51
|
FTO-dependent m 6A modification of Plpp3 in circSCMH1-regulated vascular repair and functional recovery following stroke. Nat Commun 2023; 14:489. [PMID: 36717587 PMCID: PMC9886939 DOI: 10.1038/s41467-023-36008-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
Vascular repair is considered a key restorative measure to improve long-term outcomes after ischemic stroke. N6-methyladenosine (m6A), the most prevalent internal modification in eukaryotic mRNAs, functionally mediates vascular repair. However, whether circular RNA SCMH1 (circSCMH1) promotes vascular repair by m6A methylation after stroke remains to be elucidated. Here, we identify the role of circSCMH1 in promoting vascular repair in peri-infarct cortex of male mice and male monkeys after photothrombotic (PT) stroke, and attenuating the ischemia-induced m6A methylation in peri-infarct cortex of male mice after PT stroke. Mechanically, circSCMH1 increased the translocation of ubiquitination-modified fat mass and obesity-associated protein (FTO) into nucleus of endothelial cells (ECs), leading to m6A demethylation of phospholipid phosphatase 3 (Plpp3) mRNA and subsequently the increase of Plpp3 expression in ECs. Our data demonstrate that circSCMH1 enhances vascular repair via FTO-regulated m6A methylation after stroke, providing insights into the mechanism of circSCMH1 in promoting stroke recovery.
Collapse
|
52
|
Liu Z, Bian M, Pang L. LncRNA CRNDE binds hnRNPA1 to facilitate carbon monoxide poisoning-induced delayed encephalopathy via inhibiting UCHL5-mediated SMO deubiquitination. Metab Brain Dis 2023; 38:1097-1113. [PMID: 36648699 DOI: 10.1007/s11011-022-01157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023]
Abstract
Delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) is one of the most common complications following carbon monoxide intoxication. Long noncoding RNAs (lncRNAs) exert critical functions in numerous neurological disorders. We intended to investigate the role of CRNDE in DEACMP. The DEACMP model in rats and the oxygen-glucose deprivation/reoxygenation (OGD/R) model in PC-12 cells were established. Brain and cell injuries were assessed with H&E staining, Nissl staining, TUNEL and CCK8 assays, respectively. Related proteins and RNAs were quantified with western blot and qRT-PCR. The N6-methyladenosine (m6A) level was determined using MeRIP-qPCR and immunofluorescence. Loss and gain function studies were performed to investigate the biological function of CRNDE. The potential mechanisms between each factor were explored using RNA immunoprecipitation, RNA-pull down and co-immunoprecipitation. CRNDE was increased in the hippocampal tissues of DEACMP rats and in OGD/R-treated PC-12 cells, which was positively correlated to m6A modification. Knockdown of CRNDE reduced cell damage and elevated UCHL5 and SMO expressions in OGD/R-treated PC-12 cells. hnRNPA1 was upregulated in DEACMP. In addition, inhibiting hnRNPA1 prevented apoptosis in PC-12 cells subjected to OGD/R. hnRNPA1 bound to CRNDE and remained in the nucleus, which inhibited UCHL5 expression through the formation of CRNDE-hnRNPA1-mRNA complex. UCHL5 could inhibit SMO ubiquitination and suppress PC-12 cell apoptosis during OGD/R. CRNDE silencing blocked brain injury in DEACMP, while knocking down UCHL5 reversed these effects. CRNDE interacted with hnRNPA1 to facilitate DEACMP via inhibition of UCHL5-mediated SMO deubiquitination. CRNDE might be a latent therapeutic target for treating DEACMP.
Collapse
Affiliation(s)
- Zuolong Liu
- Department of Emergency, the First Hospital of Jilin University, No. 1 Xinmin Road, Changchun, 130021, Jilin Province, People's Republic of China
| | - Miao Bian
- Department of Respiratory, Qianwei Hospital of Jilin Province, Changchun, 130012, Jilin Province, People's Republic of China
| | - Li Pang
- Department of Emergency, the First Hospital of Jilin University, No. 1 Xinmin Road, Changchun, 130021, Jilin Province, People's Republic of China.
| |
Collapse
|
53
|
Tian Y, Yu B, Lv B, Zhang Y, Fu L, Yang S, Li J, Gong S. Experimental verification and comprehensive analysis of m7G methylation regulators in the subcluster classification of ischemic stroke. Front Genet 2023; 13:1036345. [PMID: 36685826 PMCID: PMC9845407 DOI: 10.3389/fgene.2022.1036345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Ischemic stroke (IS) is a fatal cerebrovascular disease involving several pathological mechanisms. Modification of 7-methylguanosine (m7G) has multiple regulatory functions. However, the expression pattern and mechanism of m7G in IS remain unknown. Herein, we aimed to explore the effect of m7G modification on IS. Methods: We screened significantly different m7G-regulated genes in Gene Expression Omnibus datasets, GSE58294 and GSE22255. The random forest (RF) algorithm was selected to identify key m7G-regulated genes that were subsequently validated using the middle cerebral artery occlusion (MCAO) model and quantitative polymerase chain reaction (qPCR). A risk model was subsequently generated using key m7G-regulated genes. Then, "ConsensusClusterPlus" package was used to distinguish different m7G clusters of patients with IS. Simultaneously, between two m7G clusters, differentially expressed genes (DEGs) and immune infiltration differences were also explored. Finally, we investigated functional enrichment and the mRNA-miRNA-transcription factor network of DEGs. Results: RF and qPCR confirmed that EIF3D, CYFIP2, NCBP2, DCPS, and NUDT1 were key m7G-related genes in IS that could accurately predict clinical risk (area under the curve = 0.967). NCBP2 was the most significantly associated gene with immune infiltration. Based on the expression profiles of these key m7G-related genes, the IS group could be divided into two clusters. According to the single-sample gene set enrichment analysis algorithm, four types of immune cells (immature dendritic cells, macrophages, natural killer T cells, and TH1 cells) were significantly different in the two m7G clusters. The functional enrichment of 282 DEGs between the two clusters was mainly concentrated in the "regulation of apoptotic signaling pathway," "cellular response to DNA damage stimulus," "adaptive immune system," and "pyroptosis." The miR-214-LTF-FOXJ1 axis may be a key regulatory pathway for IS. Conclusion: Our findings suggest that EIF3D, CYFIP2, NCBP2, DCPS, and NUDT1 may serve as potential diagnostic biomarkers for IS and that the m7G clusters developed by these genes provide more evidence for the regulation of m7G in IS.
Collapse
Affiliation(s)
- Yunze Tian
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China,Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Beibei Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Boqiang Lv
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Yongfeng Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Longhui Fu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Shijie Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Jianzhong Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China,*Correspondence: Jianzhong Li, ; Shouping Gong,
| | - Shouping Gong
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China,*Correspondence: Jianzhong Li, ; Shouping Gong,
| |
Collapse
|
54
|
Fan Y, Lv X, Chen Z, Peng Y, Zhang M. m6A methylation: Critical roles in aging and neurological diseases. Front Mol Neurosci 2023; 16:1102147. [PMID: 36896007 PMCID: PMC9990872 DOI: 10.3389/fnmol.2023.1102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal RNA modification in eukaryotic cells, which participates in the functional regulation of various biological processes. It regulates the expression of targeted genes by affecting RNA translocation, alternative splicing, maturation, stability, and degradation. As recent evidence shows, of all organs, brain has the highest abundance of m6A methylation of RNAs, which indicates its regulating role in central nervous system (CNS) development and the remodeling of the cerebrovascular system. Recent studies have shown that altered m6A levels are crucial in the aging process and the onset and progression of age-related diseases. Considering that the incidence of cerebrovascular and degenerative neurologic diseases increase with aging, the importance of m6A in neurological manifestations cannot be ignored. In this manuscript, we focus on the role of m6A methylation in aging and neurological manifestations, hoping to provide a new direction for the molecular mechanism and novel therapeutic targets.
Collapse
Affiliation(s)
- Yishu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinyi Lv
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyi Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
55
|
Jia K, Xia W, Su Q, Yang S, Zhang Y, Ni X, Su Z, Meng D. RNA methylation pattern and immune microenvironment characteristics mediated by m6A regulator in ischemic stroke. Front Genet 2023; 14:1148510. [PMID: 37139237 PMCID: PMC10150022 DOI: 10.3389/fgene.2023.1148510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023] Open
Abstract
Background: Ischemic stroke (IS) is a highly heterogeneous disease. Recent studies have shown that epigenetic variables affect the immune response. However, only a few studies have examined the relationship between IS and m6A immunoregulation. Therefore, we aim to explore the methylation of RNA mediated by m6A regulatory factor and the immune microenvironment characteristics of IS. Methods: Differentially expressed m6A regulators were detected in IS microarray datasets GSE22255 and GSE58294. We used a series of machine learning algorithms to identify key IS-related m6A regulators and validated them on blood samples of IS patients, oxygen-glucose deprivation/reoxygenation (OGD/R) microglia and GSE198710 independent data sets. Different m6A modification modes were determined and the patients were classified. In addition, we systematically associate these modification patterns with the characteristics of immune microenvironment, including infiltrating immune cells, immune function genes and immune response genes. Then we developed a model of m6A score to quantify the m6A modification in IS samples. Results: Through the analysis of the differences between the control group and IS patients, METTL16, LRPPRC, and RBM15 showed strong diagnostic significance in three independent data sets. In addition, qRT-PCR and Western blotting also confirmed that the expression of METTL16 and LRPPRC was downregulated and the expression of RBM15 was upregulated after ischemia. Two m6A modification modes and two m6A gene modification modes were also identified. m6A gene cluster A (high m6A value group) was positively correlated with acquired immunity, while m6A gene cluster B (low m6A value group) was positively correlated with innate immunity. Similarly, five immune-related hub genes were significantly associated with m6Acore (CD28, IFNG, LTF, LCN2, and MMP9). Conclusion: The modification of m6A is closely related to the immune microenvironment. The evaluation of individual m6A modification pattern may be helpful for future immunomodulatory therapy of anti-ischemic response.
Collapse
Affiliation(s)
- Kejuan Jia
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Wenbo Xia
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Qian Su
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Shiqi Yang
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanli Zhang
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xunran Ni
- Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Zhiqiang Su
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: Delong Meng, ; Zhiqiang Su,
| | - Delong Meng
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: Delong Meng, ; Zhiqiang Su,
| |
Collapse
|
56
|
Tao H, Dong L, Li L. N6-methyladenosine modulation classes and immune microenvironment regulation in ischemic stroke. Front Mol Neurosci 2022; 15:1013076. [PMID: 36762188 PMCID: PMC9907088 DOI: 10.3389/fnmol.2022.1013076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022] Open
Abstract
N6-methyladenosine (m6A) modifications play an important role in the differentiation and regulation of immune cells. However, research on m6A in ischemic stroke (IS) is still in its infancy, and their role of the immune microenvironment remains unknown. In this study, we systematically assessed the modification classes of m6A regulators in IS based on the GEO database (GSE16561 and GSE22255). We found that in IS patients, IGF2BP2, IGF2BP1, and YTHDF2 expression was significantly upregulated, and ELAVL1, LRPPRC, METTL3, ALKBH5, CBLL1, and METTL14 expression was significantly downregulated. Seven IS-related genes (ELAVL1, IGF2BP2, LRPPRC, YTHDF2, ALKBH5, METTL14, and YTHDC1) were finally screened by logistic and least absolute shrinkage and selection operator (LASSO) regressions, and the AUC of the riskScore was 0.942, which was a good classification. For immune infiltration, there were highly significant differences in memory B cells, CD8 T cells, monocytes, activated dendritic cells, and mast cells between IS and normal samples. The IS samples were grouped into three classes by consistent clustering, and 15 m6A genes were differentially expressed in the different classes. Multiple infiltrating immune cells, immune-associated genes, and HLA-associated genes differed significantly across m6A modification classes, indicating the diversity and complexity of m6A modifications in the immune microenvironment of IS. Finally, 487 genes associated with the m6A modification class were identified, and 227 potential drugs were found. Our findings demonstrated that m6A modification plays a crucial role in the immune regulation of IS.
Collapse
Affiliation(s)
- Hongmiao Tao
- Medical College, Jinhua Polytechnic, Jinhua, China,*Correspondence: Hongmiao Tao,
| | - Lihua Dong
- Medical College, Jinhua Polytechnic, Jinhua, China
| | - Lin Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
57
|
Chronic allergic asthma alters m6A epitranscriptomic tagging of mRNAs and lncRNAs in the lung. Biosci Rep 2022; 42:231936. [PMID: 36250525 DOI: 10.1042/bsr20221395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022] Open
Abstract
To evaluate the role of m6A methylation of mRNAs and long non-coding RNAs (lncRNAs) in chronic allergic asthma. Transcriptome-wide N6-methyladenosine (m6A) changes in BALB/c mice were profiled using immunoprecipitated methylated RNAs with microarrays in lung with chronic allergic asthma. Gene ontology (GO) and KEGG analyses were conducted. Target genes were verified by methylated RNA immunoprecipitation and real-time polymerase chain reaction (PCR). Specifically, the mRNA levels of m6A writers (METTL3, METTL14, and WTAP), and readers and erasers (FTO and ALKBH5) were estimated by real-time PCR analysis, using the SYBR-green method. IL17RB mRNA was also evaluated by PCR. Hematoxylin and eosin (H&E) staining showed that the airway and lung tissues in mice in the asthma group had extensive infiltration of inflammatory cells around the bronchioles, blood vessels, and alveoli. The lungs of those allergic asthma mice showed altered m6A epitranscriptome, whereby 1369 mRNAs and 176 lncRNAs were hypermethylated, and 197 mRNAs and 30 lncRNAs were hypomethylated (>1.5-fold vs control). Also, compared with the control group, IL17RB mRNA in lung of the asthmatic group was significantly hypermethylated (P<0.01). In the asthma group, the mRNA and the protein level of METTL14 (the key methyltransferase) and ALKBH5 (the major demethyltransferase) were significantly decreased compared with the control group (P<0.01). Chronic allergic asthma alters the lung m6A epitranscriptome, suggesting functional implications in the pathophysiology of refractory asthma. Data support methylated IL17RB mRNA possibly becoming a new therapeutic target for chronic allergic asthma.
Collapse
|
58
|
Shu Y, Guo Y, Zheng Y, He S, Shi Z. RNA methylation in vascular disease: a systematic review. J Cardiothorac Surg 2022; 17:323. [PMID: 36536469 PMCID: PMC9762007 DOI: 10.1186/s13019-022-02077-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Despite the rise in morbidity and mortality associated with vascular diseases, the underlying pathophysiological molecular mechanisms are still unclear. RNA N6-methyladenosine modification, as the most common cellular mechanism of RNA regulation, participates in a variety of biological functions and plays an important role in epigenetics. A large amount of evidence shows that RNA N6-methyladenosine modifications play a key role in the morbidity caused by vascular diseases. Further research on the relationship between RNA N6-methyladenosine modifications and vascular diseases is necessary to understand disease mechanisms at the gene level and to provide new tools for diagnosis and treatment. In this study, we summarize the currently available data on RNA N6-methyladenosine modifications in vascular diseases, addressing four aspects: the cellular regulatory system of N6-methyladenosine methylation, N6-methyladenosine modifications in risk factors for vascular disease, N6-methyladenosine modifications in vascular diseases, and techniques for the detection of N6-methyladenosine-methylated RNA.
Collapse
Affiliation(s)
- Yue Shu
- Geriatric Multi-Clinic Center, Hainan ChengMei Hospital, Haikou, Hainan People’s Republic of China ,Department of Special Medical Services, Hainan Cancer Hospital, Haikou, Hainan People’s Republic of China
| | - Yilong Guo
- grid.488137.10000 0001 2267 2324Medical School of Chinese PLA, Beijing, People’s Republic of China ,grid.414252.40000 0004 1761 8894Department of Vascular and Endovascular Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yin Zheng
- Geriatric Multi-Clinic Center, Hainan ChengMei Hospital, Haikou, Hainan People’s Republic of China ,Department of Special Medical Services, Hainan Cancer Hospital, Haikou, Hainan People’s Republic of China
| | - Shuwu He
- grid.443397.e0000 0004 0368 7493Department of Cardiovascular Surgery, The Second Affiliated Hospital of Hainan Medical University, 48th of Bai Shui Tang Road, Haikou, 570311 Hainan People’s Republic of China
| | - Zhensu Shi
- grid.443397.e0000 0004 0368 7493Department of Cardiovascular Surgery, The Second Affiliated Hospital of Hainan Medical University, 48th of Bai Shui Tang Road, Haikou, 570311 Hainan People’s Republic of China
| |
Collapse
|
59
|
The Role of N 6-Methyladenosine in Inflammatory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9744771. [PMID: 36578520 PMCID: PMC9792239 DOI: 10.1155/2022/9744771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
N6-Methyladenosine (m6A) is the most abundant epigenetic RNA modification in eukaryotes, regulating RNA metabolism (export, stability, translation, and decay) in cells through changes in the activity of writers, erasers, and readers and ultimately affecting human life or disease processes. Inflammation is a response to infection and injury in various diseases and has therefore attracted significant attention. Currently, extensive evidence indicates that m6A plays an essential role in inflammation. In this review, we focus on the mechanisms of m6A in inflammatory autoimmune diseases, metabolic disorder, cardio-cerebrovascular diseases, cancer, and pathogen-induced inflammation, as well as its possible role as targets for clinical diagnosis and treatment.
Collapse
|
60
|
Shi X, Ni H, Wu Y, Guo M, Wang B, Zhang Y, Zhang B, Xu Y. Diagnostic signature, subtype classification, and immune infiltration of key m6A regulators in osteomyelitis patients. Front Genet 2022; 13:1044264. [PMID: 36544487 PMCID: PMC9760713 DOI: 10.3389/fgene.2022.1044264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Background: As a recurrent inflammatory bone disease, the treatment of osteomyelitis is always a tricky problem in orthopaedics. N6-methyladenosine (m6A) regulators play significant roles in immune and inflammatory responses. Nevertheless, the function of m6A modification in osteomyelitis remains unclear. Methods: Based on the key m6A regulators selected by the GSE16129 dataset, a nomogram model was established to predict the incidence of osteomyelitis by using the random forest (RF) method. Through unsupervised clustering, osteomyelitis patients were divided into two m6A subtypes, and the immune infiltration of these subtypes was further evaluated. Validating the accuracy of the diagnostic model for osteomyelitis and the consistency of clustering based on the GSE30119 dataset. Results: 3 writers of Methyltransferase-like 3 (METTL3), RNA-binding motif protein 15B (RBM15B) and Casitas B-lineage proto-oncogene like 1 (CBLL1) and three readers of YT521-B homology domain-containing protein 1 (YTHDC1), YT521-B homology domain-containing family 3 (YTHDF2) and Leucine-rich PPR motif-containing protein (LRPPRC) were identified by difference analysis, and their Mean Decrease Gini (MDG) scores were all greater than 10. Based on these 6 significant m6A regulators, a nomogram model was developed to predict the incidence of osteomyelitis, and the fitting curve indicated a high degree of fit in both the test and validation groups. Two m6A subtypes (cluster A and cluster B) were identified by the unsupervised clustering method, and there were significant differences in m6A scores and the abundance of immune infiltration between the two m6A subtypes. Among them, two m6A regulators (METTL3 and LRPPRC) were closely related to immune infiltration in patients with osteomyelitis. Conclusion: m6A regulators play key roles in the molecular subtypes and immune response of osteomyelitis, which may provide assistance for personalized immunotherapy in patients with osteomyelitis.
Collapse
Affiliation(s)
- Xiangwen Shi
- School of Medicine, Kunming Medical University, Kunming, China
| | - Haonan Ni
- School of Medicine, Kunming Medical University, Kunming, China
| | - Yipeng Wu
- School of Medicine, Kunming Medical University, Kunming, China,Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China,Laboratory of Clinical Medical Center, Yunnan Traumatology and Orthopedics, Kunming, China
| | - Minzheng Guo
- School of Medicine, Kunming Medical University, Kunming, China
| | - Bin Wang
- School of Medicine, Kunming Medical University, Kunming, China
| | - Yue Zhang
- School of Medicine, Kunming Medical University, Kunming, China
| | - Bihuan Zhang
- School of Medicine, Kunming Medical University, Kunming, China
| | - Yongqing Xu
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China,Laboratory of Clinical Medical Center, Yunnan Traumatology and Orthopedics, Kunming, China,*Correspondence: Yongqing Xu,
| |
Collapse
|
61
|
Shao L, Chen B, Wu Q, Xu Y, Yi J, Guo Z, Liu B. N 6-methyladenosine-modified lncRNA and mRNA modification profiles in cerebral ischemia-reperfusion injury. Front Genet 2022; 13:973979. [PMID: 36479246 PMCID: PMC9720305 DOI: 10.3389/fgene.2022.973979] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/08/2022] [Indexed: 11/03/2023] Open
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is common in ischemic stroke and seriously affects the prognosis of patients. At present, N6-methyladenosine (m6A) modification of lncRNAs and mRNAs has been reported in other diseases, such as cancer, but its role in CIRI has not been clarified. In this study, we aimed to investigate the m6A lncRNA and m6A mRNA modification profiles in CIRI. First, we detected the total level of m6A and the changes in related m6A methyltransferases and demethylases in the brain tissue of rats with CIRI and then identified differentially modified lncRNAs and mRNAs in CIRI by lncRNA and mRNA epigenetic transcriptomic microarray. In addition, bioinformatics analysis was used to predict the underlying functions and related pathways of related lncRNAs and mRNAs. We found that the total m6A methylation level was significantly increased, and the expression of fat mass and obesity-associated protein (FTO) was downregulated after CIRI. In addition, a large number of m6A-modified lncRNAs and mRNAs appeared after CIRI, and these genes were mainly enriched for the Toll-like receptor signaling pathway, peroxisome proliferator-activated receptor (PPAR) signaling pathway, and mitogen-activated protein kinase (MAPK) signaling pathway. Our findings provide the basis and insights for further studies on m6A modification in CIRI.
Collapse
Affiliation(s)
- Le Shao
- The First Hospital, Hunan University of Chinese Medicine, Changsha, China
- MOE Key Laboratory of Research & Translation on Prevention & Treatment of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Changsha, China
| | - Bowei Chen
- The First Hospital, Hunan University of Chinese Medicine, Changsha, China
- MOE Key Laboratory of Research & Translation on Prevention & Treatment of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Changsha, China
| | - Qibiao Wu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Zhuhai MUST Science and Technology Research Institute, Zhuhai, China
| | - Yaqian Xu
- The First Hospital, Hunan University of Chinese Medicine, Changsha, China
- MOE Key Laboratory of Research & Translation on Prevention & Treatment of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Changsha, China
| | - Jian Yi
- The First Hospital, Hunan University of Chinese Medicine, Changsha, China
- MOE Key Laboratory of Research & Translation on Prevention & Treatment of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Changsha, China
| | - Zhihua Guo
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Baiyan Liu
- Hunan Academy of Chinese Medicine, Changsha, China
| |
Collapse
|
62
|
Nossent AY. The epitranscriptome: RNA modifications in vascular remodelling. Atherosclerosis 2022:S0021-9150(22)01500-3. [DOI: 10.1016/j.atherosclerosis.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
|
63
|
Zhou W, Xue P, Yang Y, Xia L, Yu B. Research progress on N6-methyladenosine in the human placenta. J Perinat Med 2022; 50:1115-1123. [PMID: 35606944 DOI: 10.1515/jpm-2021-0665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/25/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES N6-methyladenosine (m6A) is one of the most common epigenetic modifications of eukaryotic RNA. Under the jointly reversible regulation of related enzymes, m6A regulates many aspects of RNA, such as translation, stability and degradation. The aim of this study is to investigate the role of m6A in placenta-related diseases. METHODS Data were compiled from 2018 to 2021 citations in PubMed and Google Scholar using the keywords: placenta AND N6-methyladenosine. Seven studies were included. RESULTS In this study, we introduced some conventional methods to detect m6A modification at the whole RNA, region (peak) and single base levels. We also summarized the current studies of m6A modification in the placenta and briefly describe m6A in placental-related diseases, including recurrent miscarriage (RM), preeclampsia (PE) and gestational diabetes mellitus (GDM). CONCLUSIONS Although the relevant reports are still in the preliminary stage and some results are inconsistent, studies on methylation m6A modification have contributed new ideas for the research of reproductive diseases, providing a new basis for the diagnosis, treatment, prognosis and monitoring of related diseases.
Collapse
Affiliation(s)
- Wenbo Zhou
- International Genome Center, Jiangsu University, Zhenjiang, P.R. China
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
| | - Pingping Xue
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
| | - Yuqi Yang
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
| | - Lin Xia
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
| | - Bin Yu
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
| |
Collapse
|
64
|
Tan Q, He S, Leng X, Zheng D, Mao F, Hao J, Chen K, Jiang H, Lin Y, Yang J. The Mechanism and Role of N6-Methyladenosine (m 6A) Modification in Atherosclerosis and Atherosclerotic Diseases. J Cardiovasc Dev Dis 2022; 9:367. [PMID: 36354766 PMCID: PMC9697759 DOI: 10.3390/jcdd9110367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/27/2023] Open
Abstract
N6-methyladenosine (m6A) modification is a newly discovered regulatory mechanism in eukaryotes. As one of the most common epigenetic mechanisms, m6A's role in the development of atherosclerosis (AS) and atherosclerotic diseases (AD) has also received increasing attention. Herein, we elucidate the effect of m6A on major risk factors for AS, including lipid metabolism disorders, hypertension, and hyperglycemia. We also describe how m6A methylation contributes to endothelial cell injury, macrophage response, inflammation, and smooth muscle cell response in AS and AD. Subsequently, we illustrate the m6A-mediated aberrant biological role in the pathogenesis of AS and AD, and analyze the levels of m6A methylation in peripheral blood or local tissues of AS and AD, which helps to further discuss the diagnostic and therapeutic potential of m6A regulation for AS and AD. In summary, studies on m6A methylation provide new insights into the pathophysiologic mechanisms of AS and AD, and m6A methylation could be a novel diagnostic biomarker and therapeutic target for AS and AD.
Collapse
Affiliation(s)
- Quandan Tan
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610072, China
| | - Song He
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610072, China
| | - Xinyi Leng
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Danni Zheng
- Biomedical Informatics and Digital Health, School of Medical Sciences, University of Sydney, Sydney NSW 2050, Australia
| | - Fengkai Mao
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610072, China
| | - Junli Hao
- School of Biomedical Sciences and Technology, Chengdu Medical College, Chengdu 610072, China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu 610072, China
| | - Haisong Jiang
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yapeng Lin
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610072, China
- International Clinical Research Center, Chengdu Medical College, Chengdu 610072, China
| | - Jie Yang
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
65
|
Deng J, Chen X, Chen A, Zheng X. m6A RNA methylation in brain injury and neurodegenerative disease. Front Neurol 2022; 13:995747. [PMID: 36158961 PMCID: PMC9493472 DOI: 10.3389/fneur.2022.995747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
N6-methyladenosine (m6A), the most prevalent post-transcriptional RNA modification throughout the eukaryotic transcriptome, participates in diverse biophysiological processes including cell fates, embryonic development and stress responses. Accumulating evidence suggests that m6A modification in neural development and differentiation are highly regulated processes. As RNA m6A is crucial to protein translation and various bioprocesses, its modification dysregulation may also be associated with brain injury. This review highlights the biological significance of m6A modification in neurodegenerative disease and brain injury, including cerebrovascular disorders, is highlighted. Emphasis is placed on recent findings that elucidate the relevant molecular functional mechanism of m6A modification after brain injury and neurodegenerative disease. Finally, a neurobiological basis for further investigation of potential treatments is described.
Collapse
Affiliation(s)
- Jianhui Deng
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xiaohui Chen
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Andi Chen
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xiaochun Zheng
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Co-Constructed Laboratory of “Belt and Road,” Fujian Emergency Medical Center, Fuzhou, China
- *Correspondence: Xiaochun Zheng
| |
Collapse
|
66
|
Jiang L, Li X, Wang S, Yuan Z, Cheng J. The role and regulatory mechanism of m6A methylation in the nervous system. Front Genet 2022; 13:962774. [PMID: 36118889 PMCID: PMC9474891 DOI: 10.3389/fgene.2022.962774] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
N6-methyladenosine (m6A) modification regulates RNA translation, splicing, transport, localization, and stability at the post-transcriptional level. The m6A modification has been reported to have a wide range of effects on the nervous system, including neurogenesis, cerebellar development, learning, cognition, and memory, as well as the occurrence and development of neurological disorders. In this review, we aim to summarize the findings on the role and regulatory mechanism of m6A modification in the nervous system, to reveal the molecular mechanisms of neurodevelopmental processes, and to promote targeted therapy for nervous system-related diseases.
Collapse
Affiliation(s)
- Lingling Jiang
- Hengyang Medical College, University of South China, Hengyang, China
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiaoheng Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shasha Wang
- Hengyang Medical College, University of South China, Hengyang, China
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
- *Correspondence: Jinbo Cheng, ; Zengqiang Yuan, ,
| | - Jinbo Cheng
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, China
- *Correspondence: Jinbo Cheng, ; Zengqiang Yuan, ,
| |
Collapse
|
67
|
Ni S, Luo Z, Fan Y, Zhang W, Peng W, Zhang H. Alteration of m6A epitranscriptomic tagging of ribonucleic acids after spinal cord injury in mice. Front Neurosci 2022; 16:904573. [PMID: 36090276 PMCID: PMC9454195 DOI: 10.3389/fnins.2022.904573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
The m6A methylation is reported to function in multiple physiological and pathological processes. However, the functional relevance of m6A modification to post-spinal cord injured (SCI) damage is not yet clear. In the present study, methylated RNA immunoprecipitation combined with microarray analysis showed that the global RNA m6A levels were decreased following SCI. Then, gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analyses were conducted to demonstrate the potential function of differential m6A-tagged transcripts and the altered transcripts with differential m6A levels. In addition, we found that the m6A “writer,” METTL3, significantly decreased after SCI in mice. The immunostaining validated that the expression of METTL3 mainly changed in GFAP or Iba-1+ cells. Together, this study shows the alteration of m6A modification following SCI in mice, which might contribute to the pathophysiology of the spinal cord after trauma.
Collapse
Affiliation(s)
- Shuangfei Ni
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zixiang Luo
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yonggang Fan
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weixin Zhang
- Department of Orthopaedics, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Wei Peng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Wei Peng,
| | - Huafeng Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Huafeng Zhang,
| |
Collapse
|
68
|
You S, Su X, Ying J, Li S, Qu Y, Mu D. Research Progress on the Role of RNA m6A Modification in Glial Cells in the Regulation of Neurological Diseases. Biomolecules 2022; 12:biom12081158. [PMID: 36009052 PMCID: PMC9405963 DOI: 10.3390/biom12081158] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Glial cells are the most abundant and widely distributed cells that maintain cerebral homeostasis in the central nervous system. They mainly include microglia, astrocytes, and the oligodendrocyte lineage cells. Moreover, glial cells may induce pathological changes, such as inflammatory responses, demyelination, and disruption of the blood–brain barrier, to regulate the occurrence and development of neurological diseases through various molecular mechanisms. Furthermore, RNA m6A modifications are involved in various pathological processes associated with glial cells. In this review, the roles of glial cells in physiological and pathological states, as well as advances in understanding the mechanisms by which glial cells regulate neurological diseases under RNA m6A modification, are summarized, hoping to provide new perspectives on the deeper mechanisms and potential therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Siyi You
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaojuan Su
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Shiping Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
69
|
Zhang F, Ran Y, Tahir M, Li Z, Wang J, Chen X. Regulation of N6-methyladenosine (m6A) RNA methylation in microglia-mediated inflammation and ischemic stroke. Front Cell Neurosci 2022; 16:955222. [PMID: 35990887 PMCID: PMC9386152 DOI: 10.3389/fncel.2022.955222] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant post-transcription modification, widely occurring in eukaryotic mRNA and non-coding RNA. m6A modification is highly enriched in the mammalian brain and is associated with neurological diseases like Alzheimer’s disease (AD) and Parkinson’s disease (PD). Ischemic stroke (IS) was discovered to alter the cerebral m6A epi-transcriptome, which might have functional implications in post-stroke pathophysiology. Moreover, it is observed that m6A modification could regulate microglia’s pro-inflammatory and anti-inflammatory responses. Given the critical regulatory role of microglia in the inflammatory processes in the central nervous system (CNS), we speculate that m6A modification could modulate the post-stroke microglial inflammatory responses. This review summarizes the vital regulatory roles of m6A modification in microglia-mediated inflammation and IS. Stroke is associated with a high recurrence rate, understanding the relationship between m6A modification and stroke may help stroke rehabilitation and develop novel therapies in the future.
Collapse
Affiliation(s)
- Fangfang Zhang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Muhammad Tahir
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Zihan Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jianan Wang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Xuechai Chen
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- *Correspondence: Xuechai Chen,
| |
Collapse
|
70
|
The Potential Role of m6A in the Regulation of TBI-Induced BGA Dysfunction. Antioxidants (Basel) 2022; 11:antiox11081521. [PMID: 36009239 PMCID: PMC9405408 DOI: 10.3390/antiox11081521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
The brain–gut axis (BGA) is an important bidirectional communication pathway for the development, progress and interaction of many diseases between the brain and gut, but the mechanisms remain unclear, especially the post-transcriptional regulation of BGA after traumatic brain injury (TBI). RNA methylation is one of the most important modifications in post-transcriptional regulation. N6-methyladenosine (m6A), as the most abundant post-transcriptional modification of mRNA in eukaryotes, has recently been identified and characterized in both the brain and gut. The purpose of this review is to describe the pathophysiological changes in BGA after TBI, and then investigate the post-transcriptional bidirectional regulation mechanisms of TBI-induced BGA dysfunction. Here, we mainly focus on the characteristics of m6A RNA methylation in the post-TBI BGA, highlight the possible regulatory mechanisms of m6A modification in TBI-induced BGA dysfunction, and finally discuss the outcome of considering m6A as a therapeutic target to improve the recovery of the brain and gut dysfunction caused by TBI.
Collapse
|
71
|
Li L, Xu N, Liu J, Chen Z, Liu X, Wang J. m6A Methylation in Cardiovascular Diseases: From Mechanisms to Therapeutic Potential. Front Genet 2022; 13:908976. [PMID: 35836571 PMCID: PMC9274458 DOI: 10.3389/fgene.2022.908976] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. Recent studies have shown that n6-methyladenosine (m6A) plays a major role in cardiovascular homeostasis and pathophysiology. These studies have confirmed that m6A methylation affects the pathophysiology of cardiovascular diseases by regulating cellular processes such as differentiation, proliferation, inflammation, autophagy, and apoptosis. Moreover, plenty of research has confirmed that m6A modification can delay the progression of CVD via the post-transcriptional regulation of RNA. However, there are few available summaries of m6A modification regarding CVD. In this review, we highlight advances in CVD-specific research concerning m6A modification, summarize the mechanisms underlying the involvement of m6A modification during the development of CVD, and discuss the potential of m6A modification as a therapeutic target of CVD.
Collapse
Affiliation(s)
| | | | | | | | | | - Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
72
|
Jiapaer Z, Su D, Hua L, Lehmann HI, Gokulnath P, Vulugundam G, Song S, Zhang L, Gong Y, Li G. Regulation and roles of RNA modifications in aging-related diseases. Aging Cell 2022; 21:e13657. [PMID: 35718942 PMCID: PMC9282851 DOI: 10.1111/acel.13657] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/03/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
With the aging of the global population, accumulating interest is focused on manipulating the fundamental aging-related signaling pathways to delay the physiological aging process and eventually slow or prevent the appearance or severity of multiple aging-related diseases. Recently, emerging evidence has shown that RNA modifications, which were historically considered infrastructural features of cellular RNAs, are dynamically regulated across most of the RNA species in cells and thereby critically involved in major biological processes, including cellular senescence and aging. In this review, we summarize the current knowledge about RNA modifications and provide a catalog of RNA modifications on different RNA species, including mRNAs, miRNAs, lncRNA, tRNAs, and rRNAs. Most importantly, we focus on the regulation and roles of these RNA modifications in aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, cataracts, osteoporosis, and fertility decline. This would be an important step toward a better understanding of fundamental aging mechanisms and thereby facilitating the development of novel diagnostics and therapeutics for aging-related diseases.
Collapse
Affiliation(s)
- Zeyidan Jiapaer
- College of Life Science & Technology, Xinjiang University, Urumqi, China.,Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Urumqi, China
| | - Dingwen Su
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Helge Immo Lehmann
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Priyanka Gokulnath
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gururaja Vulugundam
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Naples, Italy
| | - Shannan Song
- College of Life Science & Technology, Xinjiang University, Urumqi, China.,Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Urumqi, China
| | - Lingying Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi, China.,Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Urumqi, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
73
|
Li Y, Li H, Luo Y, Li X, Chen Z, Zhang W, Li F, Ling L. The Alteration Profiles of m6A-Tagged circRNAs in the Peri-Infarct Cortex After Cerebral Ischemia in Mice. Front Neurosci 2022; 16:869081. [PMID: 35747214 PMCID: PMC9209773 DOI: 10.3389/fnins.2022.869081] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
The N6-methyladenosine (m6A) modification acts as a dynamic regulatory factor in diseases by regulating the metabolism and function of the transcriptome, especially mRNAs. However, little is known regarding the functional effects of m6A modifications on circRNAs. In this research, we established a distal middle cerebral artery occlusion (MCAO) model in adult C57BL/6J mice. The mice were divided into three groups: sham surgery, 3 days after MCAO (3d), and 7 days after MCAO (7d). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) demonstrated that the mRNA expression levels of m6A-related methyltransferases (METTL3, METTL14), demethylases (FTO, ALKBH5), and reading proteins (YTHDF1, YTHDF3) altered compared to the sham group. Furthermore, the translation level of ALKBH5 and YTHDF3 was significantly decreased in the 3d group while increased in 7d group. Methylated RNA immunoprecipitation (MeRIP) and circRNA microarray indicated 85 hypermethylated and 1621 hypomethylated circRNAs in the 3d group. In the 7d group, the methylation level increased in 57 and decreased in 66 circRNAs. Subsequently, our results were verified by MeRIP-qPCR. Bioinformatics analysis was performed to analyze the functions of differentially m6A-modified circRNAs. We found some m6A modified-circRNAs associated with cerebral infarction, providing a new direction for the molecular mechanism of stroke.
Collapse
Affiliation(s)
- Yudi Li
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Hanzhao Li
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yang Luo
- School of Physical Education, Southwest University, Chongqing, China
| | - Xiaoqiang Li
- Department of Neurology, Affiliated Xiaolan Hospital, Southern Medical University, Xiaolan People's Hospital, Zhongshan, China
| | - Zhefeng Chen
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Wanzhou Zhang
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Fangming Li
- Department of Neurology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
- Fangming Li
| | - Li Ling
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- *Correspondence: Li Ling
| |
Collapse
|
74
|
Li ZX, Zheng ZQ, Yang PY, Lin L, Zhou GQ, Lv JW, Zhang LL, Chen F, Li YQ, Wu CF, Li F, Ma J, Liu N, Sun Y. WTAP-mediated m 6A modification of lncRNA DIAPH1-AS1 enhances its stability to facilitate nasopharyngeal carcinoma growth and metastasis. Cell Death Differ 2022; 29:1137-1151. [PMID: 34999731 DOI: 10.1038/s41418-021-00905-w] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
As the most predominant RNA epigenetic regulation in eukaryotic cells, N6-methyladenosine (m6A) plays a critical role in human tumorigenesis and cancer progression. However, the biological function and molecular mechanism of m6A regulation in naso-pharyngeal carcinoma (NPC) remain elusive. Here, we showed that Wilms' tumor 1-associating protein (WTAP) expression was apparently upregulated in NPC, and increased WTAP was associated with poor prognosis. WTAP upregulated in NPC was fine-tuned by KAT3A-mediated H3K27 acetylation. Functionally, WTAP was required for the growth and metastasis of NPC. Mechanistically, lncRNA DIAPH1-AS1 was identified as a bona fide m6A target of WTAP. WTAP-mediated m6A modification of DIAPH1-AS1 enhanced its stability relying on the m6A reader IGF2BP2-dependent pathway. Furthermore, DIAPH1-AS1 acted as a molecular adaptor that promoted MTDH-LASP1 complex formation and upregulated LASP1 expression, ultimately facilitating NPC growth and metastasis. Thus, WTAP-mediated DIAPH1-AS1 m6A methylation is required for NPC tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Zhi-Xuan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Zi-Qi Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Pan-Yang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Li Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Guan-Qun Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Jia-Wei Lv
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Lu-Lu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - FoPing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Ying-Qin Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Chen-Fei Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Feng Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China.
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P.R. China.
| |
Collapse
|
75
|
Yu J, Chen H, Ma H, Zhang Z, Zhu X, Wang P, Liu R, Jin X, Zhao Y. Transcriptome-Wide N6-Methyladenosine Methylome Alteration in the Rat Spinal Cord After Acute Traumatic Spinal Cord Injury. Front Neurosci 2022; 16:848119. [PMID: 35706691 PMCID: PMC9189298 DOI: 10.3389/fnins.2022.848119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
Recent studies showed that RNA N6-methyladenosine (m6A) plays an important role in neurological diseases. We used methylated RNA immunoprecipitation sequencing (MeRIP-Seq) technology to generate the m6A modification map after traumatic spinal cord injury (TSCI). A total of 2,609 differential m6A peaks were identified after TSCI. Our RNA sequencing results after TSCI showed 4,206 genes with significantly altered expression. Cross-link analysis of m6A sequencing results and RNA sequencing results showed that 141 hyper-methylated genes were upregulated, 53 hyper-methylated genes were downregulated, 57 hypo-methylated genes were upregulated, and 197 hypo-methylated genes were downregulated. Among these, the important inflammatory response factor Tlr4 and the important member of the neurotrophin family Ngf were both upregulated and hyper-methylated after TSCI. This study provides that in the future, the epigenetic modifications of the genes could be used as an indicator of TSCI.
Collapse
Affiliation(s)
- Jiangtao Yu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haihua Chen
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haoli Ma
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhongxiang Zhang
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaolu Zhu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Xiaolu Zhu,
| | - Pengcheng Wang
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ruining Liu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoqing Jin
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, China
- Xiaoqing Jin,
| | - Yan Zhao
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, China
- Yan Zhao,
| |
Collapse
|
76
|
Sun J, Cheng B, Su Y, Li M, Ma S, Zhang Y, Zhang A, Cai S, Bao Q, Wang S, Zhu P. The Potential Role of m6A RNA Methylation in the Aging Process and Aging-Associated Diseases. Front Genet 2022; 13:869950. [PMID: 35518355 PMCID: PMC9065606 DOI: 10.3389/fgene.2022.869950] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
N6-methyladenosine (m6A) is the most common and conserved internal eukaryotic mRNA modification. m6A modification is a dynamic and reversible post-transcriptional regulatory modification, initiated by methylase and removed by RNA demethylase. m6A-binding proteins recognise the m6A modification to regulate gene expression. Recent studies have shown that altered m6A levels and abnormal regulator expression are crucial in the ageing process and the occurrence of age-related diseases. In this review, we summarise some key findings in the field of m6A modification in the ageing process and age-related diseases, including cell senescence, autophagy, inflammation, oxidative stress, DNA damage, tumours, neurodegenerative diseases, diabetes, and cardiovascular diseases (CVDs). We focused on the biological function and potential molecular mechanisms of m6A RNA methylation in ageing and age-related disease progression. We believe that m6A modification may provide a new target for anti-ageing therapies.
Collapse
Affiliation(s)
- Jin Sun
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Bokai Cheng
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Yongkang Su
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Man Li
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Shouyuan Ma
- Department of Geriatric Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Zhang
- Department of Outpatient, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Anhang Zhang
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Shuang Cai
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Qiligeer Bao
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Shuxia Wang
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Ping Zhu
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
77
|
Xu C, Huang H, Zhang M, Zhang P, Li Z, Liu X, Fang M. Methyltransferase-Like 3 Rescues the Amyloid-beta protein-Induced Reduction of Activity-Regulated Cytoskeleton Associated Protein Expression via YTHDF1-Dependent N6-Methyladenosine Modification. Front Aging Neurosci 2022; 14:890134. [PMID: 35547627 PMCID: PMC9084913 DOI: 10.3389/fnagi.2022.890134] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Activity-regulated cytoskeleton-associated protein (ARC) is activated by the induction of long-term potentiation and plays an important role in the synaptic plasticity of memory consolidation. Previous studies have shown that abnormal expression of ARC in the brains of patients with Alzheimer’s Disease (AD) leads to the disturbance of synaptic plasticity. ARC expression is mainly regulated by transcriptional and post-translational modification. However, it is unclear whether N6-methyladenosine (m6A) engages in the epigenetic modification of ARC. The AlzData database was used to analyze the brain of AD patients, and Aβ-induced cell models were used. We revealed that ARC expression was reduced in AD patients and Aβ-induced cell models. There were five m6A modification sites of ARC mRNA that were predicted by the SRAMP database, and ARC mRNA was confirmed as the target gene of methyltransferase-like 3 (METTL3) by MeRIP. Amyloid-beta protein (Aβ) repressed the m6A modification. Knockdown of METTL3 decreased ARC mRNA m6A modification and reduced ARC protein expression, while overexpression of METTL3 rescued ARC expression after Aβ treatment. Knockdown of YTH domain family, member 1 (YTHDF1) decreased ARC protein expression, while the overexpression of YTHDF1 could not rescue the loss of ARC protein expression after 3-deazaadenosine treatment or knockdown of METTL3. Our findings identify that METTL3 rescues the Aβ-induced reduction of ARC expression via YTHDF1-Dependent m6A modification, which suggests an important mechanism of epigenetic alteration in AD.
Collapse
Affiliation(s)
- Chenhaoyi Xu
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huanghuang Huang
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pei Zhang
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zezhi Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- *Correspondence: Zezhi Li,
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Xueyuan Liu,
| | - Min Fang
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Min Fang,
| |
Collapse
|
78
|
Zhang R, Zhang Y, Guo F, Li S, Cui H. RNA N6-Methyladenosine Modifications and Its Roles in Alzheimer's Disease. Front Cell Neurosci 2022; 16:820378. [PMID: 35401117 PMCID: PMC8989074 DOI: 10.3389/fncel.2022.820378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of epitranscriptomics in regulating gene expression has received widespread attention. Recently, RNA methylation modifications, particularly N6-methyladenosine (m6A), have received marked attention. m6A, the most common and abundant type of eukaryotic methylation modification in RNAs, is a dynamic reversible modification that regulates nuclear splicing, stability, translation, and subcellular localization of RNAs. These processes are involved in the occurrence and development of many diseases. An increasing number of studies have focused on the role of m6A modification in Alzheimer's disease, which is the most common neurodegenerative disease. This review focuses on the general features, mechanisms, and functions of m6A methylation modification and its role in Alzheimer's disease.
Collapse
Affiliation(s)
- Runjiao Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Yizhou Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Fangzhen Guo
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| |
Collapse
|
79
|
Quiles-Jiménez A, Dahl TB, Bjørås M, Alseth I, Halvorsen B, Gregersen I. Epitranscriptome in Ischemic Cardiovascular Disease: Potential Target for Therapies. Stroke 2022; 53:2114-2122. [PMID: 35240858 DOI: 10.1161/strokeaha.121.037581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The global risk of cardiovascular disease, including ischemic disease such as stroke, remains high, and cardiovascular disease is the cause of one-third of all deaths worldwide. The main subjacent cause, atherosclerosis, is not fully understood. To improve early diagnosis and therapeutic strategies, it is crucial to unveil the key molecular mechanisms that lead to atherosclerosis development. The field of epitranscriptomics is blossoming and quickly advancing in fields like cancer research, nevertheless, poorly understood in the context of cardiovascular disease. Epitranscriptomic modifications are shown to regulate the metabolism and function of RNA molecules, which are important for cell functions such as cell proliferation, a key aspect in atherogenesis. As such, epitranscriptomic regulatory mechanisms can serve as novel checkpoints in gene expression during disease development. In this review, we describe examples of the latest research investigating epitranscriptomic modifications, in particular A-to-I editing and the covalent modification N6-methyladenosine and their regulatory proteins, in the context of cardiovascular disease. We additionally discuss the potential of these mechanisms as therapeutic targets and novel treatment options.
Collapse
Affiliation(s)
- Ana Quiles-Jiménez
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway. (A.Q.-J., T.B.D., B.H., I.G.).,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway (A.Q.-J., B.H.)
| | - Tuva B Dahl
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway. (A.Q.-J., T.B.D., B.H., I.G.).,Division of Critical Care and Emergencies, Oslo University Hospital, Rikshospitalet, Norway. (T.B.D.)
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway. (M.B., I.A.).,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway (M.B.)
| | - Ingrun Alseth
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway. (M.B., I.A.)
| | - Bente Halvorsen
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway. (A.Q.-J., T.B.D., B.H., I.G.).,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway (A.Q.-J., B.H.)
| | - Ida Gregersen
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway. (A.Q.-J., T.B.D., B.H., I.G.)
| |
Collapse
|
80
|
Chang H, Yang J, Wang Q, Zhao J, Zhu R. Role of N6-methyladenosine modification in pathogenesis of ischemic stroke. Expert Rev Mol Diagn 2022; 22:295-303. [PMID: 35236212 DOI: 10.1080/14737159.2022.2049246] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION N6-Methyladenosine (m6A), the most common and reversible mRNA modification, has attracted considerable attention recently, and accumulating evidence indicates it has an important role in the progression of ischemic stroke (IS). AREAS COVERED We first reviewed m6A methylation modification enzymes, including m6A methyltransferases (METTL3, METTL14, and WTAP), demethylases (FTO and ALKBH5), m6A-binding proteins (YTH domain containing 1/2 [YTHDC1/2], YTHDF1/2/3, and insulin like growth factor 2 mRNA binding protein 1/2/3 [IGF2BP1/2/3]), and their-related functions. An alteration in the m6A methylation profile of IS has been reported and m6A is differentially expressed in IS. Thus, we then focused on the underlying mechanism of m6A methylation in IS and the involvement of atherosclerosis (AS), cerebral ischemia/reperfusion (IR) injury, inflammation, oxidative stress, and apoptosis. Furthermore, we also elucidated the effect of m6A-associated single-nucleotide polymorphisms (SNPs) on stroke and uncovered new causal variants for IS. The clinical application of m6A targeting drugs is still in its infancy and will be available in the future. EXPERT OPINION : Collectively, the information in the present review is a summary of the latest developments in m6A modification and highlights the mechanisms underlying IS pathogenesis, which may provide novel insights into the mechanisms and therapeutic targets for IS.
Collapse
Affiliation(s)
- Hongtao Chang
- Department of Neurology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang 110001, China
| | - Jun Yang
- Department of Neurology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang 110001, China
| | - Qianwen Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang 110001, China
| | - Jingjing Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang 110001, China
| | - Ruixia Zhu
- Department of Neurology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang 110001, China
| |
Collapse
|
81
|
Chokkalla AK, Mehta SL, Vemuganti R. Epitranscriptomic Modifications Modulate Normal and Pathological Functions in CNS. Transl Stroke Res 2022; 13:1-11. [PMID: 34224107 PMCID: PMC8727632 DOI: 10.1007/s12975-021-00927-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
RNA is more than just a combination of four genetically encoded nucleobases as it carries extra information in the form of epitranscriptomic modifications. Diverse chemical groups attach covalently to RNA to enhance the plasticity of cellular transcriptome. The reversible and dynamic nature of epitranscriptomic modifications allows RNAs to achieve rapid and context-specific gene regulation. Dedicated cellular machinery comprising of writers, erasers, and readers drives the epitranscriptomic signaling. Epitranscriptomic modifications control crucial steps of mRNA metabolism such as splicing, export, localization, stability, degradation, and translation. The majority of the epitranscriptomic modifications are highly abundant in the brain and contribute to activity-dependent gene expression. Thus, they regulate the vital physiological processes of the brain, such as synaptic plasticity, neurogenesis, and stress response. Furthermore, epitranscriptomic alterations influence the progression of several neurologic disorders. This review discussed the molecular mechanisms of epitranscriptomic regulation in neurodevelopmental and neuropathological conditions with the goal to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Anil K Chokkalla
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - Raghu Vemuganti
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA.
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA.
- William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
82
|
Zhu B, Chen HX, Li S, Tan JH, Xie Y, Zou MX, Wang C, Xue JB, Li XL, Cao Y, Yan YG. Comprehensive analysis of N6-methyladenosine (m 6A) modification during the degeneration of lumbar intervertebral disc in mice. J Orthop Translat 2022; 31:126-138. [PMID: 34976732 PMCID: PMC8685911 DOI: 10.1016/j.jot.2021.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 01/22/2023] Open
Abstract
Objective To study the N6-methyladenosine (m6A) modification pattern of nucleus pulposus (NP) tissue during intervertebral disc degeneration (IDD). Methods A standing mouse model was generated, and staining and imaging methods were used to evaluate the IDD model. Methylated RNA immunoprecipitation with next-generation sequencing (MeRIP-seq) was used to analyze m6A methylation-associated transcripts in the NP, and real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression of methylation-related enzymes and conduct bio-informatics analysis. Results The standing mouse model caused IDD. Continuous axial pressure changed the expression of related methylases in degenerated NP tissue. Relative to the control group, the expression levels of KIAA1429, METTL14, METTL3, METTL4, WTAP, DGCR8, EIF3A and YTHDC1 in the experimental group were higher, while those of FTO, ELAVL1, HNRNPC1 and SRSF2 were lower. We identified 985 differentially expressed genes through MeRIP-Seq, among which 363 genes were significantly up-regulated, and 622 genes were significantly down-regulated. In addition, among the 9648 genes counted, 1319 m6A peaks with significant differences in methylation were identified, among which 933 were significantly up-regulated, and 386 were significantly down-regulated. Genes and pathways that were enriched in IDD have been identified. Conclusion The results of this study elucidated the m6A methylation pattern of NP tissue in degenerated lumbar intervertebral disc of mice and provided new perspectives and clues for research on and the treatment of lumbar disc degeneration. The Translational potential of this article As one of the important causes of low back and leg pain, intervertebral disc degeneration brings a huge economic burden to the society, family and medical system. Therefore, understanding the molecular and cellular mechanisms of intervertebral disc degeneration is of great significance for guiding clinical treatment. In this study, methylated RNA immunoprecipitation with next-generation sequencing on mice lumbar nucleus pulposus tissues found that differentially expressed genes and changes in the expression of related methylases, confirming that RNA methylation is involved in intervertebral disc degeneration. The process provides new vision and clues for future research on intervertebral disc degeneration.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Hao-xiang Chen
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Shan Li
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jing-hua Tan
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yong Xie
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ming-xiang Zou
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Cheng Wang
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jing-bo Xue
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xue-lin Li
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
- Corresponding author. Department of Spine Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, 410008, China.
| | - Yi-guo Yan
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
- Corresponding author. Department of Spine Surgery, The First Affiliated Hospital of University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China.
| |
Collapse
|
83
|
Wang Y, Xu M, Yue P, Zhang D, Tong J, Li Y. Novel Insights Into the Potential Mechanisms of N6-Methyladenosine RNA Modification on Sepsis-Induced Cardiovascular Dysfunction: An Update Summary on Direct and Indirect Evidences. Front Cell Dev Biol 2021; 9:772921. [PMID: 34869371 PMCID: PMC8633316 DOI: 10.3389/fcell.2021.772921] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a host’s dysfunctional response to infection. As is known to all, septic heart disease occurs because pathogens invading the blood stimulate the activation of endothelial cells, causing a large number of white blood cells to accumulate and trigger an immune response. However, in severe sepsis, the hematopoietic system is inhibited, and there will also be a decline in white blood cells, at which time the autoimmune system will also be suppressed. During the immune response, a large number of inflammatory factors are released into cells to participate in the inflammatory process, which ultimately damages cardiac myocytes and leads to impaired cardiac function. N6-methyladenosine (m6A) is a common RNA modification in mRNA and non-coding RNA that affects RNA splicing, translation, stability, and epigenetic effects of some non-coding RNAs. A large number of emerging evidences demonstrated m6A modification had been involved in multiple biological processes, especially for sepsis and immune disorders. Unfortunately, there are limited results provided to analyze the association between m6A modification and sepsis-induced cardiovascular dysfunction (SICD). In this review, we firstly summarized current evidences on how m6A mediates the pathophysiological process in cardiac development and cardiomyopathy to emphasize the importance of RNA methylation in maintaining heart biogenesis and homeostasis. Then, we clarified the participants of m6A modification in extended inflammatory responses and immune system activation, which are the dominant and initial changes secondary to sepsis attack. After that, we deeply analyzed the top causes of SICD and identified the activation of inflammatory cytokines, endothelial cell dysfunction, and mitochondrial failure. Thus, the highlight of this review is that we systematically collected all the related potential mechanisms between m6A modification and SICD causes. Although there is lack of direct evidences on SICD, indirect evidences had been demonstrated case by case on every particular molecular mechanism and signal transduction, which require further explorations into the potential links among the listed mechanisms. This provides novel insights into the understanding of SICD.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Miaomiao Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Peng Yue
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Jiyu Tong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
84
|
Wang DO. Epitranscriptomic regulation of cognitive development and decline. Semin Cell Dev Biol 2021; 129:3-13. [PMID: 34857470 DOI: 10.1016/j.semcdb.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022]
Abstract
Functional genomics and systems biology have opened new doors to previously inaccessible genomic information and holistic approaches to study complex networks of genes and proteins in the central nervous system. The advances are revolutionizing our understanding of the genetic underpinning of cognitive development and decline by facilitating identifications of novel molecular regulators and physiological pathways underlying brain function, and by associating polymorphism and mutations to cognitive dysfunction and neurological diseases. However, our current understanding of these complex gene regulatory mechanisms has yet lacked sufficient mechanistic resolution for further translational breakthroughs. Here we review recent findings from the burgeoning field of epitranscriptomics in association of cognitive functions with a special focus on the epitranscritomic regulation in subcellular locations such as chromosome, synapse, and mitochondria. Although there are important gaps in knowledge, current evidence is suggesting that this layer of RNA regulation may be of particular interest for the spatiotemporally coordinated regulation of gene networks in developing and maintaining brain function that underlie cognitive changes.
Collapse
Affiliation(s)
- Dan Ohtan Wang
- Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Graduate School of Biostudies, Kyoto University, Yoshida Hon-machi, Kyoto 606-8501, Japan.
| |
Collapse
|
85
|
Lopez MS, Morris-Blanco KC, Ly N, Maves C, Dempsey RJ, Vemuganti R. MicroRNA miR-21 Decreases Post-stroke Brain Damage in Rodents. Transl Stroke Res 2021; 13:483-493. [PMID: 34796453 DOI: 10.1007/s12975-021-00952-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
Due to their role in controlling translation, microRNAs emerged as novel therapeutic targets to modulate post-stroke outcomes. We previously reported that miR-21 is the most abundantly induced microRNA in the brain of rodents subjected to preconditioning-induced cerebral ischemic tolerance. We currently show that intracerebral administration of miR-21 mimic decreased the infarct volume and promoted better motor function recovery in adult male and female C57BL/6 mice subjected to transient middle cerebral artery occlusion. The miR-21 mimic treatment is also efficacious in aged mice of both sexes subjected to focal ischemia. Mechanistically, miR-21 mimic treatment decreased the post-ischemic levels of several pro-apoptotic and pro-inflammatory RNAs, which might be responsible for the observed neuroprotection. We further observed post-ischemic neuroprotection in adult mice administered with miR-21 mimic intravenously. Overall, the results of this study implicate miR-21 as a promising candidate for therapeutic translation after stroke.
Collapse
Affiliation(s)
- Mary S Lopez
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA.,Cell & Molecular Pathology Training Program, University of Wisconsin, Madison, WI, 53792, USA
| | | | - Nancy Ly
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Carly Maves
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Robert J Dempsey
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA. .,Cell & Molecular Pathology Training Program, University of Wisconsin, Madison, WI, 53792, USA. .,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
86
|
Zhang Z, Wei W, Wang H, Dong J. N6-Methyladenosine-Sculpted Regulatory Landscape of Noncoding RNA. Front Oncol 2021; 11:743990. [PMID: 34722298 PMCID: PMC8554331 DOI: 10.3389/fonc.2021.743990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
The exploration of dynamic N6-methyladenosine (m6A) RNA modification in mammalian cells has attracted great interest in recent years. M6A modification plays pivotal roles in multiple biological and pathological processes, including cellular reprogramming, fertility, senescence, and tumorigenesis. In comparison with growing research unraveling the effects of m6A modifications on eukaryotic messenger RNAs, reports of the association between noncoding RNAs and m6A modification are relatively limited. Noncoding RNAs that undergo m6A modification are capable of regulating gene expression and also play an important role in epigenetic regulation. Moreover, the homeostasis of m6A modification can be affected by noncoding RNAs across a broad spectrum of biological activities. Importantly, fine-tuning and interaction between these processes are responsible for cell development, as well as the initiation and progression of the disease. Hence, in this review, we provide an account of recent developments, revealing biological interactions between noncoding RNAs and m6A modification, and discuss the potential clinical applications of interfering with m6A modification.
Collapse
Affiliation(s)
- Zhongyuan Zhang
- Department of Radiology, The First Affiliated Hospital of the University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, China
| | - Wei Wei
- Department of Laboratory Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of the University of Science and Technology of China, Hefei, China
| | - Hao Wang
- Department of Laboratory Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of the University of Science and Technology of China, Hefei, China
| | - Jiangning Dong
- Department of Radiology, The First Affiliated Hospital of the University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, China
| |
Collapse
|
87
|
Sweaad WK, Stefanizzi FM, Chamorro-Jorganes A, Devaux Y, Emanueli C. Relevance of N6-methyladenosine regulators for transcriptome: Implications for development and the cardiovascular system. J Mol Cell Cardiol 2021; 160:56-70. [PMID: 33991529 DOI: 10.1016/j.yjmcc.2021.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
N6-methyladenosine (m6A) is the most abundant and well-studied internal modification of messenger RNAs among the various RNA modifications in eukaryotic cells. Moreover, it is increasingly recognized to regulate non-coding RNAs. The dynamic and reversible nature of m6A is ensured by the precise and coordinated activity of specific proteins able to insert ("write"), bind ("read") or remove ("erase") the m6A modification from coding and non-coding RNA molecules. Mounting evidence suggests a pivotal role for m6A in prenatal and postnatal development and cardiovascular pathophysiology. In the present review we summarise and discuss the major functions played by m6A RNA methylation and its components particularly referring to the cardiovascular system. We present the methods used to study m6A and the most abundantly methylated RNA molecules. Finally, we highlight the possible involvement of the m6A mark in cardiovascular disease as well as the need for further studies to better describe the mechanisms of action and the potential therapeutic role of this RNA modification.
Collapse
Affiliation(s)
- Walid Khalid Sweaad
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Francesca Maria Stefanizzi
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Aránzazu Chamorro-Jorganes
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.
| | | |
Collapse
|
88
|
Mehta SL, Chokkalla AK, Vemuganti R. Noncoding RNA crosstalk in brain health and diseases. Neurochem Int 2021; 149:105139. [PMID: 34280469 PMCID: PMC8387393 DOI: 10.1016/j.neuint.2021.105139] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022]
Abstract
The mammalian brain expresses several classes of noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs). These ncRNAs play vital roles in regulating cellular processes by RNA/protein scaffolding, sponging and epigenetic modifications during the pathophysiological conditions, thereby controlling transcription and translation. Some of these functions are the result of crosstalk between ncRNAs to form a competitive endogenous RNA network. These intricately organized networks comprise lncRNA/miRNA, circRNA/miRNA, or lncRNA/miRNA/circRNA, leading to crosstalk between coding and ncRNAs through miRNAs. The miRNA response elements predominantly mediate the ncRNA crosstalk to buffer the miRNAs and thereby fine-tune and counterbalance the genomic changes and regulate neuronal plasticity, synaptogenesis and neuronal differentiation. The perturbed levels and interactions of the ncRNAs could lead to pathologic events like apoptosis and inflammation. Although the regulatory landscape of the ncRNA crosstalk is still evolving, some well-known examples such as lncRNA Malat1 sponging miR-145, circRNA CDR1as sponging miR-7, and lncRNA Cyrano and the circRNA CDR1as regulating miR-7, has been shown to affect brain function. The ability to manipulate these networks is crucial in determining the functional outcome of central nervous system (CNS) pathologies. The focus of this review is to highlights the interactions and crosstalk of these networks in regulating pathophysiologic CNS function.
Collapse
Affiliation(s)
- Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA; William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
89
|
Shen ZJ, Han YC, Nie MW, Wang YN, Xiang RL, Xie HZ. Genome-wide identification of altered RNA m 6A profiles in vascular tissue of septic rats. Aging (Albany NY) 2021; 13:21610-21627. [PMID: 34507301 PMCID: PMC8457599 DOI: 10.18632/aging.203506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/19/2021] [Indexed: 01/07/2023]
Abstract
Sepsis is the leading cause of death in hospital intensive care units. In light of recent studies showing that variations in N6-methyladenosine (m6A) levels in different RNA transcripts influence inflammatory responses, we evaluated the m6A profiles of rat aortic mRNAs and lncRNAs after lipopolysaccharide (LPS)-induced sepsis. LC-MS-based mRNA modification analysis showed that global m6A levels were significantly decreased in aortic tissue of rats injected intraperitoneally with LPS. This finding was consistent with downregulated expression of METTL3 and WTAP, two members of the m6A writer complex, in LPS-exposed aortas. Microarray analysis of m6A methylation indicated that 40 transcripts (31 mRNAs and 9 lncRNAs) were hypermethylated, while 223 transcripts (156 mRNAs and 67 lncRNAs) were hypomethylated, in aortic tissue from LPS-treated rats. On GO and KEGG analyses, 'complement and coagulation cascades', 'transient receptor potential channels', and 'organic anion transmembrane transporter activity' were the major biological processes modulated by the differentially m6A methylated mRNAs. In turn, competing endogenous RNA network analysis suggested that decreased m6A levels in lncRNA-XR_343955 may affect the inflammatory response through the cell adhesion molecule pathway. Our data suggest that therapeutic modulation of the cellular m6A machinery may be useful to preserve vascular integrity and function during sepsis.
Collapse
Affiliation(s)
- Zhu-Jun Shen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ye-Chen Han
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mu-Wen Nie
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yi-Ning Wang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ruo-Lan Xiang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - Hong-Zhi Xie
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
90
|
LncRNA TCONS_00041002 improves neurological outcomes in neonatal rats with hypoxic-ischemic encephalopathy by inhibiting apoptosis and promoting neuron survival. Exp Neurol 2021; 346:113835. [PMID: 34390705 DOI: 10.1016/j.expneurol.2021.113835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 07/12/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023]
Abstract
It has been reported that Neonatal hypoxic-ischemic encephalopathy (HIE) could induce apoptosis in neonates and result in cognitive and sensory impairments, which are associated with poor developmental outcomes. Despite the improvement in neonatology, there is still no clinically effective treatment for HIE presently. Long non-coding RNAs (lncRNAs) play important roles in cellular homeostasis. Nevertheless, their effects in developing rat brains with HI is little known. Here, we established HIE model in neonate rats and explored the expression and function of lncRNAs in HI, and found the expression of 19 lncRNAs was remarkably changed in the brains of HI rats, compared to the sham group. Among them, three lncRNAs (TCONS_00041002, TCONS_00070547, TCONS_00045572) were enriched in the apoptotic process via gene ontology (GO) and pathway analysis, which were selected for the further qRT-PCR verification. Through lentivirus-mediated overexpression of these three lncRNAs, we found that overexpression of TCONS_00041002 attenuated the cell apoptosis, and increased the vitality of neurons after oxygen-glucose deprivation (OGD), therefore reduced the brain infarction and further promoted the neuron survival as well as improved the neurological disorders in the rats subjected to HIE. What's more, ceRNA network prediction and co-expression verification showed that the expression of TCONS_00041002 was positively associated with Foxe1, Pawr and Nfkbiz. Altogether, this study has exhibited that lncRNA TCONS_00041002 participates in the cell apoptosis and neuronal survival of HIE and represents a potential new target for the treatment of HIE.
Collapse
|
91
|
Wang Q, Liang Y, Luo X, Liu Y, Zhang X, Gao L. N6-methyladenosine RNA modification: A promising regulator in central nervous system injury. Exp Neurol 2021; 345:113829. [PMID: 34339678 DOI: 10.1016/j.expneurol.2021.113829] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/08/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022]
Abstract
In addition to DNA methylation, reversible epigenetic modification occurring in RNA has been discovered recently. The most abundant type of RNA methylation is N6-methyladenosine (m6A) modification, which is dynamically regulated by methylases ("writers"), demethylases ("erasers") and m6A-binding proteins ("readers"). As an essential posttranscriptional regulator, m6A can control mRNA splicing, processing, stability, export and translation. Recent studies have revealed that m6A modification has the strongest tissue specificity for brain tissue and plays crucial roles in central nervous system (CNS) injures by affecting its downstream target genes or non-coding RNAs. This review focuses on the expression and function of m6A regulatory proteins in CNS trauma in vitro and in vivo. We also highlight the latest insights into the molecular mechanisms of pathological damage in the CNS. Understanding m6A dynamics, functions, and machinery will yield an opportunity for designing and developing novel therapeutic agents for CNS injuries.
Collapse
Affiliation(s)
- Qiang Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yundan Liang
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Xiaolei Luo
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yuqing Liu
- Laboratory of Metabolomics and Gynecological Disease Research, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiaoli Zhang
- Laboratory of Metabolomics and Gynecological Disease Research, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, PR China
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
92
|
Han YC, Xie HZ, Lu B, Xiang RL, Zhang HP, Li JY, Zhang SY. Lipopolysaccharide Alters the m6A Epitranscriptomic Tagging of RNAs in Cardiac Tissue. Front Mol Biosci 2021; 8:670160. [PMID: 34395520 PMCID: PMC8355517 DOI: 10.3389/fmolb.2021.670160] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
N6-methyladenosine (m6A) modification plays important roles in the pathology of a variety of diseases. However, the roles of m6A modification in sepsis-induced myocardial dysfunction are not well defined. Rats were divided into control and lipopolysaccharide (LPS)-induced sepsis group. Global m6A levels of left ventricle tissue were measured by LC-MS/MS, and transcriptome-wide m6A modifications were profiled using epitranscriptomic microarrays (mRNAs and lncRNAs). Bioinformatics analysis was conducted to understand the functional implications of m6A modifications during sepsis. Methylated lncRNAs and mRNAs were measured by m6A single-base site qPCR. The global m6A levels in left ventricle tissue were significantly decreased in the LPS group. While 27 transcripts (23 mRNAs and four lncRNAs) were hypermethylated, 46 transcripts (39 mRNAs and 7 lncRNAs) were hypomethylated in the LPS group. The mRNA expression of writers and readers was significantly decreased in the LPS group. The m6A modification of Clec1b, Stk38l and Tnfrsf26 was associated with platelet activation and apoptotic pathways. Moreover, the decrease in m6A modification of lncRNA XR_346,771 may be related to cation import in cardiac tissue. Our data provide novel information regarding changes to m6A modifications in cardiac tissue during sepsis, and m6A modifications might be promising therapeutic targets.
Collapse
Affiliation(s)
- Ye-Chen Han
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Zhi Xie
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Lu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruo-Lan Xiang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing, China
| | - Hai-Peng Zhang
- Peking University Fifth School of Clinical Medicine (Beijing Hospital), Beijing, China
| | - Jing-Yi Li
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Yang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
93
|
Fu G, Du S, Huang T, Cao M, Feng X, Wu S, Albik S, Bekker A, Tao YX. FTO (Fat-Mass and Obesity-Associated Protein) Participates in Hemorrhage-Induced Thalamic Pain by Stabilizing Toll-Like Receptor 4 Expression in Thalamic Neurons. Stroke 2021; 52:2393-2403. [PMID: 34102854 DOI: 10.1161/strokeaha.121.034173] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ganglan Fu
- Department of Anesthesiology (G.F., S.D., T.H., M.C., X.F., S.W., S.A., A.B., Y.X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark.,Now with Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China (G.F., M.C.)
| | - Shibin Du
- Department of Anesthesiology (G.F., S.D., T.H., M.C., X.F., S.W., S.A., A.B., Y.X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark
| | - Tianfeng Huang
- Department of Anesthesiology (G.F., S.D., T.H., M.C., X.F., S.W., S.A., A.B., Y.X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark
| | - Minghui Cao
- Department of Anesthesiology (G.F., S.D., T.H., M.C., X.F., S.W., S.A., A.B., Y.X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark.,Now with Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China (G.F., M.C.)
| | - Xiaozhou Feng
- Department of Anesthesiology (G.F., S.D., T.H., M.C., X.F., S.W., S.A., A.B., Y.X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark
| | - Shaogen Wu
- Department of Anesthesiology (G.F., S.D., T.H., M.C., X.F., S.W., S.A., A.B., Y.X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark
| | - Sfian Albik
- Department of Anesthesiology (G.F., S.D., T.H., M.C., X.F., S.W., S.A., A.B., Y.X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark
| | - Alex Bekker
- Department of Anesthesiology (G.F., S.D., T.H., M.C., X.F., S.W., S.A., A.B., Y.X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark
| | - Yuan-Xiang Tao
- Department of Anesthesiology (G.F., S.D., T.H., M.C., X.F., S.W., S.A., A.B., Y.X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark.,Department of Physiology, Pharmacology and Neuroscience (Y.X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark.,Department of Cell Biology and Molecular Medicine (Y.X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark
| |
Collapse
|
94
|
Luo J, Xu T, Sun K. N6-Methyladenosine RNA Modification in Inflammation: Roles, Mechanisms, and Applications. Front Cell Dev Biol 2021; 9:670711. [PMID: 34150765 PMCID: PMC8213350 DOI: 10.3389/fcell.2021.670711] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal mRNA modification. m6A can be installed by the methyltransferase complex and removed by demethylases, which are involved in regulating post-transcriptional expression of target genes. RNA methylation is linked to various inflammatory states, including autoimmunity, infection, metabolic disease, cancer, neurodegenerative diseases, heart diseases, and bone diseases. However, systematic knowledge of the relationship between m6A modification and inflammation in human diseases remains unclear. In this review, we will discuss the association between m6A modification and inflammatory response in diseases, especially the role, mechanisms, and potential clinical application of m6A as a biomarker and therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Jiahui Luo
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
95
|
Lü X, Fan Y, Kang S, Xiao B, Zhang M. RNA methylation and neurovascular unit remodeling. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:536-544. [PMID: 34148891 PMCID: PMC10930208 DOI: 10.11817/j.issn.1672-7347.2021.200246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Indexed: 11/03/2022]
Abstract
RNA methylation is of great significance in the regulation of gene expression, among which the more important methylation modifiers are N6-methyladenosine (m6A) and 5-methylcytosine (m5C). The methylation process is mainly regulated by 3 kinds of proteins: methyltransferase, demethylase, and reader. m6A, m5C, and their related proteins have high abundance in the brain, and they have important roles in the development of the nervous system and the repair and remodeling of the vascular system. The neurovascular unit (NVU) is a unit of brain structure and function composed of neurons, capillaries, astrocytes, supporting cells, and extracellular matrix. The local microenvironment for NVU has an important role in nerve cell function repair, and the remodeling of NVU is of great significance in the prognosis of various neurological diseases.
Collapse
Affiliation(s)
- Xinyi Lü
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuntong Kang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
96
|
The m 6A-epitranscriptome in brain plasticity, learning and memory. Semin Cell Dev Biol 2021; 125:110-121. [PMID: 34053866 DOI: 10.1016/j.semcdb.2021.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
Activity-dependent gene expression and protein translation underlie the ability of neurons to dynamically adjust their synaptic strength in response to sensory experience and during learning. The emerging field of epitranscriptomics (RNA modifications) has rapidly shifted our views on the mechanisms that regulate gene expression. Among hundreds of biochemical modifications on RNA, N6-methyladenosine (m6A) is the most abundant reversible mRNA modification in the brain. Its dynamic nature and ability to regulate all aspects of mRNA processing have positioned m6A as an important and versatile regulator of nervous system functions, including neuronal plasticity, learning and memory. In this review, we summarise recent experimental evidence that supports the role of m6A signalling in learning and memory, as well as providing an overview of the underlying molecular mechanisms in neurons. We also discuss the consequences of perturbed m6A signalling and/or its regulatory networks which are increasingly being linked to various cognitive disorders in humans.
Collapse
|
97
|
Pan ZP, Wang B, Hou DY, You RL, Wang XT, Xie WH, Huang HF. METTL3 mediates bone marrow mesenchymal stem cell adipogenesis to promote chemoresistance in acute myeloid leukaemia. FEBS Open Bio 2021; 11:1659-1672. [PMID: 33932138 PMCID: PMC8167861 DOI: 10.1002/2211-5463.13165] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/13/2021] [Accepted: 04/12/2021] [Indexed: 02/02/2023] Open
Abstract
Adipogenesis of bone marrow mesenchymal stem cells (MSCs) promotes chemoresistance of acute myeloid leukaemia (AML) cells. MSCs from AML patients (AML‐MSCs) display enhanced adipogenesis compared with bone marrow MSCs from healthy donors. However, the precise molecular mechanism by which adipogenesis of MSCs from AML marrow differs from normal counterparts remains obscure. We found that METTL3 significantly inhibits MSC adipogenesis. Here, we aimed to identify the molecular mechanism linking METTL3 and MSC adipogenesis. Analysis of m6A epigenetic changes in MSCs determined via RIP‐qPCR and MeRIP‐qPCR indicated that METTL3 affects AKT protein expression in MSCs by mediating m6A modification of AKT1‐mRNA. Downregulated METTL3 expression in AML‐MSCs induced an increase in AKT protein, resulting in enhanced MSC adipogenesis, thereby contributing to chemoresistance in AML cells. Therefore, targeting AKT regulation by mRNA modification in MSC adipogenesis might provide a novel therapeutic strategy to overcome AML chemoresistance.
Collapse
Affiliation(s)
- Zhi-Peng Pan
- Central Laboratory, Fujian Medical University Union Hospital, China
| | - Bin Wang
- Central Laboratory, Fujian Medical University Union Hospital, China.,Clinical Laboratory, Fujian Maternal and Child Health Hospital, Fujian Children's Hospital, China
| | - Di-Yu Hou
- Central Laboratory, Fujian Medical University Union Hospital, China
| | - Ruo-Lan You
- Central Laboratory, Fujian Medical University Union Hospital, China
| | - Xiao-Ting Wang
- Central Laboratory, Fujian Medical University Union Hospital, China
| | - Wen-Hui Xie
- Graduate School, Fujian Medical University, Fujian Medical University Union Hospital, China
| | - Hui-Fang Huang
- Central Laboratory, Fujian Medical University Union Hospital, China
| |
Collapse
|
98
|
Mathoux J, Henshall DC, Brennan GP. Regulatory Mechanisms of the RNA Modification m 6A and Significance in Brain Function in Health and Disease. Front Cell Neurosci 2021; 15:671932. [PMID: 34093133 PMCID: PMC8170084 DOI: 10.3389/fncel.2021.671932] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
RNA modifications have emerged as an additional layer of regulatory complexity governing the function of almost all species of RNA. N6-methyladenosine (m6A), the addition of methyl groups to adenine residues, is the most abundant and well understood RNA modification. The current review discusses the regulatory mechanisms governing m6A, how this influences neuronal development and function and how aberrant m6A signaling may contribute to neurological disease. M6A is known to regulate the stability of mRNA, the processing of microRNAs and function/processing of tRNAs among other roles. The development of antibodies against m6A has facilitated the application of next generation sequencing to profile methylated RNAs in both health and disease contexts, revealing the extent of this transcriptomic modification. The mechanisms by which m6A is deposited, processed, and potentially removed are increasingly understood. Writer enzymes include METTL3 and METTL14 while YTHDC1 and YTHDF1 are key reader proteins, which recognize and bind the m6A mark. Finally, FTO and ALKBH5 have been identified as potential erasers of m6A, although there in vivo activity and the dynamic nature of this modification requires further study. M6A is enriched in the brain and has emerged as a key regulator of neuronal activity and function in processes including neurodevelopment, learning and memory, synaptic plasticity, and the stress response. Changes to m6A have recently been linked with Schizophrenia and Alzheimer disease. Elucidating the functional consequences of m6A changes in these and other brain diseases may lead to novel insight into disease pathomechanisms, molecular biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Justine Mathoux
- Department of Physiology and Medical Physics, RCSI, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro SFI Research Centre, RCSI, University of Medicine and Health Sciences, Dublin, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, RCSI, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro SFI Research Centre, RCSI, University of Medicine and Health Sciences, Dublin, Ireland
| | - Gary P Brennan
- FutureNeuro SFI Research Centre, RCSI, University of Medicine and Health Sciences, Dublin, Ireland.,UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
99
|
Yi D, Wang Q, Zhao Y, Song Y, You H, Wang J, Liu R, Shi Z, Chen X, Luo Q. Alteration of N 6 -Methyladenosine mRNA Methylation in a Rat Model of Cerebral Ischemia-Reperfusion Injury. Front Neurosci 2021; 15:605654. [PMID: 33796004 PMCID: PMC8009187 DOI: 10.3389/fnins.2021.605654] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/03/2021] [Indexed: 01/11/2023] Open
Abstract
Aim This study was conducted in order to reveal the alterations in the N6-methyladenosine (m6A) modification profile of cerebral ischemia–reperfusion injury model rats. Materials and Methods Rats were used to establish the middle cerebral artery occlusion and reperfusion (MCAO/R) model. MeRIP-seq and RNA-seq were performed to identify differences in m6A methylation and gene expression. The expression of m6A methylation regulators was analyzed in three datasets and detected by quantitative real-time polymerase chain reaction, western blot, and immunofluorescence. Results We identified 1,160 differentially expressed genes with hypermethylated or hypomethylated m6A modifications. The differentially expressed genes with hypermethylated m6A modifications were involved in the pathways associated with inflammation, while hypomethylated differentially expressed genes were related to neurons and nerve synapses. Among the m6A regulators, FTO was specifically localized in neurons and significantly downregulated after MCAO/R. Conclusion Our study provided an m6A transcriptome-wide map of the MACO/R rat samples, which might provide new insights into the mechanisms of cerebral ischemia–reperfusion injury.
Collapse
Affiliation(s)
- Dazhuang Yi
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Qunhui Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yuhao Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yu Song
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong You
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Jian Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Renjie Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Zhongqiang Shi
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Xuan Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Qi Luo
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
100
|
Qu X, Zhu K, Li Z, Zhang D, Hou L. The Alteration of M6A-Tagged Transcript Profiles in the Retina of Rats After Traumatic Optic Neuropathy. Front Genet 2021; 12:628841. [PMID: 33664770 PMCID: PMC7920991 DOI: 10.3389/fgene.2021.628841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/25/2021] [Indexed: 12/27/2022] Open
Abstract
Messager RNA (mRNA) can be modified in a variety of ways, among which the modification of N6-methyladenosine (m6A) is one of the most common ones. Recent studies have found that the m6A modification in mRNA could functionally regulate the splicing, localization, translation, and stability of mRNA, which might be closely related to multiple diseases. However, the roles of m6A modification in traumatic optic neuropathy (TON) are unknown. Herein, we detected the expression of m6A-related genes via quantitative real-time PCR (qRT-PCR) and performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) as well as RNA-sequencing to analyze the alteration profiles of m6A modification after TON. The results showed that the expression of m6A-related genes (METTL3, WTAP, FTO, and ALKBH5) were all upregulated after TON. In all, 2,810 m6A peaks were differentially upregulated and 689 m6A peaks were downregulated. In addition, the hypermethylated and hypomethylated profiles of mRNA transcripts were also identified. To sum up, our study revealed the differentially expressed m6A modification in the early stage of TON, which may provide novel insights into the mechanism and treatment of TON.
Collapse
Affiliation(s)
- Xiaolin Qu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kaixin Zhu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhenxing Li
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China.,Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Danfeng Zhang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|