51
|
De Rose V, Molloy K, Gohy S, Pilette C, Greene CM. Airway Epithelium Dysfunction in Cystic Fibrosis and COPD. Mediators Inflamm 2018; 2018:1309746. [PMID: 29849481 PMCID: PMC5911336 DOI: 10.1155/2018/1309746] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/15/2018] [Accepted: 02/01/2018] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis is a genetic disease caused by mutations in the CFTR gene, whereas chronic obstructive pulmonary disease (COPD) is mainly caused by environmental factors (mostly cigarette smoking) on a genetically susceptible background. Although the etiology and pathogenesis of these diseases are different, both are associated with progressive airflow obstruction, airway neutrophilic inflammation, and recurrent exacerbations, suggesting common mechanisms. The airway epithelium plays a crucial role in maintaining normal airway functions. Major molecular and morphologic changes occur in the airway epithelium in both CF and COPD, and growing evidence suggests that airway epithelial dysfunction is involved in disease initiation and progression in both diseases. Structural and functional abnormalities in both airway and alveolar epithelium have a relevant impact on alteration of host defences, immune/inflammatory response, and the repair process leading to progressive lung damage and impaired lung function. In this review, we address the evidence for a critical role of dysfunctional airway epithelial cells in chronic airway inflammation and remodelling in CF and COPD, highlighting the common mechanisms involved in the epithelial dysfunction as well as the similarities and differences of the two diseases.
Collapse
Affiliation(s)
- Virginia De Rose
- Department of Clinical and Biological Sciences, University of Torino, A.O.U. S. Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Kevin Molloy
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Dublin, Ireland
| | - Sophie Gohy
- Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Université Catholique de Louvain (UCL), Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Charles Pilette
- Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Université Catholique de Louvain (UCL), Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Catherine M. Greene
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Dublin, Ireland
| |
Collapse
|
52
|
Li H, Salomon JJ, Sheppard DN, Mall MA, Galietta LJ. Bypassing CFTR dysfunction in cystic fibrosis with alternative pathways for anion transport. Curr Opin Pharmacol 2017; 34:91-97. [PMID: 29065356 DOI: 10.1016/j.coph.2017.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/20/2017] [Accepted: 10/04/2017] [Indexed: 12/20/2022]
Abstract
One therapeutic strategy for cystic fibrosis (CF) seeks to restore anion transport to affected epithelia by targeting other apical membrane Cl- channels to bypass dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. The properties and regulation of the Ca2+-activated Cl- channel TMEM16A argue that long-acting small molecules which target directly TMEM16A are required to overcome CFTR loss. Through genetic studies of lung diseases, SLC26A9, a member of the solute carrier 26 family of anion transporters, has emerged as a promising target to bypass CFTR dysfunction. An alternative strategy to circumvent CFTR dysfunction is to deliver to CF epithelia artificial anion transporters that shuttle Cl- across the apical membrane. Recently, powerful, non-toxic, biologically-active artificial anion transporters have emerged.
Collapse
Affiliation(s)
- Hongyu Li
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Johanna J Salomon
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, University Hospital Heidelberg, Heidelberg, Germany; Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Marcus A Mall
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, University Hospital Heidelberg, Heidelberg, Germany; Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Luis Jv Galietta
- Telethon Institute for Genetics and Medicine (Tigem), Pozzuoli, Italy.
| |
Collapse
|
53
|
Benedetto R, Ousingsawat J, Wanitchakool P, Zhang Y, Holtzman MJ, Amaral M, Rock JR, Schreiber R, Kunzelmann K. Epithelial Chloride Transport by CFTR Requires TMEM16A. Sci Rep 2017; 7:12397. [PMID: 28963502 PMCID: PMC5622110 DOI: 10.1038/s41598-017-10910-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022] Open
Abstract
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is the secretory chloride/bicarbonate channel in airways and intestine that is activated through ATP binding and phosphorylation by protein kinase A, but fails to operate in cystic fibrosis (CF). TMEM16A (also known as anoctamin 1, ANO1) is thought to function as the Ca2+ activated secretory chloride channel independent of CFTR. Here we report that tissue specific knockout of the TMEM16A gene in mouse intestine and airways not only eliminates Ca2+-activated Cl− currents, but unexpectedly also abrogates CFTR-mediated Cl− secretion and completely abolishes cAMP-activated whole cell currents. The data demonstrate fundamentally new roles of TMEM16A in differentiated epithelial cells: TMEM16A provides a mechanism for enhanced ER Ca2+ store release, possibly engaging Store Operated cAMP Signaling (SOcAMPS) and activating Ca2+ regulated adenylyl cyclases. TMEM16A is shown to be essential for proper activation and membrane expression of CFTR. This intimate regulatory relationship is the cause for the functional overlap of CFTR and Ca2+-dependent chloride transport.
Collapse
Affiliation(s)
- Roberta Benedetto
- Physiological institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Jiraporn Ousingsawat
- Physiological institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Podchanart Wanitchakool
- Physiological institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Yong Zhang
- Department of Medicine and Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J Holtzman
- Department of Medicine and Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Margarida Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016, Lisboa, Portugal
| | - Jason R Rock
- Department of Anatomy, University of California, San Francisco, USA
| | - Rainer Schreiber
- Physiological institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Karl Kunzelmann
- Physiological institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany.
| |
Collapse
|
54
|
Hahn A, Faulhaber J, Srisawang L, Stortz A, Salomon JJ, Mall MA, Frings S, Möhrlen F. Cellular distribution and function of ion channels involved in transport processes in rat tracheal epithelium. Physiol Rep 2017; 5:e13290. [PMID: 28642338 PMCID: PMC5492199 DOI: 10.14814/phy2.13290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 01/17/2023] Open
Abstract
Transport of water and electrolytes in airway epithelia involves chloride-selective ion channels, which are controlled either by cytosolic Ca2+ or by cAMP The contributions of the two pathways to chloride transport differ among vertebrate species. Because rats are becoming more important as animal model for cystic fibrosis, we have examined how Ca2+- dependent and cAMP- dependent Cl- secretion is organized in the rat tracheal epithelium. We examined the expression of the Ca2+-gated Cl- channel anoctamin 1 (ANO1), the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel, the epithelial Na+ channel ENaC, and the water channel aquaporin 5 (AQP5) in rat tracheal epithelium. The contribution of ANO1 channels to nucleotide-stimulated Cl- secretion was determined using the channel blocker Ani9 in short-circuit current recordings obtained from primary cultures of rat tracheal epithelial cells in Ussing chambers. We found that ANO1, CFTR and AQP5 proteins were expressed in nonciliated cells of the tracheal epithelium, whereas ENaC was expressed in ciliated cells. Among nonciliated cells, ANO1 occurred together with CFTR and Muc5b and, in addition, in a different cell type without CFTR and Muc5b. Bioelectrical studies with the ANO1-blocker Ani9 indicated that ANO1 mediated the secretory response to the nucleotide uridine-5'-triphosphate. Our data demonstrate that, in rat tracheal epithelium, Cl- secretion and Na+ absorption are routed through different cell types, and that ANO1 channels form the molecular basis of Ca2+-dependent Cl- secretion in this tissue. These characteristic features of Cl--dependent secretion reveal similarities and distinct differences to secretory processes in human airways.
Collapse
Affiliation(s)
- Anne Hahn
- Department of Animal Molecular Physiology, Centre of Organismal Studies University of Heidelberg, Heidelberg, Germany
| | - Johannes Faulhaber
- Department of Animal Molecular Physiology, Centre of Organismal Studies University of Heidelberg, Heidelberg, Germany
| | - Lalita Srisawang
- Department of Animal Molecular Physiology, Centre of Organismal Studies University of Heidelberg, Heidelberg, Germany
| | - Andreas Stortz
- Department of Animal Molecular Physiology, Centre of Organismal Studies University of Heidelberg, Heidelberg, Germany
| | - Johanna J Salomon
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC) German Center for Lung Research (DZL) University of Heidelberg, Heidelberg, Germany
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC) German Center for Lung Research (DZL) University of Heidelberg, Heidelberg, Germany
| | - Stephan Frings
- Department of Animal Molecular Physiology, Centre of Organismal Studies University of Heidelberg, Heidelberg, Germany
| | - Frank Möhrlen
- Department of Animal Molecular Physiology, Centre of Organismal Studies University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
55
|
Airway mucus, inflammation and remodeling: emerging links in the pathogenesis of chronic lung diseases. Cell Tissue Res 2017; 367:537-550. [PMID: 28108847 DOI: 10.1007/s00441-016-2562-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022]
Abstract
Airway mucus obstruction is a hallmark of many chronic lung diseases including rare genetic disorders such as cystic fibrosis (CF) and primary ciliary dyskinesia, as well as common lung diseases such as asthma and chronic obstructive pulmonary disease (COPD), which have emerged as a leading cause of morbidity and mortality worldwide. However, the role of excess airway mucus in the in vivo pathogenesis of these diseases remains poorly understood. The generation of mice with airway-specific overexpression of epithelial Na+ channels (ENaC), exhibiting airway surface dehydration (mucus hyperconcentration), impaired mucociliary clearance (MCC) and mucus plugging, led to a model of muco-obstructive lung disease that shares key features of CF and COPD. In this review, we summarize recent progress in the understanding of causes of impaired MCC and in vivo consequences of airway mucus obstruction that can be inferred from studies in βENaC-overexpressing mice. These studies confirm that mucus hyperconcentration on airway surfaces plays a critical role in the pathophysiology of impaired MCC, mucus adhesion and airway plugging that cause airflow obstruction and provide a nidus for bacterial infection. In addition, these studies support the emerging concept that excess airway mucus per se, probably via several mechanisms including hypoxic epithelial necrosis, retention of inhaled irritants or allergens, and potential immunomodulatory effects, is a potent trigger of chronic airway inflammation and associated lung damage, even in the absence of bacterial infection. Finally, these studies suggest that improvement of mucus clearance may be a promising therapeutic strategy for a spectrum of muco-obstructive lung diseases.
Collapse
|
56
|
Fritzsching B, Hagner M, Dai L, Christochowitz S, Agrawal R, van Bodegom C, Schmidt S, Schatterny J, Hirtz S, Brown R, Goritzka M, Duerr J, Zhou-Suckow Z, Mall MA. Impaired mucus clearance exacerbates allergen-induced type 2 airway inflammation in juvenile mice. J Allergy Clin Immunol 2016; 140:190-203.e5. [PMID: 27865862 DOI: 10.1016/j.jaci.2016.09.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 08/22/2016] [Accepted: 09/05/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Type 2 airway inflammation plays a central role in the pathogenesis of allergen-induced asthma, but the underlying mechanisms remain poorly understood. Recently, we demonstrated that reduced mucociliary clearance, a characteristic feature of asthma, produces spontaneous type 2 airway inflammation in juvenile β-epithelial Na+ channel (Scnn1b)-transgenic (Tg) mice. OBJECTIVE We sought to determine the role of impaired mucus clearance in the pathogenesis of allergen-induced type 2 airway inflammation and identify cellular sources of the signature cytokine IL-13. METHODS We challenged juvenile Scnn1b-Tg and wild-type mice with Aspergillus fumigatus and house dust mite allergen and compared the effects on airway eosinophilia, type 2 cytokine levels, goblet cell metaplasia, and airway hyperresponsiveness. Furthermore, we determined cellular sources of IL-13 and effects of genetic deletion of the key type 2 signal-transducing molecule signal transducer and activator of transcription 6 (STAT6) and evaluated the effects of therapeutic improvement of mucus clearance. RESULTS Reduced mucociliary allergen clearance exacerbated Stat6-dependent secretion of type 2 cytokines, airway eosinophilia, and airway hyperresponsiveness in juvenile Scnn1b-Tg mice. IL-13 levels were increased in airway epithelial cells, macrophages, type 2 innate lymphoid cells, and TH2 cells along with increased Il33 expression in the airway epithelium of Scnn1b-Tg mice. Treatment with the epithelial Na+ channel blocker amiloride, improving airway surface hydration and mucus clearance, reduced allergen-induced inflammation in Scnn1b-Tg mice. CONCLUSION Our data support that impaired clearance of inhaled allergens triggering IL-13 production by multiple cell types in the airways plays an important role in the pathogenesis of type 2 airway inflammation and suggests therapeutic improvement of mucociliary clearance as a novel treatment strategy for children with allergen-induced asthma.
Collapse
Affiliation(s)
- Benedikt Fritzsching
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Matthias Hagner
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Lu Dai
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Sandra Christochowitz
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Raman Agrawal
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Charlotte van Bodegom
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Simone Schmidt
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Jolanthe Schatterny
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Stephanie Hirtz
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Ryan Brown
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Michelle Goritzka
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Julia Duerr
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Zhe Zhou-Suckow
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
57
|
Strug LJ, Gonska T, He G, Keenan K, Ip W, Boëlle PY, Lin F, Panjwani N, Gong J, Li W, Soave D, Xiao B, Tullis E, Rabin H, Parkins MD, Price A, Zuberbuhler PC, Corvol H, Ratjen F, Sun L, Bear CE, Rommens JM. Cystic fibrosis gene modifier SLC26A9 modulates airway response to CFTR-directed therapeutics. Hum Mol Genet 2016; 25:4590-4600. [PMID: 28171547 PMCID: PMC5886039 DOI: 10.1093/hmg/ddw290] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/12/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022] Open
Abstract
Cystic fibrosis is realizing the promise of personalized medicine. Recent advances in drug development that target the causal CFTR directly result in lung function improvement, but variability in response is demanding better prediction of outcomes to improve management decisions. The genetic modifier SLC26A9 contributes to disease severity in the CF pancreas and intestine at birth and here we assess its relationship with disease severity and therapeutic response in the airways. SLC26A9 association with lung disease was assessed in individuals from the Canadian and French CF Gene Modifier consortia with CFTR-gating mutations and in those homozygous for the common Phe508del mutation. Variability in response to a CFTR-directed therapy attributed to SLC26A9 genotype was assessed in Canadian patients with gating mutations. A primary airway model system determined if SLC26A9 shows modification of Phe508del CFTR function upon treatment with a CFTR corrector. In those with gating mutations that retain cell surface-localized CFTR we show that SLC26A9 modifies lung function while this is not the case in individuals homozygous for Phe508del where cell surface expression is lacking. Treatment response to ivacaftor, which aims to improve CFTR-channel opening probability in patients with gating mutations, shows substantial variability in response, 28% of which can be explained by rs7512462 in SLC26A9 (P = 0.0006). When homozygous Phe508del primary bronchial cells are treated to restore surface CFTR, SLC26A9 likewise modifies treatment response (P = 0.02). Our findings indicate that SLC26A9 airway modification requires CFTR at the cell surface, and that a common variant in SLC26A9 may predict response to CFTR-directed therapeutics.
Collapse
Affiliation(s)
- Lisa J. Strug
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Ontario, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tanja Gonska
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gengming He
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Katherine Keenan
- Program in Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wan Ip
- Program in Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pierre-Yves Boëlle
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital St. Antoine, Biostatistics Department; Inserm U1136, Paris, France
| | - Fan Lin
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Naim Panjwani
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jiafen Gong
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Weili Li
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David Soave
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Ontario, Canada
| | - Bowei Xiao
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth Tullis
- Department of Respiratory Medicine and Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Harvey Rabin
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- The Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
| | - Michael D. Parkins
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- The Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
| | - April Price
- Division of Paediatric Respirology, Department of Paediatrics, Children's Hospital at London Health Sciences Centre, London, Ontario, Canada
| | | | - Harriet Corvol
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Paris, France
- AP-HP, Hôpital Trousseau, Pediatric Pulmonary Department; Institut National de la Santé et al Recherche Medicale (INSERM) U938, Paris, France
| | - Felix Ratjen
- Program in Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lei Sun
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Ontario, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Christine E. Bear
- Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, CanadaDepartments of
- Biochemistry
- Physiology
| | - Johanna M. Rommens
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
58
|
Saint-Criq V, Gray MA. Role of CFTR in epithelial physiology. Cell Mol Life Sci 2016; 74:93-115. [PMID: 27714410 PMCID: PMC5209439 DOI: 10.1007/s00018-016-2391-y] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
Abstract
Salt and fluid absorption and secretion are two processes that are fundamental to epithelial function and whole body fluid homeostasis, and as such are tightly regulated in epithelial tissues. The CFTR anion channel plays a major role in regulating both secretion and absorption in a diverse range of epithelial tissues, including the airways, the GI and reproductive tracts, sweat and salivary glands. It is not surprising then that defects in CFTR function are linked to disease, including life-threatening secretory diarrhoeas, such as cholera, as well as the inherited disease, cystic fibrosis (CF), one of the most common life-limiting genetic diseases in Caucasian populations. More recently, CFTR dysfunction has also been implicated in the pathogenesis of acute pancreatitis, chronic obstructive pulmonary disease (COPD), and the hyper-responsiveness in asthma, underscoring its fundamental role in whole body health and disease. CFTR regulates many mechanisms in epithelial physiology, such as maintaining epithelial surface hydration and regulating luminal pH. Indeed, recent studies have identified luminal pH as an important arbiter of epithelial barrier function and innate defence, particularly in the airways and GI tract. In this chapter, we will illustrate the different operational roles of CFTR in epithelial function by describing its characteristics in three different tissues: the airways, the pancreas, and the sweat gland.
Collapse
Affiliation(s)
- Vinciane Saint-Criq
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Michael A. Gray
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| |
Collapse
|
59
|
Epithelial Anion Transport as Modulator of Chemokine Signaling. Mediators Inflamm 2016; 2016:7596531. [PMID: 27382190 PMCID: PMC4921137 DOI: 10.1155/2016/7596531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
The pivotal role of epithelial cells is to secrete and absorb ions and water in order to allow the formation of a luminal fluid compartment that is fundamental for the epithelial function as a barrier against environmental factors. Importantly, epithelial cells also take part in the innate immune system. As a first line of defense they detect pathogens and react by secreting and responding to chemokines and cytokines, thus aggravating immune responses or resolving inflammatory states. Loss of epithelial anion transport is well documented in a variety of diseases including cystic fibrosis, chronic obstructive pulmonary disease, asthma, pancreatitis, and cholestatic liver disease. Here we review the effect of aberrant anion secretion with focus on the release of inflammatory mediators by epithelial cells and discuss putative mechanisms linking these transport defects to the augmented epithelial release of chemokines and cytokines. These mechanisms may contribute to the excessive and persistent inflammation in many respiratory and gastrointestinal diseases.
Collapse
|
60
|
Grubb BR, Livraghi-Butrico A, Rogers TD, Yin W, Button B, Ostrowski LE. Reduced mucociliary clearance in old mice is associated with a decrease in Muc5b mucin. Am J Physiol Lung Cell Mol Physiol 2016; 310:L860-7. [PMID: 26968767 DOI: 10.1152/ajplung.00015.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/04/2016] [Indexed: 11/22/2022] Open
Abstract
Respiratory infections are a major cause of morbidity and mortality in the elderly. Previous reports have suggested that mucociliary clearance (MCC) is impaired in older individuals, but the cause is unclear. To unravel the mechanisms responsible for the age-associated decline in MCC, we investigated the MCC system in young (3 mo) and old (2 yr) C57BL/6 mice. We found that old mice had significantly reduced MCC function in both the upper and lower airways compared with young mice. Measurement of bioelectric properties of isolated tracheal and bronchial tissue revealed a significant decrease in Cl(-) secretion, suggesting that the older mice may have a reduced ability to maintain a sufficiently hydrated airway surface for efficient MCC. Ciliary beat frequency was also observed to be reduced in the older animals; however, this reduction was small relative to the reduction in MCC. Interestingly, the level of the major secreted mucin, Muc5b, was found to be reduced in both bronchioalveolar lavage and isolated tracheal tissue. Our previous studies of Muc5b(-/-) mice have demonstrated that Muc5b is essential for normal MCC in the mouse. Furthermore, examination of Muc5b(+/-) and wild-type animals revealed that heterozygous animals, which secrete ∼50% of the wild-type level of Muc5b, also demonstrate a markedly reduced level of MCC, confirming the importance of Muc5b levels to MCC. These results demonstrate that aged mice exhibit a decrease in MCC and suggest that a reduced level of secretion of both Cl(-) and Muc5b may be responsible.
Collapse
Affiliation(s)
- Barbara R Grubb
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - Alessandra Livraghi-Butrico
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - Troy D Rogers
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - Weining Yin
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - Brian Button
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - Lawrence E Ostrowski
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
61
|
Dhooghe B, Haaf JB, Noel S, Leal T. Strategies in early clinical development for the treatment of basic defects of cystic fibrosis. Expert Opin Investig Drugs 2016; 25:423-36. [PMID: 26878157 DOI: 10.1517/13543784.2016.1154041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Twenty-six years after the identification of the gene responsible for cystic fibrosis (CF), controversies still surround the pathogenesis of the disease that continues to burden and shorten lives. Therefore, finding effective therapeutic strategies that target the basic defect of CF is crucially needed. AREAS COVERED This review offers a comprehensive survey of fundamental therapies in early stages of development for the treatment of CF. The first part describes recent strategies targeting the basic defect either at the gene or at the transcript level. The second part summarizes a panel of novel strategies targeting protein repair. The third part reports strategies targeting non-CFTR channels. EXPERT OPINION Recent major breakthroughs in CF therapy have been made, raising hope to find a cure for CF. Apart from Vertex corrector and potentiator molecules (lumacaftor, ivacaftor, VX-661) and from ataluren, used to correct nonsense mutations, most compounds being currently tested are in very early (I-II) phases of development and definitive clinical results are keenly expected. Among the broad list of molecules and strategies being tested, the QR-010 compound and inhibitors of phosphodiesterase type 5 (sildenafil, vardenafil) could reveal a strong potentiality as therapeutic candidates to cure CF.
Collapse
Affiliation(s)
- Barbara Dhooghe
- a Louvain centre for Toxicology and Applied Pharmacology , Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| | - Jérémy Boris Haaf
- a Louvain centre for Toxicology and Applied Pharmacology , Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| | - Sabrina Noel
- a Louvain centre for Toxicology and Applied Pharmacology , Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| | - Teresinha Leal
- a Louvain centre for Toxicology and Applied Pharmacology , Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| |
Collapse
|
62
|
Salomon JJ, Spahn S, Wang X, Füllekrug J, Bertrand CA, Mall MA. Generation and functional characterization of epithelial cells with stable expression of SLC26A9 Cl- channels. Am J Physiol Lung Cell Mol Physiol 2016; 310:L593-602. [PMID: 26801567 DOI: 10.1152/ajplung.00321.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/16/2016] [Indexed: 01/01/2023] Open
Abstract
Recent studies identified the SLC26A9 Cl(-) channel as a modifier and potential therapeutic target in cystic fibrosis (CF). However, understanding of the regulation of SLC26A9 in epithelia remains limited and cellular models with stable expression for biochemical and functional studies are missing. We, therefore, generated Fisher rat thyroid (FRT) epithelial cells with stable expression of HA-tagged SLC26A9 via retroviral transfection and characterized SLC26A9 expression and function using Western blotting, immunolocalization, whole cell patch-clamp, and transepithelial bioelectric studies in Ussing chambers. We demonstrate stable expression of SLC26A9 in transfected FRT (SLC26A9-FRT) cells on the mRNA and protein level. Immunolocalization and Western blotting detected SLC26A9 in different intracellular compartments and to a lesser extent at the cell surface. Whole cell patch-clamp recordings demonstrated significantly increased constitutive Cl(-) currents in SLC26A9-FRT compared with control-transduced FRT (Control-FRT) cells (P < 0.01). Similar, transepithelial measurements showed that the basal short circuit current was significantly increased in SLC26A9-FRT vs. Control-FRT cell monolayers (P < 0.01). SLC26A9-mediated Cl(-) currents were increased by cAMP-dependent stimulation (IBMX and forskolin) and inhibited by GlyH-101, niflumic acid, DIDS, and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), as well as RNAi knockdown of WNK1 implicated in epithelial osmoregulation. Our results support that these novel epithelial cells with stable expression of SLC26A9 will be a useful model for studies of pharmacological regulation including the identification of activators of SLC26A9 Cl(-) channels that may compensate deficient cystic fibrosis transmembrane regulator (CFTR)-mediated Cl(-) secretion and serve as an alternative therapeutic target in patients with CF and potentially other muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Johanna J Salomon
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Stephan Spahn
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Xiaohui Wang
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Joachim Füllekrug
- Molecular Cell Biology Laboratory, Department of Internal Medicine IV, University of Heidelberg, Heidelberg, Germany
| | - Carol A Bertrand
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany;
| |
Collapse
|
63
|
Raju SV, Solomon GM, Dransfield MT, Rowe SM. Acquired Cystic Fibrosis Transmembrane Conductance Regulator Dysfunction in Chronic Bronchitis and Other Diseases of Mucus Clearance. Clin Chest Med 2015; 37:147-58. [PMID: 26857776 DOI: 10.1016/j.ccm.2015.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major public health problem. No therapies alter the natural history of the disease. Chronic bronchitis is perhaps the most clinically troublesome phenotype. Emerging data strongly suggest that cigarette smoke and its components can lead to acquired cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction. Findings in vitro, in animal models, and in smokers with and without COPD also show acquired CFTR dysfunction, which is associated with chronic bronchitis. This abnormality is also present in extrapulmonary organs, suggesting that CFTR dysfunction may contribute to smoking-related systemic diseases.
Collapse
Affiliation(s)
- S Vamsee Raju
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Cell Developmental and Integrative Biology, The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George M Solomon
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark T Dransfield
- Department of Medicine, The UAB Lung Health Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Cell Developmental and Integrative Biology, The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pediatrics, The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
64
|
Novel Roles for Chloride Channels, Exchangers, and Regulators in Chronic Inflammatory Airway Diseases. Mediators Inflamm 2015; 2015:497387. [PMID: 26612971 PMCID: PMC4647060 DOI: 10.1155/2015/497387] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/13/2015] [Indexed: 01/14/2023] Open
Abstract
Chloride transport proteins play critical roles in inflammatory airway diseases, contributing to the detrimental aspects of mucus overproduction, mucus secretion, and airway constriction. However, they also play crucial roles in contributing to the innate immune properties of mucus and mucociliary clearance. In this review, we focus on the emerging novel roles for a chloride channel regulator (CLCA1), a calcium-activated chloride channel (TMEM16A), and two chloride exchangers (SLC26A4/pendrin and SLC26A9) in chronic inflammatory airway diseases.
Collapse
|
65
|
Balázs A, Ruffert C, Hegyi E, Hritz I, Czakó L, Takács T, Szepes Z, Németh BC, Gervain J, Izbéki F, Halász A, Kelemen D, Szmola R, Novák J, Crai S, Illés A, Vincze Á, Molnár Z, Varga M, Bod B, Farkas G, Sümegi J, Szepes A, Dubravcsik Z, Lásztity N, Párniczky A, Hamvas J, Andorka C, Veres G, Szentkereszty Z, Rakonczay Z, Maléth J, Sahin-Tóth M, Rosendahl J, Hegyi P. Genetic analysis of the bicarbonate secreting anion exchanger SLC26A6 in chronic pancreatitis. Pancreatology 2015; 15:508-513. [PMID: 26372434 DOI: 10.1016/j.pan.2015.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic ductal HCO3(-) secretion is critically dependent on the cystic fibrosis transmembrane conductance regulator chloride channel (CFTR) and the solute-linked carrier 26 member 6 anion transporter (SLC26A6). Deterioration of HCO3(-) secretion is observed in chronic pancreatitis (CP), and CFTR mutations increase CP risk. Therefore, SLC26A6 is a reasonable candidate for a CP susceptibility gene, which has not been investigated in CP patients so far. METHODS As a first screening cohort, 106 subjects with CP and 99 control subjects with no pancreatic disease were recruited from the Hungarian National Pancreas Registry. In 60 non-alcoholic CP cases the entire SLC26A6 coding region was sequenced. In the Hungarian cohort variants c.616G > A (p.V206M) and c.1191C > A (p.P397=) were further genotyped by restriction fragment length polymorphism analysis. In a German replication cohort all exons were sequenced in 40 non-alcoholic CP cases and variant c.616G > A (p.V206M) was further analyzed by sequencing in 321 CP cases and 171 controls. RESULTS Sequencing of the entire coding region revealed four common variants: intronic variants c.23 + 78_110del, c.183-4C > A, c.1134 + 32C > A, and missense variant c.616G > A (p.V206M) which were found in linkage disequilibrium indicating a conserved haplotype. The distribution of the haplotype did not show a significant difference between patients and controls in the two cohorts. A synonymous variant c.1191C > A (p.P397=) and two intronic variants c.1248 + 9_20del and c.-10C > T were detected in single cases. CONCLUSION Our data show that SLC26A6 variants do not alter the risk for the development of CP.
Collapse
Affiliation(s)
- Anita Balázs
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Claudia Ruffert
- Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology and Rheumatology, University of Leipzig, Leipzig, Germany
| | - Eszter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary; 2nd Department of Pediatrics, Comenius University Medical School, University Children's Hospital, Bratislava, Slovakia
| | - István Hritz
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - László Czakó
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Tamás Takács
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltán Szepes
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Balázs Csaba Németh
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| | - Judit Gervain
- Szent György University Teaching Hospital of County Fejér, Székesfehérvár, Hungary
| | - Ferenc Izbéki
- Szent György University Teaching Hospital of County Fejér, Székesfehérvár, Hungary
| | - Adrienn Halász
- Szent György University Teaching Hospital of County Fejér, Székesfehérvár, Hungary
| | | | - Richárd Szmola
- Department of Interventional Gastroenterology, National Institute of Oncology, Budapest, Hungary
| | - János Novák
- Pándy Kálmán County Hopsital, Gyula, Hungary
| | - Stefan Crai
- Pándy Kálmán County Hopsital, Gyula, Hungary
| | - Anita Illés
- First Department of Medicine, University of Pécs, Hungary
| | - Áron Vincze
- First Department of Medicine, University of Pécs, Hungary
| | - Zsolt Molnár
- Department of Anestesiology and Intensive Care, University of Szeged, Szeged, Hungary
| | | | | | - Gyula Farkas
- Department of Surgery, University of Szeged, Hungary
| | - János Sümegi
- B-A-Z County Hopspital and University Teaching Hospital, Miskolc, Hungary
| | - Attila Szepes
- Department of Gastroenterology, Bács-Kiskun County Hospital, Kecskemét, Hungary
| | - Zsolt Dubravcsik
- Department of Gastroenterology, Bács-Kiskun County Hospital, Kecskemét, Hungary
| | | | | | | | - Csilla Andorka
- 1st Department of Pediatrics, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Gábor Veres
- 1st Department of Pediatrics, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Zsolt Szentkereszty
- Institute of Surgery, University of Debrecen, Clinical Center, Debrecen Hungary
| | - Zoltán Rakonczay
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Miklós Sahin-Tóth
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| | - Jonas Rosendahl
- Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology and Rheumatology, University of Leipzig, Leipzig, Germany
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary; MTA-SZTE Translational Gastroenterology Research Group, Szeged, Hungary.
| |
Collapse
|
66
|
Brett TJ. CLCA1 and TMEM16A: the link towards a potential cure for airway diseases. Expert Rev Respir Med 2015; 9:503-6. [PMID: 26296094 DOI: 10.1586/17476348.2015.1081064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The hallmark traits of chronic obstructive airway diseases are inflammation, airway constriction due to hyperreactivity and mucus overproduction. The current common treatments for asthma and chronic obstructive pulmonary disease target the first two traits with none currently targeting mucus overproduction. The main source of obstructive mucus production is mucus cell metaplasia (MCM), the transdifferentiation of airway epithelial cells into mucus-producing goblet cells, in the small airways. Our current understanding of MCM is profusely incomplete. Few of the molecular players involved in driving MCM in humans have been identified and for many of those that have, their functions and mechanisms are unknown. This fact has limited the development of therapeutics that target mucus overproduction by inhibiting MCM. Current work in the field is aiming to change that.
Collapse
Affiliation(s)
- Tom J Brett
- a 1 Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.,b 2 Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA.,c 3 Drug Discovery Program in Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.,d 4 Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.,e 5 Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
67
|
Mall MA, Galietta LJV. Targeting ion channels in cystic fibrosis. J Cyst Fibros 2015; 14:561-70. [PMID: 26115565 DOI: 10.1016/j.jcf.2015.06.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 12/12/2022]
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause a characteristic defect in epithelial ion transport that plays a central role in the pathogenesis of cystic fibrosis (CF). Hence, pharmacological correction of this ion transport defect by targeting of mutant CFTR, or alternative ion channels that may compensate for CFTR dysfunction, has long been considered as an attractive approach to a causal therapy of this life-limiting disease. The recent introduction of the CFTR potentiator ivacaftor into the therapy of a subgroup of patients with specific CFTR mutations was a major milestone and enormous stimulus for seeking effective ion transport modulators for all patients with CF. In this review, we discuss recent breakthroughs and setbacks with CFTR modulators designed to rescue mutant CFTR including the common mutation F508del. Further, we examine the alternative chloride channels TMEM16A and SLC26A9, as well as the epithelial sodium channel ENaC as alternative targets in CF lung disease, which remains the major cause of morbidity and mortality in patients with CF. Finally, we will focus on the hurdles that still need to be overcome to make effective ion transport modulation therapies available for all patients with CF irrespective of their CFTR genotype.
Collapse
Affiliation(s)
- Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany; Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
68
|
The Contribution of the Airway Epithelial Cell to Host Defense. Mediators Inflamm 2015; 2015:463016. [PMID: 26185361 PMCID: PMC4491388 DOI: 10.1155/2015/463016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 12/11/2014] [Indexed: 12/19/2022] Open
Abstract
In the context of cystic fibrosis, the epithelial cell has been characterized in terms of its ion transport capabilities. The ability of an epithelial cell to initiate CFTR-mediated chloride and bicarbonate transport has been recognized early as a means to regulate the thickness of the epithelial lining fluid and recently as a means to regulate the pH, thereby determining critically whether or not host defense proteins such as mucins are able to fold appropriately. This review describes how the epithelial cell senses the presence of pathogens and inflammatory conditions, which, in turn, facilitates the activation of CFTR and thus directly promotes pathogens clearance and innate immune defense on the surface of the epithelial cell. This paper summarizes functional data that describes the effect of cytokines, chemokines, infectious agents, and inflammatory conditions on the ion transport properties of the epithelial cell and relates these key properties to the molecular pathology of cystic fibrosis. Recent findings on the role of cystic fibrosis modifier genes that underscore the role of the epithelial ion transport in host defense and inflammation are discussed.
Collapse
|
69
|
Hiemstra PS, McCray PB, Bals R. The innate immune function of airway epithelial cells in inflammatory lung disease. Eur Respir J 2015; 45:1150-62. [PMID: 25700381 DOI: 10.1183/09031936.00141514] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The airway epithelium is now considered to be central to the orchestration of pulmonary inflammatory and immune responses, and is also key to tissue remodelling. It acts as the first barrier in the defence against a wide range of inhaled challenges, and is critically involved in the regulation of both innate and adaptive immune responses to these challenges. Recent progress in our understanding of the developmental regulation of this tissue, the differentiation pathways, recognition of pathogens and antimicrobial responses is now exploited to help understand how epithelial cell function and dysfunction contributes to the pathogenesis of a variety of inflammatory lung diseases. Herein, advances in our knowledge of the biology of airway epithelium, as well as its role and (dys)function in asthma, chronic obstructive pulmonary fibrosis and cystic fibrosis will be discussed.
Collapse
Affiliation(s)
- Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Paul B McCray
- Dept of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert Bals
- Dept of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
70
|
Trojanek JB, Cobos-Correa A, Diemer S, Kormann M, Schubert SC, Zhou-Suckow Z, Agrawal R, Duerr J, Wagner CJ, Schatterny J, Hirtz S, Sommerburg O, Hartl D, Schultz C, Mall MA. Airway mucus obstruction triggers macrophage activation and matrix metalloproteinase 12-dependent emphysema. Am J Respir Cell Mol Biol 2015; 51:709-20. [PMID: 24828142 DOI: 10.1165/rcmb.2013-0407oc] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Whereas cigarette smoking remains the main risk factor for emphysema, recent studies in β-epithelial Na(+) channel-transgenic (βENaC-Tg) mice demonstrated that airway surface dehydration, a key pathophysiological mechanism in cystic fibrosis (CF), caused emphysema in the absence of cigarette smoke exposure. However, the underlying mechanisms remain unknown. The aim of this study was to elucidate mechanisms of emphysema formation triggered by airway surface dehydration. We therefore used expression profiling, genetic and pharmacological inhibition, Foerster resonance energy transfer (FRET)-based activity assays, and genetic association studies to identify and validate emphysema candidate genes in βENaC-Tg mice and patients with CF. We identified matrix metalloproteinase 12 (Mmp12) as a highly up-regulated gene in lungs from βENaC-Tg mice, and demonstrate that elevated Mmp12 expression was associated with progressive emphysema formation, which was reduced by genetic deletion and pharmacological inhibition of MMP12 in vivo. By using FRET reporters, we show that MMP12 activity was elevated on the surface of airway macrophages in bronchoalveolar lavage from βENaC-Tg mice and patients with CF. Furthermore, we demonstrate that a functional polymorphism in MMP12 (rs2276109) was associated with severity of lung disease in CF. Our results suggest that MMP12 released by macrophages activated on dehydrated airway surfaces may play an important role in emphysema formation in the absence of cigarette smoke exposure, and may serve as a therapeutic target in CF and potentially other chronic lung diseases associated with airway mucus dehydration and obstruction.
Collapse
|
71
|
Alka K, Casey JR. Bicarbonate transport in health and disease. IUBMB Life 2014; 66:596-615. [PMID: 25270914 DOI: 10.1002/iub.1315] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/10/2014] [Indexed: 12/28/2022]
Abstract
Bicarbonate (HCO3(-)) has a central place in human physiology as the waste product of mitochondrial energy production and for its role in pH buffering throughout the body. Because bicarbonate is impermeable to membranes, bicarbonate transport proteins are necessary to enable control of bicarbonate levels across membranes. In humans, 14 bicarbonate transport proteins, members of the SLC4 and SLC26 families, function by differing transport mechanisms. In addition, some anion channels and ZIP metal transporters contribute to bicarbonate movement across membranes. Defective bicarbonate transport leads to diseases, including systemic acidosis, brain dysfunction, kidney stones, and hypertension. Altered expression levels of bicarbonate transporters in patients with breast, colon, and lung cancer suggest an important role of these transporters in cancer.
Collapse
Affiliation(s)
- Kumari Alka
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
72
|
Gehrig S, Duerr J, Weitnauer M, Wagner CJ, Graeber SY, Schatterny J, Hirtz S, Belaaouaj A, Dalpke AH, Schultz C, Mall MA. Lack of neutrophil elastase reduces inflammation, mucus hypersecretion, and emphysema, but not mucus obstruction, in mice with cystic fibrosis-like lung disease. Am J Respir Crit Care Med 2014; 189:1082-92. [PMID: 24678594 DOI: 10.1164/rccm.201311-1932oc] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Recent evidence from clinical studies suggests that neutrophil elastase (NE) released in neutrophilic airway inflammation is a key risk factor for the onset and progression of lung disease in young children with cystic fibrosis (CF). However, the role of NE in the complex in vivo pathogenesis of CF lung disease remains poorly understood. OBJECTIVES To elucidate the role of NE in the development of key features of CF lung disease including airway inflammation, mucus hypersecretion, goblet cell metaplasia, bacterial infection, and structural lung damage in vivo. METHODS We used the Scnn1b-Tg mouse as a model of CF lung disease and determined effects of genetic deletion of NE (NE(-/-)) on the pulmonary phenotype. Furthermore, we used novel Foerster resonance energy transfer (FRET)-based NE reporter assays to assess NE activity in bronchoalveolar lavage from Scnn1b-Tg mice and sputum from patients with CF. MEASUREMENTS AND MAIN RESULTS Lack of NE significantly reduced airway neutrophilia, elevated mucin expression, goblet cell metaplasia, and distal airspace enlargement, but had no effect on airway mucus plugging, bacterial infection, or pulmonary mortality in Scnn1b-Tg mice. By using FRET reporters, we show that NE activity was elevated on the surface of airway neutrophils from Scnn1b-Tg mice and patients with CF. CONCLUSIONS Our results suggest that NE plays an important role in the in vivo pathogenesis and may serve as a therapeutic target for inflammation, mucus hypersecretion, and structural lung damage and indicate that additional rehydration strategies may be required for effective treatment of airway mucus obstruction in CF.
Collapse
|
73
|
Liu X, Li T, Riederer B, Lenzen H, Ludolph L, Yeruva S, Tuo B, Soleimani M, Seidler U. Loss of Slc26a9 anion transporter alters intestinal electrolyte and HCO3(-) transport and reduces survival in CFTR-deficient mice. Pflugers Arch 2014; 467:1261-75. [PMID: 24965066 PMCID: PMC4434866 DOI: 10.1007/s00424-014-1543-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 12/16/2022]
Abstract
Slc26a9 is an anion transporter that is strongly expressed in the stomach and lung. Slc26a9 variants were recently found associated with a higher incidence of meconium ileus in cystic fibrosis (CF) infants, raising the question whether Slc26a9 is expressed in the intestine and what its functional role is. Slc26a9 messenger RNA (mRNA) was found highly expressed in the mucosae of the murine and human upper gastrointestinal tract, with an abrupt decrease in expression levels beyond the duodenum. Absence of SLC26a9 expression strongly increased the intestinally related mortality in cystic fibrosis transmembrane conductance regulator (CFTR)-deficient mice. Proximal duodenal JHCO3(-) and fluid secretion were reduced in the absence of Slc26a9 expression. In the proximal duodenum of young Slc26a9 KO mice, the glands and villi/crypts were elongated and proliferation was enhanced. This difference was lost with ageing, as were the alterations in fluid movement, whereas the reduction in JHCO3(-) remained. Laser dissection followed by qPCR suggested Slc26a9 expression to be crypt-predominant in the duodenum. In summary, deletion of Slc26a9 caused bicarbonate secretory and fluid absorptive changes in the proximal duodenal mucosa and increased the postweaning death rates in CFTR-deficient mice. Functional alterations in the duodenum were most prominent at young ages. We assume that the association of meconium ileus and Slc26a9 variants may be related to maldigestion and impaired downstream signaling caused by loss of upper GI tract digestive functions, aggravating the situation of lack of secretion and sticky mucus at the site of obstruction in CF intestine.
Collapse
Affiliation(s)
- Xuemei Liu
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
Cystic fibrosis (CF) remains the most common fatal hereditary lung disease. The discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene 25 years ago set the stage for: 1) unravelling the molecular and cellular basis of CF lung disease; 2) the generation of animal models to study in vivo pathogenesis; and 3) the development of mutation-specific therapies that are now becoming available for a subgroup of patients with CF. This article highlights major advances in our understanding of how CFTR dysfunction causes chronic mucus obstruction, neutrophilic inflammation and bacterial infection in CF airways. Furthermore, we focus on recent breakthroughs and remaining challenges of novel therapies targeting the basic CF defect, and discuss the next steps to be taken to make disease-modifying therapies available to a larger group of patients with CF, including those carrying the most common mutation ΔF508-CFTR. Finally, we will summarise emerging evidence indicating that acquired CFTR dysfunction may be implicated in the pathogenesis of chronic obstructive pulmonary disease, suggesting that lessons learned from CF may be applicable to common airway diseases associated with mucus plugging.
Collapse
Affiliation(s)
- Marcus A Mall
- Dept of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), University of Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany Division of Paediatric Pulmonology and Allergy and Cystic Fibrosis Center, Dept of Paediatrics, University of Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Dominik Hartl
- Paediatric Infectiology and Immunology, Dept of Pediatrics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
75
|
Early cystic fibrosis lung disease: Role of airway surface dehydration and lessons from preventive rehydration therapies in mice. Int J Biochem Cell Biol 2014; 52:174-9. [PMID: 24561284 DOI: 10.1016/j.biocel.2014.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 02/04/2023]
Abstract
Cystic fibrosis (CF) lung disease starts in the first months of life and remains one of the most common fatal hereditary diseases. Early therapeutic interventions may provide an opportunity to prevent irreversible lung damage and improve outcome. Airway surface dehydration is a key disease mechanism in CF, however, its role in the in vivo pathogenesis and as therapeutic target in early lung disease remains poorly understood. Mice with airway-specific overexpression of the epithelial Na(+) channel (βENaC-Tg) recapitulate airway surface dehydration and phenocopy CF lung disease. Recent studies in neonatal βENaC-Tg mice demonstrated that airway surface dehydration produces early mucus plugging in the absence of mucus hypersecretion, which triggers airway inflammation, promotes bacterial infection and causes early mortality. Preventive rehydration therapy with hypertonic saline or amiloride effectively reduced mucus plugging and mortality in neonatal βENaC-Tg mice. These results support clinical testing of preventive/early rehydration strategies in infants and young children with CF.
Collapse
|
76
|
Functional interaction of the cystic fibrosis transmembrane conductance regulator with members of the SLC26 family of anion transporters (SLC26A8 and SLC26A9): physiological and pathophysiological relevance. Int J Biochem Cell Biol 2014; 52:58-67. [PMID: 24530837 DOI: 10.1016/j.biocel.2014.02.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/29/2014] [Accepted: 02/01/2014] [Indexed: 12/21/2022]
Abstract
The solute carrier 26 (SLC26) proteins are transmembrane proteins located at the plasma membrane of the cells and transporting a variety of monovalent and divalent anions, including chloride, bicarbonate, sulfate and oxalate. In humans, 11 members have been identified (SLC26A1 to SLC26A11) and although part of them display a very restricted tissue expression pattern, altogether they are widely expressed in the epithelial cells of the body where they contribute to the composition and the pH regulation of the secreted fluids. Importantly, mutations in SLC26A2, A3, A4, and A5 have been associated with distinct human genetic recessive disorders (i.e. diastrophic dysplasia, congenital chloride diarrhea, Pendred syndrome and deafness, respectively), demonstrating their essential and non-redundant functions in many tissues. During the last decade, physical and functional interactions of SLC26 members with the cystic fibrosis transmembrane conductance regulator (CFTR) have been highly documented, leading to the model of a crosstalk based on the binding of the SLC26 STAS domain to the CFTR regulatory domain. In this review, we will focus on the functional interaction of SLC26A8 and SLC26A9 with the CFTR channel. In particular we will highlight the newly published studies indicating that mutations in SLC26A8 and SLC26A9 proteins are associated with a deregulation of the CFTR anion transport activity in the pathophysiological context of the sperm and the pulmonary cells. These studies confirm the physiological relevance of SLC26 and CFTR cross-regulation, opening new gates for the treatment of cystic fibrosis.
Collapse
|
77
|
Graeber SY, Zhou-Suckow Z, Schatterny J, Hirtz S, Boucher RC, Mall MA. Hypertonic saline is effective in the prevention and treatment of mucus obstruction, but not airway inflammation, in mice with chronic obstructive lung disease. Am J Respir Cell Mol Biol 2013; 49:410-7. [PMID: 23590312 DOI: 10.1165/rcmb.2013-0050oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Recent evidence suggests that inadequate hydration of airway surfaces is a common mechanism in the pathogenesis of airway mucus obstruction. Inhaled hypertonic saline (HS) induces osmotic water flux, improving hydration of airway surfaces. However, trials in patients with obstructive lung diseases are limited. The aim of this study was to investigate effects of HS on mucus obstruction and airway inflammation in the prevention and treatment of obstructive lung disease in vivo. We, therefore, used the β-epithelial Na(+) channel (βENaC)-overexpressing mouse as a model of chronic obstructive lung disease and determined effects of preventive and late therapy with 3% HS and 7% HS on pulmonary mortality, airway mucus obstruction, and inflammation. We found that preventive treatment with 3% HS and 7% HS improved growth, reduced mortality, and reduced mucus obstruction in neonatal βENaC-overexpressing mice. In adult βENaC-overexpressing mice with chronic lung disease, mucus obstruction was significantly reduced by 7% HS, but not by 3% HS. Treatment with HS triggered airway inflammation with elevated keratinocyte chemoattractant levels and neutrophils in airways from wild-type mice, but reduced keratinocyte chemoattractant in chronic neutrophilic inflammation in adult βENaC-overexpressing mice. Our data demonstrate that airway surface rehydration with HS provides an effective preventive and late therapy of mucus obstruction with no consistent effects on inflammation in chronic lung disease. These results suggest that, through mucokinetic effects, HS may be beneficial for patients with a spectrum of obstructive lung diseases, and that additional strategies are required for effective treatment of associated airway inflammation.
Collapse
Affiliation(s)
- Simon Y Graeber
- Department of Translational Pulmonology, Translational Lung Research Center, University of Heidelberg, Im Neuenheimer Feld 350, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
78
|
Blackman SM, Commander CW, Watson C, Arcara KM, Strug LJ, Stonebraker JR, Wright FA, Rommens JM, Sun L, Pace RG, Norris SA, Durie PR, Drumm ML, Knowles MR, Cutting GR. Genetic modifiers of cystic fibrosis-related diabetes. Diabetes 2013; 62:3627-35. [PMID: 23670970 PMCID: PMC3781476 DOI: 10.2337/db13-0510] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diabetes is a common age-dependent complication of cystic fibrosis (CF) that is strongly influenced by modifier genes. We conducted a genome-wide association study in 3,059 individuals with CF (644 with CF-related diabetes [CFRD]) and identified single nucleotide polymorphisms (SNPs) within and 5' to the SLC26A9 gene that associated with CFRD (hazard ratio [HR] 1.38; P = 3.6 × 10(-8)). Replication was demonstrated in 694 individuals (124 with CFRD) (HR, 1.47; P = 0.007), with combined analysis significant at P = 9.8 × 10(-10). SLC26A9 is an epithelial chloride/bicarbonate channel that can interact with the CF transmembrane regulator (CFTR), the protein mutated in CF. We also hypothesized that common SNPs associated with type 2 diabetes also might affect risk for CFRD. A previous association of CFRD with SNPs in TCF7L2 was replicated in this study (P = 0.004; combined analysis P = 3.8 × 10(-6)), and type 2 diabetes SNPs at or near CDKAL1, CDKN2A/B, and IGF2BP2 were associated with CFRD (P < 0.004). These five loci accounted for 8.3% of the phenotypic variance in CFRD onset and had a combined population-attributable risk of 68%. Diabetes is a highly prevalent complication of CF, for which susceptibility is determined in part by variants at SLC26A9 (which mediates processes proximate to the CF disease-causing gene) and at four susceptibility loci for type 2 diabetes in the general population.
Collapse
Affiliation(s)
- Scott M. Blackman
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Corresponding author: Scott M. Blackman,
| | - Clayton W. Commander
- Cystic Fibrosis–Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher Watson
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kristin M. Arcara
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lisa J. Strug
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Program in Child Health Evaluative Sciences, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jaclyn R. Stonebraker
- Cystic Fibrosis–Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Fred A. Wright
- Cystic Fibrosis–Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Johanna M. Rommens
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lei Sun
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Rhonda G. Pace
- Cystic Fibrosis–Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sarah A. Norris
- Cystic Fibrosis–Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Peter R. Durie
- Program in Physiology and Experimental Medicine, the Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Mitchell L. Drumm
- Departments of Pediatrics and Genetics, Case Western Reserve University, Cleveland, Ohio
| | - Michael R. Knowles
- Cystic Fibrosis–Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Garry R. Cutting
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
79
|
Adler KB, Tuvim MJ, Dickey BF. Regulated mucin secretion from airway epithelial cells. Front Endocrinol (Lausanne) 2013; 4:129. [PMID: 24065956 PMCID: PMC3776272 DOI: 10.3389/fendo.2013.00129] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/03/2013] [Indexed: 12/18/2022] Open
Abstract
Secretory epithelial cells of the proximal airways synthesize and secrete gel-forming polymeric mucins. The secreted mucins adsorb water to form mucus that is propelled by neighboring ciliated cells, providing a mobile barrier which removes inhaled particles and pathogens from the lungs. Several features of the intracellular trafficking of mucins make the airway secretory cell an interesting comparator for the cell biology of regulated exocytosis. Polymeric mucins are exceedingly large molecules (up to 3 × 10(6) Da per monomer) whose folding and initial polymerization in the ER requires the protein disulfide isomerase Agr2. In the Golgi, mucins further polymerize to form chains and possibly branched networks comprising more than 20 monomers. The large size of mucin polymers imposes constraints on their packaging into transport vesicles along the secretory pathway. Sugar side chains account for >70% of the mass of mucins, and their attachment to the protein core by O-glycosylation occurs in the Golgi. Mature polymeric mucins are stored in large secretory granules ∼1 μm in diameter. These are translocated to the apical membrane to be positioned for exocytosis by cooperative interactions among myristoylated alanine-rich C kinase substrate, cysteine string protein, heat shock protein 70, and the cytoskeleton. Mucin granules undergo exocytic fusion with the plasma membrane at a low basal rate and a high stimulated rate. Both rates are mediated by a regulated exocytic mechanism as indicated by phenotypes in both basal and stimulated secretion in mice lacking Munc13-2, a sensor of the second messengers calcium and diacylglycerol (DAG). Basal secretion is induced by low levels of activation of P2Y2 purinergic and A3 adenosine receptors by extracellular ATP released in paracrine fashion and its metabolite adenosine. Stimulated secretion is induced by high levels of the same ligands, and possibly by inflammatory mediators as well. Activated receptors are coupled to phospholipase C by Gq, resulting in the generation of DAG and of IP3 that releases calcium from apical ER. Stimulated secretion requires activation of the low affinity calcium sensor Synaptotagmin-2, while a corresponding high affinity calcium sensor in basal secretion is not known. The core exocytic machinery is comprised of the SNARE proteins VAMP8, SNAP23, and an unknown Syntaxin protein, together with the scaffolding protein Munc18b. Common and distinct features of this exocytic system in comparison to neuroendocrine cells and neurons are highlighted.
Collapse
Affiliation(s)
- Kenneth B. Adler
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - Michael J. Tuvim
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Burton F. Dickey
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- *Correspondence: Burton F. Dickey, Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Unit 1462, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA e-mail:
| |
Collapse
|
80
|
Singh AK, Liu Y, Riederer B, Engelhardt R, Thakur BK, Soleimani M, Seidler U. Molecular transport machinery involved in orchestrating luminal acid-induced duodenal bicarbonate secretion in vivo. J Physiol 2013; 591:5377-91. [PMID: 24018950 DOI: 10.1113/jphysiol.2013.254854] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The duodenal villus brush border membrane expresses several ion transporters and/or channels, including the solute carrier 26 anion transporters Slc26a3 (DRA) and Slc26a6 (PAT-1), the Na(+)/H(+) exchanger isoform 3 (NHE3), as well as the anion channels cystic fibrosis transmembrane conductance regulator (CFTR) and Slc26a9. Using genetically engineered mouse models lacking Scl26a3, Slc26a6, Slc26a9 or Slc9a3 (NHE3), the study was carried out to assess the role of these transporters in mediating the protective duodenal bicarbonate secretory response (DBS-R) to luminal acid; and to compare it to their role in DBS-R elicited by the adenylyl cyclase agonist forskolin. While basal DBS was reduced in the absence of any of the three Slc26 isoforms, the DBS-R to forskolin was not altered. In contrast, the DBS-R to a 5 min exposure to luminal acid (pH 2.5) was strongly reduced in the absence of Slc26a3 or Slc26a9, but not Slc26a6. CFTR inhibitor [CFTR(Inh)-172] reduced the first phase of the acid-induced DBS-R, while NHE3 inhibition (or knockout) abolished the sustained phase of the DBS-R. Luminal acid exposure resulted in the activation of multiple intracellular signalling pathways, including SPAK, AKT and p38 phosphorylation. It induced a biphasic trafficking of NHE3, first rapidly into the brush border membrane, followed by endocytosis in the later stage. We conclude that the long-lasting DBS-R to luminal acid exposure activates multiple duodenocyte signalling pathways and involves changes in trafficking and/or activity of CFTR, Slc26 isoforms Slc26a3 and Slc26a9, and NHE3.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- Prof. Dr. U. Seidler: Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Straße 1, D-30625 Germany.
| | | | | | | | | | | | | |
Collapse
|
81
|
Bakouh N, Bienvenu T, Thomas A, Ehrenfeld J, Liote H, Roussel D, Duquesnoy P, Farman N, Viel M, Cherif-Zahar B, Amselem S, Taam RA, Edelman A, Planelles G, Sermet-Gaudelus I. Characterization of SLC26A9 in patients with CF-like lung disease. Hum Mutat 2013; 34:1404-14. [PMID: 24272871 DOI: 10.1002/humu.22382] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 07/10/2013] [Indexed: 01/07/2023]
Abstract
Diffuse bronchiectasis is a common problem in respiratory clinics. We hypothesized that mutations in the solute carrier 26A9 (SLC26A9) gene, encoding for a chloride (Cl(-)) transporter mainly expressed in lungs, may lead to defects in mucociliary clearance. We describe two missense variants in the SLC26A9 gene in heterozygote patients presenting with diffuse idiopathic bronchiectasis : p.Arg575Trp, identified in a patient also heterozygote for p.Phe508del in the CFTR gene; and p.Val486Ile. Expression of both mutants in Xenopus laevis oocytes abolished SLC26A9-mediated Cl(-) conductance without decreasing protein membrane expression. Coexpression of CFTR with SLC26A9-p.Val486Ile resulted in a significant increase in the Cl(-) current induced by PKA stimulation, similar to that obtained in oocytes expressing CFTR and SLC26A9-WT. In contrast, coexpression of CFTR with SLC26A9-p.Arg575Trp inhibited SLC26A9-enhanced CFTR activation upon PKA. Further structure-function analyses led us to propose a site encompassing Arg575 in the SLC26A9-STAS domain for CFTR-SLC26A9 interaction. We hypothesize that SLC26A9-p.Arg575Trp prevented SLC26A9-mediated functional activation of CFTR by altering SLC26A9-CFTR interaction. Although we cannot confirm that these mutations by themselves are deleterious, we propose that they trigger the pathogenic role of a single CFTR mutation and provide insight into a novel mechanism of Cl(-) transport alteration across the respiratory mucosa, based on functional inhibition of CFTR.
Collapse
Affiliation(s)
- Naziha Bakouh
- INSERM U 845, Paris, France; Faculté de Médecine, Université René Descartes, Paris V, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|