51
|
Mammoto A, Mammoto T, Ingber DE. Rho signaling and mechanical control of vascular development. Curr Opin Hematol 2008; 15:228-34. [PMID: 18391790 DOI: 10.1097/moh.0b013e3282fa7445] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE OF REVIEW To discuss how mechanical cues and Rho signaling contribute to control of vascular development and hematopoiesis. RECENT FINDINGS Rho guanine trinucleotide phosphatases are ubiquitious regulators of cytoskeletal structure and tension generation. Recent work shows that Rho-dependent mechanical interactions between cells and extracellular matrix regulate cell fate switching in capillary endothelial cells and megakaryocytes in vitro, as well as angiogenesis, vascular permeability, leukocyte migration and platelet formation in vivo. Signaling pathways that link integrins and tension-dependent changes in cytoskeletal structure to Rho have also begun to be delineated. SUMMARY Mechanical force generation by cells and simultaneous sensing of these physical forces play critical roles in vascular development by estimating whether individual cells will grow, differentiate, move or undergo apoptosis in the local tissue microenvironment. Future work in the vascular field therefore needs to incorporate physical control mechanisms into existing biochemical concepts of cell and tissue regulation.
Collapse
Affiliation(s)
- Akiko Mammoto
- Vascular Biology Program, Department of Pathology, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
52
|
Rajasingh J, Lambers E, Hamada H, Bord E, Thorne T, Goukassian I, Krishnamurthy P, Rosen KM, Ahluwalia D, Zhu Y, Qin G, Losordo DW, Kishore R. Cell-free embryonic stem cell extract-mediated derivation of multipotent stem cells from NIH3T3 fibroblasts for functional and anatomical ischemic tissue repair. Circ Res 2008; 102:e107-17. [PMID: 18483406 PMCID: PMC2435186 DOI: 10.1161/circresaha.108.176115] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The oocyte-independent source for the generation of pluripotent stem cells is among the ultimate goals in regenerative medicine. We report that on exposure to mouse embryonic stem cell (mESC) extracts, reversibly permeabilized NIH3T3 cells undergo dedifferentiation followed by stimulus-induced redifferentiation into multiple lineage cell types. Genome-wide expression profiling revealed significant differences between NIH3T3 control and ESC extract-treated NIH3T3 cells including the reactivation of ESC-specific transcripts. Epigenetically, ESC extracts induced CpG demethylation of Oct4 promoter, hyperacetylation of histones 3 and 4, and decreased lysine 9 (K-9) dimethylation of histone 3. In mouse models of surgically induced hindlimb ischemia or acute myocardial infarction transplantation of reprogrammed NIH3T3 cells significantly improved postinjury physiological functions and showed anatomic evidence of engraftment and transdifferentiation into skeletal muscle, endothelial cell, and cardiomyocytes. These data provide evidence for the generation of functional multipotent stem-like cells from terminally differentiated somatic cells without the introduction of retroviral mediated transgenes or ESC fusion.
Collapse
Affiliation(s)
- Johnson Rajasingh
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago IL 60611
| | - Erin Lambers
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago IL 60611
| | - Hiromichi Hamada
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago IL 60611
| | - Evelyn Bord
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago IL 60611
| | - Tina Thorne
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago IL 60611
| | - Ilona Goukassian
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago IL 60611
| | - Prasanna Krishnamurthy
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago IL 60611
| | - Kenneth M. Rosen
- Division of Neurology Research, Caritas St. Elizabeth's Medical Center. Tufts University School of Medicine, Boston, MA 02135
| | - Deepali Ahluwalia
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago IL 60611
| | - Yan Zhu
- Division of Neurology Research, Caritas St. Elizabeth's Medical Center. Tufts University School of Medicine, Boston, MA 02135
| | - Gangjian Qin
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago IL 60611
| | - Douglas W. Losordo
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago IL 60611
| | - Raj Kishore
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago IL 60611
| |
Collapse
|
53
|
Abstract
The Rho kinase (ROCK) isoforms, ROCK1 and ROCK2, were initially discovered as downstream targets of the small GTP-binding protein Rho. Because ROCKs mediate various important cellular functions such as cell shape, motility, secretion, proliferation, and gene expression, it is likely that this pathway will intersect with other signaling pathways known to contribute to cardiovascular disease. Indeed, ROCKs have already been implicated in the regulation of vascular tone, proliferation, inflammation, and oxidative stress. However, it is not entirely clear how ROCKs are regulated, what some of their downstream targets are, and whether ROCK1 and ROCK2 mediate different cellular functions. Clinically, inhibition of ROCK pathway is believed to contribute to some of the cardiovascular benefits of statin therapy that are independent of lipid lowering (ie, pleiotropic effects). To what extent ROCK activity is inhibited in patients on statin therapy is not known, but it may have important clinical implications. Indeed, several pharmaceutical companies are already actively engaged in the development of ROCK inhibitors as the next generation of therapeutic agents for cardiovascular disease because evidence from animal studies suggests the potential involvement of ROCK in hypertension and atherosclerosis.
Collapse
Affiliation(s)
- James K Liao
- The Vascular Medicine Research Unit, Brigham and Women's Hospital, Cambridge 02139 and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
54
|
Forte E, Orsatti L, Talamo F, Barbato G, De Francesco R, Tomei L. Ezrin is a specific and direct target of protein tyrosine phosphatase PRL-3. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:334-44. [PMID: 18078820 DOI: 10.1016/j.bbamcr.2007.11.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 11/12/2007] [Accepted: 11/13/2007] [Indexed: 11/17/2022]
Abstract
Phosphatase of Regenerating Liver-3 (PRL-3) is a small protein tyrosine phosphatase considered an appealing therapeutic cancer target due to its involvement in metastatic progression. However, despite its importance, the direct molecular targets of PRL-3 action are not yet known. Here we report the identification of Ezrin as a specific and direct cellular substrate of PRL-3. In HCT116 colon cancer cell line, Ezrin was identified among the cellular proteins whose phosphorylation level decreased upon ectopic over-expression of wtPRL-3 but not of catalytically inactive PRL-3 mutants. Although PRL-3 over-expression in HCT116 cells appeared to affect Ezrin phosphorylation status at both tyrosine residues and Thr567, suppression of the endogenous protein by RNA interference pointed to Ezrin-Thr567 as the residue primarily affected by PRL-3 action. In vitro dephosphorylation assays suggested Ezrin-Thr567 as a direct substrate of PRL-3 also proving this enzyme as belonging to the dual specificity phosphatase family. Furthermore, the same effect on levels of pThr567, but not on pTyr residues, was observed in endothelial cells pointing to Ezrin-pThr567 dephosphorylation as a mean through which PRL-3 exerts its function in promoting tumor progression as well as in the establishment of the new vasculature needed for tumor survival and expansion.
Collapse
|
55
|
Rajasingh J, Bord E, Hamada H, Lambers E, Qin G, Losordo DW, Kishore R. STAT3-dependent mouse embryonic stem cell differentiation into cardiomyocytes: analysis of molecular signaling and therapeutic efficacy of cardiomyocyte precommitted mES transplantation in a mouse model of myocardial infarction. Circ Res 2007; 101:910-8. [PMID: 17823373 DOI: 10.1161/circresaha.107.156786] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pluripotent embryonic stem (ES) cell therapy may be an attractive source for postinfarction myocardial repair and regeneration. However, the specific stimuli and signal pathways that may control ES cell-mediated cardiomyogenesis remains to be completely defined. The aim of the present study was to investigate (1) the effect and underlying signal transduction pathways of leukemia inhibitory factor (LIF) and bone-morphogenic protein-2 (BMP-2)-induced mouse ES cell (mES-D3 line) differentiation into cardiomyocytes (CMC) and (2) the efficacy of CMC precommitted mES cells for functional and anatomical cardiac repair in surgically-induced mouse acute myocardial infarction (AMI) model. Various doses of LIF and BMP-2 and their inhibitors or blocking antibodies were tested for mES differentiation to CMC in vitro. CMC differentiation was assessed by mRNA and protein expression of CMC-specific markers, Connexin-43, CTI, CTT, Mef2c, Tbx5, Nkx2.5, GATA-4, and alphaMHC. LIF and BMP-2 synergistically induced the expression of CMC markers as early as 2 to 4 days in culture. Signaling studies identified STAT3 and MAP kinase (ERK1/2) as specific signaling components of LIF+BMP-2-mediated CMC differentiation. Inhibition of either STAT3 or MAPK activation by specific inhibitors drastically suppressed LIF+BMP-2-mediated CMC differentiation. Moreover, in mouse AMI, transplantation of lentivirus-GFP-transduced, LIF+BMP-2 precommitted mES cells, improved post-MI left ventricular functions, and enhanced capillary density. Transplanted cells engrafted in myocardium and differentiated into CMC and endothelial cells. Our data suggest that LIF and BMP-2 may synergistically enhance CMC differentiation of transplanted stem cells. Thus augmentation of LIF/BMP-2 downstream signaling components or cell type specific precommitment may facilitate the effects of ES cell-based therapies for post-MI myocardial repair and regeneration.
Collapse
Affiliation(s)
- Johnson Rajasingh
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Rodríguez C, Alcudia JF, Martínez-González J, Raposo B, Navarro MA, Badimon L. Lysyl oxidase (LOX) down-regulation by TNFalpha: a new mechanism underlying TNFalpha-induced endothelial dysfunction. Atherosclerosis 2007; 196:558-64. [PMID: 17673218 DOI: 10.1016/j.atherosclerosis.2007.06.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 06/06/2007] [Accepted: 06/15/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE TNFalpha is a pro-inflammatory cytokine that induces endothelial dysfunction and promotes atherosclerosis progression. Down-regulation of lysyl oxidase (LOX), a key enzyme in extracellular matrix maturation, by pro-atherogenic risk factors such as LDL and homocysteine, is associated with an impairment of endothelial barrier function. Our hypothesis is that the inflammatory cytokine TNFalpha could also modulate LOX expression/function in endothelial cells. METHODS The study was carried out in human umbilical vein endothelial cells (HUVEC), porcine aortic endothelial cells (PAEC) and bovine aortic endothelial cells (BAEC). LOX mRNA levels were analysed by real-time PCR and LOX activity was assessed by a high sensitive fluorescent assay. Promoter activity was determined by transient transfection using a luciferase reporter system. RESULTS TNFalpha decreases LOX mRNA levels in endothelial cells in a dose- and time-dependent manner. The effect of TNFalpha was observed at low concentrations (0.1-1 ng/mL) and was maximal at 2.5 ng/mL (after 21 h). In transfection assays, TNFalpha reduced LOX transcriptional activity to a similar extent than LOX mRNA. Furthermore, TNFalpha decreases endothelial LOX enzymatic activity. By using both TNF receptor (TNFR) agonist and blocking antibodies we determined the involvement of TNFR2 on LOX down-regulation. Moreover, while TNFR-associated factor-2 (TRAF-2) did not mediate signalling events leading to LOX inhibition, PKC inhibitors counteracted the TNFalpha-induced decrease of LOX mRNA levels. Finally, TNFalpha administration significantly reduced vascular LOX expression in rat aorta. CONCLUSIONS Endothelial dysfunction induced by TNFalpha is associated with a decrease of LOX expression/activity. Thus, LOX seems to be involved in the impairment of endothelial function triggered by different pathological conditions.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Apoptosis/drug effects
- Cattle
- Cells, Cultured
- Down-Regulation
- Endothelium, Vascular/cytology
- Endothelium, Vascular/physiopathology
- Humans
- Male
- Protein Kinase C/physiology
- Protein-Lysine 6-Oxidase/biosynthesis
- Rats
- Receptors, Tumor Necrosis Factor, Type I/agonists
- Receptors, Tumor Necrosis Factor, Type I/physiology
- Receptors, Tumor Necrosis Factor, Type II/agonists
- Receptors, Tumor Necrosis Factor, Type II/physiology
- Sus scrofa
- Tumor Necrosis Factor-alpha/physiology
- Umbilical Veins/cytology
Collapse
Affiliation(s)
- C Rodríguez
- Centro de Investigación Cardiovascular, CSIC-ICCC, Hospital de Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
57
|
Rajasingh J, Bord E, Qin G, Ii M, Silver M, Hamada H, Ahluwalia D, Goukassian D, Zhu Y, Losordo DW, Kishore R. Enhanced voluntary alcohol consumption after estrogen supplementation negates estrogen-mediated vascular repair in ovariectomized mice. Endocrinology 2007; 148:3618-24. [PMID: 17478555 DOI: 10.1210/en.2006-1357] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Preclinical and observational studies in ovariectomized (OVX) animals and pre- and postmenopausal women, respectively, have suggested the cardioprotective effects of estrogen replacement therapy. However, randomized clinical trials have not confirmed estrogen-mediated cardioprotection. Although uncertainties about the duration and optimal type of estrogen replacement regimen might explain the disparity, other factors that may mask the protective effects of 17beta-estradiol (E2) on cardiovascular outcome need scrutiny. Increased ethanol consumption may be one such factor. We examined the effect of E2 supplementation on ethanol consumption in OVX mice and the effect of ethanol consumption on E2-mediated vascular repair, in vivo. OVX mice implanted with E2 pellets consumed significantly more ethanol, compared with those receiving placebo pellets. E2-induced increase in ethanol consumption was not affected by the absence of either estrogen receptor-alpha or -beta. Reendothelialization after carotid artery denudation was repressed, and neovascularization in ischemic hind limbs was blunted in mice consuming ethanol, despite E2 supplementation. In vitro, ethanol dose-dependently attenuated E2-induced endothelial cell (EC) proliferation and tube formation activity and enhanced EC apoptosis, suggesting that ethanol blocks E2-induced EC survival and function. Taken together our data suggest that increased ethanol consumption after E2 supplementation blunts the beneficial effects of E2 on EC function and that novel approaches to estrogen replacement for cardioprotection may benefit from the control of alcohol consumption.
Collapse
Affiliation(s)
- Johnson Rajasingh
- Division of Cardiovascular Research, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02135, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Connor KM, SanGiovanni JP, Lofqvist C, Aderman CM, Chen J, Higuchi A, Hong S, Pravda EA, Majchrzak S, Carper D, Hellstrom A, Kang JX, Chew EY, Salem N, Serhan CN, Smith LEH. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med 2007; 13:868-873. [PMID: 17589522 PMCID: PMC4491412 DOI: 10.1038/nm1591] [Citation(s) in RCA: 488] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 04/16/2007] [Indexed: 12/12/2022]
Abstract
Many sight-threatening diseases have two critical phases, vessel loss followed by hypoxia-driven destructive neovascularization. These diseases include retinopathy of prematurity and diabetic retinopathy, leading causes of blindness in childhood and middle age affecting over 4 million people in the United States. We studied the influence of omega-3- and omega-6-polyunsaturated fatty acids (PUFAs) on vascular loss, vascular regrowth after injury, and hypoxia-induced pathological neovascularization in a mouse model of oxygen-induced retinopathy. We show that increasing omega-3-PUFA tissue levels by dietary or genetic means decreased the avascular area of the retina by increasing vessel regrowth after injury, thereby reducing the hypoxic stimulus for neovascularization. The bioactive omega-3-PUFA-derived mediators neuroprotectinD1, resolvinD1 and resolvinE1 also potently protected against neovascularization. The protective effect of omega-3-PUFAs and their bioactive metabolites was mediated, in part, through suppression of tumor necrosis factor-alpha. This inflammatory cytokine was found in a subset of microglia that was closely associated with retinal vessels. These findings indicate that increasing the sources of omega-3-PUFA or their bioactive products reduces pathological angiogenesis. Western diets are often deficient in omega-3-PUFA, and premature infants lack the important transfer from the mother to the infant of omega-3-PUFA that normally occurs in the third trimester of pregnancy. Supplementing omega-3-PUFA intake may be of benefit in preventing retinopathy.
Collapse
Affiliation(s)
- Kip M Connor
- Department of Ophthalmology, Harvard Medical School, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - John Paul SanGiovanni
- Division of Epidemiology and Clinical Research, National Eye Institute, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Chatarina Lofqvist
- Department of Ophthalmology, Harvard Medical School, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
- Department of Pediatrics, Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
| | - Christopher M Aderman
- Department of Ophthalmology, Harvard Medical School, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Jing Chen
- Department of Ophthalmology, Harvard Medical School, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Akiko Higuchi
- Department of Ophthalmology, Harvard Medical School, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Song Hong
- Department of Anesthesiology, Perioperative, and Pain Medicine, Harvard Medical School, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA
| | - Elke A Pravda
- Department of Ophthalmology, Harvard Medical School, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Sharon Majchrzak
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 12420 Parklawn Drive, Rockville, Maryland 20892, USA
| | - Deborah Carper
- Office of the Director, National Eye Institute, 31 Center Drive, Bethesda, Maryland 20892, USA
| | - Ann Hellstrom
- Dept of Clinical Neurosciences, Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
| | - Jing X Kang
- Department of Medicine, Harvard Medical School, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Emily Y Chew
- Division of Epidemiology and Clinical Research, National Eye Institute, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Norman Salem
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 12420 Parklawn Drive, Rockville, Maryland 20892, USA
| | - Charles N Serhan
- Department of Anesthesiology, Perioperative, and Pain Medicine, Harvard Medical School, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
59
|
Zhu L, Zhou R, Mettler S, Wu T, Abbas A, Delaney J, Forte JG. High turnover of ezrin T567 phosphorylation: conformation, activity, and cellular function. Am J Physiol Cell Physiol 2007; 293:C874-84. [PMID: 17553936 DOI: 10.1152/ajpcell.00111.2007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In its dormant state, the membrane cytoskeletal linker protein ezrin takes on a NH(2) terminal-to-COOH terminal (N-C) binding conformation. In vitro evidence suggests that eliminating the N-C binding conformation by Thr(567) phosphorylation leads to ezrin activation. Here, we found for resting gastric parietal cells that the levels of ezrin phosphorylation on Thr(567) are low and can be increased to a small extent ( approximately 40%) by stimulating secretion via the cAMP pathway. Treatment of cells with protein phosphatase inhibitors led to a rapid, dramatic increase in Thr(567) phosphorylation by 400% over resting levels, prompting the hypothesis that ezrin activity is regulated by turnover of phosphorylation on Thr(567). In vitro and in vivo fluorescence resonance energy transfer analysis demonstrated that Thr(567) phosphorylation opens the N-C interaction. However, even in the closed conformation, ezrin localizes to membranes by an exposed NH(2) terminal binding site. Importantly, the opened phosphorylated form of ezrin more readily cosediments with F-actin and binds more tightly to membrane than the closed forms. Furthermore, fluorescence recovery after photobleaching analysis in live cells showed that the Thr567Asp mutant had longer recovery times than the wild type or the Thr567Ala mutant, indicating the Thr(567)-phosphorylated form of ezrin is tightly associated with F-actin and the membrane, restricting normal activity. These data demonstrate and emphasize the functional importance of reversible phosphorylation of ezrin on F-actin binding. A novel model is proposed whereby ezrin and closely associated kinase and phosphatase proteins represent a motor complex to maintain a dynamic relationship between the varying membrane surface area and filamentous actin length.
Collapse
Affiliation(s)
- Lixin Zhu
- 241 LSA, Dept. of Molecular and Cell Biology, Univ. of California, Berkeley, CA 94720-3200, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Méndez-López M, Méndez M, Sánchez-Patán F, Casado I, Aller MA, López L, Corcuera MT, Alonso MJ, Nava MP, Arias J, Arias JL. Partial portal vein ligation plus thioacetamide: a method to obtain a new model of cirrhosis and chronic portal hypertension in the rat. J Gastrointest Surg 2007; 11:187-94. [PMID: 17390171 DOI: 10.1007/s11605-006-0063-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To obtain a new model of chronic portal hypertension in the rat, two classical methods to produce portal hypertension, partial portal vein ligation and the oral administration of thioacetamide (TAA), have been combined. Male Wistar rats were divided into four groups: 1 (control; n = 10), 2 [triple partial portal vein ligation (TPVL); n = 9], 3 (TAA; n = 11), and 4 (TPVL plus TAA; n = 9). After 3 months, portal pressure, types of portosystemic collateral circulation, laboratory hepatic function tests (aspartate aminotransferase, alanine aminotransferase, bilirubin, alkaline phosphatase, and gamma-glutamyl transpeptidase) and liver histology were studied. The animals belonging to group 2 (TPVL) developed extrahepatic portosystemic collateral circulation, associated with mesenteric venous vasculopathy without hepatic destructurization or portal hypertension. Animals from group 3 (TAA) developed cirrhosis and portal hypertension but not extrahepatic portosystemic collateral circulation, or mesenteric venous vasculopathy. Finally, the animals from group 4 (TPVL + TAA) developed cirrhosis, portal hypertension, portosystemic collateral circulation, and mesenteric venous vasculopathy. The association of TPVL and TAA can be used to obtain a model of chronic portal hypertension in the rat that includes all the alterations that patients with hepatic cirrhosis usually have. This could, therefore, prove to be a useful tool to study the pathophysiological mechanisms involved in these alterations.
Collapse
Affiliation(s)
- Marta Méndez-López
- Psychobiology Department, Psychology School, University of Oviedo, Asturias, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Rajasingh J, Bord E, Luedemann C, Asai J, Hamada H, Thorne T, Qin G, Goukassian D, Zhu Y, Losordo DW, Kishore R. IL-10-induced TNF-alpha mRNA destabilization is mediated via IL-10 suppression of p38 MAP kinase activation and inhibition of HuR expression. FASEB J 2006; 20:2112-4. [PMID: 16935932 DOI: 10.1096/fj.06-6084fje] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inflammation plays an essential role in vascular injury and repair. Mononuclear phagocytes are important contributors in these processes, in part, via adhesive interactions and secretion of proinflammatory cytokines. The antiinflammatory cytokine interleukin (IL)-10 suppresses such responses via deactivation of monocytes/macrophages and repression of inflammatory cytokine expression. The mechanisms of IL-10's suppressive action are, however, incompletely characterized. Here, we report that systemic IL-10 treatment after carotid artery denudation in mice blunts inflammatory cell infiltration and arterial tumor necrosis factor (TNF) expression. At the molecular level, in a human monocytic cell line, U937 IL-10 suppressed LPS-induced mRNA expression of a number of inflammatory cytokines, mainly via posttranscriptional mRNA destabilization. Detailed studies on IL-10 regulation of TNF-alpha mRNA expression identified AU-rich elements (ARE) in the 3' untranslated region as a necessary determinant of IL-10-mediated TNF-alpha mRNA destabilization. IL-10 sensitivity to TNF depends on the ability of IL-10 to inhibit the expression and mRNA-stabilizing protein HuR and via IL-10 mediated repression of p38 mitogen-activated protein (MAP) kinase activation. Because IL-10 function and signaling are important components for control of inflammatory responses, these results may provide insights necessary to develop strategies for modulating vascular repair and other accelerated arteriopathies, including transplant vasculopathy and vein graft hyperplasia.
Collapse
Affiliation(s)
- Johnson Rajasingh
- Division of Cardiovascular Research, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02135, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Croft DR, Olson MF. The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms. Mol Cell Biol 2006; 26:4612-27. [PMID: 16738326 PMCID: PMC1489131 DOI: 10.1128/mcb.02061-05] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The members of the Rho GTPase family are well known for their regulation of actin cytoskeletal structures. In addition, they influence progression through the cell cycle. The RhoA and RhoC proteins regulate numerous effector proteins, with a central and vital signaling role mediated by the ROCK I and ROCK II serine/threonine kinases. The requirement for ROCK function in the proliferation of numerous cell types has been revealed by studies utilizing ROCK-selective inhibitors such as Y-27632. However, the mechanisms by which ROCK signaling promotes cell cycle progression have not been thoroughly characterized. Using a conditionally activated ROCK-estrogen receptor fusion protein, we found that ROCK activation is sufficient to stimulate G1/S cell cycle progression in NIH 3T3 mouse fibroblasts. Further analysis revealed that ROCK acts via independent pathways to alter the levels of cell cycle regulatory proteins: cyclin D1 and p21(Cip1) elevation via Ras and the mitogen-activated protein kinase pathway, increased cyclin A via LIM kinase 2, and reduction of p27(Kip1) protein levels. Therefore, the influence of ROCK on cell cycle regulatory proteins occurs by multiple independent mechanisms.
Collapse
Affiliation(s)
- Daniel R Croft
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, United Kingdom
| | | |
Collapse
|
63
|
Abstract
Rho-associated kinases (ROCKs), the immediate downstream targets of RhoA, are ubiquitously expressed serine-threonine protein kinases that are involved in diverse cellular functions, including smooth muscle contraction, actin cytoskeleton organization, cell adhesion and motility, and gene expression. Recent studies have shown that ROCKs may play a pivotal role in cardiovascular diseases such as vasospastic angina, ischemic stroke, and heart failure. Indeed, inhibition of ROCKs by statins or other selective inhibitors leads to the upregulation and activation of endothelial nitric oxide synthase (eNOS) and reduction of vascular inflammation and atherosclerosis. Thus inhibition of ROCKs may contribute to some of the cholesterol-independent beneficial effects of statin therapy. Currently, two ROCK isoforms have been identified, ROCK1 and ROCK2. Because ROCK inhibitors are nonselective with respect to ROCK1 and ROCK2 and also, in some cases, may be nonspecific with respect to other ROCK-related kinases such as myristolated alanine-rich C kinase substrate (MARCKS), protein kinase A, and protein kinase C, the precise role of ROCKs in cardiovascular disease remains unknown. However, with the recent development of ROCK1- and ROCK2-knockout mice, further dissection of ROCK signaling pathways is now possible. Herein we review what is known about the physiological role of ROCKs in the cardiovascular system and speculate about how inhibition of ROCKs could provide cardiovascular benefits.
Collapse
Affiliation(s)
- Kensuke Noma
- Brigham and Women's Hospital, 65 Landsdowne St., Rm. 275, Cambridge, MA, USA
| | | | | |
Collapse
|
64
|
Koss M, Pfeiffer GR, Wang Y, Thomas ST, Yerukhimovich M, Gaarde WA, Doerschuk CM, Wang Q. Ezrin/radixin/moesin proteins are phosphorylated by TNF-alpha and modulate permeability increases in human pulmonary microvascular endothelial cells. THE JOURNAL OF IMMUNOLOGY 2006; 176:1218-27. [PMID: 16394012 DOI: 10.4049/jimmunol.176.2.1218] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Endothelial cells (ECs) respond to TNF-alpha by altering their F-actin cytoskeleton and junctional permeability through mechanisms that include protein kinase C (PKC) and p38 MAPK. Ezrin, radixin, and moesin (ERM) regulate many cell processes that often require a conformational change of these proteins as a result of phosphorylation on a conserved threonine residue near the C terminus. This study tested the hypothesis that ERM proteins are phosphorylated on this critical threonine residue through TNF-alpha-induced activation of PKC and p38 and modulate permeability increases in pulmonary microvascular ECs. TNF-alpha induced ERM phosphorylation on the threonine residue that required activation of p38, PKC isoforms, and phosphatidylinositol-4-phosphate 5-kinase Ialpha, a major enzyme generating phosphatidylinositol 4,5-bisphosphate, and phosphorylated ERM were prominently localized at the EC periphery. TNF-alpha-induced ERM phosphorylation was accompanied by cytoskeletal changes, paracellular gap formation, and increased permeability to fluxes of dextran and albumin. These changes required activation of p38 and PKC and were completely prevented by inhibition of ERM protein expression using small interfering RNA. Thus, ERM proteins are phosphorylated through p38 and PKC-dependent mechanisms and modulate TNF-alpha-induced increases in endothelial permeability. Phosphorylation of ERM likely plays important roles in EC responses to TNF-alpha by modulating the F-actin cytoskeleton, adhesion molecules, and signaling events.
Collapse
Affiliation(s)
- McKenzie Koss
- Division of Integrative Biology, Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|