51
|
Yeow ZY, Lambrus BG, Marlow R, Zhan KH, Durin MA, Evans LT, Scott PM, Phan T, Park E, Ruiz LA, Moralli D, Knight EG, Badder LM, Novo D, Haider S, Green CM, Tutt ANJ, Lord CJ, Chapman JR, Holland AJ. Targeting TRIM37-driven centrosome dysfunction in 17q23-amplified breast cancer. Nature 2020; 585:447-452. [PMID: 32908313 PMCID: PMC7597367 DOI: 10.1038/s41586-020-2690-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/17/2020] [Indexed: 01/01/2023]
Abstract
Genomic instability is a hallmark of cancer, and has a central role in the initiation and development of breast cancer1,2. The success of poly-ADP ribose polymerase inhibitors in the treatment of breast cancers that are deficient in homologous recombination exemplifies the utility of synthetically lethal genetic interactions in the treatment of breast cancers that are driven by genomic instability3. Given that defects in homologous recombination are present in only a subset of breast cancers, there is a need to identify additional driver mechanisms for genomic instability and targeted strategies to exploit these defects in the treatment of cancer. Here we show that centrosome depletion induces synthetic lethality in cancer cells that contain the 17q23 amplicon, a recurrent copy number aberration that defines about 9% of all primary breast cancer tumours and is associated with high levels of genomic instability4-6. Specifically, inhibition of polo-like kinase 4 (PLK4) using small molecules leads to centrosome depletion, which triggers mitotic catastrophe in cells that exhibit amplicon-directed overexpression of TRIM37. To explain this effect, we identify TRIM37 as a negative regulator of centrosomal pericentriolar material. In 17q23-amplified cells that lack centrosomes, increased levels of TRIM37 block the formation of foci that comprise pericentriolar material-these foci are structures with a microtubule-nucleating capacity that are required for successful cell division in the absence of centrosomes. Finally, we find that the overexpression of TRIM37 causes genomic instability by delaying centrosome maturation and separation at mitotic entry, and thereby increases the frequency of mitotic errors. Collectively, these findings highlight TRIM37-dependent genomic instability as a putative driver event in 17q23-amplified breast cancer and provide a rationale for the use of centrosome-targeting therapeutic agents in treating these cancers.
Collapse
Affiliation(s)
- Zhong Y Yeow
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Bramwell G Lambrus
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rebecca Marlow
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Unit, King's College London, London, UK
| | - Kevin H Zhan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mary-Anne Durin
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lauren T Evans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phillip M Scott
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thao Phan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Park
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorena A Ruiz
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniela Moralli
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Eleanor G Knight
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Luned M Badder
- The Breast Cancer Now Unit, King's College London, London, UK
| | - Daniela Novo
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Catherine M Green
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Andrew N J Tutt
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Unit, King's College London, London, UK
| | - Christopher J Lord
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - J Ross Chapman
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
52
|
Au FK, Hau BK, Qi RZ. Nek2-mediated GAS2L1 phosphorylation and centrosome-linker disassembly induce centrosome disjunction. J Cell Biol 2020; 219:e201909094. [PMID: 32289147 PMCID: PMC7199859 DOI: 10.1083/jcb.201909094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/16/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
Centrosome disjunction occurs in late G2 to facilitate bipolar spindle formation and is mediated by the NIMA-related kinase Nek2. Here, we show that GAS2L1, a microtubule- and F-actin-binding protein required for centrosome disjunction, undergoes Nek2-mediated phosphorylation at Ser352 in G2/M. The phosphorylation is essential for centrosome disjunction in late G2 and for proper spindle assembly and faithful chromosome segregation in mitosis. GAS2L1 contains a calponin-homology (CH) domain and a GAS2-related (GAR) domain, which bind to F-actin and microtubules, respectively. Notably, the CH and GAR domains bind to each other to inhibit the functions of both domains, and Ser352 phosphorylation disrupts the interaction between the two domains and relieves the autoinhibition. We dissected the roles of the GAS2L1 phosphorylation and of centrosome-linker disassembly, which is another Nek2-mediated event, and found that these events together trigger centrosome disjunction. Therefore, our findings demonstrate the concerted Nek2 actions that split the centrosomes in late G2.
Collapse
Affiliation(s)
- Franco K.C. Au
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Bill K.T. Hau
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Robert Z. Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
53
|
Huang T, Zhang Q, Ren W, Yan B, Yi L, Tang T, Lin H, Zhang Y. USP44 suppresses proliferation and enhances apoptosis in colorectal cancer cells by inactivating the Wnt/β-catenin pathway via Axin1 deubiquitination. Cell Biol Int 2020; 44:1651-1659. [PMID: 32285989 PMCID: PMC7496820 DOI: 10.1002/cbin.11358] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/20/2020] [Accepted: 04/11/2020] [Indexed: 12/27/2022]
Abstract
Colorectal cancer (CRC) is the leading cause of cancer death, and its 5-year survival rate remains unsatisfactory. Recent studies have revealed that ubiquitin-specific protease 44 (USP44) is a cancer suppressor or oncogene depending on the type of neoplasm. However, its role in CRC remains unclear. Here, we found that the USP44 expression level was markedly decreased in CRC, and USP44 overexpression inhibited proliferation while enhancing apoptosis in CRC cells, suggesting that USP44 is a cancer suppressor in CRC. We then investigated if USP44 functioned through regulating the Wnt/β-catenin pathway. We found that USP44 overexpression increased the Axin1 protein while decreasing β-catenin, c-myc, and cyclin D1 proteins, suggesting that USP44 inhibited the activation of the Wnt/β-catenin pathway. Moreover, we found that two Wnt/β-catenin activators, LiCl and SKL2001, both attenuated oeUSP44-mediated proliferation and apoptosis in CRC cells. Collectively, these data points indicated that USP44 inhibited proliferation while promoting apoptosis in CRC cells by inhibiting the Wnt/β-catenin pathway. Interestingly, we observed that USP44 overexpression did not affect the Axin1 mRNA level. Further study uncovered that USP44 interacted with Axin1 and reduced the ubiquitination of Axin1. Furthermore, Axin1 knock-down abolished the effects of oeUSP44 on proliferation, apoptosis, and Wnt/β-catenin activity in CRC cells. Taken together, this study demonstrates that USP44 inhibits proliferation while enhancing apoptosis in CRC cells by inactivating the Wnt/β-catenin pathway via Axin1 deubiquitination. USP44 is a cancer suppressor in CRC and a potential target for CRC therapy.
Collapse
Affiliation(s)
- Tong Huang
- Department of General Surgery, General Hospital of XinJiang Military Command, YouHaoBeiLu, Urumqi, Xinjiang, China
| | - Qingquan Zhang
- Department of General Surgery, No. 948 Hospital of People's Liberation Army, Changzheng Road, Wusu, Xinjiang, China
| | - Wei Ren
- Department of General Surgery, No. 948 Hospital of People's Liberation Army, Changzheng Road, Wusu, Xinjiang, China
| | - Bing Yan
- Department of General Surgery, General Hospital of XinJiang Military Command, YouHaoBeiLu, Urumqi, Xinjiang, China
| | - Liang Yi
- Department of General Surgery, No. 948 Hospital of People's Liberation Army, Changzheng Road, Wusu, Xinjiang, China
| | - Tielun Tang
- Department of General Surgery, No. 948 Hospital of People's Liberation Army, Changzheng Road, Wusu, Xinjiang, China
| | - Hai Lin
- Department of General Surgery, General Hospital of XinJiang Military Command, YouHaoBeiLu, Urumqi, Xinjiang, China
| | - Yongjiu Zhang
- Department of General Surgery, General Hospital of XinJiang Military Command, YouHaoBeiLu, Urumqi, Xinjiang, China
| |
Collapse
|
54
|
Wu Q, Wang L, Wei H, Li B, Yang J, Wang Z, Xu J, Zhou YL, Zhang B. Integration of multiple key molecules in lung adenocarcinoma identifies prognostic and immunotherapeutic relevant gene signatures. Int Immunopharmacol 2020; 83:106477. [PMID: 32278127 DOI: 10.1016/j.intimp.2020.106477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Although multiple key molecules in lung adenocarcinoma (LUAD) have been identified in recent years, the overall tumor microenvironment (TME) immune cell infiltration characterizations mediated by multiple key molecules remain little known. This study aimed to integrate the roles of multiple key molecules to evaluate patient prognosis and TME cell infiltration characterization as well as responses to immunotherapy. METHODS Using combined LUAD cancer cohorts with 228 normal samples and 913 tumor samples, we comprehensively dissected the differences of genomic and TME cell infiltration landscapes between normal lung tissues and tumor tissues. The single-sample gene-set enrichment analysis (ssGSEA) was used to quantify the relative abundance of 24 cell infiltration. The riskScore signature was constructed using a least absolute shrinkage and selection operator (LASSO) Cox regression mode. RESULTS Seven novel key molecules with significantly up-regulated expression in LUAD were determined. Survival analyses revealed their important prognostic values. LUAD microenvironment presented a markedly decreased infiltration of immune cells compared to normal lung tissues. We found tumors with up-regulated expression of these key molecules exhibited a significantly decreased TME cell infiltration and increased immune checkpoint molecule expression. The high riskScore subtype was characterized by decreased innate and adaptive immune cell infiltration. Activation of p53 signaling pathway and regulator T cells were observed in the high riskScore subtype, which were regarded as T-cell suppressive and could be responsible for poorer prognosis in this subtype (HR 1.83(1.27-2.63)). Multivariate analyses demonstrated the riskScore was a robust and independent prognostic biomarker, and its value in predicting immunotherapeutic outcomes was also confirmed (HR 1.70(1.22-2.37)). CONCLUSIONS This study reveal a novel gene signature significantly related to patient prognosis and TME cell infiltration in LUAD. We demonstrated the integrated roles of multiple key molecules played a crucial role in shaping TME cell infiltration diversity and complexity. Evaluating the integrated characterization of multiple key molecules could contribute to predicting patients' response to immunotherapy and guiding more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Qiong Wu
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, PR China
| | - Lei Wang
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, PR China
| | - Huagen Wei
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, PR China
| | - Ben Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, PR China
| | - Jiaming Yang
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, PR China
| | - Zilin Wang
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, PR China
| | - Jianfeng Xu
- Department of Imaging, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, PR China.
| | - You Lang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, PR China.
| | - Bo Zhang
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, PR China.
| |
Collapse
|
55
|
Guan X, Yao Y, Bao G, Wang Y, Zhang A, Zhong X. Diagnostic model of combined ceRNA and DNA methylation related genes in esophageal carcinoma. PeerJ 2020; 8:e8831. [PMID: 32266120 PMCID: PMC7120044 DOI: 10.7717/peerj.8831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Esophageal cancer is a common malignant tumor in the world, and the aim of this study was to screen key genes related to the development of esophageal cancer using a variety of bioinformatics analysis tools and analyze their biological functions. The data of esophageal squamous cell carcinoma from the Gene Expression Omnibus (GEO) were selected as the research object, processed and analyzed to screen differentially expressed microRNAs (miRNAs) and differential methylation genes. The competing endogenous RNAs (ceRNAs) interaction network of differentially expressed genes was constructed by bioinformatics tools DAVID, String, and Cytoscape. Biofunctional enrichment analysis was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The expression of the screened genes and the survival of the patients were verified. By analyzing GSE59973 and GSE114110, we found three down-regulated and nine up-regulated miRNAs. The gene expression matrix of GSE120356 was calculated by Pearson correlation coefficient, and the 11696 pairs of ceRNA relation were determined. In the ceRNA network, 643 lncRNAs and 147 mRNAs showed methylation difference. Functional enrichment analysis showed that these differentially expressed genes were mainly concentrated in the FoxO signaling pathway and were involved in the corresponding cascade of calcineurin. By analyzing the clinical data in The Cancer Genome Atlas (TCGA) database, it was found that four lncRNAs had an important impact on the survival and prognosis of esophageal carcinoma patients. QRT-PCR was also conducted to identify the expression of the key lncRNAs (RNF217-AS1, HCP5, ZFPM2-AS1 and HCG22) in ESCC samples. The selected key genes can provide theoretical guidance for further research on the molecular mechanism of esophageal carcinoma and the screening of molecular markers.
Collapse
Affiliation(s)
- Xiaojiao Guan
- Department of Pathology, Second Affiliated Hospital, China Medical University, Shenyang, China
| | - Yao Yao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Guangyao Bao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yue Wang
- First Affiliated Hospital, China Medical University, Shenyang, China
| | - Aimeng Zhang
- First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xinwen Zhong
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
56
|
Zhou J, Wang T, Qiu T, Chen Z, Ma X, Zhang L, Zou J. Ubiquitin-specific protease-44 inhibits the proliferation and migration of cells via inhibition of JNK pathway in clear cell renal cell carcinoma. BMC Cancer 2020; 20:214. [PMID: 32164618 PMCID: PMC7068999 DOI: 10.1186/s12885-020-6713-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/03/2020] [Indexed: 01/02/2023] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is the most common form of adult kidney cancer. Ubiquitin-specific protease (USP)44 has been reported to be involved in various cancers. We investigated the function, role and molecular mechanism of USP44 in ccRCC. Methods Data obtained from the Cancer Genome Atlas Data Portal and Gene Expression Omnibus database were analyzed to uncover the clinical relevance of USP44 expression and tumor development. USP44 function in the proliferation and migration of tumor cells was assessed by cellular and molecular analyses using ccRCC lines (786-O cells and Caki-1 cells). Results USP44 showed low expression in ccRCC cancer tissues compared with that in normal tissue. USP44 expression was negatively correlated with tumor stage, tumor grade, and patient survival. USP44 overexpression inhibited the proliferation and migration of 786-O cells and Caki-1 cells significantly. USP44 overexpression also prohibited cell proliferation by upregulating expression of P21, downregulating cyclin-D1 expression, and inhibiting cell migration by downregulating expression of matrix metalloproteinase (MMP)2 and MMP9. USP44 knockdown enhanced the proliferation and migration of 786-O cells and Caki-1 cells. USP44 function in inhibiting the proliferation and migration of 786-O cells and Caki-1 cells was associated with phosphorylation of Jun N-terminal kinase (JNK). Conclusion USP44 may be a marker in predicting ccRCC progression. Inhibition by USP44 of the proliferation and migration of 786-O cells and Caki-1 cells is dependent upon the JNK pathway.
Collapse
Affiliation(s)
- Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, 99 ZiYang Road, Wuhan, 430060, China
| | - Tianyu Wang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, 99 ZiYang Road, Wuhan, 430060, China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, 99 ZiYang Road, Wuhan, 430060, China.
| | - Zhongbao Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, 99 ZiYang Road, Wuhan, 430060, China
| | - Xiaoxiong Ma
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, 99 ZiYang Road, Wuhan, 430060, China
| | - Long Zhang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, 99 ZiYang Road, Wuhan, 430060, China
| | - Jilin Zou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, 99 ZiYang Road, Wuhan, 430060, China
| |
Collapse
|
57
|
Hossain D, Shih SYP, Xiao X, White J, Tsang WY. Cep44 functions in centrosome cohesion by stabilizing rootletin. J Cell Sci 2020; 133:jcs239616. [PMID: 31974111 PMCID: PMC7044459 DOI: 10.1242/jcs.239616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Abstract
The centrosome linker serves to hold the duplicated centrosomes together until they separate in late G2/early mitosis. Precisely how the linker is assembled remains an open question. In this study, we identify Cep44 as a novel component of the linker in human cells. Cep44 localizes to the proximal end of centrioles, including mother and daughter centrioles, and its ablation leads to loss of centrosome cohesion. Cep44 does not impinge on the stability of C-Nap1 (also known as CEP250), LRRC45 or Cep215 (also known as CDK5RAP2), and vice versa, and these proteins are independently recruited to the centrosome. Rather, Cep44 associates with rootletin and regulates its stability and localization to the centrosome. Our findings reveal a role of the previously uncharacterized protein Cep44 for centrosome cohesion and linker assembly.
Collapse
Affiliation(s)
- Delowar Hossain
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Sunny Y-P Shih
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - Xintong Xiao
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - Julia White
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - William Y Tsang
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
- Faculté de Médecine, Département de pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
58
|
Yu DH, Huang JY, Liu XP, Ruan XL, Chen C, Hu WD, Li S. Effects of hub genes on the clinicopathological and prognostic features of lung adenocarcinoma. Oncol Lett 2020; 19:1203-1214. [PMID: 31966050 PMCID: PMC6956410 DOI: 10.3892/ol.2019.11193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is a common malignancy; however, the majority of its underlying molecular mechanisms remain unknown. In the present study, weighted gene co-expression network analysis was applied to construct gene co-expression networks for the GSE19804 dataset, in order to screen hub genes associated with the pathogenesis of LUAD. In addition, with the aid of the Database for Annotation, Visualization and Integrated Discovery, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes, pathway enrichment analyses were performed on the genes in the selected module. Using the GSE40791 dataset and The Cancer Genome Atlas database, the hub genes were identified. It was discovered that the turquoise module was the most significant module associated with the tumor stage of LUAD. After performing functional enrichment analyses, it was indicated that the turquoise module was mainly enriched in signal transduction. Additionally, at the transcriptional and translational level, nine hub genes were identified and validated: Carbonic anhydrase 4 (CA4), platelet and endothelial cell adhesion molecule 1 (PECAM1), DnaJ member B4 (DNAJB4), advanced glycosylation end-product specific receptor (AGER), GTPase, IMAP family member 6 (GIMAP6), chromosome 10 open reading frame 54 (C10orf54), dedicator of cytokinesis 4 (DOCK4), Golgi membrane protein 1 (GOLM1) and platelet activating factor acetylhydrolase 1b catalytic subunit 3 (PAFAH1B3). CA4, PECAM1, DNAJB4, AGER, GIMAP6, C10orf54 and DOCK4 were expressed at lower levels in the tumor samples, whereas GOLM1 and PAFAH1B3 were highly expressed in tumor samples. In addition, all hub genes were associated with prognosis. In conclusion, one module and nine genes were recognized to be associated with the tumor stage of LUAD. These findings may enhance the understanding of the progression and prognosis of LUAD.
Collapse
Affiliation(s)
- Dong-Hu Yu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jing-Yu Huang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xiao-Ping Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xiao-Lan Ruan
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Chen Chen
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Human Genetics Resource Preservation Center of Hubei Province, Wuhan, Hubei 430071, P.R. China
| | - Wei-Dong Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Sheng Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Human Genetics Resource Preservation Center of Hubei Province, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
59
|
Zhang HY, Liao BW, Xu ZS, Ran Y, Wang DP, Yang Y, Luo WW, Wang YY. USP44 positively regulates innate immune response to DNA viruses through deubiquitinating MITA. PLoS Pathog 2020; 16:e1008178. [PMID: 31968013 PMCID: PMC6975528 DOI: 10.1371/journal.ppat.1008178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
Mediator of IRF3 activation (MITA, also known as stimulator of interferon genes, STING) senses the second messenger cyclic GMP-AMP (cGAMP) which is synthesized upon DNA virus infection and activates innate antiviral immune response. It has been demonstrated that the activity of MITA is delicately regulated by various post-translational modifications including polyubiquitination. In this study, we identified the deubiquitinating enzyme USP44 as a positive regulator of MITA. USP44 is recruited to MITA following DNA virus infection and removes K48-linked polyubiquitin moieties from MITA at K236, therefore prevents MITA from proteasome mediated degradation. USP44-deficiency results in acceleration of HSV-1-induced degradation of MITA and reduced induction of type I interferons (IFNs) and proinflammatory cytokines. Consistently, Usp44-/- mice are more susceptible to HSV-1 infection as indicated by higher tissue viral titers, greater tissue damage and lower survival rate. These findings suggest that USP44 plays a specific and critical role in the regulation of innate immune response against DNA viruses.
Collapse
Affiliation(s)
- Hong-Yan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo-Wei Liao
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Sheng Xu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yong Ran
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Dong-Peng Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Yang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Wei-Wei Luo
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (W-WL); (Y-YW)
| | - Yan-Yi Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (W-WL); (Y-YW)
| |
Collapse
|
60
|
Xu L, He J, Cai Q, Li M, Pu X, Guo Y. An effective seven-CpG-based signature to predict survival in renal clear cell carcinoma by integrating DNA methylation and gene expression. Life Sci 2020; 243:117289. [PMID: 31926254 DOI: 10.1016/j.lfs.2020.117289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/29/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
AIMS Currently, using clinicopathological risk factors only is not far from effective to evaluate the risk of disease progression in renal clear cell carcinoma (KIRC) patients. Molecular biomarkers might improve risk stratification of KIRC. DNA methylation occurs the whole process of tumor development and transcriptional disorders are also one of the important characteristics of tumor. Hence, this study aims to develop an effective and independent prognostic signature for KIRC patients by Integrating DNA methylation and gene expression. MAIN METHODS Difference analysis was conducted on DNA methylation sites and gene expression data. The Spearman's rank correlation and univariate Cox regression analysis were used to screen out the CpG sites that related with RNAs' expression and KIRC patients' overall survival. Then, a five-CpG-based prognostic classifier was established using LASSO Cox regression method. KEY FINDINGS The seven-CpG-based classifier can successfully divide KIRC patients into high-risk from low-risk groups, even after adjustment for standard clinical prognostic factors, such as age, stage, gender and grade. Moreover, the seven-CpG-based signature was more effective as independent prognostic factors than the combined model of these clinical factors. Six differential mRNA genes corresponding to the seven CpG sites are all related to human cancers by functional exploration. The gene functional and pathway enrichment analysis found that genes in immune-related pathways were remarkably different in high and low-risk groups. SIGNIFICANCE The new seven-CpG-based signature could helpfully provide insights into the underlying mechanism of KIRC and may be a powerful independent biomarker for predicting of the survival of KIRC patients.
Collapse
Affiliation(s)
- Lei Xu
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Jian He
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Qihang Cai
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
61
|
Yao S, Dong SS, Ding JM, Rong Y, Zhang YJ, Chen H, Chen JB, Chen YX, Yan H, Dai Z, Guo Y. Sex-specific SNP-SNP interaction analyses within topologically associated domains reveals ANGPT1 as a novel tumor suppressor gene for lung cancer. Genes Chromosomes Cancer 2020; 59:13-22. [PMID: 31385379 DOI: 10.1002/gcc.22793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 01/24/2023] Open
Abstract
Genetic interaction has been recognized to be an important cause of the missing heritability. The topologically associating domain (TAD) is a self-interacting genomic region, and the DNA sequences within a TAD physically interact with each other more frequently. Sex differences influence cancer susceptibility at the genetic level. Here, we performed both regular and sex-specific genetic interaction analyses within TAD to identify susceptibility genes for lung cancer in 5204 lung cancer patients and 7389 controls. We found that one SNP pair, rs4262299-rs1654701, was associated with lung cancer in women after multiple testing corrections (combined P = 8.52 × 10-9 ). Single-SNP analyses did not detect significant association signals for these two SNPs. Both identified SNPs are located in the intron region of ANGPT1. We further found that 5% of nonsmall cell lung cancer patients have an alteration in ANGPT1, indicated the potential role of ANGPT1 in the neoplastic progression in lung cancer. The expression of ANGPT1 was significantly down-regulated in patients in lung squamous cell carcinoma and lung adenocarcinoma. We checked the interaction effect on the ANGPT1 expression and lung cancer and found that the minor allele "G" of rs1654701 increased ANGPT1 gene expression and decreased lung cancer risk with the increased dosage of "A" of rs4262299, which consistent with the tumor suppressor function of ANGPT1. Survival analyses found that the high expression of ANGPT1 was individually associated with a higher survival probability in lung cancer patients. In summary, our results suggest that ANGPT1 may be a novel tumor suppressor gene for lung cancer.
Collapse
Affiliation(s)
- Shi Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Jing-Miao Ding
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yu Rong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yu-Jie Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Hao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Jia-Bin Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yi-Xiao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Han Yan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Zhijun Dai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, P. R. China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
62
|
Ulfenborg B. Vertical and horizontal integration of multi-omics data with miodin. BMC Bioinformatics 2019; 20:649. [PMID: 31823712 PMCID: PMC6902525 DOI: 10.1186/s12859-019-3224-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 11/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Studies on multiple modalities of omics data such as transcriptomics, genomics and proteomics are growing in popularity, since they allow us to investigate complex mechanisms across molecular layers. It is widely recognized that integrative omics analysis holds the promise to unlock novel and actionable biological insights into health and disease. Integration of multi-omics data remains challenging, however, and requires combination of several software tools and extensive technical expertise to account for the properties of heterogeneous data. RESULTS This paper presents the miodin R package, which provides a streamlined workflow-based syntax for multi-omics data analysis. The package allows users to perform analysis of omics data either across experiments on the same samples (vertical integration), or across studies on the same variables (horizontal integration). Workflows have been designed to promote transparent data analysis and reduce the technical expertise required to perform low-level data import and processing. CONCLUSIONS The miodin package is implemented in R and is freely available for use and extension under the GPL-3 license. Package source, reference documentation and user manual are available at https://gitlab.com/algoromics/miodin.
Collapse
|
63
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
64
|
Deubiquitinating Enzymes: A Critical Regulator of Mitosis. Int J Mol Sci 2019; 20:ijms20235997. [PMID: 31795161 PMCID: PMC6929034 DOI: 10.3390/ijms20235997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Mitosis is a complex and dynamic process that is tightly regulated by a large number of mitotic proteins. Dysregulation of these proteins can generate daughter cells that exhibit genomic instability and aneuploidy, and such cells can transform into tumorigenic cells. Thus, it is important for faithful mitotic progression to regulate mitotic proteins at specific locations in the cells at a given time in each phase of mitosis. Ubiquitin-dependent modifications play critical roles in this process by regulating the degradation, translocation, or signal transduction of mitotic proteins. Here, we review how ubiquitination and deubiquitination regulate the progression of mitosis. In addition, we summarize the substrates and roles of some deubiquitinating enzymes (DUBs) crucial for mitosis and describe how they contribute error correction during mitosis and control the transition between the mitotic phases.
Collapse
|
65
|
Tsai IC, Adams KA, Tzeng JA, Shennib O, Tan PL, Katsanis N. Genome-wide suppressor screen identifies USP35/USP38 as therapeutic candidates for ciliopathies. JCI Insight 2019; 4:130516. [PMID: 31723061 DOI: 10.1172/jci.insight.130516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
The ciliopathies are a group of phenotypically overlapping disorders caused by structural or functional defects in the primary cilium. Although disruption of numerous signaling pathways and cellular trafficking events have been implicated in ciliary pathology, treatment options for affected individuals remain limited. Here, we performed a genome-wide RNAi (RNA interference) screen to identify genetic suppressors of BBS4, one of the genes mutated in Bardet-Biedl syndrome (BBS). We discovered 10 genes that, when silenced, ameliorate BBS4-dependent pathology. One of these encodes USP35, a negative regulator of the ubiquitin proteasome system, suggesting that inhibition of a deubiquitinase, and subsequent facilitation of the clearance of signaling components, might ameliorate BBS-relevant phenotypes. Testing of this hypothesis in transient and stable zebrafish genetic models showed this posit to be true; suppression or ablation of usp35 ameliorated hallmark ciliopathy defects including impaired convergent extension (CE), renal tubule convolution, and retinal degeneration with concomitant clearance of effectors such as β-catenin and rhodopsin. Together, our findings reinforce a direct link between proteasome-dependent degradation and ciliopathies and suggest that augmentation of this system might offer a rational path to novel therapeutic modalities.
Collapse
Affiliation(s)
- I-Chun Tsai
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kevin A Adams
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joyce A Tzeng
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina, USA
| | - Omar Shennib
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina, USA
| | - Perciliz L Tan
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina, USA.,Rescindo Therapeutics, Durham, North Carolina, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina, USA.,Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Departments of Pediatrics and Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
66
|
Zachariah S, Gray DA. Deubiquitinating Enzymes in Model Systems and Therapy: Redundancy and Compensation Have Implications. Bioessays 2019; 41:e1900112. [DOI: 10.1002/bies.201900112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/06/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Sarah Zachariah
- Centre for Cancer TherapeuticsOttawa Hospital Research Institute 501 Smyth Box 926 Ottawa ON K1H 8L6 Canada
- Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa 451 Smyth Rd Ottawa ON K1H 8M5 Canada
| | - Douglas A. Gray
- Centre for Cancer TherapeuticsOttawa Hospital Research Institute 501 Smyth Box 926 Ottawa ON K1H 8L6 Canada
- Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa 451 Smyth Rd Ottawa ON K1H 8M5 Canada
| |
Collapse
|
67
|
Yang C, Zhu S, Yang H, Deng S, Fan P, Li M, Jin X. USP44 suppresses pancreatic cancer progression and overcomes gemcitabine resistance by deubiquitinating FBP1. Am J Cancer Res 2019; 9:1722-1733. [PMID: 31497353 PMCID: PMC6726996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered to be the deadliest cancer type in the world. Chemotherapy resistance, including gemcitabine, is the main reason for poor prognosis in PDAC patients. Increased aerobic glycolysis is involved in chemotherapy resistance in PDAC. Fructose-1,6-bisphosphatase (FBP1) is one of the key enzymes in the process of gluconeogenesis and negatively regulates aerobic glycolysis. FBP1 loss is common in PDAC patient specimens and is associated with gemcitabine resistance by activating the MAPK pathway. While the regulatory mechanism of FBP1 in pancreatic cancer remains un-elucidated. Here, we found that ubiquitin-specific protease 44 (USP44) was down-regulated in PDAC patients, and USP44 might be a prognostic marker for PDAC patients. USP44 inhibit tumor cells progression and regulated gemcitabine resistance in PDAC. Importantly, we revealed USP44 promoted FBP1 deubiquitination to increase FBP1 protein expression in pancreatic cancer, which might be one of the underlying mechanisms of USP44 impeding the progression of pancreatic cancer. Collectively, the recognition of USP44 in the stabilization of FBP1 indicates USP44 might be considered as a new prognostic marker for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Chong Yang
- Organ Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of ChinaChengdu 610072, China
| | - Shikai Zhu
- Organ Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of ChinaChengdu 610072, China
| | - Hongji Yang
- Organ Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of ChinaChengdu 610072, China
| | - Sisi Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Ping Fan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Mi Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Xin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| |
Collapse
|
68
|
Liao Y, Yin G, Wang X, Zhong P, Fan X, Huang C. Identification of candidate genes associated with the pathogenesis of small cell lung cancer via integrated bioinformatics analysis. Oncol Lett 2019; 18:3723-3733. [PMID: 31516585 PMCID: PMC6732946 DOI: 10.3892/ol.2019.10685] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of small cell lung cancer (SCLC), a highly metastatic malignant tumor, remains unclear. In the present study, important genes and pathways that are involved in the pathogenesis of SCLC were identified. The following four datasets were downloaded from the Gene Expression Omnibus: GSE60052, GSE43346, GSE15240 and GSE6044. The differentially expressed genes (DEGs) between the SCLC samples and the normal samples were analyzed using R software. The limma package was used for every dataset. The RobustRankAggreg package was used to integrate the DEGs from the four datasets. Functional and pathway enrichment analyses were conducted using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases with FunRich software and R software, respectively. In addition, the protein-protein interaction (PPI) network of the DEGs was constructed using the STRING database and Cytoscape software. Hub genes and significant modules were identified using Molecular Complex Detection in Cytoscape software. Finally, the expression values of hub genes were determined using the Oncomine online database. In total, 412 DEGs were identified following the integration of the four datasets, with 146 upregulated genes and 266 downregulated genes. The upregulated DEGs were primarily enriched in the cell cycle, cell division and microtubule binding. The downregulated DEGs were primarily enriched in the complement and coagulation cascades, the cytokine-mediated signaling pathway and protein binding. Eight hub genes and 1 significant module correlated to the cell cycle pathway were identified based on a subset of the PPI network. Finally, five hub genes were identified as highly expressed in SCLC tissue compared with normal tissue. The cell cycle pathway may be the pathway most closely associated with the pathogenesis of SCLC. NDC80, BUB1B, PLK1, CDC20 and MAD2L1 should be the focus of follow-up studies regarding the diagnosis and treatment of SCLC.
Collapse
Affiliation(s)
- Yi Liao
- Department of Respiratory and Critical Care Medicine II, The Affiliated Hospital of Southwest Medical University, Luzhuo, Sichuan 646000, P.R. China
| | - Guofang Yin
- Department of Respiratory and Critical Care Medicine II, The Affiliated Hospital of Southwest Medical University, Luzhuo, Sichuan 646000, P.R. China
| | - Xue Wang
- Department of Respiratory and Critical Care Medicine II, The Affiliated Hospital of Southwest Medical University, Luzhuo, Sichuan 646000, P.R. China
| | - Ping Zhong
- Department of Respiratory and Critical Care Medicine II, The Affiliated Hospital of Southwest Medical University, Luzhuo, Sichuan 646000, P.R. China
| | - Xianming Fan
- Department of Respiratory and Critical Care Medicine II, The Affiliated Hospital of Southwest Medical University, Luzhuo, Sichuan 646000, P.R. China
| | - Chengliang Huang
- Department of Respiratory and Critical Care Medicine II, The Affiliated Hospital of Southwest Medical University, Luzhuo, Sichuan 646000, P.R. China
| |
Collapse
|
69
|
Zhang YK, Tian WZ, Zhang RS, Zhang YJ, Ma HT. Ubiquitin-specific protease 44 inhibits cell growth by suppressing AKT signaling in non-small cell lung cancer. Kaohsiung J Med Sci 2019; 35:535-541. [PMID: 31197957 DOI: 10.1002/kjm2.12096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022] Open
Abstract
Ubiquitin-specific protease 44 (USP44) has been reported as a tumor suppressor or promoter in some tumors, but its function in non-small cell lung cancer (NSCLC) is still unclear. In this study, USP44 was found significantly downregulated in both of NSCLC tissues and cell lines, and low expression of USP44 predicted a poor prognosis for NSCLC patients. Overexpression of USP44 markedly downregulated the expression levels of Cyclin D1 and CDK4, but upregulated p53 expression, as a result of which, suppressing the cell growth of NSCLC cells. Further studies indicated that overexpression of USP44 significantly inhibited the phosphorylation of AKT, and its down-stream signals, including mTOR and P70S6K. Moreover, overexpression of USP44 increased PTEN protein but not its mRNA levels, which suggested that USP44 inhibited AKT signaling by stabilizing PTEN in NSCLC cells. In conclusion, we demonstrated that USP44 showed prior evidence of a tumor suppressive function in NSCLC cells, and inhibited NSCLC cell growth by suppressing AKT signaling, suggesting that USP44 could be as a novel target for NSCLC therapy.
Collapse
Affiliation(s)
- Yun-Kui Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Thoracic Surgery, Shanxi Tumor Hospital, Taiyuan, China
| | - Wen-Ze Tian
- Department of Thoracic Surgery, Huai'an First People's Hospital, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Rong-Sheng Zhang
- Department of Thoracic Surgery, Shanxi Tumor Hospital, Taiyuan, China
| | - Yu-Jie Zhang
- Department of Thoracic Surgery, Shanxi Tumor Hospital, Taiyuan, China
| | - Hai-Tao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
70
|
Bai Y, Xiong L, Zhu M, Yang Z, Zhao J, Tang H. Co-expression network analysis identified KIF2C in association with progression and prognosis in lung adenocarcinoma. Cancer Biomark 2019; 24:371-382. [DOI: 10.3233/cbm-181512] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
71
|
Moura M, Conde C. Phosphatases in Mitosis: Roles and Regulation. Biomolecules 2019; 9:E55. [PMID: 30736436 PMCID: PMC6406801 DOI: 10.3390/biom9020055] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Mitosis requires extensive rearrangement of cellular architecture and of subcellular structures so that replicated chromosomes can bind correctly to spindle microtubules and segregate towards opposite poles. This process originates two new daughter nuclei with equal genetic content and relies on highly-dynamic and tightly regulated phosphorylation of numerous cell cycle proteins. A burst in protein phosphorylation orchestrated by several conserved kinases occurs as cells go into and progress through mitosis. The opposing dephosphorylation events are catalyzed by a small set of protein phosphatases, whose importance for the accuracy of mitosis is becoming increasingly appreciated. This review will focus on the established and emerging roles of mitotic phosphatases, describe their structural and biochemical properties, and discuss recent advances in understanding the regulation of phosphatase activity and function.
Collapse
Affiliation(s)
- Margarida Moura
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
| | - Carlos Conde
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
72
|
Lin YH, Forster M, Liang Y, Yu M, Wang H, Robert F, Langlais D, Pelletier J, Clare S, Nijnik A. USP44 is dispensable for normal hematopoietic stem cell function, lymphocyte development, and B-cell-mediated immune response in a mouse model. Exp Hematol 2019; 72:1-8. [PMID: 30639577 DOI: 10.1016/j.exphem.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/02/2019] [Accepted: 01/06/2019] [Indexed: 02/06/2023]
Abstract
Ubiquitin-specific protease 44 (USP44) is a nuclear protein with deubiquitinase (DUB) catalytic activity that has been implicated as an important regulator of cell cycle progression, gene expression, and genomic stability. Dysregulation in the molecular machinery controlling cell proliferation, gene expression, and genomic stability in human or mouse is commonly linked to hematopoietic dysfunction, immunodeficiency, and cancer. We therefore set out to explore the role of USP44 in hematopoietic and immune systems through characterization of a Usp44-deficient mouse model. We report that USP44 is dispensable for the maintenance of hematopoietic stem cell numbers and function under homeostatic conditions, and also after irradiation or serial transplantation. USP44 is also not required for normal lymphocyte development. Usp44-deficient B cells show normal activation, proliferation, and immunoglobulin class switching in response to in vitro stimulation, and Usp44-deficient mice mount normal antibody response to immunization. We also tested the effects of USP44 deficiency on disease progression and survival in the Emu-myc model of mouse B-cell lymphoma and observed a trend toward earlier lethality of Usp44-/- Emu-myc mice; however, this did not reach statistical significance. Overall, we conclude that USP44 is dispensable for the normal physiology of hematopoietic and immune systems, and its functions in these systems are likely redundant with other USP family proteins.
Collapse
Affiliation(s)
- Yun Hsiao Lin
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Michael Forster
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Yue Liang
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Mansen Yu
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Francis Robert
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - David Langlais
- McGill University Centre on Complex Traits, McGill University, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC, Canada; The Rosalind and Morris Goodman Cancer Research Centre, McGill University, QC, Canada
| | - Simon Clare
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Centre on Complex Traits, McGill University, Montreal, QC, Canada.
| |
Collapse
|
73
|
Chen HIH, Chiu YC, Zhang T, Zhang S, Huang Y, Chen Y. GSAE: an autoencoder with embedded gene-set nodes for genomics functional characterization. BMC SYSTEMS BIOLOGY 2018; 12:142. [PMID: 30577835 PMCID: PMC6302374 DOI: 10.1186/s12918-018-0642-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Bioinformatics tools have been developed to interpret gene expression data at the gene set level, and these gene set based analyses improve the biologists’ capability to discover functional relevance of their experiment design. While elucidating gene set individually, inter-gene sets association is rarely taken into consideration. Deep learning, an emerging machine learning technique in computational biology, can be used to generate an unbiased combination of gene set, and to determine the biological relevance and analysis consistency of these combining gene sets by leveraging large genomic data sets. Results In this study, we proposed a gene superset autoencoder (GSAE), a multi-layer autoencoder model with the incorporation of a priori defined gene sets that retain the crucial biological features in the latent layer. We introduced the concept of the gene superset, an unbiased combination of gene sets with weights trained by the autoencoder, where each node in the latent layer is a superset. Trained with genomic data from TCGA and evaluated with their accompanying clinical parameters, we showed gene supersets’ ability of discriminating tumor subtypes and their prognostic capability. We further demonstrated the biological relevance of the top component gene sets in the significant supersets. Conclusions Using autoencoder model and gene superset at its latent layer, we demonstrated that gene supersets retain sufficient biological information with respect to tumor subtypes and clinical prognostic significance. Superset also provides high reproducibility on survival analysis and accurate prediction for cancer subtypes. Electronic supplementary material The online version of this article (10.1186/s12918-018-0642-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hung-I Harry Chen
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA.,Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Yu-Chiao Chiu
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Tinghe Zhang
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Songyao Zhang
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA.,Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Yufei Huang
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA. .,Department of Epidemiology & Biostatistics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
74
|
The extracellular SEMA domain attenuates intracellular apoptotic signaling of semaphorin 6A in lung cancer cells. Oncogenesis 2018; 7:95. [PMID: 30518871 PMCID: PMC6281666 DOI: 10.1038/s41389-018-0105-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/01/2018] [Accepted: 11/14/2018] [Indexed: 12/27/2022] Open
Abstract
Semaphorin 6A (SEMA6A), a membrane-bound protein, is downregulated in lung cancer tissue compared to its adjacent normal tissue. However, the functions of SEMA6A in lung cancer cells are still unclear. In the present study, full length SEMA6A and various truncations were transfected into lung cancer cells to investigate the role of the different domains of SEMA6A in cell proliferation and survival, apoptosis, and in vivo tumor growth. SEMA6A-induced cell signaling was explored using gene silencing, co-immunoprecipitation, and co-culture assays. Our results showed that overexpression of SEMA6A reduced the growth of lung cancer cells in vitro and in vivo, and silencing SEMA6A increased the proliferation of normal lung fibroblasts. Truncated SEMA6A lacking the SEMA domain or the extracellular region induced more apoptosis than full length SEMA6A, and reintroducing the SEMA domain attenuated the apoptosis. Fas-associated protein with death domain (FADD) bound to the cytosolic region of truncated SEMA6A and was involved in SEMA6A-associated cytosol-induced apoptosis. This study suggests a novel function of SEMA6A in inducing apoptosis via FADD binding in lung cancer cells.
Collapse
|
75
|
Liu C, Wei J, Xu K, Sun X, Zhang H, Xiong C. CSE1L participates in regulating cell mitosis in human seminoma. Cell Prolif 2018; 52:e12549. [PMID: 30485574 PMCID: PMC6496685 DOI: 10.1111/cpr.12549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/28/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Objectives CSE1L has been reported to be highly expressed in various tumours. Testicular germ cell tumours are common among young males, and seminoma is the major type. However, whether CSE1L has functions in the seminoma is unclear. Materials and methods The expression of CSE1L was detected by immunohistochemistry in seminoma tissues and non‐tumour normal testis tissues from patients. CSE1L distribution during cell mitosis was determined by immunofluorescent staining with CSE1L, α‐tubulin and γ‐tubulin antibodies. The effects of Cse1L knockdown on cell proliferation and cell cycle progression were determined by Cell Counting Kit‐8 assay, flow cytometry, PH3 staining and bromodeoxyuridine incorporation assay. Results CSE1L was significantly enriched in the seminoma tissue compared with the non‐tumour normal testis tissue. CSE1L also co‐localized with α‐tubulin in the cells with a potential to divide. In the seminoma cell line TCam‐2, CSE1L was associated with the spindles and the centrosomes during cell division. The knockdown of CSE1L in TCam‐2 cells attenuated the cells’ proliferative capacity. Cell cycle assay revealed that the CSE1L‐deficient cells were mainly arrested in the G0/G1 phase and moderately delayed in the G2/M phase. The proportion of cells with multipolar spindle and abnormal spindle geometry was obviously increased by CSE1L expression silencing in the TCam‐2 cells. Conclusions Overall, these findings showed that CSE1L plays a pivotal role in maintaining cell proliferation and cell division in seminomas.
Collapse
Affiliation(s)
- Chunyan Liu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajing Wei
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Xu
- The First People's Hospital of Tianmen City, Tianmen, China
| | - Xiaosong Sun
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Huiping Zhang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, Hubei, China
| | - Chengliang Xiong
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, Hubei, China
| |
Collapse
|
76
|
Simonetti G, Padella A, do Valle IF, Fontana MC, Fonzi E, Bruno S, Baldazzi C, Guadagnuolo V, Manfrini M, Ferrari A, Paolini S, Papayannidis C, Marconi G, Franchini E, Zuffa E, Laginestra MA, Zanotti F, Astolfi A, Iacobucci I, Bernardi S, Sazzini M, Ficarra E, Hernandez JM, Vandenberghe P, Cools J, Bullinger L, Ottaviani E, Testoni N, Cavo M, Haferlach T, Castellani G, Remondini D, Martinelli G. Aneuploid acute myeloid leukemia exhibits a signature of genomic alterations in the cell cycle and protein degradation machinery. Cancer 2018; 125:712-725. [PMID: 30480765 PMCID: PMC6587451 DOI: 10.1002/cncr.31837] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/08/2018] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
Abstract
Background Aneuploidy occurs in more than 20% of acute myeloid leukemia (AML) cases and correlates with an adverse prognosis. Methods To understand the molecular bases of aneuploid acute myeloid leukemia (A‐AML), this study examined the genomic profile in 42 A‐AML cases and 35 euploid acute myeloid leukemia (E‐AML) cases. Results A‐AML was characterized by increased genomic complexity based on exonic variants (an average of 26 somatic mutations per sample vs 15 for E‐AML). The integration of exome, copy number, and gene expression data revealed alterations in genes involved in DNA repair (eg, SLX4IP, RINT1, HINT1, and ATR) and the cell cycle (eg, MCM2, MCM4, MCM5, MCM7, MCM8, MCM10, UBE2C, USP37, CK2, CK3, CK4, BUB1B, NUSAP1, and E2F) in A‐AML, which was associated with a 3‐gene signature defined by PLK1 and CDC20 upregulation and RAD50 downregulation and with structural or functional silencing of the p53 transcriptional program. Moreover, A‐AML was enriched for alterations in the protein ubiquitination and degradation pathway (eg, increased levels of UHRF1 and UBE2C and decreased UBA3 expression), response to reactive oxygen species, energy metabolism, and biosynthetic processes, which may help in facing the unbalanced protein load. E‐AML was associated with BCOR/BCORL1 mutations and HOX gene overexpression. Conclusions These findings indicate that aneuploidy‐related and leukemia‐specific alterations cooperate to tolerate an abnormal chromosome number in AML, and they point to the mitotic and protein degradation machineries as potential therapeutic targets. Aneuploid acute myeloid leukemia (A‐AML) is associated with genomic and transcriptional alterations in the cell cycle and protein degradation pathways. The upregulation of PLK1 and CDC20 and the downregulation of RAD50 and of a p53‐related signature are hallmarks of A‐AML.
Collapse
Affiliation(s)
- Giorgia Simonetti
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Antonella Padella
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Italo Farìa do Valle
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy.,CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Maria Chiara Fontana
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Eugenio Fonzi
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Samantha Bruno
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Carmen Baldazzi
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Viviana Guadagnuolo
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Marco Manfrini
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Anna Ferrari
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Stefania Paolini
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Cristina Papayannidis
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Giovanni Marconi
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Eugenia Franchini
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Elisa Zuffa
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Maria Antonella Laginestra
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Federica Zanotti
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Annalisa Astolfi
- Giorgio Prodi Cancer Research Center, University of Bologna, Bologna, Italy
| | - Ilaria Iacobucci
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Simona Bernardi
- Unit of Blood Diseases and Stem Cell Transplantation, University of Brescia, Brescia, Italy
| | - Marco Sazzini
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | - Jesus Maria Hernandez
- Fundación de Investigación del Cáncer de la Universidad de Salamanca, Salamanca, Spain
| | | | - Jan Cools
- Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Emanuela Ottaviani
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Nicoletta Testoni
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Michele Cavo
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | | | - Gastone Castellani
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Giovanni Martinelli
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| |
Collapse
|
77
|
Kernan J, Bonacci T, Emanuele MJ. Who guards the guardian? Mechanisms that restrain APC/C during the cell cycle. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1924-1933. [PMID: 30290241 DOI: 10.1016/j.bbamcr.2018.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/04/2018] [Accepted: 09/23/2018] [Indexed: 11/25/2022]
Abstract
The cell cycle is principally controlled by Cyclin Dependent Kinases (CDKs), whose oscillating activities are determined by binding to Cyclin coactivators. Cyclins exhibit dynamic changes in abundance as cells pass through the cell cycle. The sequential, timed accumulation and degradation of Cyclins, as well as many other proteins, imposes order on the cell cycle and contributes to genome maintenance. The destruction of many cell cycle regulated proteins, including Cyclins A and B, is controlled by a large, multi-subunit E3 ubiquitin ligase termed the Anaphase Promoting Complex/Cyclosome (APC/C). APC/C activity is tightly regulated during the cell cycle. Its activation state increases dramatically in mid-mitosis and it remains active until the end of G1 phase. Following its mandatory inactivation at the G1/S boundary, APC/C activity remains low until the subsequent mitosis. Due to its role in guarding against the inappropriate or untimely accumulation of Cyclins, the APC/C is a core component of the cell cycle oscillator. In addition to the regulation of Cyclins, APC/C controls the degradation of many other substrates. Therefore, it is vital that the activity of APC/C itself be tightly guarded. The APC/C is most well studied for its role and regulation during mitosis. However, the APC/C also plays a similarly important and conserved role in the maintenance of G1 phase. Here we review the diverse mechanisms counteracting APC/C activity throughout the cell cycle and the importance of their coordinated actions on cell growth, proliferation, and disease.
Collapse
Affiliation(s)
- Jennifer Kernan
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Thomas Bonacci
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Michael J Emanuele
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America.
| |
Collapse
|
78
|
Abstract
This review by Levine and Holland reviews the sources of mitotic errors in human tumors and their effect on cell fitness and transformation. They discuss new findings that suggest that chromosome missegregation can produce a proinflammatory environment and impact tumor responsiveness to immunotherapy and survey the vulnerabilities exposed by cell division errors and how they can be exploited therapeutically. Mitosis is a delicate event that must be executed with high fidelity to ensure genomic stability. Recent work has provided insight into how mitotic errors shape cancer genomes by driving both numerical and structural alterations in chromosomes that contribute to tumor initiation and progression. Here, we review the sources of mitotic errors in human tumors and their effect on cell fitness and transformation. We discuss new findings that suggest that chromosome missegregation can produce a proinflammatory environment and impact tumor responsiveness to immunotherapy. Finally, we survey the vulnerabilities exposed by cell division errors and how they can be exploited therapeutically.
Collapse
Affiliation(s)
- Michelle S Levine
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
79
|
Augustine B, Chin CF, Yeong FM. Role of Kip2 during early mitosis - impact on spindle pole body separation and chromosome capture. J Cell Sci 2018; 131:jcs.211425. [PMID: 29739877 DOI: 10.1242/jcs.211425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/30/2018] [Indexed: 11/20/2022] Open
Abstract
Mitotic spindle dynamics are regulated during the cell cycle by microtubule motor proteins. In Saccharomyces cerevisiae, one such protein is Kip2p, a plus-end motor that regulates the polymerization and stability of cytoplasmic microtubules (cMTs). Kip2p levels are regulated during the cell cycle, and its overexpression leads to the formation of hyper-elongated cMTs. To investigate the significance of varying Kip2p levels during the cell cycle and the hyper-elongated cMTs, we overexpressed KIP2 in the G1 phase and examined the effects on the separation of spindle pole bodies (SPBs) and chromosome segregation. Our results show that failure to regulate the cMT lengths during G1-S phase prevents the separation of SPBs. This, in turn, affects chromosome capture and leads to the activation of spindle assembly checkpoint (SAC) and causes mitotic arrest. These defects could be rescued by either the inactivation of checkpoint components or by co-overexpression of CIN8, which encodes a motor protein that elongates inter-polar microtubules (ipMTs). Hence, we propose that the maintenance of Kip2p level and cMT lengths during early cell division is important to ensure coordination between SPB separation and chromosome capture by kinetochore microtubules (kMTs).
Collapse
Affiliation(s)
- Beryl Augustine
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD4, 5 Science Drive 2, Singapore 117545
| | - Cheen Fei Chin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD4, 5 Science Drive 2, Singapore 117545
| | - Foong May Yeong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD4, 5 Science Drive 2, Singapore 117545
| |
Collapse
|
80
|
Kaushal K, Antao AM, Kim KS, Ramakrishna S. Deubiquitinating enzymes in cancer stem cells: functions and targeted inhibition for cancer therapy. Drug Discov Today 2018; 23:1974-1982. [PMID: 29864528 DOI: 10.1016/j.drudis.2018.05.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/15/2018] [Accepted: 05/29/2018] [Indexed: 12/28/2022]
Abstract
The ability of cancers to evade conventional treatments, such as chemotherapy and radiation therapy, has been attributed to a subpopulation of cancer stem cells (CSCs). CSCs are regulated by mechanisms similar to those that regulate normal stem cells (NSCs), including processes involving ubiquitination and deubiquitination enzymes (DUBs) that regulate the expression of various factors, such as Notch, Wnt, Sonic Hedgehog (Shh), and Hippo. In this review, we discuss the roles of various DUBs involved in the regulation of core stem cell transcription factors and CSC-related proteins that are implicated in the modulation of cellular processes and carcinogenesis. In addition, we discuss the various DUB inhibitors that have been designed to target processes relevant to cancer and CSC maintenance.
Collapse
Affiliation(s)
- Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|
81
|
Nigg EA, Holland AJ. Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nat Rev Mol Cell Biol 2018; 19:297-312. [PMID: 29363672 PMCID: PMC5969912 DOI: 10.1038/nrm.2017.127] [Citation(s) in RCA: 328] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Centrioles are conserved microtubule-based organelles that form the core of the centrosome and act as templates for the formation of cilia and flagella. Centrioles have important roles in most microtubule-related processes, including motility, cell division and cell signalling. To coordinate these diverse cellular processes, centriole number must be tightly controlled. In cycling cells, one new centriole is formed next to each pre-existing centriole in every cell cycle. Advances in imaging, proteomics, structural biology and genome editing have revealed new insights into centriole biogenesis, how centriole numbers are controlled and how alterations in these processes contribute to diseases such as cancer and neurodevelopmental disorders. Moreover, recent work has uncovered the existence of surveillance pathways that limit the proliferation of cells with numerical centriole aberrations. Owing to this progress, we now have a better understanding of the molecular mechanisms governing centriole biogenesis, opening up new possibilities for targeting these pathways in the context of human disease.
Collapse
Affiliation(s)
- Erich A. Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Andrew J. Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
82
|
Shah VJ, Maddika S. CRL7 SMU1 E3 ligase complex-driven H2B ubiquitylation functions in sister chromatid cohesion by regulating SMC1 expression. J Cell Sci 2018; 131:jcs.213868. [PMID: 29507117 DOI: 10.1242/jcs.213868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/26/2018] [Indexed: 12/26/2022] Open
Abstract
Cullin-RING-type E3 ligases (CRLs) control a broad range of biological processes by ubiquitylating numerous cellular substrates. However, the role of CRL E3 ligases in chromatid cohesion is unknown. In this study, we identified a new CRL-type E3 ligase (designated as CRL7SMU1 complex) that has an essential role in the maintenance of chromatid cohesion. We demonstrate that SMU1, DDB1, CUL7 and RNF40 are integral components of this complex. SMU1, by acting as a substrate recognition module, binds to H2B and mediates monoubiquitylation at the lysine (K) residue K120 through CRL7SMU1 E3 ligase complex. Depletion of CRL7SMU1 leads to loss of H2B ubiquitylation at the SMC1a locus and, thus, subsequently compromised SMC1a expression in cells. Knockdown of CRL7SMU1 components or loss of H2B ubiquitylation leads to defective sister chromatid cohesion, which is rescued by restoration of SMC1a expression. Together, our results unveil an important role of CRL7SMU1 E3 ligase in promoting H2B ubiquitylation for maintenance of sister chromatid cohesion during mitosis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Varun Jayeshkumar Shah
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India-500 039.,Graduate studies, Manipal Academy of Higher Education, Manipal, India-576 104
| | - Subbareddy Maddika
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India-500 039
| |
Collapse
|
83
|
Bernardes VF, Odell EW, Gomez RS, Gomes CC. DNA Aneuploidy in Malignant Salivary Gland Neoplasms is Independent of USP44 Protein Expression. Braz Dent J 2018; 28:148-151. [PMID: 28492742 DOI: 10.1590/0103-6440201701018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/06/2017] [Indexed: 11/21/2022] Open
Abstract
Chromosomal instability, leading to aneuploidy, is one of the hallmarks of human cancers. USP44 (ubiquitin specific peptidase 44) is an important molecule that plays a regulatory role in the mitotic checkpoint and USP44 loss causes chromosome mis-segregation, aneuploidy and tumorigenesis in vivo. In this study, it was investigated the immunoexpression of USP44 in 28 malignant salivary gland neoplasms and associated the results with DNA ploidy status assessed by image cytometry. USP44 protein was widely expressed in most of the tumor samples and no clear association could be established between its expression and DNA ploidy status or tumor size. On this basis, it may be concluded that the aneuploidy of the salivary gland cancers included in this study was not driven by loss of USP44 protein expression.
Collapse
Affiliation(s)
- Vanessa Fátima Bernardes
- Department of Pathology, Biological Sciences Institute, UFMG - Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Edward W Odell
- Division of Salivary and Mucosal Research, Oral Pathology, King's College London Dental Institute, London, UK
| | - Ricardo Santiago Gomez
- Department of Oral Pathology and Medicine, Dental School, UFMG - Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carolina Cavalieri Gomes
- Department of Pathology, Biological Sciences Institute, UFMG - Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
84
|
USP35 regulates mitotic progression by modulating the stability of Aurora B. Nat Commun 2018; 9:688. [PMID: 29449677 PMCID: PMC5814453 DOI: 10.1038/s41467-018-03107-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/17/2018] [Indexed: 01/16/2023] Open
Abstract
Although approximately 100 deubiquitinating enzymes (DUBs) are encoded in the human genome, very little is known about the DUBs that function in mitosis. Here, we demonstrate that DUB USP35 functions as a mitotic regulator by controlling the protein levels and downstream signaling of Aurora B and the depletion of USP35 eventually leads to several mitotic defects including cytokinesis failures. USP35 binds to and deubiquitinates Aurora B, and inhibits the APCCDH1-mediated proteasomal degradation of Aurora B, thus maintaining its steady-state levels during mitosis. In addition, the loss of USP35 decreases the phosphorylation of histone H3-Ser10, an Aurora B substrate. Finally, the transcription factor FoxM1 promotes the expression of USP35, as well as that of Aurora B, during the cell cycle. Our findings suggest that USP35 regulates the stability and function of Aurora B by blocking APCCDH1-induced proteasomal degradation, thereby controlling mitotic progression. Aurora B kinase is a member of the chromosomal passenger complex, which is an indispensable regulator of mitosis. Here the authors show that the deubiquitinating enzyme USP35 has a role in mitotic progression by inhibiting proteasomal degradation of Aurora B kinase, leading to its activation.
Collapse
|
85
|
Kuo CHS, Liu CY, Pavlidis S, Lo YL, Wang YW, Chen CH, Ko HW, Chung FT, Lin TY, Wang TY, Lee KY, Guo YK, Wang TH, Yang CT. Unique Immune Gene Expression Patterns in Bronchoalveolar Lavage and Tumor Adjacent Non-Neoplastic Lung Tissue in Non-Small Cell Lung Cancer. Front Immunol 2018; 9:232. [PMID: 29483918 PMCID: PMC5816075 DOI: 10.3389/fimmu.2018.00232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/26/2018] [Indexed: 12/13/2022] Open
Abstract
Background The immune cells in the local environments surrounding non-small cell lung cancer (NSCLC) implicate the balance of pro- and antitumor immunity; however, their transcriptomic profiles remain poorly understood. Methods A transcriptomic microarray study of bronchoalveolar lavage (BAL) cells harvested from tumor-bearing lung segments was performed in a discovery group. The findings were validated (1) in published microarray datasets, (2) in an independent group by RT-qPCR, and (3) in non-diseased and tumor adjacent non-neoplastic lung tissue by immunohistochemistry and in BAL cell lysates by immunoblotting. Result The differential expression of 129 genes was identified in the discovery group. These genes revealed functional enrichment in Fc gamma receptor-dependent phagocytosis and circulating immunoglobulin complex among others. Microarray datasets analysis (n = 607) showed that gene expression of BAL cells of tumor-bearing lung segment was also the unique transcriptomic profile of tumor adjacent non-neoplastic lung of early stage NSCLC and a significantly gradient increase of immunoglobulin genes’ expression for non-diseased lungs, tumor adjacent non-neoplastic lungs, and tumors was identified (ANOVA, p < 2 × 10−16). A 53-gene signature was determined with significant correlation with inhibitory checkpoint PDCD1 (r = 0.59, p = 0.0078) among others, where the nine top genes including IGJ and IGKC were RT-qPCR validated with high diagnostic performance (AUC: 0.920, 95% CI: 0.831–0.985, p = 2.98 × 10−7). Increased staining and expression of IGKC revealed by immunohistochemistry and immunoblotting in tumor adjacent non-neoplastic lung tissues (Wilcoxon signed-rank test, p < 0.001) and in BAL cell lysates (p < 0.01) of NSCLC, respectively, were noted. Conclusion The BAL cells of tumor-bearing lung segments and tumor adjacent non-neoplastic lung tissues present a unique gene expression characterized by IGKC in relation to inhibitory checkpoints. Further study of humoral immune responses to NSCLC is warranted.
Collapse
Affiliation(s)
- Chih-Hsi Scott Kuo
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Computing, Imperial College London, Data Science Institute, London, United Kingdom
| | - Chien-Ying Liu
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Stelios Pavlidis
- Department of Computing, Imperial College London, Data Science Institute, London, United Kingdom
| | - Yu-Lun Lo
- Division of Airway Diseases, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yen-Wen Wang
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Chih-Hung Chen
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - How-Wen Ko
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Fu-Tsai Chung
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Tin-Yu Lin
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Tsai-Yu Wang
- Division of Airway Diseases, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Kang-Yun Lee
- Division of Thoracic Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Yi-Ke Guo
- Department of Computing, Imperial College London, Data Science Institute, London, United Kingdom
| | - Tzu-Hao Wang
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Cheng-Ta Yang
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
86
|
Zhang MY, Liu XX, Li H, Li R, Liu X, Qu YQ. Elevated mRNA Levels of AURKA, CDC20 and TPX2 are associated with poor prognosis of smoking related lung adenocarcinoma using bioinformatics analysis. Int J Med Sci 2018; 15:1676-1685. [PMID: 30588191 PMCID: PMC6299412 DOI: 10.7150/ijms.28728] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/11/2018] [Indexed: 01/10/2023] Open
Abstract
Background and aim: Adenocarcinoma is a very common pathological subtype for lung cancer. We aimed to identify the gene signature associated with the prognosis of smoking related lung adenocarcinoma using bioinformatics analysis. Methods: A total of five gene expression profiles (GSE31210, GSE32863, GSE40791, GSE43458 and GSE75037) have been identified from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were analyzed using GEO2R software and functional and pathway enrichment analysis. Furthermore, the overall survival (OS) and recurrence-free survival (RFS) have been validated using an independent cohort from the Cancer Genome Atlas (TCGA) database. Results: We identified a total of 58 DEGs which mainly enriched in ECM-receptor interaction, platelet activation and PPAR signaling pathway. Then according to the enrichment analysis results, we selected three genes (AURKA, CDC20 and TPX2) for their roles in regulating tumor cell cycle and cell division. The results showed that the hazard ratio (HR) of the mRNA expression of AURKA for OS was 1.588 with (1.127-2.237) 95% confidence interval (CI) (P=0.009). The mRNA levels of CDC20 (HR 1.530, 95% CI 1.086-2.115, P=0.016) and TPX2 (HR 1.777, 95%CI 1.262-2.503, P=0.001) were also significantly associated with the OS. Expression of these three genes were not associated with RFS, suggesting that there might be many factors affect RFS. Conclusion: The mRNA signature of AURKA, CDC20 and TPX2 were potential biomarkers for predicting poor prognosis of smoking related lung adenocarcinoma.
Collapse
Affiliation(s)
- Meng-Yu Zhang
- Department of Respiratory Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiao-Xia Liu
- Department of Respiratory Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Hao Li
- Department of Respiratory Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Rui Li
- Department of Respiratory Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiao Liu
- Department of Respiratory Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yi-Qing Qu
- Department of Respiratory Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
87
|
Lan X, Atanassov BS, Li W, Zhang Y, Florens L, Mohan RD, Galardy PJ, Washburn MP, Workman JL, Dent SYR. USP44 Is an Integral Component of N-CoR that Contributes to Gene Repression by Deubiquitinating Histone H2B. Cell Rep 2017; 17:2382-2393. [PMID: 27880911 DOI: 10.1016/j.celrep.2016.10.076] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/20/2016] [Accepted: 10/19/2016] [Indexed: 11/20/2022] Open
Abstract
Decreased expression of the USP44 deubiquitinase has been associated with global increases in H2Bub1 levels during mouse embryonic stem cell (mESC) differentiation. However, whether USP44 directly deubiquitinates histone H2B or how its activity is targeted to chromatin is not known. We identified USP44 as an integral subunit of the nuclear receptor co-repressor (N-CoR) complex. USP44 within N-CoR deubiquitinates H2B in vitro and in vivo, and ablation of USP44 impairs the repressive activity of the N-CoR complex. Chromatin immunoprecipitation (ChIP) experiments confirmed that USP44 recruitment reduces H2Bub1 levels at N-CoR target loci. Furthermore, high expression of USP44 correlates with reduced levels of H2Bub1 in the breast cancer cell line MDA-MB-231. Depletion of either USP44 or TBL1XR1 impairs the invasiveness of MDA-MB-231 cells in vitro and causes an increase of global H2Bub1 levels. Our findings indicate that USP44 contributes to N-CoR functions in regulating gene expression and is required for efficient invasiveness of triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Xianjiang Lan
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Program in Epigenetics and Molecular Carcinogenesis, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Boyko S Atanassov
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wenqian Li
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Program in Epigenetics and Molecular Carcinogenesis, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ryan D Mohan
- University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Paul J Galardy
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
88
|
Pan-cancer analysis of homozygous deletions in primary tumours uncovers rare tumour suppressors. Nat Commun 2017; 8:1221. [PMID: 29089486 PMCID: PMC5663922 DOI: 10.1038/s41467-017-01355-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 09/12/2017] [Indexed: 11/23/2022] Open
Abstract
Homozygous deletions are rare in cancers and often target tumour suppressor genes. Here, we build a compendium of 2218 primary tumours across 12 human cancer types and systematically screen for homozygous deletions, aiming to identify rare tumour suppressors. Our analysis defines 96 genomic regions recurrently targeted by homozygous deletions. These recurrent homozygous deletions occur either over tumour suppressors or over fragile sites, regions of increased genomic instability. We construct a statistical model that separates fragile sites from regions showing signatures of positive selection for homozygous deletions and identify candidate tumour suppressors within those regions. We find 16 established tumour suppressors and propose 27 candidate tumour suppressors. Several of these genes (including MGMT, RAD17, and USP44) show prior evidence of a tumour suppressive function. Other candidate tumour suppressors, such as MAFTRR, KIAA1551, and IGF2BP2, are novel. Our study demonstrates how rare tumour suppressors can be identified through copy number meta-analysis. Homozygous deletions are rare in cancers and often target tumour suppressor genes. Here, the authors conduct pan-cancer analyses and apply statistical modelling to identify 27 candidate tumour suppressors, including MAFTRR, KIAA1551, and IGF2BP2.
Collapse
|
89
|
Darling S, Fielding AB, Sabat-Pośpiech D, Prior IA, Coulson JM. Regulation of the cell cycle and centrosome biology by deubiquitylases. Biochem Soc Trans 2017; 45:1125-1136. [PMID: 28900014 PMCID: PMC5652225 DOI: 10.1042/bst20170087] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Abstract
Post-translational modification of proteins by ubiquitylation is increasingly recognised as a highly complex code that contributes to the regulation of diverse cellular processes. In humans, a family of almost 100 deubiquitylase enzymes (DUBs) are assigned to six subfamilies and many of these DUBs can remove ubiquitin from proteins to reverse signals. Roles for individual DUBs have been delineated within specific cellular processes, including many that are dysregulated in diseases, particularly cancer. As potentially druggable enzymes, disease-associated DUBs are of increasing interest as pharmaceutical targets. The biology, structure and regulation of DUBs have been extensively reviewed elsewhere, so here we focus specifically on roles of DUBs in regulating cell cycle processes in mammalian cells. Over a quarter of all DUBs, representing four different families, have been shown to play roles either in the unidirectional progression of the cell cycle through specific checkpoints, or in the DNA damage response and repair pathways. We catalogue these roles and discuss specific examples. Centrosomes are the major microtubule nucleating centres within a cell and play a key role in forming the bipolar mitotic spindle required to accurately divide genetic material between daughter cells during cell division. To enable this mitotic role, centrosomes undergo a complex replication cycle that is intimately linked to the cell division cycle. Here, we also catalogue and discuss DUBs that have been linked to centrosome replication or function, including centrosome clustering, a mitotic survival strategy unique to cancer cells with supernumerary centrosomes.
Collapse
Affiliation(s)
- Sarah Darling
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, U.K
| | - Andrew B Fielding
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, U.K
| | - Dorota Sabat-Pośpiech
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, U.K
| | - Ian A Prior
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, U.K
| | - Judy M Coulson
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, U.K.
| |
Collapse
|
90
|
Zhang J, Shao J, Zhu L, Zhao R, Xing J, Wang J, Guo X, Tu S, Han B, Yu K. Molecular profiling identifies prognostic markers of stage IA lung adenocarcinoma. Oncotarget 2017; 8:74846-74855. [PMID: 29088828 PMCID: PMC5650383 DOI: 10.18632/oncotarget.20420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/16/2017] [Indexed: 12/29/2022] Open
Abstract
We previously showed that different pathologic subtypes were associated with different prognostic values in patients with stage IA lung adenocarcinoma (AC). We hypothesize that differential gene expression profiles of different subtypes may be valuable factors for prognosis in stage IA lung adenocarcinoma. We performed microarray gene expression profiling on tumor tissues micro-dissected from patients with acinar and solid predominant subtypes of stage IA lung adenocarcinoma. These patients had undergone a lobectomy and mediastinal lymph node dissection at the Shanghai Chest Hospital, Shanghai, China in 2012. No patient had preoperative treatment. We performed the Gene Set Enrichment Analysis (GSEA) analysis to look for gene expression signatures associated with tumor subtypes. The histologic subtypes of all patients were classified according to the 2015 WHO lung Adenocarcinoma classification. We found that patients with the solid predominant subtype are enriched for genes involved in RNA polymerase activity as well as inactivation of the p53 pathway. Further, we identified a list of genes that may serve as prognostic markers for stage IA lung adenocarcinoma. Validation in the TCGA database shows that these genes are correlated with survival, suggesting that they are novel prognostic factors for stage IA lung adenocarcinoma. In conclusion, we have uncovered novel prognostic factors for stage IA lung adenocarcinoma using gene expression profiling in combination with histopathology subtyping.
Collapse
Affiliation(s)
- Jie Zhang
- Shanghai Chest Hospital, Shanghai JiaoTong University, Department of Pathology, Shanghai, China
| | - Jinchen Shao
- Shanghai Chest Hospital, Shanghai JiaoTong University, Department of Pathology, Shanghai, China
| | - Lei Zhu
- Shanghai Chest Hospital, Shanghai JiaoTong University, Department of Pathology, Shanghai, China
| | - Ruiying Zhao
- Shanghai Chest Hospital, Shanghai JiaoTong University, Department of Pathology, Shanghai, China
| | - Jie Xing
- Shanghai Chest Hospital, Shanghai JiaoTong University, Department of Pathology, Shanghai, China
| | - Jun Wang
- Tumor Initiation & Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla
| | - Xiaohui Guo
- Bioinformatics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla
| | - Shichun Tu
- Allele Biotechnology & Pharmaceuticals, Inc., Nancy Ridge Drive, San Diego, USA
| | - Baohui Han
- Shanghai Chest Hospital, Shanghai JiaoTong University, Department of Pulmonary Medicine, Shanghai, China
| | - Keke Yu
- Shanghai Chest Hospital, Shanghai JiaoTong University, Department of Pathology, Shanghai, China.,Shanghai Chest Hospital, Shanghai JiaoTong University, Department of Biobank, Shanghai, China
| |
Collapse
|
91
|
CpG Island Methylation Correlates with the Use of Alternative Promoters for USP44 Gene Expression in Human Pluripotent Stem Cells and Testes. Stem Cells Dev 2017; 26:1100-1110. [DOI: 10.1089/scd.2017.0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
92
|
Norris SR, Ohi R. Cell Division: Centrosomes Have Separation Anxiety. Curr Biol 2017. [PMID: 28633031 DOI: 10.1016/j.cub.2017.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Prior to mitosis, duplicated centrosomes are tethered together, which is thought to prevent mitotic defects. A new study establishes the role of tetrameric Kif25, a microtubule minus-end-directed kinesin-14 motor, in preventing premature centrosome separation through a microtubule-dependent pathway.
Collapse
Affiliation(s)
- Stephen R Norris
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
93
|
Wang Q, Tang Y, Xu Y, Xu S, Jiang Y, Dong Q, Zhou Y, Ge W. The X-linked deubiquitinase USP9X is an integral component of centrosome. J Biol Chem 2017; 292:12874-12884. [PMID: 28620049 DOI: 10.1074/jbc.m116.769943] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/02/2017] [Indexed: 12/23/2022] Open
Abstract
The X-linked deubiquitinase USP9X has been implicated in multiple pathological disorders including malignancies and X-linked intellectual disability. However, its biological function and substrate repertoire remain to be investigated. In this study, we utilized the tandem mass tag labeling assay to identify USP9X-regulated proteins and revealed that the expression of multiple genes is altered in USP9X-deficient cells. Interestingly, we showed that USP9X promotes stabilization of centrosome proteins PCM1 and CEP55 through its catalytic activity. Remarkably, we demonstrated that USP9X is physically associated and spatially co-localized with PCM1 and CEP55 in the centrosome, and we revealed that either PCM1 or CEP55 loss resulted in impairment of USP9X centrosome localization. Moreover, we showed that USP9X is required for centrosome duplication, and this effect is dependent on its catalytic activity and its N-terminal module, which is responsible for physical association of USP9X with PCM1 and CEP55. Collectively, our experiments identified USP9X as an integral component of the centrosome where it functions to stabilize PCM1 and CEP55 and promote centrosome biogenesis.
Collapse
Affiliation(s)
- Qian Wang
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yiman Tang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yue Xu
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Shilei Xu
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yong Jiang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Qiuping Dong
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China.
| | - Wenshu Ge
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| |
Collapse
|
94
|
Nishimura S, Oki E, Ando K, Iimori M, Nakaji Y, Nakashima Y, Saeki H, Oda Y, Maehara Y. High ubiquitin-specific protease 44 expression induces DNA aneuploidy and provides independent prognostic information in gastric cancer. Cancer Med 2017; 6:1453-1464. [PMID: 28544703 PMCID: PMC5463085 DOI: 10.1002/cam4.1090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 12/20/2022] Open
Abstract
Chromosomal instability (CIN), characterized by aneuploidy, is a major molecular subtype of gastric cancer. The deubiquitinase USP44 is an important regulator of APC activation in the spindle checkpoint and leads to proper chromosome separation to prevent aneuploidy. Aberrant expression of USP44 leads CIN in cells; however, the correlation between USP44 and DNA aneuploidy in gastric cancer is largely unknown. We analyzed USP44 expression in 207 patients with gastric cancer by immunohistochemistry and found that the proportion of USP44 expression was higher in gastric cancer tumors (mean, 39.6%) than in gastric normal mucosa (mean, 14.6%) (P < 0.0001). DNA aneuploidy was observed in 124 gastric cancer cases and high USP44 expression in cancer strongly correlated with DNA aneuploidy (P = 0.0005). The overall survival was significantly poorer in the high USP44 expression group compared with the low USP44 group (P = 0.033). Notably, USP44 expression had no prognostic impact in the diploid subgroup; however, high USP44 expression was a strong poor prognostic factor for progression‐free survival (P = 0.018) and overall survival (P = 0.036) in the aneuploid subgroup. We also confirmed that stable overexpression of USP44 induced somatic copy‐number aberrations in hTERT‐RPE‐1 cells (50.6%) in comparison with controls (6.6%) (P < 0.0001). Collectively, our data show USP44 has clinical impact on the induction of DNA aneuploidy and poor prognosis in the CIN gastric cancer subtype.
Collapse
Affiliation(s)
- Sho Nishimura
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Ando
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Iimori
- Department of Molecular Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yu Nakaji
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichiro Nakashima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Saeki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
95
|
Xiao J, Liu A, Lu X, Chen X, Li W, He S, He B, Chen Q. Prognostic significance of TCF21 mRNA expression in patients with lung adenocarcinoma. Sci Rep 2017; 7:2027. [PMID: 28515486 PMCID: PMC5435710 DOI: 10.1038/s41598-017-02290-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/10/2017] [Indexed: 12/16/2022] Open
Abstract
Several prognostic indicators have shown inconsistencies in patients of different genders with lung adenocarcinoma, indicating that these variations may be due to the different genetic background of males and females with lung adenocarcinoma. In this study, we first used the Gene-Cloud of Biotechnology Information (GCBI) bioinformatics platform to identify differentially expressed genes (DEGs) that eliminated gender differences between lung adenocarcinoma and normal lung tissues. Then, we screened out that transcription factor 21 (TCF21) is a hub gene among these DEGs by creating a gene co-expression network on the GCBI platform. Furthermore, we used the comprehensive survival analysis platforms Kaplan-Meier plotter and PrognoScan to assess the prognostic value of TCF21 expression in lung adenocarcinoma patients. Finally, we concluded that decreased mRNA expression of TCF21 is a predictor for poor prognosis in patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Jian Xiao
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Aibin Liu
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Lu
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Xi Chen
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Wei Li
- Department of Geriatrics, Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, China
| | - Shuya He
- Department of Biochemistry & Biology, University of South China, Hengyang, China
| | - Bixiu He
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
96
|
USP9X regulates centrosome duplication and promotes breast carcinogenesis. Nat Commun 2017; 8:14866. [PMID: 28361952 PMCID: PMC5380967 DOI: 10.1038/ncomms14866] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 01/31/2017] [Indexed: 12/23/2022] Open
Abstract
Defective centrosome duplication is implicated in microcephaly and primordial dwarfism as well as various ciliopathies and cancers. Yet, how the centrosome biogenesis is regulated remains poorly understood. Here we report that the X-linked deubiquitinase USP9X is physically associated with centriolar satellite protein CEP131, thereby stabilizing CEP131 through its deubiquitinase activity. We demonstrate that USP9X is an integral component of centrosome and is required for centrosome biogenesis. Loss-of-function of USP9X impairs centrosome duplication and gain-of-function of USP9X promotes centrosome amplification and chromosome instability. Significantly, USP9X is overexpressed in breast carcinomas, and its level of expression is correlated with that of CEP131 and higher histologic grades of breast cancer. Indeed, USP9X, through regulation of CEP131 abundance, promotes breast carcinogenesis. Our experiments identify USP9X as an important regulator of centrosome biogenesis and uncover a critical role for USP9X/CEP131 in breast carcinogenesis, supporting the pursuit of USP9X/CEP131 as potential targets for breast cancer intervention. USP9X is a deubiquitinating enzyme with many known substrates and functions; it has been linked to cancer but the mechanisms remain unclear. Here Li et al. report that USP9X stabilizes the centrosomal protein CEP131 leading to centrosome amplification and breast cancer development.
Collapse
|
97
|
Zou Y, Qiu G, Jiang L, Cai Z, Sun W, Hu H, Lu C, Jin W, Hu G. Overexpression of ubiquitin specific proteases 44 promotes the malignancy of glioma by stabilizing tumor-promoter securin. Oncotarget 2017; 8:58231-58246. [PMID: 28938551 PMCID: PMC5601647 DOI: 10.18632/oncotarget.16447] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/28/2017] [Indexed: 12/20/2022] Open
Abstract
Ubiquitin specific peptidase 44 (USP44) has been identified as an important component of spindle assemble checkpoint (SAC) to prevent the formation of aneuploidy. However, recent study raised a controversy about the effect of USP44 in tumor. Here, we first confirmed the intranuclear localization of USP44 by testing several specific antibodies to recognize endogenous USP44. Then, data from IHC and qRT-PCR assay indicated that the high expression of USP44 existed in high-grade glioma tissues and signified a poor prognosis. Knockdown of USP44 inhibited proliferation, migration and invasion, induced apoptosis, and arrested cell cycle in G2/M phase in the established glioma cell lines. Down-regulation of oncoprotein securin was detected in USP44 deficient cells, and the interaction of endogenous USP44 and securin was confirmed by immunoprecipitation in U251MG cells, which indicated that securin was a substrate of USP44, and might be stabilized by USP44. In vivo, knockdown of USP44 inhibited the tumorigenicity of U87MG cells significantly. Consequently, our findings suggested that overexpression of USP44 could enhance the malignancy of glioma via securin. USP44 might serve as a predictive biomarker, and the USP44-securin pathway might provide a new therapeutic strategy for the treatment of glioma.
Collapse
Affiliation(s)
- Yongxiang Zou
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Guanzhong Qiu
- Department of Neurosurgery, General Hospital of Jinan Military Command, Jinan, PR China
| | - Lei Jiang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Zheng Cai
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Wei Sun
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Hongkang Hu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Chengyin Lu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Weilin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Guohan Hu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| |
Collapse
|
98
|
Au FKC, Jia Y, Jiang K, Grigoriev I, Hau BKT, Shen Y, Du S, Akhmanova A, Qi RZ. GAS2L1 Is a Centriole-Associated Protein Required for Centrosome Dynamics and Disjunction. Dev Cell 2016; 40:81-94. [PMID: 28017616 DOI: 10.1016/j.devcel.2016.11.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 10/17/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022]
Abstract
Mitotic spindle formation and chromosome segregation require timely separation of the two duplicated centrosomes, and this process is initiated in late G2 by centrosome disjunction. Here we report that GAS2L1, a microtubule- and actin-binding protein, associates with the proximal end of mature centrioles and participates in centriole dynamics and centrosome disjunction. GAS2L1 attaches microtubules and actin to centrosomes, and the loss of GAS2L1 inhibits centrosome disjunction in G2 and centrosome splitting induced by depletion of the centrosome linker rootletin. Conversely, GAS2L1 overexpression induces premature centrosome separation, and this activity requires GAS2L1 association with actin, microtubules, and the microtubule end-binding proteins. The centrosome-splitting effect of GAS2L1 is counterbalanced by rootletin, reflecting the opposing actions of GAS2L1 and the centrosome linker. Our work reveals a GAS2L1-mediated centriole-tethering mechanism of microtubules and actin, which provide the forces required for centrosome dynamics and separation.
Collapse
Affiliation(s)
- Franco K C Au
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yue Jia
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Kai Jiang
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Ilya Grigoriev
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Bill K T Hau
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yuehong Shen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shengwang Du
- Department of Physics and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Robert Z Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
99
|
Jung JK, Jang SW, Kim JM. A novel role for the deubiquitinase USP1 in the control of centrosome duplication. Cell Cycle 2016; 15:584-92. [PMID: 26822809 DOI: 10.1080/15384101.2016.1138185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Defects in the regulation of centrosome duplication lead to tumorigenesis through abnormal cell division and resulting chromosome missegregation. Therefore, maintenance of accurate centrosome number is critical for cell fate. The deubiquitinating enzyme USP1 plays important roles in DNA repair and cell differentiation. Importantly, increased levels of USP1 are detected in certain types of human cancer, but little is known about the significance of USP1 overexpression in cancer development. Here we show that Usp1 plays a novel role in regulating centrosome duplication. The ectopic expression of wild-type Usp1, but not C90S Usp1 (catalytically inactive mutant form), induced centrosome amplification. Conversely, ablation of Usp1 in mouse embryonic fibroblasts (MEFs) showed a significant delay in centrosome duplication. Moreover, Usp1-induced centrosome amplification caused abnormal mitotic spindles, chromosome missegregation and aneuploidy. Interestingly, loss of inhibitor of DNA binding protein 1 (ID1) suppressed Usp1-induced centrosome amplification. Taken together, our results strongly suggest that Usp1 is involved in the regulation of centrosome duplication, at least in part via ID1, and Usp1 may exert its oncogenic activity, partially through inducing centrosome abnormality.
Collapse
Affiliation(s)
- Jin Ki Jung
- a Department of Pharmacology , Medical Research Center for Gene Regulation, Chonnam National University Medical School , Gwangju , Korea
| | - Seok-Won Jang
- a Department of Pharmacology , Medical Research Center for Gene Regulation, Chonnam National University Medical School , Gwangju , Korea
| | - Jung Min Kim
- a Department of Pharmacology , Medical Research Center for Gene Regulation, Chonnam National University Medical School , Gwangju , Korea
| |
Collapse
|
100
|
Abstract
Chromosomal instability (CIN), the persistent inability of a cell to faithfully segregate its genome, is a feature of many cancer cells. It stands to reason that CIN enables the acquisition of multiple cancer hallmarks; however, there is a growing body of evidence suggesting that CIN impairs cellular fitness and prevents neoplastic transformation. Here, we suggest a new perspective to reconcile this apparent paradox and share an unexpected link between aneuploidy and aging that was discovered through attempts to investigate the CIN-cancer relationship. Additionally, we provide a comprehensive overview of the function and regulation of the anaphase-promoting complex, an E3 ubiquitin ligase that mediates high-fidelity chromosome segregation, and describe the mechanisms that lead to whole-chromosome gain or loss. With this review, we aim to expand our understanding of the role of CIN in cancer and aging with the long-term objective of harnessing this information for the advancement of patient care.
Collapse
Affiliation(s)
| | - Jan M van Deursen
- Department of Biochemistry and Molecular Biology
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905;
| |
Collapse
|