Thrombosis and Haemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Rene van Oerle
- Laboratory for Clinical Thrombosis and Haemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Peter Leenders
- Department of Pharmacology-Toxicology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Rick H van Gorp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Armand M G Jaminon
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Nigel Mackman
- Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stefan Heitmeier
- Research & Development,Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Hugo Ten Cate
- Laboratory for Clinical Thrombosis and Haemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Henri M H Spronk
- Laboratory for Clinical Thrombosis and Haemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
53
|
Posma JJ, Grover SP, Hisada Y, Owens AP, Antoniak S, Spronk HM, Mackman N. Roles of Coagulation Proteases and PARs (Protease-Activated Receptors) in Mouse Models of Inflammatory Diseases. Arterioscler Thromb Vasc Biol 2019; 39:13-24. [PMID: 30580574 PMCID: PMC6310042 DOI: 10.1161/atvbaha.118.311655] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022]
Abstract
Activation of the blood coagulation cascade leads to fibrin deposition and platelet activation that are required for hemostasis. However, aberrant activation of coagulation can lead to thrombosis. Thrombi can cause tissue ischemia, and fibrin degradation products and activated platelets can enhance inflammation. In addition, coagulation proteases activate cells by cleavage of PARs (protease-activated receptors), including PAR1 and PAR2. Direct oral anticoagulants have recently been developed to specifically inhibit the coagulation proteases FXa (factor Xa) and thrombin. Administration of these inhibitors to wild-type mice can be used to determine the roles of FXa and thrombin in different inflammatory diseases. These results can be compared with the phenotypes of mice with deficiencies of either Par1 (F2r) or Par2 (F2rl1). However, inhibition of coagulation proteases will have effects beyond reducing PAR signaling, and a deficiency of PARs will abolish signaling from all proteases that activate these receptors. We will summarize studies that examine the roles of coagulation proteases, particularly FXa and thrombin, and PARs in different mouse models of inflammatory disease. Targeting FXa and thrombin or PARs may reduce inflammatory diseases in humans.
Collapse
Affiliation(s)
- Jens J Posma
- Laboratory for Clinical Thrombosis and Hemostasis, Departments of Internal Medicine and Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Steven P Grover
- Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yohei Hisada
- Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - A. Phillip Owens
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, OH, USA
| | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Henri M Spronk
- Laboratory for Clinical Thrombosis and Hemostasis, Departments of Internal Medicine and Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Nigel Mackman
- Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
54
|
Wang Z, Shi H, Zhao H, Dong Z, Zhao B, Weng X, Liu R, Hu K, Zou Y, Sun A, Ge J. Naoxintong Retards Atherosclerosis by Inhibiting Foam Cell Formation Through Activating Pparα Pathway. Curr Mol Med 2018; 18:698-710. [PMID: 30734676 PMCID: PMC6463403 DOI: 10.2174/1566524019666190207143207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUNDS We recently reported that Naoxintong (NXT), a China Food and Drug Administration (FDA)-approved cardiac medicine, could reduce the plaque size, but the underlying mechanism remains elusive now. OBJECTIVE In this study, we investigated the effects of NXT on foam cell accumulation both in vivo and in vitro and explored related mechanisms. METHOD THP-1 cells and bone marrow-derived macrophages were incubated with oxidized low-density lipoprotein (ox-LDL) with/without Naoxintong. ApoE-/- mice fed an atherogenic diet were administered to receive NXT for eight weeks. Macrophage-derived foam cell formation in plaques was measured by immunohistochemical staining. Expression of proteins was evaluated by Western blot. Lentivirus was used to knockdown PPARα in THP-1 cells. RESULTS After NXT treatment, foam cell accumulation was significantly reduced in atherosclerotic plaques. Further investigation revealed that oxidized low-density lipoprotein (ox-LDL) uptake was significantly decreased and expression of scavenger receptor class A (SR-A) and class B (SR-B and CD36) was significantly downregulated post-NXT treatment. On the other hand, NXT increased cholesterol efflux and upregulated ATP-binding cassette (ABC) transporters (ABCA-1 and ABCG-1) in macrophages. Above beneficial effects of NXT were partly abolished after lentiviral knockdown of PPARα. CONCLUSION Our findings suggest that NXT could retard atherosclerosis by inhibiting foam cell formation through reducing ox-LDL uptake and enhancing cholesterol efflux and above beneficial effects are partly mediated through PPARα pathway.
Collapse
Affiliation(s)
- Zeng Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
| | - Huairui Shi
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
| | - Huan Zhao
- Department of Pathology, LiShui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical College, ZheJiang, China
| | - Zhen Dong
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
| | - Buchang Zhao
- Shandong Buchang Pharmaceutical Co., Ltd, Shandong, China
| | - Xinyu Weng
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| | - Rongle Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| | - Xiao lia
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
- Department of Pathology, LiShui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical College, ZheJiang, China
- Shandong Buchang Pharmaceutical Co., Ltd, Shandong, China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
| | - Yunzeng Zou
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
| | - Aijun Sun
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
| | - Junbo Ge
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
| |
Collapse
|