51
|
Sato M, Shiba N, Miyazaki D, Shiba Y, Echigoya Y, Yokota T, Takizawa H, Aoki Y, Takeda S, Nakamura A. Amelioration of intracellular Ca 2+ regulation by exon-45 skipping in Duchenne muscular dystrophy-induced pluripotent stem cell-derived cardiomyocytes. Biochem Biophys Res Commun 2019; 520:179-185. [PMID: 31585729 DOI: 10.1016/j.bbrc.2019.09.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/22/2019] [Indexed: 01/02/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating muscle disorder caused by frameshift mutations in the DMD gene. DMD involves cardiac muscle, and the presence of ventricular arrhythmias or congestive failure is critical for prognosis. Several novel therapeutic approaches are being evaluated in ongoing clinical trials. Among them, exon-skipping therapy to correct frameshift mutations with antisense oligonucleotides is promising; however, their therapeutic efficacies on cardiac muscle in vivo remain unknown. In this study, we established induced-pluripotent stem cells (iPSCs) from T cells from a DMD patient carrying a DMD-exon 46-55 deletion, differentiated the iPSCs into cardiomyocytes, and treated them with phosphorodiamidate morpholino oligomers. The efficiency of exon-45 skipping increased in a dose-dependent manner and enabled restoration of the DMD gene product, dystrophin. Further, Ca2+-imaging analysis showed a decreased number of arrhythmic cells and improved transient Ca2+ signaling after exon skipping. Thus, exon-45 skipping may be effective for cardiac involvement in DMD patients harboring the DMD-exon 46-55 deletion.
Collapse
Affiliation(s)
- Mitsuto Sato
- Third Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, 390-8621, Japan
| | - Naoko Shiba
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
| | - Daigo Miyazaki
- Third Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, 390-8621, Japan; Intractable Disease Care Center, Shinshu University Hospital, Matsumoto, Nagano, 390-8621, Japan
| | - Yuji Shiba
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
| | - Yusuke Echigoya
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Hotake Takizawa
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Akinori Nakamura
- Third Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, 390-8621, Japan; Department of Clinical Research, National Hospital Organization Matsumoto Medical Center, Murai-Machi Minami, Matsumoto, 399-8701, Japan.
| |
Collapse
|
52
|
Brodehl A, Ebbinghaus H, Deutsch MA, Gummert J, Gärtner A, Ratnavadivel S, Milting H. Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies. Int J Mol Sci 2019; 20:ijms20184381. [PMID: 31489928 PMCID: PMC6770343 DOI: 10.3390/ijms20184381] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, many pathogenic or likely pathogenic genetic mutations in over hundred different genes have been described for non-ischemic, genetic cardiomyopathies. However, the functional knowledge about most of these mutations is still limited because the generation of adequate animal models is time-consuming and challenging. Therefore, human induced pluripotent stem cells (iPSCs) carrying specific cardiomyopathy-associated mutations are a promising alternative. Since the original discovery that pluripotency can be artificially induced by the expression of different transcription factors, various patient-specific-induced pluripotent stem cell lines have been generated to model non-ischemic, genetic cardiomyopathies in vitro. In this review, we describe the genetic landscape of non-ischemic, genetic cardiomyopathies and give an overview about different human iPSC lines, which have been developed for the disease modeling of inherited cardiomyopathies. We summarize different methods and protocols for the general differentiation of human iPSCs into cardiomyocytes. In addition, we describe methods and technologies to investigate functionally human iPSC-derived cardiomyocytes. Furthermore, we summarize novel genome editing approaches for the genetic manipulation of human iPSCs. This review provides an overview about the genetic landscape of inherited cardiomyopathies with a focus on iPSC technology, which might be of interest for clinicians and basic scientists interested in genetic cardiomyopathies.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hans Ebbinghaus
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Marcus-André Deutsch
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Jan Gummert
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Sandra Ratnavadivel
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| |
Collapse
|
53
|
Young CS, Pyle AD, Spencer MJ. CRISPR for Neuromuscular Disorders: Gene Editing and Beyond. Physiology (Bethesda) 2019; 34:341-353. [PMID: 31389773 PMCID: PMC6863376 DOI: 10.1152/physiol.00012.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 12/18/2022] Open
Abstract
This is a review describing advances in CRISPR/Cas-mediated therapies for neuromuscular disorders (NMDs). We explore both CRISPR-mediated editing and dead Cas approaches as potential therapeutic strategies for multiple NMDs. Last, therapeutic considerations, including delivery and off-target effects, are also discussed.
Collapse
Affiliation(s)
- Courtney S Young
- Department of Neurology, University of California, Los Angeles, California
- Center for Duchenne Muscular Dystrophy at UCLA, University of California, Los Angeles, California
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, University of California, Los Angeles, California
| | - April D Pyle
- Center for Duchenne Muscular Dystrophy at UCLA, University of California, Los Angeles, California
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, University of California, Los Angeles, California
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California
| | - Melissa J Spencer
- Department of Neurology, University of California, Los Angeles, California
- Center for Duchenne Muscular Dystrophy at UCLA, University of California, Los Angeles, California
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, University of California, Los Angeles, California
| |
Collapse
|
54
|
Cai A, Kong X. Development of CRISPR-Mediated Systems in the Study of Duchenne Muscular Dystrophy. Hum Gene Ther Methods 2019; 30:71-80. [PMID: 31062609 DOI: 10.1089/hgtb.2018.187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe type of X-linked recessive degenerative muscle disease caused by mutations in the dystrophin (DMD) gene on the X chromosome. The DMD gene is complex, consisting of 79 exons, and mutations cause changes in the DMD mRNA so that the reading frame is altered, and the muscle-specific isoform of the dystrophin protein is either absent or truncated with variable residual function. The emerging CRISPR-Cas9-mediated genome editing technique is being developed as a potential therapeutic approach to treat DMD because it can permanently replace the mutated dystrophin gene with the normal gene. Prenatal DNA testing can inform whether the female fetus is a carrier of DMD, and the male fetus has inherited a mutation from his mother (50% chance of both). This article summarizes the present status of current and future treatments for DMD.
Collapse
Affiliation(s)
- Aojie Cai
- Genetic and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Xiangdong Kong
- Genetic and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
55
|
Breuls N, Giacomazzi G, Sampaolesi M. (Epi)genetic Modifications in Myogenic Stem Cells: From Novel Insights to Therapeutic Perspectives. Cells 2019; 8:cells8050429. [PMID: 31075875 PMCID: PMC6562881 DOI: 10.3390/cells8050429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
The skeletal muscle is considered to be an ideal target for stem cell therapy as it has an inherent regenerative capacity. Upon injury, the satellite cells, muscle stem cells that reside under the basal lamina of the myofibres, start to differentiate in order to reconstitute the myofibres while maintaining the initial stem cell pool. In recent years, it has become more and more evident that epigenetic mechanisms such as histon modifications, DNA methylations and microRNA modulations play a pivatol role in this differentiation process. By understanding the mechanisms behind myogenesis, researchers are able to use this knowledge to enhance the differentiation and engraftment potential of different muscle stem cells. Besides manipulation on an epigenetic level, recent advances in the field of genome-engineering allow site-specific modifications in the genome of these stem cells. Combining epigenetic control of the stem cell fate with the ability to site-specifically correct mutations or add genes for further cell control, can increase the use of stem cells as treatment of muscular dystrophies drastically. In this review, we will discuss the advances that have been made in genome-engineering and the epigenetic regulation of muscle stem cells and how this knowledge can help to get stem cell therapy to its full potential.
Collapse
Affiliation(s)
- Natacha Breuls
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, 3000 KU Leuven, Belgium.
| | - Giorgia Giacomazzi
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, 3000 KU Leuven, Belgium.
| | - Maurilio Sampaolesi
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, 3000 KU Leuven, Belgium.
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, and Interuniversity Institute of Myology, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
56
|
Wasala NB, Hakim CH, Chen SJ, Yang NN, Duan D. Questions Answered and Unanswered by the First CRISPR Editing Study in a Canine Model of Duchenne Muscular Dystrophy. Hum Gene Ther 2019; 30:535-543. [PMID: 30648435 PMCID: PMC6534086 DOI: 10.1089/hum.2018.243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/11/2019] [Indexed: 12/17/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) editing is being considered as a potential gene repair therapy to treat Duchenne muscular dystrophy, a dystrophin-deficient lethal muscle disease affecting all muscles in the body. A recent preliminary study from the Olson laboratory (Amoasii et al. Science 2018;362:89-91) showed robust dystrophin restoration in a canine Duchenne muscular dystrophy model following intramuscular or intravenous delivery of the CRISPR editing machinery by adeno-associated virus serotype 9. Despite the limitation of the small sample size, short study duration, and the lack of muscle function data, the Olson lab findings have provided important proof of principle for scaling up CRISPR therapy from rodents to large mammals. Future large-scale, long-term, and comprehensive studies are warranted to establish the safety and efficacy of CRISPR editing therapy in large mammals.
Collapse
Affiliation(s)
- Nalinda B. Wasala
- Department of Molecular Microbiology, College of Veterinary Medicine, The University of Missouri, Columbia
| | - Chady H. Hakim
- Department of Molecular Microbiology, College of Veterinary Medicine, The University of Missouri, Columbia
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Shi-Jie Chen
- Department of Physics, College of Veterinary Medicine, The University of Missouri, Columbia
- Department of Biochemistry, College of Veterinary Medicine, The University of Missouri, Columbia
| | - N. Nora Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Dongsheng Duan
- Department of Molecular Microbiology, College of Veterinary Medicine, The University of Missouri, Columbia
- Department of Neurology, School of Medicine, College of Veterinary Medicine, The University of Missouri, Columbia
- Department of Bioengineering, College of Veterinary Medicine, The University of Missouri, Columbia
- Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia
| |
Collapse
|
57
|
Zhang Y, Yang W, Wen G, Wu Y, Jing Z, Li D, Tang M, Liu G, Wei X, Zhong Y, Li Y, Deng Y. Application whole exome sequencing for the clinical molecular diagnosis of patients with Duchenne muscular dystrophy; identification of four novel nonsense mutations in four unrelated Chinese DMD patients. Mol Genet Genomic Med 2019; 7:e622. [PMID: 30938079 PMCID: PMC6503051 DOI: 10.1002/mgg3.622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/19/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is the most common form of inherited muscular dystrophy. Germline mutations in dystrophin (DMD) gene cause DMD, with a X‐linked recessive mode of inheritance. Patients with DMD are usually characterized by weakness of muscle, usually started since childhood and gradually the patient will unable to stand and walk. Methods In our present study, we identified four unrelated Chinese patients with DMD from four Chinese families. Whole exome sequencing was performed for genetic molecular analysis for these probands. Results Whole exome sequencing and confirmatory Sanger sequencing identified four novel nonsense mutations in these four unrelated Chinese patients, respectively. All these four mutations lead to the formation of a truncated DMD protein by formation of a premature stop codon. According to the variant interpretation guidelines of American College of Medical Genetics and Genomics (ACMG), these four novel nonsense mutations are categorized as “likely pathogenic” variants. Conclusion Our present finding not only identified four novel loss‐of‐function mutations in dystrophin (DMD) gene but also strongly emphasized the significance of whole exome sequencing as the most efficient way of identifying the candidate genes and mutations which enables us for easy and rapid clinical diagnosis, follow‐up, and management of DMD patients.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, P.R. China
| | - Weikang Yang
- Department of Prevention and health care, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Guoming Wen
- Department of Outpatient, Shenzhen Longhua District Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Yanxia Wu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Zhiliang Jing
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Dazhou Li
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Minshan Tang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Guanglong Liu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Xuxuan Wei
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Yan Zhong
- Department of Pathology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, P.R. China
| | - Yanhua Li
- Department of Pathology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, P.R. China
| | - Yongjian Deng
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
58
|
Nakamura A. Mutation-Based Therapeutic Strategies for Duchenne Muscular Dystrophy: From Genetic Diagnosis to Therapy. J Pers Med 2019; 9:jpm9010016. [PMID: 30836656 PMCID: PMC6462977 DOI: 10.3390/jpm9010016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023] Open
Abstract
Duchenne and Becker muscular dystrophy (DMD/BMD) are X-linked muscle disorders caused by mutations of the DMD gene, which encodes the subsarcolemmal protein dystrophin. In DMD, dystrophin is not expressed due to a disruption in the reading frame of the DMD gene, resulting in a severe phenotype. Becker muscular dystrophy exhibits a milder phenotype, having mutations that maintain the reading frame and allow for the production of truncated dystrophin. To date, various therapeutic approaches for DMD have been extensively developed. However, the pathomechanism is quite complex despite it being a single gene disorder, and dystrophin is expressed not only in a large amount of skeletal muscle but also in cardiac, vascular, intestinal smooth muscle, and nervous system tissue. Thus, the most appropriate therapy would be complementation or restoration of dystrophin expression, such as gene therapy using viral vectors, readthrough therapy, or exon skipping therapy. Among them, exon skipping therapy with antisense oligonucleotides can restore the reading frame and yield the conversion of a severe phenotype to one that is mild. In this paper, I present the significance of molecular diagnosis and the development of mutation-based therapeutic strategies to complement or restore dystrophin expression.
Collapse
Affiliation(s)
- Akinori Nakamura
- Department of Neurology, National Hospital Organization, Matsumoto Medical Center, 2-20-30 Murai-machi Minami, Matsumoto 399-8701, Japan.
- Third Department of Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| |
Collapse
|
59
|
Babačić H, Mehta A, Merkel O, Schoser B. CRISPR-cas gene-editing as plausible treatment of neuromuscular and nucleotide-repeat-expansion diseases: A systematic review. PLoS One 2019; 14:e0212198. [PMID: 30794581 PMCID: PMC6386526 DOI: 10.1371/journal.pone.0212198] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/29/2019] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION The system of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (cas) is a new technology that allows easier manipulation of the genome. Its potential to edit genes opened a new door in treatment development for incurable neurological monogenic diseases (NMGDs). The aim of this systematic review was to summarise the findings on the current development of CRISPR-cas for therapeutic purposes in the most frequent NMGDs and provide critical assessment. METHODS AND DATA ACQUISITION We searched the MEDLINE and EMBASE databases, looking for original studies on the use of CRISPR-cas to edit pathogenic variants in models of the most frequent NMGDs, until end of 2017. We included all the studies that met the following criteria: 1. Peer-reviewed study report with explicitly described experimental designs; 2. In vitro, ex vivo, or in vivo study using human or other animal biological systems (including cells, tissues, organs, organisms); 3. focusing on CRISPR as the gene-editing method of choice; and 5. featured at least one NMGD. RESULTS We obtained 404 papers from MEDLINE and 513 from EMBASE. After removing the duplicates, we screened 490 papers by title and abstract and assessed them for eligibility. After reading 50 full-text papers, we finally selected 42 for the review. DISCUSSION Here we give a systematic summary on the preclinical development of CRISPR-cas for therapeutic purposes in NMGDs. Furthermore, we address the clinical interpretability of the findings, giving a comprehensive overview of the current state of the art. Duchenne's muscular dystrophy (DMD) paves the way forward, with 26 out of 42 studies reporting different strategies on DMD gene editing in different models of the disease. Most of the strategies aimed for permanent exon skipping by deletion with CRISPR-cas. Successful silencing of the mHTT gene with CRISPR-cas led to successful reversal of the neurotoxic effects in the striatum of mouse models of Huntington's disease. Many other strategies have been explored, including epigenetic regulation of gene expression, in cellular and animal models of: myotonic dystrophy, Fraxile X syndrome, ataxias, and other less frequent dystrophies. Still, before even considering the clinical application of CRISPR-cas, three major bottlenecks need to be addressed: efficacy, safety, and delivery of the systems. This requires a collaborative approach in the research community, while having ethical considerations in mind.
Collapse
Affiliation(s)
- Haris Babačić
- Friedrich Baur Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
- * E-mail: (BS); (HB)
| | - Aditi Mehta
- Faculty of Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Olivia Merkel
- Faculty of Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Benedikt Schoser
- Friedrich Baur Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
- * E-mail: (BS); (HB)
| |
Collapse
|
60
|
Cardiac macrotissues-on-a-plate models for phenotypic drug screens. Adv Drug Deliv Rev 2019; 140:93-100. [PMID: 30902615 DOI: 10.1016/j.addr.2019.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/11/2019] [Accepted: 03/13/2019] [Indexed: 12/17/2022]
Abstract
Facilitated by the introduction of human induced pluripotent stem cells and protocols for their efficient directed differentiation at high quantity and quality, innovative human heart muscle models are being developed for applications in drug screens. Employed models range from the microscopic cardiomyocytes-on-a-chip scale to the cardiac macrotissues-on-a-plate scale. Whilst cardiomyocyte-on-a-chip models can be readily adapted to high-throughput primary screening, they are limited as to the deep phenotyping of contractility, and here in particular contractile force development. In lower throughput cardiac macrotissue-on-a-plate platforms, organotypic function, including anisotropic electrical spread of excitation and contractility, can be recapitulated at the macroscopic scale. This review serves as an overview of cardiac macrotissue-on-a-plate technologies with a focus on their application in the investigation of drug effects on heart muscle contractility and disease modeling.
Collapse
|
61
|
Lee JH, Wang JH, Chen J, Li F, Edwards TL, Hewitt AW, Liu GS. Gene therapy for visual loss: Opportunities and concerns. Prog Retin Eye Res 2019; 68:31-53. [DOI: 10.1016/j.preteyeres.2018.08.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 12/17/2022]
|
62
|
Multiple Exon Skipping in the Duchenne Muscular Dystrophy Hot Spots: Prospects and Challenges. J Pers Med 2018; 8:jpm8040041. [PMID: 30544634 PMCID: PMC6313462 DOI: 10.3390/jpm8040041] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/24/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), a fatal X-linked recessive disorder, is caused mostly by frame-disrupting, out-of-frame deletions in the dystrophin (DMD) gene. Antisense oligonucleotide-mediated exon skipping is a promising therapy for DMD. Exon skipping aims to convert out-of-frame mRNA to in-frame mRNA and induce the production of internally-deleted dystrophin as seen in the less severe Becker muscular dystrophy. Currently, multiple exon skipping has gained special interest as a new therapeutic modality for this approach. Previous retrospective database studies represented a potential therapeutic application of multiple exon skipping. Since then, public DMD databases have become more useful with an increase in patient registration and advances in molecular diagnosis. Here, we provide an update on DMD genotype-phenotype associations using a global DMD database and further provide the rationale for multiple exon skipping development, particularly for exons 45–55 skipping and an emerging therapeutic concept, exons 3–9 skipping. Importantly, this review highlights the potential of multiple exon skipping for enabling the production of functionally-corrected dystrophin and for treating symptomatic patients not only with out-of-frame deletions but also those with in-frame deletions. We will also discuss prospects and challenges in multiple exon skipping therapy, referring to recent progress in antisense chemistry and design, as well as disease models.
Collapse
|
63
|
Applications of CRISPR/Cas9 for the Treatment of Duchenne Muscular Dystrophy. J Pers Med 2018; 8:jpm8040038. [PMID: 30477208 PMCID: PMC6313657 DOI: 10.3390/jpm8040038] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive neuromuscular disease prevalent in 1 in 3500 to 5000 males worldwide. As a result of mutations that interrupt the reading frame of the dystrophin gene (DMD), DMD is characterized by a loss of dystrophin protein that leads to decreased muscle membrane integrity, which increases susceptibility to degeneration. CRISPR/Cas9 technology has garnered interest as an avenue for DMD therapy due to its potential for permanent exon skipping, which can restore the disrupted DMD reading frame in DMD and lead to dystrophin restoration. An RNA-guided DNA endonuclease system, CRISPR/Cas9 allows for the targeted editing of specific sequences in the genome. The efficacy and safety of CRISPR/Cas9 as a therapy for DMD has been evaluated by numerous studies in vitro and in vivo, with varying rates of success. Despite the potential of CRISPR/Cas9-mediated gene editing for the long-term treatment of DMD, its translation into the clinic is currently challenged by issues such as off-targeting, immune response activation, and sub-optimal in vivo delivery. Its nature as being mostly a personalized form of therapy also limits applicability to DMD patients, who exhibit a wide spectrum of mutations. This review summarizes the various CRISPR/Cas9 strategies that have been tested in vitro and in vivo for the treatment of DMD. Perspectives on the approach will be provided, and the challenges faced by CRISPR/Cas9 in its road to the clinic will be briefly discussed.
Collapse
|
64
|
Abstract
The ability to efficiently modify the genome using CRISPR technology has rapidly revolutionized biology and genetics and will soon transform medicine. Duchenne muscular dystrophy (DMD) represents one of the first monogenic disorders that has been investigated with respect to CRISPR-mediated correction of causal genetic mutations. DMD results from mutations in the gene encoding dystrophin, a scaffolding protein that maintains the integrity of striated muscles. Thousands of different dystrophin mutations have been identified in DMD patients, who suffer from a loss of ambulation followed by respiratory insufficiency, heart failure, and death by the third decade of life. Using CRISPR to bypass DMD mutations, dystrophin expression has been efficiently restored in human cells and mouse models of DMD. Here, we review recent progress toward the development of possible CRISPR therapies for DMD and highlight opportunities and potential obstacles in attaining this goal.
Collapse
Affiliation(s)
- Yi-Li Min
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
65
|
Hoes MF, Bomer N, van der Meer P. Concise Review: The Current State of Human In Vitro Cardiac Disease Modeling: A Focus on Gene Editing and Tissue Engineering. Stem Cells Transl Med 2018; 8:66-74. [PMID: 30302938 PMCID: PMC6312446 DOI: 10.1002/sctm.18-0052] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/04/2018] [Indexed: 12/11/2022] Open
Abstract
Until recently, in vivo and ex vivo experiments were the only means to determine factors and pathways involved in disease pathophysiology. After the generation of characterized human embryonic stem cell lines, human diseases could readily be studied in an extensively controllable setting. The introduction of human‐induced pluripotent stem cells, a decade ago, allowed the investigation of hereditary diseases in vitro. In the field of cardiology, diseases linked to known genes have successfully been studied, revealing novel disease mechanisms. The direct effects of various mutations leading to hypertrophic cardiomyopathy, dilated cardiomyopathy, arrythmogenic cardiomyopathy, or left ventricular noncompaction cardiomyopathy are discovered as a result of in vitro disease modeling. Researchers are currently applying more advanced techniques to unravel more complex phenotypes, resulting in state‐of‐the‐art models that better mimic in vivo physiology. The continued improvement of tissue engineering techniques and new insights into epigenetics resulted in more reliable and feasible platforms for disease modeling and the development of novel therapeutic strategies. The introduction of CRISPR‐Cas9 gene editing granted the ability to model diseases in vitro independent of induced pluripotent stem cells. In addition to highlighting recent developments in the field of human in vitro cardiomyopathy modeling, this review also aims to emphasize limitations that remain to be addressed; including residual somatic epigenetic signatures induced pluripotent stem cells, and modeling diseases with unknown genetic causes. Stem Cells Translational Medicine2019;8:66–74
Collapse
Affiliation(s)
- Martijn F Hoes
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, RB, The Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, RB, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, RB, The Netherlands
| |
Collapse
|
66
|
Abstract
Ischaemic heart disease is a leading cause of death worldwide. Injury to the heart is followed by loss of the damaged cardiomyocytes, which are replaced with fibrotic scar tissue. Depletion of cardiomyocytes results in decreased cardiac contraction, which leads to pathological cardiac dilatation, additional cardiomyocyte loss, and mechanical dysfunction, culminating in heart failure. This sequential reaction is defined as cardiac remodelling. Many therapies have focused on preventing the progressive process of cardiac remodelling to heart failure. However, after patients have developed end-stage heart failure, intervention is limited to heart transplantation. One of the main reasons for the dramatic injurious effect of cardiomyocyte loss is that the adult human heart has minimal regenerative capacity. In the past 2 decades, several strategies to repair the injured heart and improve heart function have been pursued, including cellular and noncellular therapies. In this Review, we discuss current therapeutic approaches for cardiac repair and regeneration, describing outcomes, limitations, and future prospects of preclinical and clinical trials of heart regeneration. Substantial progress has been made towards understanding the cellular and molecular mechanisms regulating heart regeneration, offering the potential to control cardiac remodelling and redirect the adult heart to a regenerative state.
Collapse
Affiliation(s)
- Hisayuki Hashimoto
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
67
|
Dystrophin Cardiomyopathies: Clinical Management, Molecular Pathogenesis and Evolution towards Precision Medicine. J Clin Med 2018; 7:jcm7090291. [PMID: 30235804 PMCID: PMC6162458 DOI: 10.3390/jcm7090291] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/02/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
Duchenne’s muscular dystrophy is an X-linked neuromuscular disease that manifests as muscle atrophy and cardiomyopathy in young boys. However, a considerable percentage of carrier females are often diagnosed with cardiomyopathy at an advanced stage. Existing therapy is not disease-specific and has limited effect, thus many patients and symptomatic carrier females prematurely die due to heart failure. Early detection is one of the major challenges that muscular dystrophy patients, carrier females, family members and, research and medical teams face in the complex course of dystrophic cardiomyopathy management. Despite the widespread adoption of advanced imaging modalities such as cardiac magnetic resonance, there is much scope for refining the diagnosis and treatment of dystrophic cardiomyopathy. This comprehensive review will focus on the pertinent clinical aspects of cardiac disease in muscular dystrophy while also providing a detailed consideration of the known and developing concepts in the pathophysiology of muscular dystrophy and forthcoming therapeutic options.
Collapse
|
68
|
Ziegler T, Hinkel R, Kupatt C. Induced pluripotent stem cell derived cardiac models: effects of Thymosin β4. Expert Opin Biol Ther 2018; 18:111-120. [PMID: 30063852 DOI: 10.1080/14712598.2018.1473370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION The establishment of induced pluripotent stem cells (iPSCs) and cardiomyocytes differentiated from them generated a new platform to study pathophysiological processes and to generate drug screening platforms and iPSC-derived tissues as therapeutic agents. Although major advances have been made in iPSC-reprogramming, cardiac differentiation and EHT production, reprogramming efficiency and the maturity of iPSC-CMs need to be further improved. AREAS COVERED In this review, the authors summarize the current state of the field of iPSC research, the methodology of cardiac differentiation of iPSCs, the use of iPSC-CMs as disease models and toxicity screening platforms, and the potential of EHTs as therapeutic agents. The authors furthermore highlight the mechanisms by which Thymosin β4 might enhance the production of iPSC-CMs and EHTs to improve their maturity and performance. EXPERT OPINION iPSCs derived cardiomyocytes and EHTs represent a still young research field with many problems and pitfalls that need to be resolved to realize the full potential of iPSC-CMs and EHTs. Given that Thymosin β4 directly enhances cardiac differentiation while also promoting angiogenic sprouting and vessel maturation, Tβ4 might be of particular interest as a novel agent in tackling the difficulty of iPSC-CMs and engineered heart tissue grafts.
Collapse
Affiliation(s)
- Tilman Ziegler
- a I. Medizinische Klinik & Poliklinik, Klinikum rechts der Isar , Technical University of Munich , Munich , Germany.,b DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance , Munich , German
| | - Rabea Hinkel
- a I. Medizinische Klinik & Poliklinik, Klinikum rechts der Isar , Technical University of Munich , Munich , Germany.,b DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance , Munich , German.,c Institute for Cardiovascular Prevention , Ludwig Maximilians University of Munich , Munich , Germany
| | - Christian Kupatt
- a I. Medizinische Klinik & Poliklinik, Klinikum rechts der Isar , Technical University of Munich , Munich , Germany.,b DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance , Munich , German
| |
Collapse
|
69
|
Khodabukus A, Prabhu N, Wang J, Bursac N. In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease. Adv Healthc Mater 2018; 7:e1701498. [PMID: 29696831 PMCID: PMC6105407 DOI: 10.1002/adhm.201701498] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/18/2018] [Indexed: 12/18/2022]
Abstract
Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Neel Prabhu
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Jason Wang
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Nenad Bursac
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| |
Collapse
|
70
|
Razzouk S. CRISPR-Cas9: A cornerstone for the evolution of precision medicine. Ann Hum Genet 2018; 82:331-357. [PMID: 30014471 DOI: 10.1111/ahg.12271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/04/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022]
Abstract
Modern genetic therapy incorporates genomic testing and genome editing. It is the finest approach for precision medicine. Genome editing is a state-of-the-art technology to manipulate gene expression thus generating a particular genotype. It encompasses multiple programmable nuclease-based approaches leading to genetic changes. Not surprisingly, this method triggered internationally a wide array of controversies in the scientific community and in the public since it transforms the human genome. Given its importance, the pace of this technology is exceptionally fast. In this report, we introduce one aspect of genome editing, the CRISPR/Cas9 system, highlight its potential to correct genetic mutations and explore its utility in clinical setting. Our goal is to enlighten health care providers about genome editing and incite them to take part of this vital debate.
Collapse
Affiliation(s)
- Sleiman Razzouk
- Adjunct Faculty, Department of Periodontology and Implant Dentistry, New York University College of Dentistry, New York.,Private Practice, Beirut, Lebanon
| |
Collapse
|
71
|
Prondzynski M, Mearini G, Carrier L. Gene therapy strategies in the treatment of hypertrophic cardiomyopathy. Pflugers Arch 2018; 471:807-815. [PMID: 29971600 DOI: 10.1007/s00424-018-2173-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/26/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited myocardial disease with an estimated prevalence of 1:200 caused by mutations in sarcomeric proteins. It is associated with hypertrophy of the left ventricle, increased interstitial fibrosis, and diastolic dysfunction for heterozygous mutation carriers. Carriers of double heterozygous, compound heterozygous, and homozygous mutations often display more severe forms of cardiomyopathies, ultimately leading to premature death. So far, there is no curative treatment against HCM, as current therapies are focused on symptoms relief by pharmacological intervention and not on the cause of HCM. In the last decade, several strategies have been developed to remove genetic defects, including genome editing, exon skipping, allele-specific silencing, spliceosome-mediated RNA trans-splicing, and gene replacement. Most of these technologies have already been tested for efficacy and efficiency in animal- or human-induced pluripotent stem cell models of HCM with promising results. We will summarize recent technological advances and their implication as gene therapy options in HCM with a special focus on treating MYBPC3 mutations and its potential for being a successful bench to bedside example.
Collapse
Affiliation(s)
- Maksymilian Prondzynski
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Giulia Mearini
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
72
|
Zhang Y, Long C, Bassel-Duby R, Olson EN. Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiol Rev 2018; 98:1205-1240. [PMID: 29717930 PMCID: PMC6335101 DOI: 10.1152/physrev.00046.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022] Open
Abstract
Muscular dystrophies represent a large group of genetic disorders that significantly impair quality of life and often progress to premature death. There is no effective treatment for these debilitating diseases. Most therapies, developed to date, focus on alleviating the symptoms or targeting the secondary effects, while the underlying gene mutation is still present in the human genome. The discovery and application of programmable nucleases for site-specific DNA double-stranded breaks provides a powerful tool for precise genome engineering. In particular, the CRISPR/Cas system has revolutionized the genome editing field and is providing a new path for disease treatment by targeting the disease-causing genetic mutations. In this review, we provide a historical overview of genome-editing technologies, summarize the most recent advances, and discuss potential strategies and challenges for permanently correcting genetic mutations that cause muscular dystrophies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Chengzu Long
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Eric N Olson
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
73
|
Burnight ER, Bohrer LR, Giacalone JC, Klaahsen DL, Daggett HT, East JS, Madumba RA, Worthington KS, Mullins RF, Stone EM, Tucker BA, Wiley LA. CRISPR-Cas9-Mediated Correction of the 1.02 kb Common Deletion in CLN3 in Induced Pluripotent Stem Cells from Patients with Batten Disease. CRISPR J 2018; 1:75-87. [PMID: 31021193 DOI: 10.1089/crispr.2017.0015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (Batten disease) is a rare progressive neurodegenerative disorder caused by mutations in CLN3. Patients present with early-onset retinal degeneration, followed by epilepsy, progressive motor deficits, cognitive decline, and premature death. Approximately 85% of individuals with Batten disease harbor at least one allele containing a 1.02 kb genomic deletion spanning exons 7 and 8. This study demonstrates CRISPR-Cas9-based homology-dependent repair of this mutation in induced pluripotent stem cells generated from two independent patients: one homozygous and one compound heterozygous for the 1.02 kb deletion. Our strategy included delivery of a construct that carried >3 kb of DNA: wild-type CLN3 sequence and a LoxP-flanked, puromycin resistance cassette for positive selection. This strategy resulted in correction at the genomic DNA and mRNA levels in the two independent patient lines. These CRISPR-corrected isogenic cell lines will be a valuable tool for disease modeling and autologous retinal cell replacement.
Collapse
Affiliation(s)
- Erin R Burnight
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Laura R Bohrer
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Joseph C Giacalone
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Darcey L Klaahsen
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Heather T Daggett
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Jade S East
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Robert A Madumba
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Kristan S Worthington
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,3 Department of Biomedical Engineering, University of Iowa , Iowa City, Iowa
| | - Robert F Mullins
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Edwin M Stone
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Budd A Tucker
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Luke A Wiley
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| |
Collapse
|
74
|
Aslesh T, Maruyama R, Yokota T. Skipping Multiple Exons to Treat DMD-Promises and Challenges. Biomedicines 2018; 6:E1. [PMID: 29301272 PMCID: PMC5874658 DOI: 10.3390/biomedicines6010001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 01/08/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal disorder caused by mutations in the DMD gene. Antisense-mediated exon-skipping is a promising therapeutic strategy that makes use of synthetic nucleic acids to skip frame-disrupting exon(s) and allows for short but functional protein expression by restoring the reading frame. In 2016, the U.S. Food and Drug Administration (FDA) approved eteplirsen, which skips DMD exon 51 and is applicable to approximately 13% of DMD patients. Multiple exon skipping, which is theoretically applicable to 80-90% of DMD patients in total, have been demonstrated in animal models, including dystrophic mice and dogs, using cocktail antisense oligonucleotides (AOs). Although promising, current drug approval systems pose challenges for the use of a cocktail AO. For example, both exons 6 and 8 need to be skipped to restore the reading frame in dystrophic dogs. Therefore, the cocktail of AOs targeting these exons has a combined therapeutic effect and each AO does not have a therapeutic effect by itself. The current drug approval system is not designed to evaluate such circumstances, which are completely different from cocktail drug approaches in other fields. Significant changes are needed in the drug approval process to promote the cocktail AO approach.
Collapse
Affiliation(s)
- Tejal Aslesh
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8812-112 St. Edmonton, AB T6G 2H7, Canada.
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8812-112 St. Edmonton, AB T6G 2H7, Canada.
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8812-112 St. Edmonton, AB T6G 2H7, Canada.
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, 8812-112 St. Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
75
|
Long C, Li H, Tiburcy M, Rodriguez-Caycedo C, Kyrychenko V, Zhou H, Zhang Y, Min YL, Shelton JM, Mammen PPA, Liaw NY, Zimmermann WH, Bassel-Duby R, Schneider JW, Olson EN. Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. SCIENCE ADVANCES 2018; 4:eaap9004. [PMID: 29404407 PMCID: PMC5796795 DOI: 10.1126/sciadv.aap9004] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/28/2017] [Indexed: 05/20/2023]
Abstract
Genome editing with CRISPR/Cas9 is a promising new approach for correcting or mitigating disease-causing mutations. Duchenne muscular dystrophy (DMD) is associated with lethal degeneration of cardiac and skeletal muscle caused by more than 3000 different mutations in the X-linked dystrophin gene (DMD). Most of these mutations are clustered in "hotspots." There is a fortuitous correspondence between the eukaryotic splice acceptor and splice donor sequences and the protospacer adjacent motif sequences that govern prokaryotic CRISPR/Cas9 target gene recognition and cleavage. Taking advantage of this correspondence, we screened for optimal guide RNAs capable of introducing insertion/deletion (indel) mutations by nonhomologous end joining that abolish conserved RNA splice sites in 12 exons that potentially allow skipping of the most common mutant or out-of-frame DMD exons within or nearby mutational hotspots. We refer to the correction of DMD mutations by exon skipping as myoediting. In proof-of-concept studies, we performed myoediting in representative induced pluripotent stem cells from multiple patients with large deletions, point mutations, or duplications within the DMD gene and efficiently restored dystrophin protein expression in derivative cardiomyocytes. In three-dimensional engineered heart muscle (EHM), myoediting of DMD mutations restored dystrophin expression and the corresponding mechanical force of contraction. Correcting only a subset of cardiomyocytes (30 to 50%) was sufficient to rescue the mutant EHM phenotype to near-normal control levels. We conclude that abolishing conserved RNA splicing acceptor/donor sites and directing the splicing machinery to skip mutant or out-of-frame exons through myoediting allow correction of the cardiac abnormalities associated with DMD by eliminating the underlying genetic basis of the disease.
Collapse
Affiliation(s)
- Chengzu Long
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | - Hui Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center, Georg-August-University Göttingen, Göttingen, 37075, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Cristina Rodriguez-Caycedo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Viktoriia Kyrychenko
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huanyu Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi-Li Min
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John M. Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pradeep P. A. Mammen
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Norman Y. Liaw
- Institute of Pharmacology and Toxicology, University Medical Center, Georg-August-University Göttingen, Göttingen, 37075, Germany
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center, Georg-August-University Göttingen, Göttingen, 37075, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jay W. Schneider
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|