51
|
Abstract
Parenchymal lung disease is the fourth leading cause of death in the United States; among the top causes, it continues on the rise. Telomeres and telomerase have historically been linked to cellular processes related to aging and cancer, but surprisingly, in the recent decade genetic discoveries have linked the most apparent manifestations of telomere and telomerase dysfunction in humans to the etiology of lung disease: both idiopathic pulmonary fibrosis (IPF) and emphysema. The short telomere defect is pervasive in a subset of IPF patients, and human IPF is the phenotype most intimately tied to germline defects in telomere maintenance. One-third of families with pulmonary fibrosis carry germline mutations in telomerase or other telomere maintenance genes, and one-half of patients with apparently sporadic IPF have short telomere length. Beyond explaining genetic susceptibility, short telomere length uncovers clinically relevant syndromic extrapulmonary disease, including a T-cell immunodeficiency and a propensity to myeloid malignancies. Recognition of this subset of patients who share a unifying molecular defect has provided a precision medicine paradigm wherein the telomere-mediated lung disease diagnosis provides more prognostic value than histopathology or multidisciplinary evaluation. Here, we critically evaluate this progress, emphasizing how the genetic findings put forth a new pathogenesis paradigm of age-related lung disease that links telomere abnormalities to alveolar stem senescence, remodeling, and defective gas exchange.
Collapse
Affiliation(s)
- Jonathan K. Alder
- Division of Pulmonary and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh PA, United States
| | - Mary Armanios
- Departments of Oncology and Genetic Medicine, Telomere Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
52
|
Alder JK, Sutton RM, Iasella CJ, Nouraie M, Koshy R, Hannan SJ, Chan EG, Chen X, Zhang Y, Brown M, Popescu I, Veatch M, Saul M, Berndt A, Methé BA, Morris A, Pilewski JM, Sanchez PG, Morrell MR, Shapiro SD, Lindell KO, Gibson KF, Kass DJ, McDyer JF. Lung transplantation for idiopathic pulmonary fibrosis enriches for individuals with telomere-mediated disease. J Heart Lung Transplant 2022; 41:654-663. [PMID: 34933798 PMCID: PMC9038609 DOI: 10.1016/j.healun.2021.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is the most common indication for lung transplantation in North America and variants in telomere-maintenance genes are the most common identifiable cause of IPF. We reasoned that younger IPF patients are more likely to undergo lung transplantation and we hypothesized that lung transplant recipients would be enriched for individuals with telomere-mediated disease due to the earlier onset and more severe disease in these patients. METHODS Individuals with IPF who underwent lung transplantation or were evaluated in an interstitial lung disease specialty clinic who did not undergo lung transplantation were examined. Genetic evaluation was completed via whole genome sequencing (WGS) of 426 individuals and targeted sequencing for 5 individuals. Rare variants in genes previously associated with IPF were classified using the American College of Medical Genetics guidelines. Telomere length from WGS data was measured using TelSeq software. Patient characteristics were collected via medical record review. RESULTS Of 431 individuals, 149 underwent lung transplantation for IPF. The median age of diagnosis of transplanted vs non-transplanted individuals was significantly younger (60 years vs 70 years, respectively, p<0.0001). IPF lung transplant recipients (IPF-LTRs) were twice as likely to have telomere-related rare variants compared to non-transplanted individuals (24% vs 12%, respectively, p=0.0013). IPF-LTRs had shorter telomeres than non-transplanted IPF patients (p=0.0028) and >85% had telomeres below the age-adjusted mean. Post-transplant survival and CLAD were similar amongst IPF-LTRs with rare variants in telomere-maintenance genes compared to those without, as well as in those with short telomeres versus longer telomeres. CONCLUSIONS There is an enrichment for telomere-maintenance gene variants and short telomeres among IPF-LTRs. However, transplant outcomes of survival and CLAD do not differ by gene variants or telomere length within IPF-LTRs. Our findings support individual with telomere-mediated disease should not be excluded from lung transplantation and focusing research efforts on therapies directed toward individuals with short-telomere mediated disease.
Collapse
Affiliation(s)
- Jonathan K Alder
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Rachel M Sutton
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carlo J Iasella
- Department of Pharmacy and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mehdi Nouraie
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ritchie Koshy
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stefanie J Hannan
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ernest G Chan
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiaoping Chen
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yingze Zhang
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark Brown
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Iulia Popescu
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melinda Veatch
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melissa Saul
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Annerose Berndt
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Barbara A Methé
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pablo G Sanchez
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew R Morrell
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steven D Shapiro
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kathleen O Lindell
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; College of Nursing, Medical University of South Carolina, Charleston, South Carolina
| | - Kevin F Gibson
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel J Kass
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John F McDyer
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
53
|
Moua T, Petnak T, Charokopos A, Baqir M, Ryu JH. Challenges in the Diagnosis and Management of Fibrotic Hypersensitivity Pneumonitis: A Practical Review of Current Approaches. J Clin Med 2022; 11:jcm11061473. [PMID: 35329800 PMCID: PMC8955902 DOI: 10.3390/jcm11061473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Recent advances in fibrotic hypersensitivity pneumonitis include improved diagnostic guidance, systematic assessments of immunosuppressive therapy, and the recent availability of antifibrotic therapy (nintedanib) for those with progressive disease. A standardized approach to diagnosis may lead to better inclusion criteria for future therapeutic protocols and delineation of disease or treatment response predictors for real-world management. This review will highlight current diagnostic and treatment challenges and remaining knowledge gaps or areas of uncertainty, with a practical overview of supporting evidence and its clinical implications. Exposure history, serologic testing for antigen sensitivity, bronchoalveolar lavage lymphocytosis, histopathology, and radiologic findings will be covered in the diagnosis section, with immunosuppression, antifibrotic therapy, lung transplantation, and disease prognosis in the treatment and management section.
Collapse
|
54
|
Lu Y, Zhang Y, Pan Z, Yang C, Chen L, Wang Y, Xu D, Xia H, Wang S, Chen S, Hao YJ, Sun G. Potential “Therapeutic” Effects of Tocotrienol-Rich Fraction (TRF) and Carotene “Against” Bleomycin-Induced Pulmonary Fibrosis in Rats via TGF-β/Smad, PI3K/Akt/mTOR and NF-κB Signaling Pathways. Nutrients 2022; 14:nu14051094. [PMID: 35268069 PMCID: PMC8912851 DOI: 10.3390/nu14051094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Pulmonary fibrosis (PF) is a chronic, progressive, and, ultimately, terminal interstitial disease caused by a variety of factors, ranging from genetics, bacterial, and viral infections, to drugs and other influences. Varying degrees of PF and its rapid progress have been widely reported in post-COVID-19 patients and there is consequently an urgent need to develop an appropriate, cost-effective approach for the prevention and management of PF. Aim: The potential “therapeutic” effect of the tocotrienol-rich fraction (TRF) and carotene against bleomycin (BLM)-induced lung fibrosis was investigated in rats via the modulation of TGF-β/Smad, PI3K/Akt/mTOR, and NF-κB signaling pathways. Design/Methods: Lung fibrosis was induced in Sprague-Dawley rats by a single intratracheal BLM (5 mg/kg) injection. These rats were subsequently treated with TRF (50, 100, and 200 mg/kg body wt/day), carotene (10 mg/kg body wt/day), or a combination of TRF (200 mg/kg body wt/day) and carotene (10 mg/kg body wt/day) for 28 days by gavage administration. A group of normal rats was provided with saline as a substitute for BLM as the control. Lung function and biochemical, histopathological, and molecular alterations were studied in the lung tissues. Results: Both the TRF and carotene treatments were found to significantly restore the BLM-induced alterations in anti-inflammatory and antioxidant functions. The treatments appeared to show pneumoprotective effects through the upregulation of antioxidant status, downregulation of MMP-7 and inflammatory cytokine expressions, and reduction in collagen accumulation (hydroxyproline). We demonstrated that TRF and carotene ameliorate BLM-induced lung injuries through the inhibition of apoptosis, the induction of TGF-β1/Smad, PI3K/Akt/mTOR, and NF-κB signaling pathways. Furthermore, the increased expression levels were shown to be significantly and dose-dependently downregulated by TRF (50, 100, and 200 mg/kg body wt/day) treatment in high probability. The histopathological findings further confirmed that the TRF and carotene treatments had significantly attenuated the BLM-induced lung injury in rats. Conclusion: The results of this study clearly indicate the ability of TRF and carotene to restore the antioxidant system and to inhibit proinflammatory cytokines. These findings, thus, revealed the potential of TRF and carotene as preventive candidates for the treatment of PF in the future.
Collapse
Affiliation(s)
- Yifei Lu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (Y.L.); (Y.Z.); (Z.P.); (C.Y.); (L.C.); (Y.W.); (D.X.); (H.X.); (S.W.)
| | - Yihan Zhang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (Y.L.); (Y.Z.); (Z.P.); (C.Y.); (L.C.); (Y.W.); (D.X.); (H.X.); (S.W.)
| | - Zhenyu Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (Y.L.); (Y.Z.); (Z.P.); (C.Y.); (L.C.); (Y.W.); (D.X.); (H.X.); (S.W.)
| | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (Y.L.); (Y.Z.); (Z.P.); (C.Y.); (L.C.); (Y.W.); (D.X.); (H.X.); (S.W.)
| | - Lin Chen
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (Y.L.); (Y.Z.); (Z.P.); (C.Y.); (L.C.); (Y.W.); (D.X.); (H.X.); (S.W.)
| | - Yuanyuan Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (Y.L.); (Y.Z.); (Z.P.); (C.Y.); (L.C.); (Y.W.); (D.X.); (H.X.); (S.W.)
| | - Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (Y.L.); (Y.Z.); (Z.P.); (C.Y.); (L.C.); (Y.W.); (D.X.); (H.X.); (S.W.)
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (Y.L.); (Y.Z.); (Z.P.); (C.Y.); (L.C.); (Y.W.); (D.X.); (H.X.); (S.W.)
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (Y.L.); (Y.Z.); (Z.P.); (C.Y.); (L.C.); (Y.W.); (D.X.); (H.X.); (S.W.)
| | - Shiqing Chen
- Palm Oil Research and Technical Service Institute of Malaysian Palm Oil Board, Shanghai 201108, China; (S.C.); (Y.J.H.)
| | - Yoong Jun Hao
- Palm Oil Research and Technical Service Institute of Malaysian Palm Oil Board, Shanghai 201108, China; (S.C.); (Y.J.H.)
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (Y.L.); (Y.Z.); (Z.P.); (C.Y.); (L.C.); (Y.W.); (D.X.); (H.X.); (S.W.)
- Correspondence: ; Tel.: +86-139-5192-8860
| |
Collapse
|
55
|
Barnes H, Glaspole IN. Progressive fibrosing hypersensitivity pneumonitis: Why wait? Respirology 2022; 27:192-193. [PMID: 35146840 DOI: 10.1111/resp.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Hayley Barnes
- Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia
| | - Ian N Glaspole
- Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
56
|
Glass DS, Grossfeld D, Renna HA, Agarwala P, Spiegler P, DeLeon J, Reiss AB. Idiopathic pulmonary fibrosis: Current and future treatment. THE CLINICAL RESPIRATORY JOURNAL 2022; 16:84-96. [PMID: 35001525 PMCID: PMC9060042 DOI: 10.1111/crj.13466] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/21/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Objectives Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic lung disease characterized by dry cough, fatigue, and progressive exertional dyspnea. Lung parenchyma and architecture is destroyed, compliance is lost, and gas exchange is compromised in this debilitating condition that leads inexorably to respiratory failure and death within 3–5 years of diagnosis. This review discusses treatment approaches to IPF in current use and those that appear promising for future development. Data Source The data were obtained from the Randomized Controlled Trials and scientific studies published in English literature. We used search terms related to IPF, antifibrotic treatment, lung transplant, and management. Results Etiopathogenesis of IPF is not fully understood, and treatment options are limited. Pathological features of IPF include extracellular matrix remodeling, fibroblast activation and proliferation, immune dysregulation, cell senescence, and presence of aberrant basaloid cells. The mainstay therapies are the oral antifibrotic drugs pirfenidone and nintedanib, which can improve quality of life, attenuate symptoms, and slow disease progression. Unilateral or bilateral lung transplantation is the only treatment for IPF shown to increase life expectancy. Conclusion Clearly, there is an unmet need for accelerated research into IPF mechanisms so that progress can be made in therapeutics toward the goals of increasing life expectancy, alleviating symptoms, and improving well‐being.
Collapse
Affiliation(s)
- Daniel S Glass
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - David Grossfeld
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Heather A Renna
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Priya Agarwala
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Peter Spiegler
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Joshua DeLeon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Allison B Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| |
Collapse
|
57
|
Mackintosh JA, Pietsch M, Lutzky V, Enever D, Bancroft S, Apte SH, Tan M, Yerkovich ST, Dickinson JL, Pickett HA, Selvadurai H, Grainge C, Goh NS, Hopkins P, Glaspole I, Reynolds PN, Wrobel J, Jaffe A, Corte TJ, Chambers DC. TELO-SCOPE study: a randomised, double-blind, placebo-controlled, phase 2 trial of danazol for short telomere related pulmonary fibrosis. BMJ Open Respir Res 2021; 8:8/1/e001127. [PMID: 34857525 PMCID: PMC8640666 DOI: 10.1136/bmjresp-2021-001127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction Recent discoveries have identified shortened telomeres and related mutations in people with pulmonary fibrosis (PF). There is evidence to suggest that androgens, including danazol, may be effective in lengthening telomeres in peripheral blood cells. This study aims to assess the safety and efficacy of danazol in adults and children with PF associated with telomere shortening. Methods and analysis A multi-centre, double-blind, placebo-controlled, randomised trial of danazol will be conducted in subjects aged >5 years with PF associated with age-adjusted telomere length ≤10th centile measured by flow fluorescence in situ hybridisation; or in children, a diagnosis of dyskeratosis congenita. Adult participants will receive danazol 800 mg daily in two divided doses or identical placebo capsules orally for 12 months, in addition to standard of care (including pirfenidone or nintedanib). Paediatric participants will receive danazol 2 mg/kg/day orally in two divided doses or identical placebo for 6 months. If no side effects are encountered, the dose will be escalated to 4 mg/kg/day (maximum 800 mg daily) orally in two divided doses for a further 6 months. The primary outcome is change in absolute telomere length in base pairs, measured using the telomere shortest length assay (TeSLA), at 12 months in the intention to treat population. Ethics and dissemination Ethics approval has been granted in Australia by the Metro South Human Research Ethics Committee (HREC/2020/QMS/66385). The study will be conducted and reported according to Standard Protocol Items: Recommendations for Interventional Trials guidelines. Results will be published in peer-reviewed journals and presented at international and national conferences. Trial registration numbers NCT04638517; Australian New Zealand Clinical Trials Registry (ACTRN12620001363976p).
Collapse
Affiliation(s)
- John A Mackintosh
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Maria Pietsch
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Viviana Lutzky
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Debra Enever
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Sandra Bancroft
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Simon H Apte
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Maxine Tan
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Stephanie T Yerkovich
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Hilda A Pickett
- Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Hiran Selvadurai
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher Grainge
- Department of Respiratory Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Nicole S Goh
- Respiratory and Sleep Medicine Department, Austin Health, Heidelberg, Victoria, Australia.,Institute for Breathing and Sleep, Melbourne, Victoria, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter Hopkins
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Ian Glaspole
- Department of Allergy and Respiratory Medicine, Alfred Hospital, Melbourne, Victoria, Australia
| | - Paul N Reynolds
- Department of Respiratory Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Jeremy Wrobel
- Advanced Lung Disease Unit, Fiona Stanley Hospital, Murdoch, Western Australia, Australia.,Department of Medicine, University of Notre Dame, Perth, Western Australia, Australia
| | - Adam Jaffe
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Tamera J Corte
- Respiratory Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel C Chambers
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
58
|
Wang P, Leung J, Lam A, Lee S, Calabrese DR, Hays SR, Golden JA, Kukreja J, Singer JP, Wolters PJ, Tang Q, Greenland JR. Lung transplant recipients with idiopathic pulmonary fibrosis have impaired alloreactive immune responses. J Heart Lung Transplant 2021; 41:641-653. [PMID: 34924263 PMCID: PMC9038662 DOI: 10.1016/j.healun.2021.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Telomere dysfunction is associated with idiopathic pulmonary fibrosis (IPF) and worse outcomes following lung transplantation. Telomere dysfunction may impair immunity by upregulating p53 and arresting proliferation, but its influence on allograft-specific immune responses is unknown. We hypothesized that subjects undergoing lung transplantation for IPF would have impaired T cell proliferation to donor antigens. METHODS We analyzed peripheral blood mononuclear cells (PBMC) from 14 IPF lung transplant recipients and 12 age-matched non-IPF subjects, before and 2 years after transplantation, as well as PBMC from 9 non-transplant controls. We quantified T cell proliferation and cytokine secretion to donor antigens. Associations between PBMC telomere length, measured by quantitative PCR, and T cell proliferation to alloantigens were evaluated with generalized estimating equation models. RESULTS IPF subjects demonstrated impaired CD8+ T cell proliferation to donor antigens pre-transplant (p < 0.05). IL-2, IL-7, and IL-15 cytokine stimulation restored T cell proliferation, while p53 upregulation blocked proliferation. IPF subjects had shorter PBMC telomere lengths than non-IPF subjects (p < 0.001), and short PBMC telomere length was associated with impaired CD8+ T cell proliferation to alloantigens (p = 0.002). CONCLUSIONS IPF as an indication for lung transplant is associated with short PBMC telomere length and impaired T cell responses to donor antigens. However, the rescue of proliferation following cytokine exposure suggests that alloimmune anergy could be overcome. Telomere length may inform immunosuppression strategies for IPF recipients.
Collapse
Affiliation(s)
- Ping Wang
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Joey Leung
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - Alice Lam
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - Seoyeon Lee
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Daniel R Calabrese
- Department of Medicine, University of California San Francisco, San Francisco, California; Medical Service, San Francisco VA Health Care System, San Francisco, California
| | - Steven R Hays
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Jeffery A Golden
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Jasleen Kukreja
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - Jonathan P Singer
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Paul J Wolters
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Qizhi Tang
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - John R Greenland
- Department of Medicine, University of California San Francisco, San Francisco, California; Medical Service, San Francisco VA Health Care System, San Francisco, California.
| |
Collapse
|
59
|
Zhang D, Newton CA. Familial Pulmonary Fibrosis: Genetic Features and Clinical Implications. Chest 2021; 160:1764-1773. [PMID: 34186035 PMCID: PMC8628177 DOI: 10.1016/j.chest.2021.06.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/24/2022] Open
Abstract
Pulmonary fibrosis comprises a wide range of fibrotic lung diseases with unknown pathogenesis and poor prognosis. Familial pulmonary fibrosis (FPF) represents a unique subgroup of patients in which at least one other relative is also affected. Patients with FPF exhibit a wide range of pulmonary fibrosis phenotypes, although idiopathic pulmonary fibrosis is the most common subtype. Despite variable disease manifestations, patients with FPF experience worse survival compared with their counterparts with the sporadic disease form. Therefore, ascertaining a positive family history not only provides prognostic value but should also raise suspicion for the inheritance of an underlying causative genetic variant within kindreds. By focusing on FPF kindreds, rare variants within surfactant metabolism and telomere maintenance genes have been discovered. However, such genetic variation is not solely restricted to FPF, as similar rare variants are found in patients with seemingly sporadic pulmonary fibrosis, further supporting the idea of genetic susceptibility underlying pulmonary fibrosis as a whole. Researchers are beginning to show how the presence of rare variants may inform clinical management, such as informing predisposition risk for yet unaffected relatives as well as informing prognosis and therapeutic strategy for those already affected. Despite these advances, rare variants in surfactant and telomere-related genes only explain the genetic basis in about one-quarter of FPF kindreds. Therefore, research is needed to identify the missing genetic contributors of pulmonary fibrosis, which would not only improve our understanding of disease pathobiology but may offer additional opportunities to improve the health of patients.
Collapse
Affiliation(s)
- David Zhang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Irving Medical Center, New York, NY
| | - Chad A Newton
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
60
|
Johannson KA, Chaudhuri N, Adegunsoye A, Wolters PJ. Treatment of fibrotic interstitial lung disease: current approaches and future directions. Lancet 2021; 398:1450-1460. [PMID: 34499866 DOI: 10.1016/s0140-6736(21)01826-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
Fibrotic interstitial lung disease (ILD) represents a large group of pulmonary disorders that are often progressive and associated with high morbidity and early mortality. Important advancements in the past 10 years have enabled a better understanding, characterisation, and treatment of these diseases. This Series paper summarises the current approach to treatment of fibrotic ILDs, both pharmacological and non-pharmacological, including recent discoveries and practice-changing clinical trials. We further outline controversies and challenges, with discussion of evolving concepts and future research directions.
Collapse
Affiliation(s)
- Kerri A Johannson
- Departments of Medicine and Community Health Sciences, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.
| | - Nazia Chaudhuri
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK; Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Ayodeji Adegunsoye
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
61
|
|
62
|
Pulmonary fibrosis in dyskeratosis congenita: a case report with a PRISMA-compliant systematic review. BMC Pulm Med 2021; 21:279. [PMID: 34479523 PMCID: PMC8418029 DOI: 10.1186/s12890-021-01645-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/25/2021] [Indexed: 12/04/2022] Open
Abstract
Background Dyskeratosis congenita (DC) is a rare genetic disorder of poor telomere maintenance. Pulmonary fibrosis (PF) related to DC is rarely reported. Case presentation A 23-year-old student presented with a four-year history of progressive cough and exertional dyspnea. Physical examination was remarkable for typical mucocutaneous abnormalities. Chest computerized tomography scan revealed interstitial fibrosis. Testing of peripheral blood leukocytes confirmed that his telomeres were 30th percentile of age-matched controls. A heterozygous missense mutation located in exon 22 of PARN gene was identified in the patient by whole exome sequencing. The patient refused danazol therapy and lung transplantation, and died of respiratory failure 2 years later. In addition, this case and 26 reported cases of DC-related PF identified through the comprehensive search of PubMed, Web of Science, WANFANG and CNKI were reviewed. Later-onset PF was observed in 11 patients (40.7%). Radiological usual interstitial pneumonia (UIP) pattern or possible UIP pattern was noted only in half of patients. However, histopathological UIP or probable UIP patterns were found in 63.6% of patients. Age at bone marrow failure (BMF) and the frequency of normal to mild thrombocytopenia in later-onset patients was significantly higher than in early-onset patients (p = 0.017 and p = 0.021, respectively). Age at PF and age at BMF in DC patients with TERC/TERT variants was significantly higher than in those with TINF2 variants or DKC1/NHP2 variants (p = 0.004 and p = 0.003, respectively). The patients with TERT/TERC/RTEL1/PARN variants had a significantly better transplant-free survival than those with TINF2 variants or DKC1/NHP2 variants (p < 0.05). Patients who underwent surgical lung biopsy had significantly worse transplant-free survival than those without lung biopsy (p = 0.042). Worse survival was found in patients with immunosuppression therapy than in those without (p = 0.012). Conclusions It is common for DC-associated PF to occur later in life without significant hematological manifestations. Mutations in the genes encoding different components of the telomere maintenance pathway were associated with clinical phenotypes and prognosis. PF caused by DC should be kept in mind by clinicians in the differential diagnosis of patients with unexplained PF and should be excluded before diagnostic surgical lung biopsy is undertaken or empirical immunosuppression therapy is prescribed. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01645-w.
Collapse
|
63
|
Salehian S, Semple T, Pabary R. Childhood interstitial lung disease: short lessons from telomeres. Thorax 2021; 76:1250-1252. [PMID: 34446526 DOI: 10.1136/thoraxjnl-2021-217479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/09/2021] [Indexed: 11/04/2022]
Affiliation(s)
- Sormeh Salehian
- National Heart and Lung Institute, Imperial College London, London, UK.,Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Tom Semple
- Department of Paediatric Radiology, Royal Brompton Hospital, London, UK
| | - Rishi Pabary
- National Heart and Lung Institute, Imperial College London, London, UK .,Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| |
Collapse
|
64
|
Singh M, Merwat SK, Fair JH, Duarte AG. Liver transplant recipient with respiratory failure due to pulmonary fibrosis related to telomere disease requiring lung transplantation. Respir Med Case Rep 2021; 33:101443. [PMID: 34401283 PMCID: PMC8349085 DOI: 10.1016/j.rmcr.2021.101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 12/03/2022] Open
Abstract
Short telomere syndrome (STS) is characterized as multiorgan dysfunction presenting with unexplained cytopenias, cryptogenic cirrhosis and pulmonary fibrosis. We present a liver transplant recipient that gradually developed hypoxic respiratory failure attributed to idiopathic pulmonary fibrosis associated telomere disease that culminated in a successful single lung transplantation.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Sheharyar K Merwat
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Jeffrey H Fair
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Alexander G Duarte
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
65
|
Pulmonary Fibrosis Uncovered during Evaluation for Orthotopic Liver Transplantation. Ann Am Thorac Soc 2021; 17:1629-1632. [PMID: 33258668 DOI: 10.1513/annalsats.202003-248cc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
66
|
Kapnadak SG, Raghu G. Lung transplantation for interstitial lung disease. Eur Respir Rev 2021; 30:30/161/210017. [PMID: 34348979 DOI: 10.1183/16000617.0017-2021] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/02/2021] [Indexed: 01/18/2023] Open
Abstract
Lung transplantation (LTx) can be a life-extending treatment option for patients with advanced and/or progressive fibrotic interstitial lung disease (ILD), especially idiopathic pulmonary fibrosis (IPF), fibrotic hypersensitivity pneumonitis, sarcoidosis and connective tissue disease-associated ILD. IPF is now the most common indication for LTx worldwide. Several unique features in patients with ILD can impact optimal timing of referral or listing for LTx, pre- or post-transplant risks, candidacy and post-transplant management. As the epidemiology of LTx and community practices have evolved, recent literature describes outcomes and approaches in higher-risk candidates. In this review, we discuss the unique and important clinical findings, course, monitoring and management of patients with IPF and other progressive fibrotic ILDs during pre-LTx evaluation and up to the day of transplantation; the need for co-management with clinical experts in ILD and LTx is emphasised. Some post-LTx complications are unique in these patient cohorts, which require prompt detection and appropriate management by experts in multiple disciplines familiar with telomere biology disorders and infectious, haematological, oncological and cardiac complications to enhance the likelihood of improved outcomes and survival of LTx recipients with IPF and other ILDs.
Collapse
Affiliation(s)
- Siddhartha G Kapnadak
- Division of Pulmonary, Critical Care and Sleep Medicine, Dept of Medicine, University of Washington, Seattle, WA, USA
| | - Ganesh Raghu
- Division of Pulmonary, Critical Care and Sleep Medicine, Dept of Medicine, University of Washington, Seattle, WA, USA .,Dept of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
67
|
A Phase I Randomized, Controlled, Clinical Trial of Valganciclovir in Idiopathic Pulmonary Fibrosis. Ann Am Thorac Soc 2021; 18:1291-1297. [PMID: 33740394 DOI: 10.1513/annalsats.202102-108oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rationale: Human herpesviruses Epstein-Barr virus and cytomegalovirus are frequently detectable in the lungs of patients with idiopathic pulmonary fibrosis (IPF) and could contribute to disease pathogenesis. Objectives: With the goal of inhibiting herpesvirus replication, we tested the safety and tolerability of adding valganciclovir to standard IPF therapy (pirfenidone). Methods: We performed a single-center, Phase I, double-blind, randomized, placebo-controlled trial comparing valganciclovir 900 mg daily with placebo in patients with IPF with serologic evidence of prior Epstein-Barr virus and/or cytomegalovirus infection who were tolerating full-dose pirfenidone (2,403 mg/d). Subjects were randomized to valganciclovir or placebo 2:1 for 12 weeks of active treatment with off-treatment follow-up for up to 12 months. The primary safety endpoint was the number of subjects discontinuing the study drug before completing 12 weeks of treatment. Results: Thirty-one subjects with IPF were randomized to valganciclovir (n = 20) or placebo (n = 11). All subjects completed assigned therapy except one subject in the valganciclovir group, who discontinued the study drug after developing a rash. The total number of adverse events was similar between study groups. In a prespecified analysis of secondary physiologic endpoints, we observed a trend toward improved forced vital capacity from randomization to Week 12 in valganciclovir-treated subjects (-10 ml; interquartile range [IQR], -65 to 70 ml) versus placebo-treated subjects (40 ml; IQR, -130 to 60 ml), which persisted through 12 months of follow-up. Conclusions: Valganciclovir is safe and well tolerated as an add-on therapy to pirfenidone in patients with IPF. Clinical trial registered with ClinicalTrials.gov (NCT02871401).
Collapse
|
68
|
Planas-Cerezales L, Arias-Salgado EG, Berastegui C, Montes-Worboys A, González-Montelongo R, Lorenzo-Salazar JM, Vicens-Zygmunt V, Garcia-Moyano M, Dorca J, Flores C, Perona R, Román A, Molina-Molina M. Lung Transplant Improves Survival and Quality of Life Regardless of Telomere Dysfunction. Front Med (Lausanne) 2021; 8:695919. [PMID: 34395476 PMCID: PMC8362799 DOI: 10.3389/fmed.2021.695919] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction: Fibrotic interstitial lung diseases (ILDs) are the first indication for lung transplantation (LT). Telomere dysfunction has been associated with poor post-transplant outcomes. The aim of the study was to evaluate the morbi-mortality and quality of life in fibrotic ILDs after lung transplant depending on telomere biology. Methods: Fibrotic ILD patients that underwent lung transplant were allocated to two arms; with or without telomere dysfunction at diagnosis based on the telomere length and telomerase related gene mutations revealed by whole-exome sequencing. Post-transplant evaluation included: (1) short and long-term mortality and complications and (2) quality of life. Results: Fifty-five percent of patients that underwent LT carried rare coding mutations in telomerase-related genes. Patients with telomere shortening more frequently needed extracorporeal circulation and presented a higher rate of early post-transplant hematological complications, longer stay in the intensive care unit (ICU), and a higher number of long-term hospital admissions. However, post-transplant 1-year survival was higher than 80% regardless of telomere dysfunction, with improvement in the quality of life and oxygen therapy withdrawal. Conclusions: Post-transplant morbidity is higher in patients with telomere dysfunction and differs according to elapsed time from transplantation. However, lung transplant improves survival and quality of life and the associated complications are manageable.
Collapse
Affiliation(s)
- Lurdes Planas-Cerezales
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain
| | - Elena G Arias-Salgado
- Biomedical Research Institute CSIC/UAM, IdIPAZ, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Berastegui
- Respiratory Department, Institute of Research, Hospital Universitari Vall d'Hebrón, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Ana Montes-Worboys
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain
| | | | - José M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Vanesa Vicens-Zygmunt
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain
| | | | - Jordi Dorca
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain.,Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Centro Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Rosario Perona
- Biomedical Research Institute CSIC/UAM, IdIPAZ, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Román
- Respiratory Department, Institute of Research, Hospital Universitari Vall d'Hebrón, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - María Molina-Molina
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain.,Centro Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
69
|
Newton CA, Herzog EL. Molecular Markers and the Promise of Precision Medicine for Interstitial Lung Disease. Clin Chest Med 2021; 42:357-364. [PMID: 34024410 DOI: 10.1016/j.ccm.2021.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Management of patients with interstitial lung disease (ILD) requires accurate classification. However, this process relies on subjective interpretation of nonspecific and overlapping clinical features that could hamper clinical care. The development and implementation of objective biomarkers reflective of specific disease states could facilitate precision-based approaches based on patient-level biology to improve the health of ILD patients. Omics-based studies allow for the seemingly unbiased and highly efficient screening of candidate biomarkers and offer unprecedented opportunities for discovery. This review outlines representative major omics-based discoveries in a well-studied condition, idiopathic pulmonary fibrosis, to develop a roadmap to personalized medicine in ILD.
Collapse
Affiliation(s)
- Chad A Newton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8558, USA.
| | - Erica L Herzog
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale School of Medicine, Yale University, 300 Cedar Street TAC441S, New Haven, CT 06520-8057, USA
| |
Collapse
|
70
|
Abstract
Fibrotic hypersensitivity pneumonitis (fHP) is a chronic, often progressive fibrosing form of interstitial lung disease caused by inhaled antigenic exposures. fHP can lead to impaired respiratory function, reduced disease-related quality of life, and early mortality. Management of fHP should start with exposure remediation where possible, with systemic immunosuppression and antifibrotic therapy considered in patients with symptomatic or progressive disease. Nonpharmacologic and supportive management should be offered and, in cases of treatment-resistant, progressive illness, lung transplant should be considered.
Collapse
Affiliation(s)
- Hayley Barnes
- Department of Respiratory Medicine, Alfred Hospital, Melbourne, Australia; Central Clinical School, Monash University, Melbourne, Australia.
| | - Kerri A Johannson
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
71
|
Abstract
PURPOSE OF REVIEW Establishing a diagnosis of hypersensitivity pneumonitis (HP) and distinguishing it from other forms of interstitial lung diseases represents a common challenge in clinical practice. This review summarizes the latest literature and guidelines on HP while integrating some real-life conundrums. RECENT FINDINGS Advances in the understanding of the pathobiology of fibrotic HP and other progressive pulmonary fibrosis have changed how we approach the diagnosis and treatment of interstitial lung disease. Classifications now embrace distinguishing two clinical phenotypes: nonfibrotic and fibrotic HP because of distinct disease behavior and prognosis implications. International guidelines on HP were recently published and proposed a framework and algorithm to guide the diagnostic process. SUMMARY The diagnosis of HP relies on the integration of multiples domains: clinical assessment of exposure, imaging, bronchoalveolar lavage lymphocytosis and histopathological findings. These features are reviewed in multidisciplinary discussion and lead to an estimation of the degree of confidence for HP diagnosis. Further research is warranted to improve knowledge on the pathophysiology of HP and ultimately improve its diagnostic approaches.
Collapse
|
72
|
Abstract
PURPOSE OF REVIEW Lung transplantation (LTx) is increasingly used as ultimate treatment modality in end-stage interstitial lung diseases (ILDs). This review aims to give an overview of the latest evolutions in this field. RECENT FINDINGS In the last two years, important new findings regarding LTx outcomes in specific ILD entities have been reported. More data are available on optimization of pre-LTx management of ILD patients especially with regard to pretransplant antifibrotic treatment. SUMMARY LTx is the only treatment option with curative intent for ILDs and is increasingly used for this indication. Several studies have now reported adequate outcomes in different ILD entities, although outcome is shown to be affected by underlying telomeropathies. As new studies could not replicate inferior survival with single compared with double LTx, both options remain acceptable. ILD specialists can beneficially impact on post-LTx outcome by optimizing pre-LTx management: corticosteroids should be avoided, antifibrotics should be initiated whenever possible and BMI and nutritional status optimized, rehabilitation and depression-screening strategies should be implemented in all LTx candidates, as these interventions may all improve postlung transplant survival.
Collapse
|
73
|
Wang L, Li S, Yao Y, Yin W, Ye T. The role of natural products in the prevention and treatment of pulmonary fibrosis: a review. Food Funct 2021; 12:990-1007. [PMID: 33459740 DOI: 10.1039/d0fo03001e] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pulmonary fibrosis is an incurable end-stage lung disease and remains a global public health problem. Although there have been some breakthroughs in understanding the pathogenesis of pulmonary fibrosis, effective intervention methods are still limited. Natural products have the advantages of multiple biological activities and high levels of safety, which are important factors for preventing and treating pulmonary fibrosis. In this review, we summarized the mechanisms and health benefits of natural products against pulmonary fibrosis. These natural products target oxidative stress, inflammatory injury, epithelial-mesenchymal transition (EMT), fibroblast activation, extracellular matrix accumulation and metabolic regulation, and the mechanisms involve the NF-κB, TGF-β1/Smad, PI3K/Akt, p38 MAPK, Nrf2-Nox4, and AMPK signaling pathways. We hope to provide new ideas for pulmonary fibrosis prevention and treatment strategies.
Collapse
Affiliation(s)
- Liqun Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. and West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Sha Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yuqin Yao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Wenya Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
74
|
Abstract
Telomere biology disorders (TBD) are a heterogeneous group of diseases arising from germline mutations affecting genes involved in telomere maintenance. Telomeres are DNA-protein structures at chromosome ends that maintain chromosome stability; their length affects cell replicative potential and senescence. A constellation of bone marrow failure, pulmonary fibrosis, liver cirrhosis and premature greying is suggestive, however incomplete penetrance results in highly variable manifestations, with idiopathic pulmonary fibrosis as the most common presentation. Currently, the true extent of TBD burden is unknown as there is no established diagnostic criteria and the disorder often is unrecognised and underdiagnosed. There is no gold standard for measuring telomere length and not all TBD-related mutations have been identified. There is no specific cure and the only treatment is organ transplantation, which has poor outcomes. This review summarises the current literature and discusses gaps in understanding and areas of need in managing TBD.
Collapse
|
75
|
Telomere biology disorder prevalence and phenotypes in adults with familial hematologic and/or pulmonary presentations. Blood Adv 2021; 4:4873-4886. [PMID: 33035329 DOI: 10.1182/bloodadvances.2020001721] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Telomere biology disorders (TBDs) present heterogeneously, ranging from infantile bone marrow failure associated with very short telomeres to adult-onset interstitial lung disease (ILD) with normal telomere length. Yield of genetic testing and phenotypic spectra for TBDs caused by the expanding list of telomere genes in adults remain understudied. Thus, we screened adults aged ≥18 years with a personal and/or family history clustering hematologic disorders and/or ILD enrolled on The University of Chicago Inherited Hematologic Disorders Registry for causative variants in 13 TBD genes. Sixteen (10%) of 153 probands carried causative variants distributed among TERT (n = 6), TERC (n = 4), PARN (n = 5), or RTEL1 (n = 1), of which 19% were copy number variants. The highest yield (9 of 22 [41%]) was in families with mixed hematologic and ILD presentations, suggesting that ILD in hematology populations and hematologic abnormalities in ILD populations warrant TBD genetic testing. Four (3%) of 117 familial hematologic disorder families without ILD carried TBD variants, making TBD second to only DDX41 in frequency for genetic diagnoses in this population. Phenotypes of 17 carriers with heterozygous PARN variants included 4 (24%) with hematologic abnormalities, 67% with lymphocyte telomere lengths measured by flow cytometry and fluorescence in situ hybridization at or above the 10th percentile, and a high penetrance for ILD. Alternative etiologies for cytopenias and/or ILD such as autoimmune features were noted in multiple TBD families, emphasizing the need to maintain clinical suspicion for a TBD despite the presence of alternative explanations.
Collapse
|
76
|
Bowman WS, Echt GA, Oldham JM. Biomarkers in Progressive Fibrosing Interstitial Lung Disease: Optimizing Diagnosis, Prognosis, and Treatment Response. Front Med (Lausanne) 2021; 8:680997. [PMID: 34041256 PMCID: PMC8141562 DOI: 10.3389/fmed.2021.680997] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Interstitial lung disease (ILD) comprises a heterogenous group of diffuse lung disorders that commonly result in irreversible pulmonary fibrosis. While idiopathic pulmonary fibrosis (IPF) is the prototypical progressive fibrosing ILD (PF-ILD), a high proportion of patients with other ILD subtypes develop a PF-ILD phenotype. Evidence exists for shared pathobiology leading to progressive fibrosis, suggesting that biomarkers of disease activity may prove informative across the wide spectrum of ILDs. Biomarker investigation to date has identified a number of molecular markers that predict relevant ILD endpoints, including disease presence, prognosis, and/or treatment response. In this review, we provide an overview of potentially informative biomarkers in patients with ILD, including those suggestive of a PF-ILD phenotype. We highlight the recent genomic, transcriptomic, and proteomic investigations that identified these biomarkers and discuss the body compartments in which they are found, including the peripheral blood, airway, and lung parenchyma. Finally, we identify critical gaps in knowledge within the field of ILD biomarker research and propose steps to advance the field toward biomarker implementation.
Collapse
Affiliation(s)
- Willis S Bowman
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, Davis, Davis, CA, United States
| | - Gabrielle A Echt
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, Davis, Davis, CA, United States
| | - Justin M Oldham
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
77
|
Progressive fibrosing interstitial lung disease: treatable traits and therapeutic strategies. Curr Opin Pulm Med 2021; 26:436-442. [PMID: 32657838 DOI: 10.1097/mcp.0000000000000712] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE OF REVIEW In this review, the authors describe therapeutic strategies for a disease group called progressive fibrosing interstitial lung disease (PF-ILD) and highlight the importance of the definition of progression, prognosis, and treatment response. RECENT FINDINGS Although it is a relatively new concept, the term PF-ILD has been increasingly applied in clinical research and practice. Three domains commonly used to detect the disease progression include clinical symptoms, rate of forced vital capacity (FVC) decline and the extent of fibrosis on imaging. Although details of the pathogenesis of PF-ILD are still unclear, it has become apparent that genetic predisposition and an abnormal tissue microenvironment and host response are involved in the nature of the disease. Antifibrotic agents recently showed their efficacy on the treatment of PF-ILD. Both nintedanib and pirfenidone can slow the disease progression, as defined by a decline of FVC from baseline, of PF-ILD whenever compared with placebo, similar to the results in idiopathic pulmonary fibrosis (IPF) trials. This effect seems consistent irrespective of the underlying ILD diagnosis. SUMMARY Recent evidence supports the use of antifibrotic therapy in the management of the phenotype progressive non-IPF ILD. Ongoing studies exploring genetic and other molecular biomarkers could identify at-risk individuals or predict treatment response and prognosis (endotypes). This would support the concept of 'treatable traits' in the field of ILD.
Collapse
|
78
|
Otoshi R, Baba T, Shintani R, Kitamura H, Yamaguchi Y, Hamanoue H, Mizuguchi T, Matsumoto N, Okudela K, Takemura T, Ogura T. Diverse Pathological Findings of Interstitial Lung Disease in a Patient with Dyskeratosis Congenita. Intern Med 2021; 60:1257-1263. [PMID: 33191321 PMCID: PMC8112977 DOI: 10.2169/internalmedicine.5143-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A 42-year-old man with a history of surgery for tongue cancer was referred to our hospital due to an abnormal chest shadow. High-resolution computed tomography showed lower lobe reticulation. A physical examination revealed nail dystrophy, oral leukoplakia, and reticulated hypopigmentation. Lung biopsy revealed subpleural and perilobular fibrosis, suggestive of usual interstitial pneumonia. However, multiple pathological findings, including homogenous fibrosis and cell infiltration in the centrilobular region, which were compatible with nonspecific interstitial pneumonia, and bronchiolitis were also seen. Genetic testing showed a hemizygous missense mutation in the DKC1 gene, and the patient was diagnosed with dyskeratosis congenita. Although anti-fibrotic therapy was initiated, the patient's respiratory function has continued to decrease.
Collapse
Affiliation(s)
- Ryota Otoshi
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Japan
| | - Tomohisa Baba
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Japan
| | - Ryota Shintani
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Japan
| | - Hideya Kitamura
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Japan
| | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Hospital, Japan
| | - Haruka Hamanoue
- Department of Clinical Genetics, Yokohama City University Hospital, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan
| | - Koji Okudela
- Department of Pathology, Yokohama City University Graduate School of Medicine, Japan
| | - Tamiko Takemura
- Department of Pathology, Kanagawa Cardiovascular and Respiratory Center, Japan
| | - Takashi Ogura
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Japan
| |
Collapse
|
79
|
Telomeres in Interstitial Lung Disease. J Clin Med 2021; 10:jcm10071384. [PMID: 33808277 PMCID: PMC8037770 DOI: 10.3390/jcm10071384] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/15/2023] Open
Abstract
Interstitial lung diseases (ILD) encompass a group of conditions involving fibrosis and/or inflammation of the pulmonary parenchyma. Telomeres are repetitive DNA sequences at chromosome ends which protect against genome instability. At each cell division, telomeres shorten, but the telomerase complex partially counteracts progressive loss of telomeres by catalysing the synthesis of telomeric repeats. Once critical telomere shortening is reached, cell cycle arrest or apoptosis are triggered. Telomeres progressively shorten with age. A number of rare genetic mutations have been identified in genes encoding for components of the telomerase complex, including telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC), in familial and, less frequently, in sporadic fibrotic ILDs. Defects in telomerase result in extremely short telomeres. More rapidly progressive disease is observed in fibrotic ILD patients with telomere gene mutations, regardless of underlying diagnosis. Associations with common single nucleotide polymorphisms in telomere related genes have also been demonstrated for various ILDs. Shorter peripheral blood telomere lengths compared to age-matched healthy individuals are found in a proportion of patients with fibrotic ILDs, and in idiopathic pulmonary fibrosis (IPF) and fibrotic hypersensitivity pneumonitis (HP) have been linked to worse survival, independently of disease severity. Greater susceptibility to immunosuppressant-induced side effects in patients with short telomeres has been described in patients with IPF and with fibrotic HP. Here, we discuss recent evidence for the involvement of telomere length and genetic variations in the development, progression, and treatment of fibrotic ILDs.
Collapse
|
80
|
Progression in the Management of Non-Idiopathic Pulmonary Fibrosis Interstitial Lung Diseases, Where Are We Now and Where We Would Like to Be. J Clin Med 2021; 10:jcm10061330. [PMID: 33807034 PMCID: PMC8004662 DOI: 10.3390/jcm10061330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
A significant proportion of patients with interstitial lung disease (ILD) may develop a progressive fibrosing phenotype characterized by worsening of symptoms and pulmonary function, progressive fibrosis on chest computed tomography and increased mortality. The clinical course in these patients mimics the relentless progressiveness of idiopathic pulmonary fibrosis (IPF). Common pathophysiological mechanisms such as a shared genetic susceptibility and a common downstream pathway—self-sustaining fibroproliferation—support the concept of a progressive fibrosing phenotype, which is applicable to a broad range of non-IPF ILDs. While antifibrotic drugs became the standard of care in IPF, immunosuppressive agents are still the mainstay of treatment in non-IPF fibrosing ILD (F-ILD). However, recently, randomized placebo-controlled trials have demonstrated the efficacy and safety of antifibrotic treatment in systemic sclerosis-associated F-ILD and a broad range of F-ILDs with a progressive phenotype. This review summarizes the current pharmacological management and highlights the unmet needs in patients with non-IPF ILD.
Collapse
|
81
|
Adegunsoye A, Morisset J, Newton CA, Oldham JM, Vittinghoff E, Linderholm AL, Strek ME, Noth I, Garcia CK, Wolters PJ, Ley B. Leukocyte telomere length and mycophenolate therapy in chronic hypersensitivity pneumonitis. Eur Respir J 2021; 57:2002872. [PMID: 33122338 PMCID: PMC8104021 DOI: 10.1183/13993003.02872-2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/17/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Ayodeji Adegunsoye
- Section of Pulmonary and Critical Care, Dept of Medicine, The University of Chicago, Chicago, IL, USA
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
- These authors contributed equally
| | - Julie Morisset
- Dept of Pulmonary Medicine, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
- These authors contributed equally
| | - Chad A Newton
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Justin M Oldham
- Division of Pulmonary, Critical Care and Sleep Medicine, Dept of Medicine, University of California at Davis, Davis, CA, USA
| | - Eric Vittinghoff
- Section of Pulmonary and Critical Care Medicine, Dept of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Angela L Linderholm
- Division of Pulmonary, Critical Care and Sleep Medicine, Dept of Medicine, University of California at Davis, Davis, CA, USA
| | - Mary E Strek
- Section of Pulmonary and Critical Care, Dept of Medicine, The University of Chicago, Chicago, IL, USA
| | - Imre Noth
- Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, USA
| | - Christine Kim Garcia
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Medical Center, New York, NY, USA
| | - Paul J Wolters
- Section of Pulmonary and Critical Care Medicine, Dept of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Brett Ley
- Section of Pulmonary and Critical Care Medicine, Dept of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
82
|
Leukocyte Telomere Length Is Not Reduced in Children and Adults with Cystic Fibrosis but Associates with Clinical Characteristics-A Cross-Sectional Study. J Clin Med 2021; 10:jcm10040590. [PMID: 33557298 PMCID: PMC7915028 DOI: 10.3390/jcm10040590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
We hypothezied that telomere length is considerably altered in cystic fibrosis (CF) patients compared to healthy subjects (HS), and that leukocyte telomere length variation reflects the severity of CF. Relative telomere length (RTL) was assessed by qPCR in 70 children aged 5-10 (34 CF; 36 HS) and 114 adults aged 18-45 (53 CF; 61 HS). Telomere length was similar in CF and HS (median (interquartile range): 0.799 (0.686-0.950) vs. 0.831 (0.707-0.986); p = 0.5283) both in children and adults. In adults, women had longer telomeres than men (0.805 (0.715-0.931) vs. 0.703 (0.574-0.790); p = 0.0002). Patients treated with inhaled corticosteroids had a shorter RTL compared to those without steroid therapy (0.765 (0.664-0.910) vs. 0.943 (0.813-1.191); p = 0.0007) and this finding remained significant after adjusting for gender, age, BMI, and child/adult status (p = 0.0003). Shorter telomeres were independently associated with the presence of comorbidities (0.763 (0.643-0.905) vs. 0.950 (0.783-1.130); p = 0.0006) and antibiotic treatment at the moment of blood sampling (0.762 (0.648-0.908) vs. 0.832 (0.748-1.129); p = 0.0172). RTL correlated with number of multiple-day hospitalizations (rho = -0.251; p = 0.0239), as well as number of hospitalization days (rho = -0.279; p = 0.0113). Leukocyte RTL in children and adults with CF was not shorter than in healthy controls, and did not seem to have any potential as a predictor of CF survival. However, it inversely associated with the investigated clinical characteristics.
Collapse
|
83
|
Cutting CC, Bowman WS, Dao N, Pugashetti JV, Garcia CK, Oldham JM, Newton CA. Family History of Pulmonary Fibrosis Predicts Worse Survival in Patients With Interstitial Lung Disease. Chest 2021; 159:1913-1921. [PMID: 33484728 DOI: 10.1016/j.chest.2021.01.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND A number of genetic markers linked to familial pulmonary fibrosis predict differential survival in interstitial lung disease (ILD) patients. Although genetic testing is not performed routinely for ILD, family history commonly is obtained and may inform outcome risk. RESEARCH QUESTION Does survival vary between patients with and without self-reported familial pulmonary fibrosis? METHODS Family history was acquired systematically for consecutive ILD patients who consented to clinical registry enrollment at the University of Texas Southwestern and the University of California at Davis. Patients were stratified by idiopathic pulmonary fibrosis (IPF) and non-IPF ILD diagnosis and were substratified by presence or absence of familial pulmonary fibrosis, defined as one or more additional affected family members. Transplant-free survival was compared using multilevel, mixed-effects Cox proportional hazards regression. RESULTS Of the 1,262 patients included, 534 (42%) had IPF ILD and 728 (58%) had non-IPF ILD. Of those with non-IPF ILD, 18.5% had connective tissue disease, 15.6% had chronic hypersensitivity pneumonitis, and 23.5% had unclassifiable ILD. Familial pulmonary fibrosis was reported in 134 IPF ILD patients (25.1%) and 90 non-IPF ILD patients (12.4%). Those with familial IPF showed an 80% increased risk of death or transplantation compared with those with sporadic IPF (hazard ratio [HR], 1.8; 95% CI, 1.37-2.37; P < .001), whereas those with familial non-IPF ILD showed a twofold increased risk compared with their counterparts with sporadic disease (HR, 2.08; 95% CI, 1.46-2.96; P < .001). Outcome risk among those with familial non-IPF ILD was no different than for those with sporadic IPF ILD (HR, 1.27; 95% CI, 0.89-1.84; P = .19). INTERPRETATION Patient-reported familial pulmonary fibrosis is predictive of reduced transplant-free survival in IPF and non-IPF ILD patients. Because survival among patients with familial non-IPF ILD approximates that of sporadic IPF ILD, early intervention should be considered for such patients. Until clinical genetic testing is widely available and provides actionable results, family history should be ascertained and considered in risk stratification.
Collapse
Affiliation(s)
- Claire C Cutting
- Department of Internal Medicine, University of California at Davis, Sacramento, CA.
| | - Willis S Bowman
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California at Davis, Sacramento, CA
| | - Nam Dao
- Department of Internal Medicine, University of California at Davis, Sacramento, CA
| | - Janelle Vu Pugashetti
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California at Davis, Sacramento, CA
| | - Christine Kim Garcia
- Medicine within the Department of Medicine at Columbia University, College of Physicians and Surgeons, New York, NY
| | - Justin M Oldham
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California at Davis, Sacramento, CA
| | - Chad A Newton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
84
|
Tomos I, Karakatsani A, Manali ED, Kottaridi C, Spathis A, Argentos S, Papiris SA. Telomere length across different UIP fibrotic-Interstitial Lung Diseases: a prospective Greek case-control study. Pulmonology 2020; 28:254-261. [PMID: 33358512 DOI: 10.1016/j.pulmoe.2020.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 10/22/2022] Open
Abstract
INTRODUCTION Short telomeres are recognized as risk factor for idiopathic pulmonary fibrosis (IPF). We aimed to assess the role of telomere length (TL) in fibrotic-Interstitial Lung Diseases (f-ILDs) associated with a usual interstitial pneumonia (UIP) pattern as well as in IPF acute exacerbation (IPF-AE). AIM AND METHODS TL was measured from peripheral white blood cells using a multiplex quantitative polymerase chain reaction in consecutive patients with f-ILDs, all presenting UIP pattern in the high-resolution chest-computed-tomography and compared to age-matched healthy controls. RESULTS Seventy-nine individuals were included (mean age 69.77 ± 0.72 years); 24 stable IPF, 18 IPF-AE, 10 combined pulmonary fibrosis and emphysema, 7 Rheumatoid arthritis-UIP-ILDs and 20 controls. TL in all patients was significantly shorter compared to controls [mean T/S ratio (SE) 0.77 (±0.05) vs 2.26 (±0.36), p < 0.001] as well as separately in each one of f-ILD subgroups. IPF-AE patients presented significantly shorter TL compared to stable IPF (p = 0.029). Patients with IPF and shorter than the median TL (0-0.72) showed reduced overall survival (p = 0.004). T/S < 0.72 was associated with increased risk for IPF-AE (OR = 30.787, 95% CI: 2.153, 440.183, p = 0.012) independent of age, gender, smoking and lung function impairment. A protective effect of TL was observed, as it was inversely associated with risk of death both in UIP-f-ILDs (HR = 0.174, 95%CI: 0.036, 0.846, p = 0.030) and IPF patients (HR = 0.096, 95%CI: 0.011, 0.849, p = 0.035). CONCLUSIONS Shorter TL characterizes different UIP f-ILDs. Although no difference was observed in TL among diverse UIP subgroups, IPF-AE presented shorter TL compared to stable IPF. Reduced overall survival and higher hazard ratio of death are associated with shorter TL in IPF.
Collapse
Affiliation(s)
- I Tomos
- 2nd Pulmonary Medicine Department, "ATTIKON" University Hospital, National and Kapodistrian University of Athens, Greece.
| | - A Karakatsani
- 2nd Pulmonary Medicine Department, "ATTIKON" University Hospital, National and Kapodistrian University of Athens, Greece.
| | - E D Manali
- 2nd Pulmonary Medicine Department, "ATTIKON" University Hospital, National and Kapodistrian University of Athens, Greece.
| | - C Kottaridi
- 2nd Department of Cytopathology, "ATTIKON" University Hospital, National and Kapodistrian University of Athens, Greece.
| | - A Spathis
- 2nd Department of Cytopathology, "ATTIKON" University Hospital, National and Kapodistrian University of Athens, Greece.
| | - S Argentos
- 2nd Department of Radiology, "ATTIKON" University Hospital, National and Kapodistrian University of Athens, Greece.
| | - S A Papiris
- 2nd Pulmonary Medicine Department, "ATTIKON" University Hospital, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
85
|
Montesi SB, Fisher JH, Martinez FJ, Selman M, Pardo A, Johannson KA. Update in Interstitial Lung Disease 2019. Am J Respir Crit Care Med 2020; 202:500-507. [PMID: 32412784 DOI: 10.1164/rccm.202002-0360up] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Sydney B Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jolene H Fisher
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Mexico City, Mexico
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico; and
| | - Kerri A Johannson
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
86
|
George PM, Spagnolo P, Kreuter M, Altinisik G, Bonifazi M, Martinez FJ, Molyneaux PL, Renzoni EA, Richeldi L, Tomassetti S, Valenzuela C, Vancheri C, Varone F, Cottin V, Costabel U. Progressive fibrosing interstitial lung disease: clinical uncertainties, consensus recommendations, and research priorities. THE LANCET RESPIRATORY MEDICINE 2020; 8:925-934. [DOI: 10.1016/s2213-2600(20)30355-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
|
87
|
Zhu T, Ma Z, Wang H, Jia X, Wu Y, Fu L, Li Z, Zhang C, Yu G. YAP/TAZ affects the development of pulmonary fibrosis by regulating multiple signaling pathways. Mol Cell Biochem 2020; 475:137-149. [PMID: 32813142 DOI: 10.1007/s11010-020-03866-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
YAP and TAZ are important co-activators of various biological processes in human body. YAP/TAZ plays a vital role in the development of pulmonary fibrosis. Dysregulation of the YAP/TAZ signaling pathway is one of the most important causes of pulmonary fibrosis. Therefore, considering its crucial role, summary of the signal mechanism of YAP/TAZ is of certain guiding significance for the research of YAP/TAZ as a therapeutic target. The present review provided a detailed introduction to various YAP/TAZ-related signaling pathways and clarified the specific role of YAP/TAZ in these pathways. In the meantime, we summarized and evaluated possible applications of YAP/TAZ in the treatment of pulmonary fibrosis. Overall, our study is of guiding significance for future research on the functional mechanism of YAP/TAZ underlying lung diseases as well as for identification of novel therapeutic targets specific to pulmonary fibrosis.
Collapse
Affiliation(s)
- Ting Zhu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Zhifeng Ma
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Haiyong Wang
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Xiaoxiao Jia
- Department of Pathology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, China
| | - Yuanlin Wu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Linhai Fu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Zhupeng Li
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Chu Zhang
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China.
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China.
| |
Collapse
|
88
|
Pan L, Lu Y, Li Z, Tan Y, Yang H, Ruan P, Li R. Ginkgo biloba Extract EGb761 Attenuates Bleomycin-Induced Experimental Pulmonary Fibrosis in Mice by Regulating the Balance of M1/M2 Macrophages and Nuclear Factor Kappa B (NF-κB)-Mediated Cellular Apoptosis. Med Sci Monit 2020; 26:e922634. [PMID: 32799214 PMCID: PMC7448693 DOI: 10.12659/msm.922634] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The aim of this study was to show whether the standardized Ginkgo biloba extract EGb761, a traditional Chinese medicine, has a therapeutic effect on pulmonary fibrosis (PF). Material/Methods Bleomycin (BLM) was used for establishing the PF mouse model. The mice were treated with a gradient of EGb761 for 28 days to determine an appropriate drug dose. On day 28, the effect of EGb761 on lung injury and inflammation was confirmed by hematoxylin and eosin and Masson staining and evaluated by pulmonary alveolitis and Ashcroft score. The balance of M1/M2 macrophages was evaluated with the respective markers inducible nitric oxide synthase and and interleukin-10 by real-time polymerase chain reaction. Furthermore, the expressions of fibrosis-associated protein α-smooth muscle actin (SMA), related inflammatory protein transforming growth factor (TGF)-β1, the apoptosis-related proteins B-cell lymphoma-associated X protein (Bax), B-cell lymphoma (Bcl)-2, caspase-3, caspase-9, and phosphorylated nuclear factor (NF)-κB (p65) were assessed by western blot. Results On day 28, PF was induced by treating with BLM, whereas EGb761 suppressed the PF of lung tissue. The BLM-induced imbalance of M1/M2 macrophages was reduced by EGb761. Furthermore, the increasing amounts of α-SMA and TGF-β1 induced by BLM were suppressed by EGb761. In addition, the protein or messenger ribonucleic acid expression levels of phosphorylated NF-κB (p65), caspase-3, and caspase-9 were upregulated, whereas Bax and Bcl-2 were downregulated. Treatment with EGb761 restored the levels of these proteins except for caspase-9. Conclusions This study illustrated the protective effect of EGb761 on BLM-induced PF by regulating the balance of M1/M2 macrophages and NF-κB (p65)-mediated apoptosis. The results demonstrated the potential clinical therapeutic effect of EGb761, providing a novel possibility for curing PF.
Collapse
Affiliation(s)
- Ling Pan
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Yuehong Lu
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Zhanhua Li
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Yuping Tan
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Hongmei Yang
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Ping Ruan
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Ruixiang Li
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
89
|
Ley B, Liu S, Elicker BM, Henry TS, Vittinghoff E, Golden JA, Jones KD, Wolters PJ. Telomere length in patients with unclassifiable interstitial lung disease: a cohort study. Eur Respir J 2020; 56:2000268. [PMID: 32341108 DOI: 10.1183/13993003.00268-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/31/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Brett Ley
- Dept of Medicine, University of California San Francisco, San Francisco, CA, USA
- Dept of Pulmonary and Critical Care Medicine, Kaiser Permanente San Francisco, San Francisco, CA, USA
| | - Shuo Liu
- Dept of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Brett M Elicker
- Dept of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Travis S Henry
- Dept of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Eric Vittinghoff
- Dept of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey A Golden
- Dept of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kirk D Jones
- Dept of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Paul J Wolters
- Dept of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
90
|
Graham J, Bauer Ventura I, Newton CA, Lee C, Boctor N, Pugashetti JV, Cutting C, Joerns E, Sandhu H, Chung JH, Garcia CK, Kadoch M, Noth I, Adegunsoye A, Strek ME, Oldham JM. Myositis-specific Antibodies Identify A Distinct Interstitial Pneumonia with Autoimmune Features Phenotype. Eur Respir J 2020; 56:2001205. [PMID: 32675203 PMCID: PMC7943372 DOI: 10.1183/13993003.01205-2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/28/2020] [Indexed: 12/27/2022]
Abstract
Interstitial pneumonia with autoimmune features (IPAF) characterises individuals with interstitial lung disease (ILD) and features of connective tissue disease (CTD) who fail to satisfy CTD criteria. Inclusion of myositis-specific antibodies (MSAs) in the IPAF criteria has generated controversy, as these patients also meet proposed criteria for an anti-synthetase syndrome. Whether MSAs and myositis associated antibodies (MAA) identify phenotypically distinct IPAF subgroups remains unclear.A multi-center, retrospective investigation was conducted to assess clinical features and outcomes in patients meeting IPAF criteria stratified by the presence of MSAs and MAAs. IPAF subgroups were compared to cohorts of patients with idiopathic inflammatory myopathy-ILD (IIM-ILD), idiopathic pulmonary fibrosis (IPF) and non-IIM CTD-ILDs. The primary endpoint assessed was three-year transplant-free survival. Two hundred sixty-nine patients met IPAF criteria, including 35 (13%) with MSAs and 65 (24.2%) with MAAs. Survival was highest among patients with IPAF-MSA and closely approximated those with IIM-ILD. Survival did not differ between IPAF-MAA and IPAF without MSA/MAA cohorts. Usual interstitial pneumonia (UIP) morphology was associated with differential outcome risk, with IPAF patients with non-UIP morphology approximating survival observed in non-IIM CTD-ILDs. MSAs, but not MAAs identified a unique IPAF phenotype characterised by clinical features and outcomes similar to IIM-ILD. UIP morphology was a strong predictor of outcome in others meeting IPAF criteria. Because IPAF is a research classification without clear treatment approach, these findings suggest MSAs should be removed from the IPAF criteria and such patients should be managed as an IIM-ILD.
Collapse
Affiliation(s)
- Julia Graham
- Department of Internal Medicine, University of California at Davis
- These authors contributed equally
| | - Iazsmin Bauer Ventura
- Department of Medicine, Section of Rheumatology, University of Chicago
- These authors contributed equally
| | - Chad A Newton
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern
- These authors contributed equally
| | - Cathryn Lee
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago
| | - Noelle Boctor
- Department of Internal Medicine, University of California at Davis
| | - Janelle Vu Pugashetti
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of California at Davis
| | - Claire Cutting
- Department of Internal Medicine, University of California at Davis
| | - Elena Joerns
- Department of Internal Medicine, Division of Rheumatology, University of Texas Southwestern
| | - Habrinder Sandhu
- Department of Internal Medicine, Division of Rheumatology, University of California at Davis
| | | | - Christine Kim Garcia
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University
| | - Michael Kadoch
- Department of Radiology, University of California at Davis
| | - Imre Noth
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Virginia
| | - Ayodeji Adegunsoye
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago
| | - Mary E Strek
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago
- These authors contributed equally
| | - Justin M Oldham
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of California at Davis
- These authors contributed equally
| |
Collapse
|
91
|
Ley B. COUNTERPOINT: Should Molecular and Genetic Biomarkers Be Used in the Initial Evaluation of Patients With Fibrotic ILD? No. Chest 2020; 156:205-208. [PMID: 31395256 DOI: 10.1016/j.chest.2019.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 01/12/2023] Open
Affiliation(s)
- Brett Ley
- Department of Pulmonary and Critical Care Medicine, Kaiser Permanente San Francisco, and the Department of Medicine, University of California San Francisco.
| |
Collapse
|
92
|
George PM, Wells AU. Contemporary Concise Review 2019: Interstitial lung disease. Respirology 2020; 25:756-763. [PMID: 32187808 DOI: 10.1111/resp.13803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Peter M George
- Interstitial Lung Disease Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Athol U Wells
- Interstitial Lung Disease Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
93
|
Schott CA, Ascoli C, Huang Y, Perkins DL, Finn PW. Declining Pulmonary Function in Interstitial Lung Disease Linked to Lymphocyte Dysfunction. Am J Respir Crit Care Med 2020; 201:610-613. [PMID: 31661301 PMCID: PMC7047459 DOI: 10.1164/rccm.201910-1909le] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Cody A. Schott
- University of Illinois at Chicago College of MedicineChicago, Illinois
| | - Christian Ascoli
- University of Illinois at Chicago College of MedicineChicago, Illinois
| | - Yue Huang
- University of Illinois at Chicago College of MedicineChicago, Illinois
| | - David L. Perkins
- University of Illinois at Chicago College of MedicineChicago, Illinois
| | - Patricia W. Finn
- University of Illinois at Chicago College of MedicineChicago, Illinois
| |
Collapse
|
94
|
Heukels P, van Hulst JAC, van Nimwegen M, Boorsma CE, Melgert BN, von der Thusen JH, van den Blink B, Hoek RAS, Miedema JR, Neys SFH, Corneth OBJ, Hendriks RW, Wijsenbeek MS, Kool M. Enhanced Bruton's tyrosine kinase in B-cells and autoreactive IgA in patients with idiopathic pulmonary fibrosis. Respir Res 2019; 20:232. [PMID: 31651327 PMCID: PMC6814043 DOI: 10.1186/s12931-019-1195-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
Rationale Idiopathic Pulmonary Fibrosis (IPF) is thought to be triggered by repeated alveolar epithelial cell injury. Current evidence suggests that aberrant immune activation may contribute. However, the role of B-cell activation remains unclear. We determined the phenotype and activation status of B-cell subsets and evaluated the contribution of activated B-cells to the development of lung fibrosis both in humans and in mice. Methods B-cells in blood, mediastinal lymph node, and lung single-cell suspensions of IPF patients and healthy controls (HC) were characterized using 14-color flow cytometry. Mice were exposed to bleomycin to provoke pulmonary fibrosis. Results More IgA+ memory B-cells and plasmablasts were found in blood (n = 27) and lungs (n = 11) of IPF patients compared to HC (n = 21) and control lungs (n = 9). IPF patients had higher levels of autoreactive IgA in plasma, which correlated with an enhanced decline of forced vital capacity (p = 0.002, r = − 0.50). Bruton’s tyrosine kinase expression was higher in circulating IPF B-cells compared to HC, indicating enhanced B-cell activation. Bleomycin-exposed mice had increased pulmonary IgA+ germinal center and plasma cell proportions compared to control mice. The degree of lung fibrosis correlated with pulmonary germinal center B-cell proportions (p = 0.010, r = 0.88). Conclusion Our study demonstrates that IPF patients have more circulating activated B-cells and autoreactive IgA, which correlate with disease progression. These B-cell alterations were also observed in the widely used mouse model of experimental pulmonary fibrosis. Autoreactive IgA could be useful as a biomarker for disease progression in IPF.
Collapse
Affiliation(s)
- Peter Heukels
- Department of Pulmonary Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands. .,Department of Pulmonary Medicine, Amphia hospital Breda, Breda, The Netherlands.
| | - Jennifer A C van Hulst
- Department of Pulmonary Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - Menno van Nimwegen
- Department of Pulmonary Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - Carian E Boorsma
- Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, Groningen, The Netherlands
| | - Barbro N Melgert
- Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, Groningen, The Netherlands.,GRIAC research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | - Rogier A S Hoek
- Department of Pulmonary Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - Jelle R Miedema
- Department of Pulmonary Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - Stefan F H Neys
- Department of Pulmonary Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - Marlies S Wijsenbeek
- Department of Pulmonary Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands
| | - Mirjam Kool
- Department of Pulmonary Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015, CE, Rotterdam, The Netherlands.
| |
Collapse
|
95
|
Molina-Molina M. Telomere Shortening Is behind the Harm of Immunosuppressive Therapy in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2019; 200:274-275. [PMID: 30624965 PMCID: PMC6680301 DOI: 10.1164/rccm.201812-2330ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Maria Molina-Molina
- 1Respiratory DepartmentBellvitge University Hospital-Bellvitge Institute for Biomedical ResearchBarcelona, Spainand
- 2CIBER of Respiratory DiseasesMadrid, Spain
| |
Collapse
|
96
|
The Role of Telomerase and Telomeres in Interstitial Lung Diseases: From Molecules to Clinical Implications. Int J Mol Sci 2019; 20:ijms20122996. [PMID: 31248154 PMCID: PMC6627617 DOI: 10.3390/ijms20122996] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 02/07/2023] Open
Abstract
Telomeres are distal chromosome regions associated with specific protein complexes that protect the chromosome against degradation and aberrations. Telomere maintenance capacity is an essential indication of healthy cell populations, and telomere damage is observed in processes such as malignant transformation, apoptosis, or cell senescence. At a cellular level, telomere damage may result from genotoxic stress, decreased activity of telomerase enzyme complex, dysfunction of shelterin proteins, or changes in expression of telomere-associated RNA such as TERRA. Clinical evidence suggests that mutation of telomerase genes (Tert/Terc) are associated with increased risk of congenital as well as age-related diseases (e.g., pneumonitis, idiopathic pulmonary fibrosis (IPF), dyskeratosis congenita, emphysema, nonspecific interstitial pneumonia, etc.). Thus, telomere length and maintenance can serve as an important prognostic factor as well as a potential target for new strategies of treatment for interstitial lung diseases (ILDs) and associated pulmonary pathologies.
Collapse
|
97
|
Feng F, Zhang J, Wang Z, Wu Q, Zhou X. Efficacy and safety of N-acetylcysteine therapy for idiopathic pulmonary fibrosis: An updated systematic review and meta-analysis. Exp Ther Med 2019; 18:802-816. [PMID: 31258714 PMCID: PMC6566037 DOI: 10.3892/etm.2019.7579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal lung disease with poor prognosis and limited treatment options. N-acetylcysteine (NAC), an anti-oxidant drug, has promising potential in the treatment of IPF. In the present systematic review and meta-analysis, the efficacy and safety of NAC for IPF were investigated. The following databases were comprehensively searched for relevant studies published until August 2018: Pubmed, Embase, Cochrane library, Chinese National Knowledge Infrastructure, Wangfang Database, VIP and the Chinese Biology Medical Database. A total of 21 controlled trials assessing the efficacy and safety of NAC therapy for IPF were identified and primary outcomes [forced vital capacity (FVC), adverse side effects] and secondary outcomes [diffusing capacity for carbon monoxide (DLCO) and its percentage predicted value (DLCO%), vital capacity (VC), partial arterial oxygen pressure (PaO2), 6-min walking distance test and mortality] were extracted for the meta-analysis. The risk ratio and mean difference or standardized mean difference with 95% confidence interval were calculated using RevMan 5.3 software. Analysis of the pooled data revealed that, compared with control treatments (routine treatment or drugs other than anti-oxidants), NAC therapy reduced the decline in lung function, as indicated by the FVC and DLCO, and slowed the progression of the disease, as indicated by the PaO2, while complications and mortality were similar. These results suggest good efficacy, tolerability and safety of the treatment. Furthermore, subgroup analysis revealed that combined therapy including NAC for IPF might be more effective than NAC monotherapy, while oral administration of NAC was safer than inhalation. In conclusion, the results of the present review and meta-analysis provide important information that may serve as a guide regarding NAC therapy for IPF in clinical practice.
Collapse
Affiliation(s)
- Fanchao Feng
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jiarui Zhang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Zhichao Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Qi Wu
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xianmei Zhou
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China.,Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|