51
|
Clerc P, Saillan-Barreau C, Desbois C, Pradayrol L, Fourmy D, Dufresne M. Transgenic mice expressing cholecystokinin 2 receptors in the pancreas. PHARMACOLOGY & TOXICOLOGY 2002; 91:321-6. [PMID: 12688375 DOI: 10.1034/j.1600-0773.2002.910609.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several studies argue for the presence of CCK2 receptors in the human pancreas but their physiological role in normal exocrine pancreas and their contribution to pancreatic pathologies is unknown. In order to allow an easy investigation of their pancreatic function, we created the ElasCCK2 transgenic mice expressing the human receptor in pancreatic exocrine cells. In this model, the CCK2 receptor is specifically expressed in the exocrine pancreas and has typical molecular and binding features. It is functional and mediates enzyme release but stimulating concentrations of agonists are not physiological. Results of phenotypic and long-term studies show that activation of CCK2 receptors stimulates growth of the pancreas in correlation with an increase of acinar tissue. This finding is also consistent with the demonstration of an efficient coupling of the transgenic receptor to protein synthesis. Alterations in pancreatic histology and development of preneoplastic lesions are apparent from postnatal day 50. Moreover, expression of this G-protein-coupled receptor leads to the development of tumours in older animals with an incidence of 15%. Although tumours have distinct phenotypes they all exhibit ductular structures. Immunohistochemical analysis of these structures shows their acinar origin. These data, linking for the first time the development of pancreatic carcinogenesis in vivo to the expression of the CCK2 receptor, support a key role of the CCK2 receptor in the initiation of pancreatic cancer. Moreover, ElasCCK2 mice provide a model for carcinogenesis by transformation and dedifferentiation of acinar cells.
Collapse
Affiliation(s)
- Pascal Clerc
- INSERM U531, Louis Bugnard Institute, CHU Rangueil, Bat L3, 31403 Toulouse cedex, France
| | | | | | | | | | | |
Collapse
|
52
|
Nakamichi I, Hatakeyama S, Nakayama KI. Formation of Mallory body-like inclusions and cell death induced by deregulated expression of keratin 18. Mol Biol Cell 2002; 13:3441-51. [PMID: 12388748 PMCID: PMC129957 DOI: 10.1091/mbc.01-10-0510] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2001] [Revised: 06/20/2002] [Accepted: 07/08/2002] [Indexed: 02/04/2023] Open
Abstract
Mallory bodies (MBs) are cytoplasmic inclusions that contain keratin 8 (K8) and K18 and are present in hepatocytes of individuals with alcoholic liver disease, nonalcoholic steatohepatitis, or benign or malignant hepatocellular neoplasia. Mice fed long term with griseofulvin are an animal model of MB formation. However, the lack of a cellular model has impeded understanding of the molecular mechanism of this process. Culture of HepG2 cells with griseofulvin has now been shown to induce both the formation of intracellular aggregates containing K18 as well as an increase in the abundance of K18 mRNA. Overexpression of K18 in HepG2, HeLa, or COS-7 cells also induced the formation of intracellular aggregates that stained with antibodies to ubiquitin and with rhodamine B (characteristics of MBs formed in vivo), eventually leading to cell death. The MB-like aggregates were deposited around centrosomes and disrupted the microtubular array. Coexpression of K8 with K18 restored the normal fibrous pattern of keratin distribution and reduced the toxicity of K18. In contrast, an NH(2)-terminal deletion mutant of K8 promoted the formation of intracellular aggregates even in the absence of K18 overexpression. Deregulated expression of K18, or an imbalance between K8 and K18, may thus be an important determinant of MB formation, which compromises the function of centrosomes and the microtubule network and leads to cell death.
Collapse
Affiliation(s)
- Ikuo Nakamichi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
53
|
Abstract
Intermediate filament (IF) proteins form the largest family of cytoskeletal proteins in mammalian cells. The function of these proteins has long been thought to be only structural. However, this single function does not explain their diverse tissue- and differentiation-specific expression patterns. Evidence is now emerging that IF also act as an important framework for the modulation and control of essential cell processes, in particular, signal transduction events. Here, we review the most recent developments in this growing and exciting new field.
Collapse
Affiliation(s)
- Jesus M Paramio
- Project on Cell and Molecular Biology and Gene Therapy, CIEMAT, Ave. Complutense 22, E-28040 Madrid, Spain.
| | | |
Collapse
|
54
|
Chessler SD, Simonson WT, Sweet IR, Hammerle LP. Expression of the vesicular inhibitory amino acid transporter in pancreatic islet cells: distribution of the transporter within rat islets. Diabetes 2002; 51:1763-71. [PMID: 12031963 DOI: 10.2337/diabetes.51.6.1763] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
gamma-Aminobutyric acid (GABA) is stored in microvesicles in pancreatic islet cells. Because GAD65 and GAD67, which catalyze the formation of GABA, are cytoplasmic, the existence of an islet vesicular GABA transporter has been postulated. Here, we test the hypothesis that the putative transporter is the vesicular inhibitory amino acid transporter (VIAAT), a neuronal transmembrane transporter of GABA and glycine. We sequenced the human VIAAT gene and determined that the human and rat proteins share over 98% sequence identity. In vitro expression of VIAAT and immunoblotting of brain and islet lysates revealed two forms of the protein: an approximately 52-kDa and an approximately 57-kDa form. By immunoblotting and immunohistochemistry, we detected VIAAT in rat but not human islets. Immunohistochemical staining showed that in rat islets, the distribution of VIAAT expression parallels that of GAD67, with increased expression in the mantle. GABA, too, was found to be present in islet non-beta-cells. We conclude that VIAAT is expressed in rat islets and is more abundant in the mantle and that expression in human islets is very low or nil. The rat islet mantle differs from rat and human beta-cells in that it contains only GAD67 and relatively increased levels of VIAAT. Cells that express only GAD67 may require higher levels of VIAAT expression.
Collapse
Affiliation(s)
- Steven D Chessler
- Robert H. Williams Laboratory, Department of Medicine, University of Washington, Seattle, Washington 98195-7710, USA.
| | | | | | | |
Collapse
|
55
|
Santos M, Paramio JM, Bravo A, Ramirez A, Jorcano JL. The expression of keratin k10 in the basal layer of the epidermis inhibits cell proliferation and prevents skin tumorigenesis. J Biol Chem 2002; 277:19122-30. [PMID: 11889133 DOI: 10.1074/jbc.m201001200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Forced expression of K10, a keratin normally expressed in postmitotic, terminally differentiating epidermal keratinocytes, inhibits the progression of the cell cycle in cultured cells (Paramio, J. M., Casanova, M. Ll., Segrelles, C., Mittnacht, S., Lane, E. B., and Jorcano, J. L. (1999) Mol. Cell. Biol. 19, 3086-3094). This process requires a functional retinoblastoma (pRb) gene product and is mediated by K10-induced inhibition of Akt and PKCzeta, two signaling intermediates belonging to the phosphoinositide (PI) 3-kinase signal transduction pathway (Paramio, J. M., Segrelles, C., Ruiz, S., and Jorcano, J. L. (2001) Mol. Cell. Biol. 21, 7449-7459). Extending earlier in vitro studies to the in vivo situation, this work analyzes the alterations found in transgenic mice that ectopically express K10 in the proliferative basal cells of the epidermis. Increased expression of K10 led to a hypoplastic and hyperkeratotic epidermis due to a dramatic decrease in skin keratinocyte proliferation in association with the inhibition of Akt and PKCzeta activities. The inhibition of cell proliferation and Akt and PKCzeta activities was also observed although to a minor extent in low hK10-expressing mice. These animals displayed no overt epidermal phenotype nor overexpression of K10. In these non-phenotypic mice, ectopic K10 expression also resulted in decreased skin tumorigenesis. Collectively, these data demonstrate that keratin K10 in vivo functions include the control of epithelial proliferation in skin epidermis.
Collapse
Affiliation(s)
- Mirentxu Santos
- Project on Cell and Molecular Biology and Gene Therapy, CIEMAT Av. Complutense 22, E-28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
56
|
Kirfel J, Peters B, Grund C, Reifenberg K, Magin TM. Ectopic expression of desmin in the epidermis of transgenic mice permits development of a normal epidermis. Differentiation 2002; 70:56-68. [PMID: 11963656 DOI: 10.1046/j.1432-0436.2002.700106.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell architecture is largely based on the interaction of cytoskeletal proteins, which include intermediate filaments (IF), microfilaments, microtubules, as well as their type-specific membrane-attachment structures and associated proteins. In order to further our understanding of IF proteins and to address the fundamental issue whether different IF perform unique functions in different tissues, we expressed a desmin transgene in the basal epidermis of mice. Ectopic expression of desmin led to the formation of an additional, keratin-independent IF cytoskeleton and did not interfere with the keratin-desmosome interaction. We show that ectopic expression of a type III IF protein in basal keratinocytes did not interfere with the normal epidermal architecture and the program of terminal differentiation. This demonstrated that keratinocytes suffered no obvious detrimental effects from extra desmin filaments in their cytoplasm. In addition, we asked whether stable expression of desmin could rescue K5 null mice, which served as a model for severe EBS. Transgenic mice ectopically expressing desmin in the basal layer were mated with K5 heterozygous deficient animals to generate desmin rescue mice and analysed. In summary, our study support the notion that the different IF like desmin or keratins composing a IF network in vivo are central to cytoskeletal architecture and design in cells.
Collapse
Affiliation(s)
- Jutta Kirfel
- Institute of Physiological Chemistry and Bonner Forum Biomedizin, University of Bonn, Nussallee 11, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
57
|
Clerc P, Leung-Theung-Long S, Wang TC, Dockray GJ, Bouisson M, Delisle MB, Vaysse N, Pradayrol L, Fourmy D, Dufresne M. Expression of CCK2 receptors in the murine pancreas: proliferation, transdifferentiation of acinar cells, and neoplasia. Gastroenterology 2002; 122:428-37. [PMID: 11832457 DOI: 10.1053/gast.2002.30984] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS To explore the pancreatic function of CCK2/gastrin receptor, we created ElasCCK2 transgenic mice expressing the human receptor in pancreatic exocrine cells. In previous studies, the transgenic CCK2/gastrin receptor was demonstrated to mediate enzyme release and protein synthesis. We now report results of phenotypic and long-term studies. METHODS Pancreas was characterized using morphometry and immunohistochemistry. ElasCCK2 mice were crossed with INS-GAS mice expressing gastrin in pancreatic beta cells to achieve continuous stimulation of the CCK2/gastrin receptor. RESULTS The pancreatic weight of ElasCCK2 mice was increased by 40% and correlated with an increase in the area of exocrine tissue. Alterations in pancreatic histology were apparent from postnatal day 50. Crossing the ElasCCK2 mice with INS-GAS mice resulted in development of morphologic changes in younger animals. Malignant transformation occurred in 3 of 20 homozygous ElasCCK2 mice. Although tumors had different phenotypes, they all developed through an acinar-ductal carcinoma sequence. CONCLUSIONS Our data show that transgenic expression of a G protein-coupled receptor can lead to cancer. This study also supports a key role of the CCK2/gastrin receptor in the development of pre- and neoplastic lesions of the pancreas. ElasCCK2 mice provide a model for carcinogenesis by transformation and dedifferentiation of acinar cells.
Collapse
Affiliation(s)
- Pascal Clerc
- INSERM U531, Institut Louis Bugnard, CHU Rangueil, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Fickert P, Trauner M, Fuchsbichler A, Stumptner C, Zatloukal K, Denk H. Cytokeratins as targets for bile acid-induced toxicity. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:491-9. [PMID: 11839569 PMCID: PMC1850630 DOI: 10.1016/s0002-9440(10)64868-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cholestasis is associated with retention of potentially toxic bile acids and profound cytoskeletal alterations of hepatocytes. Given the well-established cytoprotective role of hepatocyte keratins this study aimed to determine the effects of cholestasis on the cytokeratin (CK) intermediate filament network in mouse liver. Mice were subjected to common bile duct ligation or sham operation. Mice were also fed a cholic acid or ursodeoxycholic acid (UDCA)-supplemented diet (0.1%, 0.5%, and 1%) or control diet for 7 days. CK 8 and CK 18 expression was studied by competitive reverse transcriptase-polymerase chain reaction, in situ hybridization, Western blot analysis, and immunofluorescence microscopy. Common bile duct ligation and cholic acid feeding significantly stimulated CK 8 and CK 18 mRNA and protein levels compared to controls, whereas UDCA had no effect. CK overexpression was accompanied by pronounced phosphorylation. Our results show that potentially toxic bile acids induce hepatocytic CK 8 and CK 18 expression and phosphorylation whereas nontoxic UDCA has no effect on CKs. Thus, increased hepatocellular CK expression and phosphorylation in cholestasis may be caused by retention of toxic bile acids and reflect a hepatocellular stress response with potential beneficial effects.
Collapse
Affiliation(s)
- Peter Fickert
- Department of Medicine, University of Graz, Auenbruggerplatz 25, A-8036 Graz, Austria
| | | | | | | | | | | |
Collapse
|
59
|
Paramio JM, Segrelles C, Ruiz S, Jorcano JL. Inhibition of protein kinase B (PKB) and PKCzeta mediates keratin K10-induced cell cycle arrest. Mol Cell Biol 2001; 21:7449-59. [PMID: 11585925 PMCID: PMC99917 DOI: 10.1128/mcb.21.21.7449-7459.2001] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intermediate filament cytoskeleton is composed of keratins in all epithelial cells and imparts mechanical integrity to these cells. However, beyond this shared function, the functional significance of the carefully regulated tissue- and differentiation-specific expression of the large keratin family of cytoskeletal proteins remains unclear. We recently demonstrated that expression of keratin K10 or K16 may regulate the phosphorylation of the retinoblastoma protein (pRb), inhibiting (K10) or stimulating (K16) cell proliferation (J. M. Paramio, M. L. Casanova, C. Segrelles, S. Mittnacht, E. B. Lane, and J. L. Jorcano, Mol. Cell. Biol. 19:3086-3094, 1999). Here we show that keratin K10 function as a negative modulator of cell cycle progression involves changes in the phosphoinositide 3-kinase (PI-3K) signal transduction pathway. Physical interaction of K10 with Akt (protein kinase B [PKB]) and atypical PKCzeta causes sequestration of these kinases within the cytoskeleton and inhibits their intracellular translocation. As a consequence, the expression of K10 impairs the activation of PKB and PKCzeta. We also demonstrate that this inhibition impedes pRb phosphorylation and reduces the expression of cyclins D1 and E. Functional and biochemical data also demonstrate that the interaction between K10 and these kinases involves the non-alpha-helical amino domain of K10 (NTerm). Together, these results suggest new and essential roles for the keratins as modulators of specific signal transduction pathways.
Collapse
Affiliation(s)
- J M Paramio
- Project on Cell and Molecular Biology and Gene Therapy, CIEMAT, E-28040 Madrid, Spain
| | | | | | | |
Collapse
|
60
|
Tsuji A, Nishikawa T, Mori M, Suda K, Nishimori I, Nishimura M. Quantitative trait locus analysis for chronic pancreatitis and diabetes mellitus in the WBN/Kob rat. Genomics 2001; 74:365-9. [PMID: 11414764 DOI: 10.1006/geno.2001.6557] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A causative gene mutation is still undefined in approximately half of patients with hereditary pancreatitis, and no genetic factor has been identified in most patients with sporadic chronic pancreatitis. To identify a pancreatitis-associated gene, we performed a quantitative trait locus (QTL) analysis for the traits of chronic pancreatitis and diabetes mellitus in WBN/Kob rats. We identified two highly significant QTLs for chronic pancreatitis and/or hyperinsulinemia on chromosomes 7 and X. These QTLs were located on completely different chromosomal regions from those of causative genes that have been reported for human chronic pancreatitis: PRSS1, CFTR, and SPINK1. For these QTLs, prevalences of the WBN/Kob allele significantly increased in the rats with chronic pancreatitis. These findings indicate that chronic pancreatitis in WBN/Kob rats is controlled by multiple genes, and a genetic analysis in WBN/Kob rats might be useful for gene targeting for human chronic pancreatitis.
Collapse
Affiliation(s)
- A Tsuji
- Institute for Experimental Animals, Hamamatsu University School of Medicine, Handa-cho 3600, Hamamatsu, 431-3192, Japan
| | | | | | | | | | | |
Collapse
|
61
|
Toivola DM, Baribault H, Magin T, Michie SA, Omary MB. Simple epithelial keratins are dispensable for cytoprotection in two pancreatitis models. Am J Physiol Gastrointest Liver Physiol 2000; 279:G1343-54. [PMID: 11093958 DOI: 10.1152/ajpgi.2000.279.6.g1343] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pancreatic acinar cells express keratins 8 and 18 (K8/18), which form cytoplasmic filament (CF) and apicolateral filament (ALF) pools. Hepatocyte K8/18 CF provide important protection from environmental stresses, but disruption of acinar cell CF has no significant impact. We asked whether acinar cell ALF are important in providing cytoprotective roles by studying keratin filaments in pancreata of K8- and K18-null mice. K8-null pancreas lacks both keratin pools, but K18-null pancreas lacks only CF. Mouse but not human acinar cells also express apicolateral keratin 19 (K19), which explains the presence of apicolateral keratins in K18-null pancreas. K8- and K18-null pancreata are histologically normal, and their acini respond similarly to stimulated secretion, although K8-null acini viability is reduced. Absence of total filaments (K8-null) or CF (K18-null) does not increase susceptibility to pancreatitis induced by caerulein or a choline-deficient diet. In normal and K18-null acini, K19 is upregulated after caerulein injury and, unexpectedly, forms CF. As in hepatocytes, acinar injury is also associated with keratin hyperphosphorylation. Hence, K19 forms ALF in mouse acinar cells and helps define two distinct ALF and CF pools. On injury, K19 forms CF that revert to ALF after healing. Acinar keratins appear to be dispensable for cytoprotection, in contrast to hepatocyte keratins, despite similar hyperphosphorylation patterns after injury.
Collapse
Affiliation(s)
- D M Toivola
- Department of Medicine, Palo Alto Veterans Affairs Medical Center and Stanford University, Palo Alto 94304, California, USA
| | | | | | | | | |
Collapse
|
62
|
Toivola DM, Ku NO, Ghori N, Lowe AW, Michie SA, Omary MB. Effects of keratin filament disruption on exocrine pancreas-stimulated secretion and susceptibility to injury. Exp Cell Res 2000; 255:156-70. [PMID: 10694432 DOI: 10.1006/excr.1999.4787] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Disruption or absence of hepatocyte keratins 8 and 18 is associated with chronic hepatitis, marked hepatocyte fragility, and a significant predisposition to stress-induced liver injury. In contrast, pancreatic keratin disruption in transgenic mice that express keratin 18 Arg89 --> Cys (K18C) is not associated with an obvious pancreatic pathology. We compared the effects of keratin filament disruption on pancreatic acini or acinar cell viability, and on cholecystokinin (CCK)-stimulated secretion, in transgenic mice that overexpress wild-type keratin 18 and harbor normal extended keratin filaments (TG2) and K18C mice. We also compared the response of these mice to pancreatitis induced by a choline-deficient ethionine-supplemented diet or by caerulein. Despite extensive cytoplasmic keratin filament disruption, the apicolateral keratin filament bundles appear intact in the acinar pancreas of K18C mice, as determined ultrastructurally and by light microscopy. No significant pancreatitis-associated histologic, serologic, or F-actin/keratin apicolateral redistribution differences were noted between TG2 and K18C mice. Acinar cell viability and yield after collagenase digestion were lower in K18C than in TG2 mice, but the yields of intact acini and their (125)I-CCK uptake and responses to CCK-stimulated secretion were similar. Our results indicate that keratin filament reorganization is a normal physiologic response to pancreatic cell injury, but an intact keratin cytoplasmic filament network is not as essential in protection from cell injury as in the liver. These findings raise the possibility that the abundant apicolateral acinar keratin filaments, which are not as evident in hepatocytes, may play the cytoprotective role that is seen in liver and other tissues. Alternatively, identical keratins may function differently in different tissues.
Collapse
Affiliation(s)
- D M Toivola
- Department of Medicine, Palo Alto VA Medical Center, Stanford University Digestive Disease Center, 3801 Miranda Avenue, Palo Alto, California, 94304, USA
| | | | | | | | | | | |
Collapse
|
63
|
Ku NO, Zhou X, Toivola DM, Omary MB. The cytoskeleton of digestive epithelia in health and disease. Am J Physiol Gastrointest Liver Physiol 1999; 277:G1108-37. [PMID: 10600809 DOI: 10.1152/ajpgi.1999.277.6.g1108] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
The mammalian cell cytoskeleton consists of a diverse group of fibrillar elements that play a pivotal role in mediating a number of digestive and nondigestive cell functions, including secretion, absorption, motility, mechanical integrity, and mitosis. The cytoskeleton of higher-eukaryotic cells consists of three highly abundant major protein families: microfilaments (MF), microtubules (MT), and intermediate filaments (IF), as well as a growing number of associated proteins. Within digestive epithelia, the prototype members of these three protein families are actins, tubulins, and keratins, respectively. This review highlights the important structural, regulatory, functional, and unique features of the three major cytoskeletal protein groups in digestive epithelia. The emerging exciting biological aspects of these protein groups are their involvement in cell signaling via direct or indirect interaction with a growing list of associated proteins (MF, MT, IF), the identification of several disease-causing mutations (IF, MF), the functional role that they play in protection from environmental stresses (IF), and their functional integration via several linker proteins that bridge two or potentially all three of these groups together. The use of agents that target specific cytoskeletal elements as therapeutic modalities for digestive diseases offers potential unique areas of intervention that remain to be fully explored.
Collapse
Affiliation(s)
- N O Ku
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| | | | | | | |
Collapse
|