51
|
Xu W, Wang L, Zhang R, Sun X, Huang L, Su H, Wei X, Chen CC, Lou J, Dai H, Qian K. Diagnosis and prognosis of myocardial infarction on a plasmonic chip. Nat Commun 2020; 11:1654. [PMID: 32245966 PMCID: PMC7125217 DOI: 10.1038/s41467-020-15487-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/13/2020] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular diseases lead to 31.5% of deaths globally, and particularly myocardial infarction (MI) results in 7.4 million deaths per year. Diagnosis of MI and monitoring for prognostic use are critical for clinical management and biomedical research, which require advanced tools with accuracy and speed. Herein, we developed a plasmonic gold nano-island (pGold) chip assay for diagnosis and monitoring of MI. On-chip microarray analysis of serum biomarkers (e.g., cardiac troponin I) afforded up to 130-fold enhancement of near-infrared fluorescence for ultra-sensitive and quantitative detection within controlled periods, using 10 μL of serum only. The pGold chip assay achieved MI diagnostic sensitivity of 100% and specificity of 95.54%, superior to the standard chemiluminescence immunoassay in cardiovascular clinics. Further, we monitored biomarker concentrations regarding percutaneous coronary intervention for prognostic purpose. Our work demonstrated a designed approach using plasmonic materials for enhanced diagnosis and monitoring for prognostic use towards point-of-care testing.
Collapse
Affiliation(s)
- Wei Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.,State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Lin Wang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ru Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.,State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Xuming Sun
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.,State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Lin Huang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.,State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Haiyang Su
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.,State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Xunbin Wei
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chia-Chun Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Hongjie Dai
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Kun Qian
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China. .,State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
52
|
Griffiths EA, Carraway HE, Chandhok NS, Prebet T. Advances in non-intensive chemotherapy treatment options for adults diagnosed with acute myeloid leukemia. Leuk Res 2020; 91:106339. [PMID: 32146154 DOI: 10.1016/j.leukres.2020.106339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/28/2020] [Accepted: 02/25/2020] [Indexed: 12/23/2022]
Abstract
Acute myeloid leukemia (AML) is primarily a disease of older adults. Many older patients with AML are not candidates for intensive chemotherapy regimens aimed at inducing remission before transplantation. The prognosis for this patient population remains poor, with 5-year overall survival (OS) rates of less than 10 %. At present, there is no standard of care, and clinical trials should be considered. Hypomethylating agents often are the mainstay of treatment in this setting; however, improved genetic profiling and risk stratification based on molecular, biological, and clinical characteristics of AML enhance the ability to identify an individual patient's risk and can refine therapeutic options. Over the past 2 years, several novel agents have been approved for AML patients in either the frontline or relapsed settings. Additional agents have also shown promising activity. It is becoming a challenge for physicians to navigate these different options and select the optimal therapy or combination of therapies. The aim of this review is to summarize the available information to assist with treatment decisions for leukemia patients who are not suitable for intensive chemotherapy.
Collapse
Affiliation(s)
- Elizabeth A Griffiths
- Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, USA.
| | - Hetty E Carraway
- Taussig Cancer Institute, Cleveland Clinic, 10900 Euclid Ave, Cleveland, OH, USA.
| | | | - Thomas Prebet
- Smilow Cancer Center at Yale New Haven Hospital, 35 Park Street, New Haven, CT, USA.
| |
Collapse
|
53
|
Kazachenka A, Young GR, Attig J, Kordella C, Lamprianidou E, Zoulia E, Vrachiolias G, Papoutselis M, Bernard E, Papaemmanuil E, Kotsianidis I, Kassiotis G. Epigenetic therapy of myelodysplastic syndromes connects to cellular differentiation independently of endogenous retroelement derepression. Genome Med 2019; 11:86. [PMID: 31870430 PMCID: PMC6929315 DOI: 10.1186/s13073-019-0707-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/15/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML) are characterised by abnormal epigenetic repression and differentiation of bone marrow haematopoietic stem cells (HSCs). Drugs that reverse epigenetic repression, such as 5-azacytidine (5-AZA), induce haematological improvement in half of treated patients. Although the mechanisms underlying therapy success are not yet clear, induction of endogenous retroelements (EREs) has been hypothesised. METHODS Using RNA sequencing (RNA-seq), we compared the transcription of EREs in bone marrow HSCs from a new cohort of MDS and chronic myelomonocytic leukaemia (CMML) patients before and after 5-AZA treatment with HSCs from healthy donors and AML patients. We further examined ERE transcription using the most comprehensive annotation of ERE-overlapping transcripts expressed in HSCs, generated here by de novo transcript assembly and supported by full-length RNA-seq. RESULTS Consistent with prior reports, we found that treatment with 5-AZA increased the representation of ERE-derived RNA-seq reads in the transcriptome. However, such increases were comparable between treatment responses and failures. The extended view of HSC transcriptional diversity offered by de novo transcript assembly argued against 5-AZA-responsive EREs as determinants of the outcome of therapy. Instead, it uncovered pre-treatment expression and alternative splicing of developmentally regulated gene transcripts as predictors of the response of MDS and CMML patients to 5-AZA treatment. CONCLUSIONS Our study identifies the developmentally regulated transcriptional signatures of protein-coding and non-coding genes, rather than EREs, as correlates of a favourable response of MDS and CMML patients to 5-AZA treatment and offers novel candidates for further evaluation.
Collapse
Affiliation(s)
- Anastasiya Kazachenka
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - George R Young
- Retrovirus-Host Interactions, The Francis Crick Institute, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jan Attig
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Chrysoula Kordella
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Eleftheria Lamprianidou
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Emmanuela Zoulia
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - George Vrachiolias
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Menelaos Papoutselis
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Elsa Bernard
- Center for Molecular Oncology, Center for Heme Malignancies and Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Elli Papaemmanuil
- Center for Molecular Oncology, Center for Heme Malignancies and Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ioannis Kotsianidis
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Department of Medicine, Faculty of Medicine, Imperial College London, London, W2 1PG, UK.
| |
Collapse
|
54
|
Mo HY, An CH, Choi EJ, Yoo NJ, Lee SH. Somatic mutation and loss of expression of a candidate tumor suppressor gene TET3 in gastric and colorectal cancers. Pathol Res Pract 2019; 216:152759. [PMID: 31859118 DOI: 10.1016/j.prp.2019.152759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/10/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022]
Abstract
Ten-eleven translocation 3 (TET3) is responsible for the DNA methylation and plays an important role in regulation of the gene expression. TET2, another TET, is frequently mutated in hematologic malignancies and considered a driver gene for leukemogenesis. TET3 mRNA downregulation has been identified in many solid cancers, suggesting its role as a candidate tumor suppressor gene (TSG). However, somatic inactivating mutation and protein expression in solid cancers are largely unknown. The aim of our study was to find whether TET3 gene was mutated and expressionally altered in gastric (GC) and colorectal cancers (CRC). TET3 gene possesses mononucleotide repeats in the coding sequence that could be mutated in cancers with high microsatellite instability (MSI-H). We analyzed 79 GCs and 124 CRCs, and found that GCs (2.9 %) and CRCs (7.6 %) with MSI-H, but not those with microsatellite stable/low MSI (MSS), harbored frameshift mutations within the repeats. In immunohistochemistry, loss of TET3 expression was identified in 32 % of GCs and 28 % of CRCs. Positive TET3 immunostaining in MSI-H cancers with TET3 frameshift mutation (1/7) was significantly lower than that without TET3 frameshift mutations (75/110). Our data may indicate TET3 harbored not only frameshift mutation but also loss of expression, which together could play a role in tumorigenesis of GC and CRC with MSI-H by inhibiting TSG functions of TET3.
Collapse
Affiliation(s)
- Ha Yoon Mo
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Chang Hyeok An
- General Surgery, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Eun Ji Choi
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Nam Jin Yoo
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Sug Hyung Lee
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea.
| |
Collapse
|
55
|
Moving towards a uniform risk stratification system in CMML - How far are we? Best Pract Res Clin Haematol 2019; 33:101131. [PMID: 32460982 DOI: 10.1016/j.beha.2019.101131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022]
Abstract
Many prognostic scoring systems have been developed for chronic myelomonocytic leukemia (CMML). Although these efforts have been informative, no single model has been considered the consensus for CMML prognostication and all models are only moderately prognostic. CMML clinical models utilize mainly hematology and morphology parameters to estimate risk. A better understanding of cytogenetics and the genomic landscape of CMML have resulted in integrated risk models such as CMML Prognostic Scoring System (CPSS)-Mol and Mayo Molecular that may provide better prognostic accuracy for an individual patient. For example, frameshift/nonsense ASXL1 mutations have been consistently shown to confer inferior outcomes leading to its incorporation into some of the major risk classification systems. Prognostication in the setting of therapeutic interventions such as hypomethylating agents and allogeneic hematopoietic cell transplantation have also garnered considerable interest. Despite having many validated risk models available, not a single system is universally adopted. Herein, we will provide an overview of how these systems evolved and progress toward a uniform system.
Collapse
|
56
|
Ordoñez R, Martínez-Calle N, Agirre X, Prosper F. DNA Methylation of Enhancer Elements in Myeloid Neoplasms: Think Outside the Promoters? Cancers (Basel) 2019; 11:cancers11101424. [PMID: 31554341 PMCID: PMC6827153 DOI: 10.3390/cancers11101424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/15/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
Abstract
Gene regulation through DNA methylation is a well described phenomenon that has a prominent role in physiological and pathological cell-states. This epigenetic modification is usually grouped in regions denominated CpG islands, which frequently co-localize with gene promoters, silencing the transcription of those genes. Recent genome-wide DNA methylation studies have challenged this paradigm, demonstrating that DNA methylation of regulatory regions outside promoters is able to influence cell-type specific gene expression programs under physiologic or pathologic conditions. Coupling genome-wide DNA methylation assays with histone mark annotation has allowed for the identification of specific epigenomic changes that affect enhancer regulatory regions, revealing an additional layer of complexity to the epigenetic regulation of gene expression. In this review, we summarize the novel evidence for the molecular and biological regulation of DNA methylation in enhancer regions and the dynamism of these changes contributing to the fine-tuning of gene expression. We also analyze the contribution of enhancer DNA methylation on the expression of relevant genes in acute myeloid leukemia and chronic myeloproliferative neoplasms. The characterization of the aberrant enhancer DNA methylation provides not only a novel pathogenic mechanism for different tumors but also highlights novel potential therapeutic targets for myeloid derived neoplasms.
Collapse
Affiliation(s)
- Raquel Ordoñez
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Nicolás Martínez-Calle
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Xabier Agirre
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, 31008 Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Felipe Prosper
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, 31008 Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
- Departamento de Hematología, Clínica Universidad de Navarra, Universidad de Navarra, Avenida Pío XII-36, 31008 Pamplona, Spain.
| |
Collapse
|
57
|
Daher-Reyes GS, Merchan BM, Yee KWL. Guadecitabine (SGI-110): an investigational drug for the treatment of myelodysplastic syndrome and acute myeloid leukemia. Expert Opin Investig Drugs 2019; 28:835-849. [PMID: 31510809 DOI: 10.1080/13543784.2019.1667331] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Introduction: The incidence of acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) is increasing with the aging population. Prognosis and overall survival (OS) remain poor in elderly patients and in those not eligible for intensive treatment. Hypomethylating agents (HMAs) have played an important role in this group of patients but their efficacy is limited. Areas covered: This article reviews the mechanism of action, pharmacology, safety profile and clinical efficacy of subcutaneous guadecitabine, a second-generation DNA methylation inhibitor in development for the treatment of AML and MDS. Expert opinion: Although guadecitabine did not yield improved complete remission (CR) rates and OS compared to the control arm in patients with treatment-naïve AML who were ineligible for intensive chemotherapy, subgroup analysis in patients who received ≥4 cycles of therapy demonstrated superior outcomes in favor of guadecitabine. Given its stability, ease of administration, safety profile and prolonged exposure time, guadecitabine would be the more appropriate HMA, replacing azacitidine and decitabine, to be used combination treatment regimens in patients with myeloid malignancies.
Collapse
Affiliation(s)
- Georgina S Daher-Reyes
- Division of Medical Oncology and Hematology, University Health Network - Princess Margaret Cancer Centre , Toronto , Ontario , Canada
| | - Brayan M Merchan
- Division of Medical Oncology and Hematology, University Health Network - Princess Margaret Cancer Centre , Toronto , Ontario , Canada
| | - Karen W L Yee
- Division of Medical Oncology and Hematology, University Health Network - Princess Margaret Cancer Centre , Toronto , Ontario , Canada
| |
Collapse
|
58
|
Duchmann M, Itzykson R. Clinical update on hypomethylating agents. Int J Hematol 2019; 110:161-169. [PMID: 31020568 DOI: 10.1007/s12185-019-02651-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Abstract
Hypomethylating agents (HMAs), azacitidine and decitabine, are standards of care in higher-risk myelodysplastic syndromes and in acute myeloid leukemia patients ineligible for intensive therapy. Over the last 10 years, research efforts have sought to better understand their mechanism of action, both at the molecular and cellular level. These efforts have yet to robustly identify biomarkers for these agents. The clinical activity of HMAs in myeloid neoplasms has been firmly established now but still remains of limited magnitude. Besides optimized use at different stages of the disease, most of the expected clinical progress with HMAs will come from the development of second-generation compounds orally available and/or with improved pharmacokinetics, and from the search, so far mostly empirical, of HMA-based synergistic drug combinations.
Collapse
MESH Headings
- Antimetabolites, Antineoplastic/administration & dosage
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Azacitidine/administration & dosage
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Azacitidine/therapeutic use
- Clinical Trials as Topic
- DNA Methylation/drug effects
- Decitabine/chemistry
- Decitabine/pharmacology
- Decitabine/therapeutic use
- Drug Administration Schedule
- Drug Combinations
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myelomonocytic, Chronic/drug therapy
- Leukemia, Myelomonocytic, Chronic/genetics
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/genetics
- Uridine/administration & dosage
- Uridine/analogs & derivatives
- Uridine/pharmacology
- Uridine/therapeutic use
Collapse
Affiliation(s)
- Matthieu Duchmann
- INSERM/CNRS UMR 944/7212, Saint-Louis Research Institute, Paris Diderot University, Paris, France
- Hematology Laboratory, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Raphael Itzykson
- INSERM/CNRS UMR 944/7212, Saint-Louis Research Institute, Paris Diderot University, Paris, France.
- Clinical Hematology Department, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Avenue Claude Vellefaux, 75010, Paris, France.
| |
Collapse
|
59
|
Hwang SM, Kim SM, Nam Y, Kim J, Kim S, Ahn YO, Park Y, Yoon SS, Shin S, Kwon S, Lee DS. Targeted sequencing aids in identifying clonality in chronic myelomonocytic leukemia. Leuk Res 2019; 84:106190. [PMID: 31377458 DOI: 10.1016/j.leukres.2019.106190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 11/19/2022]
Abstract
Chronic myelomonocytic leukemia (CMML) typically shows monocytosis in the peripheral blood (PB), which must be differentiated from reactive monocytosis. To determine the clonality of CMML, we performed molecular and cytogenetic analysis in Korean patients. To investigate whether monocytes in the PB harbored clonal mutational changes, we performed single-cell sequencing after selecting monocytes, neutrophils, and lymphocytes by morphology-aided laser microdissection. Targeted sequencing was performed in 35 patients with CMML with 41 bone marrow samples. Single-cell analysis was performed in two cases. Most (94.3%) patients harbored at least one variant, in genes considered as potential therapeutic targets, while cytogenetic aberrations occurred in only 28.6% of cases. ASXL1 (54.3%), SRSF2 (37.1%), NRAS (31.4%), and TET2 (25.7%) were frequently mutated, with lower frequencies of TET2 mutation and higher frequencies of NRAS, DNMT3A (17.1%), and NPM1 (11.4%) mutations compared to in previous studies of Caucasians. Patients with SETBP1 mutation and those with more than two variants showed poorer survival than those without mutation (P < 0.001 and P = 0.007, respectively). Most (70.8%) variants were detected at diagnosis and follow-up with no significant differences in variant allele frequency, warranting sequencing during follow-up if diagnostic samples were unavailable. Single-cell analysis revealed clonal monocytes with mutations, and the same mutations were also identified in lymphocytes and neutrophils. Targeted sequencing aided in clonality detection in most patients with CMML and single-cell sequencing facilitated identification of clonal monocytes and the co-existence of mutations in non-myeloid cells, suggesting that certain mutations are acquired by pluripotent stem cells.
Collapse
Affiliation(s)
- Sang Mee Hwang
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Min Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngwon Nam
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinhyun Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sungsik Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Yong-Oon Ahn
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong Park
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sung-Soo Yoon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sue Shin
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Laboratory Medicine, Seoul National University Boramae Hospital, Seoul, Republic of Korea
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Dong Soon Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
60
|
Lamprianidou E, Zoulia E, Bernard E, Kordella C, Papoutselis M, Bezirgiannidou Z, Vrachiolias G, Papaemmanuil E, Kotsianidis I. Multifaceted modes of action of azacytidine: a riddle wrapped up in an enigma. Leuk Lymphoma 2019; 60:3277-3281. [PMID: 31185765 DOI: 10.1080/10428194.2019.1627542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Eleftheria Lamprianidou
- Department of Hematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Emmanouela Zoulia
- Department of Hematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Elsa Bernard
- Center for Molecular Oncology, Center for Heme Malignancies and Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chryssoula Kordella
- Department of Hematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Menelaos Papoutselis
- Department of Hematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Zoi Bezirgiannidou
- Department of Hematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - George Vrachiolias
- Department of Hematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Elli Papaemmanuil
- Center for Molecular Oncology, Center for Heme Malignancies and Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ioannis Kotsianidis
- Department of Hematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| |
Collapse
|
61
|
Adelman ER, Huang HT, Roisman A, Olsson A, Colaprico A, Qin T, Lindsley RC, Bejar R, Salomonis N, Grimes HL, Figueroa ME. Aging Human Hematopoietic Stem Cells Manifest Profound Epigenetic Reprogramming of Enhancers That May Predispose to Leukemia. Cancer Discov 2019; 9:1080-1101. [PMID: 31085557 PMCID: PMC7080409 DOI: 10.1158/2159-8290.cd-18-1474] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022]
Abstract
Aging is associated with functional decline of hematopoietic stem cells (HSC) as well as an increased risk of myeloid malignancies. We performed an integrative characterization of epigenomic and transcriptomic changes, including single-cell RNA sequencing, during normal human aging. Lineage-CD34+CD38- cells [HSC-enriched (HSCe)] undergo age-associated epigenetic reprogramming consisting of redistribution of DNA methylation and reductions in H3K27ac, H3K4me1, and H3K4me3. This reprogramming of aged HSCe globally targets developmental and cancer pathways that are comparably altered in acute myeloid leukemia (AML) of all ages, encompassing loss of 4,646 active enhancers, 3,091 bivalent promoters, and deregulation of several epigenetic modifiers and key hematopoietic transcription factors, such as KLF6, BCL6, and RUNX3. Notably, in vitro downregulation of KLF6 results in impaired differentiation, increased colony-forming potential, and changes in expression that recapitulate aging and leukemia signatures. Thus, age-associated epigenetic reprogramming may form a predisposing condition for the development of age-related AML. SIGNIFICANCE: AML, which is more frequent in the elderly, is characterized by epigenetic deregulation. We demonstrate that epigenetic reprogramming of human HSCs occurs with age, affecting cancer and developmental pathways. Downregulation of genes epigenetically altered with age leads to impairment in differentiation and partially recapitulates aging phenotypes.This article is highlighted in the In This Issue feature, p. 983.
Collapse
Affiliation(s)
- Emmalee R Adelman
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Hsuan-Ting Huang
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Alejandro Roisman
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - André Olsson
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Antonio Colaprico
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - R Coleman Lindsley
- Department of Medical Oncology, Division of Hematological Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Rafael Bejar
- Division of Hematology and Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - H Leighton Grimes
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Maria E Figueroa
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
62
|
Li W, Xu L. Epigenetic Function of TET Family, 5-Methylcytosine, and 5-Hydroxymethylcytosine in Hematologic Malignancies. Oncol Res Treat 2019; 42:309-318. [PMID: 31055566 DOI: 10.1159/000498947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/14/2019] [Indexed: 11/19/2022]
Abstract
DNA methylation plays significant roles in a variety of biological and pathological processes including mammalian development, genomic imprinting, retrotransposon silencing, and X-chromosome inactivation. Recent discoveries indicated that ten-eleven translocation (TET) family of dioxygenases can convert 5-methylcytosine (5-mC) into 5-hydroxymethylcytosine (5-hmC). The TET family includes three members: TET1, TET2, and TET3. With increasing evidence, more and more biological and pathological processes in which 5-hmC and TET family serve unparalleled biological roles are noticed, for example, DNA demethylation and transcriptional regulation of different target genes, which are involved in many human diseases, especially hematologic malignancies, resembling chronic myelomonocytic leukemia, myelodysplastic syndromes, and so on. In this review, we focus on the diverse functions of TET family and the novel epigenetic marks, 5-mC and 5-hmC, in hematologic malignancies. This review will provide valuable insights into the potential targets of hematologic malignancies. Further understanding of the normal and pathological functions of TET family may provide new methods to develop novel epigenetic therapies for treating hematologic malignancies.
Collapse
Affiliation(s)
- Wei Li
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Linping Xu
- Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China,
| |
Collapse
|
63
|
Beke A, Laplane L, Riviere J, Yang Q, Torres-Martin M, Dayris T, Rameau P, Saada V, Bilhou-Nabera C, Hurtado A, Lordier L, Vainchenker W, Figueroa ME, Droin N, Solary E. Multilayer intraclonal heterogeneity in chronic myelomonocytic leukemia. Haematologica 2019; 105:112-123. [PMID: 31048357 PMCID: PMC6939510 DOI: 10.3324/haematol.2018.208488] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/30/2019] [Indexed: 12/30/2022] Open
Abstract
The functional diversity of cells that compose myeloid malignancies, i.e., the respective roles of genetic and epigenetic heterogeneity in this diversity, remains poorly understood. This question is addressed in chronic myelomonocytic leukemia, a myeloid neoplasm in which clinical diversity contrasts with limited genetic heterogeneity. To generate induced pluripotent stem cell clones, we reprogrammed CD34+ cells collected from a patient with a chronic myelomonocytic leukemia in which whole exome sequencing of peripheral blood monocyte DNA had identified 12 gene mutations, including a mutation in KDM6A and two heterozygous mutations in TET2 in the founding clone and a secondary KRAS(G12D) mutation. CD34+ cells from an age-matched healthy donor were also reprogrammed. We captured a part of the genetic heterogeneity observed in the patient, i.e. we analyzed five clones with two genetic backgrounds, without and with the KRAS(G12D) mutation. Hematopoietic differentiation of these clones recapitulated the main features of the patient's disease, including overproduction of granulomonocytes and dysmegakaryopoiesis. These analyses also disclosed significant discrepancies in the behavior of hematopoietic cells derived from induced pluripotent stem cell clones with similar genetic background, correlating with limited epigenetic changes. These analyses suggest that, beyond the coding mutations, several levels of intraclonal heterogeneity may participate in the yet unexplained clinical heterogeneity of the disease.
Collapse
Affiliation(s)
- Allan Beke
- INSERM U1170, Gustave Roussy Cancer Center, Villejuif, France.,Université Paris-Sud, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Lucie Laplane
- INSERM U1170, Gustave Roussy Cancer Center, Villejuif, France.,CNRS UMR8590, IHPST, Université Paris 1 Panthéon-Sorbonne, Paris, France
| | - Julie Riviere
- INSERM U1170, Gustave Roussy Cancer Center, Villejuif, France
| | - Qin Yang
- Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Thibault Dayris
- CNRS 3655 & INSERM US23, AMMICa, Gustave Roussy Cancer Center, Villejuif, France
| | - Philippe Rameau
- CNRS 3655 & INSERM US23, AMMICa, Gustave Roussy Cancer Center, Villejuif, France
| | - Veronique Saada
- Department of Biopathology, Gustave Roussy Cancer Center, Villejuif, France
| | | | - Ana Hurtado
- Hematology and Medical Oncology Department, Hospital Morales Meseguer, IMIB, Murcia, Spain
| | - Larissa Lordier
- INSERM U1170, Gustave Roussy Cancer Center, Villejuif, France.,CNRS 3655 & INSERM US23, AMMICa, Gustave Roussy Cancer Center, Villejuif, France
| | | | - Maria E Figueroa
- Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nathalie Droin
- INSERM U1170, Gustave Roussy Cancer Center, Villejuif, France.,Université Paris-Sud, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Eric Solary
- INSERM U1170, Gustave Roussy Cancer Center, Villejuif, France .,Université Paris-Sud, Faculté de Médecine, Le Kremlin-Bicêtre, France.,Department of Hematology, Gustave Roussy Cancer Center, Villejuif, France
| |
Collapse
|
64
|
Wang P, Yan Y, Yu W, Zhang H. Role of ten-eleven translocation proteins and 5-hydroxymethylcytosine in hepatocellular carcinoma. Cell Prolif 2019; 52:e12626. [PMID: 31033072 PMCID: PMC6668972 DOI: 10.1111/cpr.12626] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022] Open
Abstract
In mammals, methylation of the 5th position of cytosine (5mC) seems to be a major epigenetic modification of DNA. This process can be reversed (resulting in cytosine) with high efficiency by dioxygenases of the ten‐eleven translocation (TET) family, which perform oxidation of 5mC to 5‐hydroxymethylcytosine (5hmC), 5‐formylcytosine and 5‐carboxylcytosine. It has been demonstrated that these 5mC oxidation derivatives are in a dynamic state and have pivotal regulatory functions. Here, we comprehensively summarized the recent research progress in the understanding of the physiological functions of the TET proteins and their mechanisms of regulation of DNA methylation and transcription. Among the three TET genes, TET1 and TET2 expression levels have frequently been shown to be low in hepatocellular carcinoma (HCC) tissues and received most attention. The modulation of TET1 also correlates with microRNAs in a post‐transcriptional regulatory process. Additionally, recent studies revealed that global genomic 5hmC levels are down‐regulated in HCC tissues and cell lines. Combined with the reported results, identification of 5hmC signatures in HCC tissues and in circulating cell‐free DNA will certainly contribute to early detection and should help to design therapeutic strategies against HCC. 5hmC might also be a novel prognostic biomarker of HCC. Thus, a detailed understanding of the molecular mechanisms resulting in the premalignant and aggressive transformation of TET proteins and cells with 5hmC disruption might help to develop novel epigenetic therapies for HCC.
Collapse
Affiliation(s)
- Penghui Wang
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yunmeng Yan
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Yu
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hongyi Zhang
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
65
|
Fernandez AGL, Crescenzi B, Pierini V, Di Battista V, Barba G, Pellanera F, Di Giacomo D, Roti G, Piazza R, Adelman ER, Figueroa ME, Mecucci C. A distinct epigenetic program underlies the 1;7 translocation in myelodysplastic syndromes. Leukemia 2019; 33:2481-2494. [PMID: 30923319 DOI: 10.1038/s41375-019-0433-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/23/2018] [Accepted: 02/08/2019] [Indexed: 02/06/2023]
Abstract
The unbalanced translocation dic(1;7)(q10;p10) in myelodysplastic syndromes (MDS) is originated by centromeric juxtaposition resulting into 1q trisomy and 7q monosomy. More than half of cases arise after chemo/radio-therapy. To date, given the absence of genes within the centromeric regions, no specific molecular events have been identified in this cytogenetic subgroup. We performed the first comprehensive genetic and epigenetic analysis of MDS with dic(1;7)(q10;p10) compared to normal controls and therapy-related myeloid neoplasms (t-MNs). RNA-seq showed a unique downregulated signature in dic(1;7) cases, affecting more than 80% of differentially expressed genes. As revealed by pathway and gene ontology analyses, downregulation of ATP-binding cassette (ABC) transporters and lipid-related genes and upregulation of p53 signaling were the most relevant biological features of dic(1;7). Epigenetic supervised analysis revealed hypermethylation at intronic enhancers in the dicentric subgroup, in which low expression levels of enhancer putative target genes accounted for around 35% of the downregulated signature. Enrichment of Krüppel-like transcription factor binding sites emerged at enhancers. Furthermore, a specific hypermethylated pattern on 1q was found to underlie the hypo-expression of more than 50% of 1q-deregulated genes, despite trisomy. In summary, dic(1;7) in MDS establishes a specific transcriptional program driven by a unique epigenomic signature.
Collapse
Affiliation(s)
| | - Barbara Crescenzi
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Valentina Pierini
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Valeria Di Battista
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Gianluca Barba
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Fabrizia Pellanera
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Danika Di Giacomo
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | | | - Rocco Piazza
- Hematology, School of Medicine and Surgery, University of Milano Bicocca, Milano, Italy
| | - Emmalee R Adelman
- Sylvester Comprehensive Cancer Center and Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maria E Figueroa
- Sylvester Comprehensive Cancer Center and Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Cristina Mecucci
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy.
| |
Collapse
|
66
|
Zhang Y, Baheti S, Sun Z. Statistical method evaluation for differentially methylated CpGs in base resolution next-generation DNA sequencing data. Brief Bioinform 2019; 19:374-386. [PMID: 28040747 DOI: 10.1093/bib/bbw133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Indexed: 01/05/2023] Open
Abstract
High-throughput bisulfite methylation sequencing such as reduced representation bisulfite sequencing (RRBS), Agilent SureSelect Human Methyl-Seq (Methyl-seq) or whole-genome bisulfite sequencing is commonly used for base resolution methylome research. These data are represented either by the ratio of methylated cytosine versus total coverage at a CpG site or numbers of methylated and unmethylated cytosines. Multiple statistical methods can be used to detect differentially methylated CpGs (DMCs) between conditions, and these methods are often the base for the next step of differentially methylated region identification. The ratio data have a flexibility of fitting to many linear models, but the raw count data take consideration of coverage information. There is an array of options in each datatype for DMC detection; however, it is not clear which is an optimal statistical method. In this study, we systematically evaluated four statistic methods on methylation ratio data and four methods on count-based data and compared their performances with regard to type I error control, sensitivity and specificity of DMC detection and computational resource demands using real RRBS data along with simulation. Our results show that the ratio-based tests are generally more conservative (less sensitive) than the count-based tests. However, some count-based methods have high false-positive rates and should be avoided. The beta-binomial model gives a good balance between sensitivity and specificity and is preferred method. Selection of methods in different settings, signal versus noise and sample size estimation are also discussed.
Collapse
Affiliation(s)
- Yun Zhang
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN.,Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY
| | - Saurabh Baheti
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Zhifu Sun
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| |
Collapse
|
67
|
Stomper J, Lübbert M. Can we predict responsiveness to hypomethylating agents in AML? Semin Hematol 2019; 56:118-124. [PMID: 30926087 DOI: 10.1053/j.seminhematol.2019.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 11/11/2022]
Abstract
DNA-hypomethylating agents (HMAs) were developed as nonintensive treatment alternatives to standard chemotherapy in older, unfit patients with acute myeloid leukemia and myelodysplastic syndrome. Given their distinct effects on the methylome and transcriptome of malignant cells compared to cytarabine (Ara-C) and other cytotoxic drugs not inhibiting DNA methyltransferases, it is of great interest to define their specific clinical ``signature.'' Here, we present and discuss clinical, genetic, and epigenetic predictors of responsiveness to HMAs. Indeed, mounting evidence supports the notion that HMAs are not "just another kind of low-dose Ara-C." Not only patient factors (age, performance status, comorbidities, etc.), blast counts, and early platelet response, but also adverse genetics (monosomal karyotype and/or a TP53 mutation) have predictive potential. Given the surprising-and initially counterintuitive-responses observed in patients with the latter features, these are subject to mechanistic studies to elucidate their as yet unresolved interaction with HMAs. Finally, other potential biomarkers for HMA response such as elevated fetal hemoglobin might also contribute to overcome the present challenges in predicting responsiveness to HMAs.
Collapse
Affiliation(s)
- Julia Stomper
- Department of Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; German Cancer Research Consortium (DKTK), Freiburg, Germany.
| |
Collapse
|
68
|
Sashida G, Oshima M, Iwama A. Deregulated Polycomb functions in myeloproliferative neoplasms. Int J Hematol 2019; 110:170-178. [PMID: 30706327 DOI: 10.1007/s12185-019-02600-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/19/2022]
Abstract
Polycomb proteins function in the maintenance of gene silencing via post-translational modifications of histones and chromatin compaction. Genetic and biochemical studies have revealed that the repressive function of Polycomb repressive complexes (PRCs) in transcription is counteracted by the activating function of Trithorax-group complexes; this balance fine-tunes the expression of genes critical for development and tissue homeostasis. The function of PRCs is frequently dysregulated in various cancer cells due to altered expression or recurrent somatic mutations in PRC genes. The tumor suppressive functions of EZH2-containing PRC2 and a PRC2-related protein ASXL1 have been investigated extensively in the pathogenesis of hematological malignancies, including myeloproliferative neoplasms (MPN). BCOR, a component of non-canonical PRC1, suppresses various hematological malignancies including MPN. In this review, we focus on recent findings on the role of PRCs in the pathogenesis of MPN and the therapeutic impact of targeting the pathological functions of PRCs in MPN.
Collapse
Affiliation(s)
- Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
69
|
MDS overlap disorders and diagnostic boundaries. Blood 2019; 133:1086-1095. [PMID: 30670443 DOI: 10.1182/blood-2018-10-844670] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are clonal diseases defined by clinical, morphologic, and genetic features often shared by related myeloid disorders. The diagnostic boundaries between these diseases can be arbitrary and not necessarily reflective of underlying disease biology or outcomes. In practice, measures that distinguish MDS from related disorders may be difficult to quantify and can vary as disease progression occurs. Patients may harbor findings that are not consistent with a single diagnostic category. Several overlap disorders have been formally described, such as the myelodysplastic/myeloproliferative neoplasms (MDS/MPNs). These disorders are characterized by hematopoietic dysplasia with increased proliferation of monocytes, neutrophils, or platelets. They may have mutational profiles that distinguish them from the disorders they resemble and reflect important differences in pathophysiology. MDS also shares diagnostic borders with other diseases. For example, aplastic anemia and hypoplastic MDS can be difficult to distinguish in patients with pancytopenia and bone marrow hypocellularity. Genetic features may help in this regard, because they can identify differences in prognosis and risk of progression. The boundary between MDS and secondary acute myeloid leukemia (sAML) is arbitrarily defined and has been redefined over the years. Genetic studies have demonstrated that sAML clones can precede clinical progression from MDS by many months, suggesting that MDS with excess blasts could be viewed as an overlap between a dysplastic bone marrow failure syndrome and an oligoblastic leukemia. This review will describe the diagnostic boundaries between MDS, MDS/MPNs, sAML, clonal hematopoiesis of indeterminate potential, clonal cytopenia of undetermined significance, and aplastic anemia and how genetic approaches may help to better define them.
Collapse
|
70
|
Recasens A, Munoz L. Targeting Cancer Cell Dormancy. Trends Pharmacol Sci 2019; 40:128-141. [PMID: 30612715 DOI: 10.1016/j.tips.2018.12.004] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/22/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022]
Abstract
Cancer cell dormancy is a process whereby cells enter reversible cell cycle arrest, termed quiescence. Quiescence is essential for cancer cells to acquire additional mutations, to survive in a new environment and initiate metastasis, to become resistant to cancer therapy, and to evade immune destruction. Thus, dormant cancer cells are considered to be responsible for cancer progression. As we start to understand the mechanisms that enable quiescence, we can begin to develop pharmacological strategies to target dormant cancer cells. Herein, we summarize the major molecular mechanisms underlying the dormancy of disseminated tumor cells and drug-tolerant persister cells. We then analyze the current pharmacological strategies aimed (i) to keep cancer cells in the harmless dormant state, (ii) to reactivate dormant cells to increase their susceptibility to anti-proliferative drugs, and (iii) to eradicate dormant cancer cells.
Collapse
Affiliation(s)
- Ariadna Recasens
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - Lenka Munoz
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
71
|
Abstract
The Precision Medicine Initiative (PMI) aims to change the way diseases are diagnosed and treated by taking into account a patient's genome, lifestyle, and environment. This type of research also uncovers potential biomarkers that can lead to the development of novel targeted therapies. Next-generation sequencing (NGS) is a new technology that facilitates collection of this genetic information by processing large amounts of DNA in an efficient and cost-effective way. NGS is particularly useful in oncology and has already begun to transform cancer management.
Collapse
|
72
|
How I treat MDS after hypomethylating agent failure. Blood 2018; 133:521-529. [PMID: 30545832 DOI: 10.1182/blood-2018-03-785915] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
Hypomethylating agents (HMA) azacitidine and decitabine are standard of care for myelodysplastic syndrome (MDS). Response to these agents occurs in ∼50% of treated patients, and duration of response, although variable, is transient. Prediction of response to HMAs is possible with clinical and molecular parameters, but alternative approved treatments are not available, and in the case of HMA failure, there are no standard therapeutic opportunities. It is important to develop a reasoned choice of therapy after HMA failure. This choice should be based on evaluation of type of resistance (primary vs secondary, progression of disease [acute leukemia or higher risk MDS] vs absence of hematological improvement) as well as on molecular and cytogenetic characteristics reassessed at the moment of HMA failure. Rescue strategies may include stem-cell transplantation, which remains the only curative option, and chemotherapy, both of which are feasible in only a minority of cases, and experimental agents. Patients experiencing HMA failure should be recruited to clinical experimental trials as often as possible. Several novel agents with different mechanisms of action are currently being tested in this setting. Drugs targeting molecular alterations (IDH2 mutations, spliceosome gene mutations) or altered signaling pathways (BCL2 inhibitors) seem to be the most promising.
Collapse
|
73
|
Diagnosis and Treatment of Chronic Myelomonocytic Leukemias in Adults: Recommendations From the European Hematology Association and the European LeukemiaNet. Hemasphere 2018; 2:e150. [PMID: 31723789 PMCID: PMC6745959 DOI: 10.1097/hs9.0000000000000150] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is a disease of the elderly, and by far the most frequent overlap myelodysplastic/myeloproliferative neoplasm in adults. Aside from the chronic monocytosis that remains the cornerstone of its diagnosis, the clinical presentation of CMML includes dysplastic features, cytopenias, excess of blasts, or myeloproliferative features including high white blood cell count or splenomegaly. Prognosis is variable, with several prognostic scoring systems reported in recent years, and treatment is poorly defined, with options ranging from watchful waiting to allogeneic stem cell transplantation, which remains the only curative therapy for CMML. Here, we present on behalf of the European Hematology Association and the European LeukemiaNet, evidence- and consensus-based guidelines, established by an international group of experts, from Europe and the United States, for standardized diagnostic and prognostic procedures and for an appropriate choice of therapeutic interventions in adult patients with CMML.
Collapse
|
74
|
|
75
|
Rahmé R, Adès L. An update on treatment of higher risk myelodysplastic syndromes. Expert Rev Hematol 2018; 12:61-70. [PMID: 30334467 DOI: 10.1080/17474086.2018.1537777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) are clonal stem cell disorders mostly affecting the elderly. They are classified into lower and higher risk MDS according to prognostic scoring systems. In higher risk patients, treatments should aim to modify the disease course by avoiding progression to acute myeloid leukemia and, therefore, to improve survival. Areas covered: Stem cell transplantation remains the only curative treatment when feasible, but this concerns a small minority of patients. Treatment is principally based on hypomethylating agents (HMAs). Our understanding of MDS biology has led to the development of drugs targeting key cellular processes such as apoptosis or posttranslational protein changes, microenvironment-like immunotherapy, and gene mutations. Currently, new drugs are mainly being tested in combination with HMAs in several clinical trials. Expert commentary: Significant advances have been made in the field of MDS, especially in molecular typing, which are improving our ability to offer patients risk-adapted therapies. The current challenge in the management of higher risk MDS is to improve outcome by combining classical HMAs with novel drugs.
Collapse
Affiliation(s)
- Ramy Rahmé
- a Service Hématologie Séniors, Hôpital Saint Louis , Université Paris Diderot, Assistance Publique-Hôpitaux de Paris , Paris , France
| | - Lionel Adès
- a Service Hématologie Séniors, Hôpital Saint Louis , Université Paris Diderot, Assistance Publique-Hôpitaux de Paris , Paris , France
| |
Collapse
|
76
|
Lee NH, Nikfarjam M, He H. Functions of the CXC ligand family in the pancreatic tumor microenvironment. Pancreatology 2018; 18:705-716. [PMID: 30078614 DOI: 10.1016/j.pan.2018.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/06/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Therapeutic resistance is the major contributor to the poor prognosis of and low survival from pancreatic cancer (PC). Cancer progression is a complex process reliant on interactions between the tumor and the tumor microenvironment (TME). Members of the CXCL family of chemokines are present in the pancreatic TME and seem to play a vital role in regulating PC progression. As pancreatic tumors interact with the TME and with PC stem cells (CSCs), determining the roles of specific members of the CXCL family is vital to the development of improved therapies. This review highlights the roles of selected CXCLs in the interactions between pancreatic tumor and its stroma, and in CSC phenotypes, which can be used to identify potential treatment targets.
Collapse
Affiliation(s)
- Nien-Hung Lee
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Hong He
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia.
| |
Collapse
|
77
|
Ruytinx P, Proost P, Struyf S. CXCL4 and CXCL4L1 in cancer. Cytokine 2018; 109:65-71. [PMID: 29903575 DOI: 10.1016/j.cyto.2018.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
|
78
|
Nucleosidic DNA demethylating epigenetic drugs – A comprehensive review from discovery to clinic. Pharmacol Ther 2018; 188:45-79. [DOI: 10.1016/j.pharmthera.2018.02.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
79
|
Niyongere S, Lucas N, Zhou JM, Sansil S, Pomicter AD, Balasis ME, Robinson J, Kroeger J, Zhang Q, Zhao YL, Ball M, Komrokji R, List A, Deininger MW, Fridley BL, Santini V, Solary E, Padron E. Heterogeneous expression of cytokines accounts for clinical diversity and refines prognostication in CMML. Leukemia 2018; 33:205-216. [PMID: 30026572 DOI: 10.1038/s41375-018-0203-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 02/01/2023]
Abstract
Chronic myelomonocytic leukemia (CMML) is a clinically heterogeneous neoplasm in which JAK2 inhibition has demonstrated reductions in inflammatory cytokines and promising clinical activity. We hypothesize that annotation of inflammatory cytokines may uncover mutation-independent cytokine subsets associated with novel CMML prognostic features. A Luminex cytokine profiling assay was utilized to profile cryopreserved peripheral blood plasma from 215 CMML cases from three academic centers, along with center-specific, age-matched plasma controls. Significant differences were observed between CMML patients and healthy controls in 23 out of 45 cytokines including increased cytokine levels in IL-8, IP-10, IL-1RA, TNF-α, IL-6, MCP-1/CCL2, hepatocyte growth factor (HGF), M-CSF, VEGF, IL-4, and IL-2RA. Cytokine associations were identified with clinical and genetic features, and Euclidian cluster analysis identified three distinct cluster groups associated with important clinical and genetic features in CMML. CMML patients with decreased IL-10 expression had a poor overall survival when compared to CMML patients with elevated expression of IL-10 (P = 0.017), even when adjusted for ASXL1 mutation and other prognostic features. Incorporating IL-10 with the Mayo Molecular Model statistically improved the prognostic ability of the model. These established cytokines, such as IL-10, as prognostically relevant and represent the first comprehensive study exploring the clinical implications of the CMML inflammatory state.
Collapse
Affiliation(s)
- Sandrine Niyongere
- Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Nolwenn Lucas
- INSERM U1170, Gustave Roussy Cancer Center, Villejuif, France
| | - Jun-Min Zhou
- Department of Biostatistics and Bioinformatics, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Samer Sansil
- Flow Cytometry Core, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Anthony D Pomicter
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, USA
| | - Maria E Balasis
- Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - John Robinson
- Flow Cytometry Core, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jodi Kroeger
- Flow Cytometry Core, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Qing Zhang
- Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Yu Long Zhao
- Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Markus Ball
- Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Rami Komrokji
- Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alan List
- Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Michael W Deininger
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, USA.,Division of Hematology and Hematologic Malignancies, The University of Utah, Salt Lake City, UT, USA
| | - Brooke L Fridley
- Department of Biostatistics and Bioinformatics, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Valeria Santini
- Hematology, AOU Careggi, University of Florence, Florence, Italy
| | - Eric Solary
- INSERM U1170, Gustave Roussy Cancer Center, Villejuif, France.,Hematology Departement, Gustave Roussy Cancer Center, Villejuif, France
| | - Eric Padron
- Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
80
|
Santini V. Society of Hematologic Oncology (SOHO) State of the Art Updates and Next Questions: Myelodysplastic Syndromes. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 18:495-500. [PMID: 29907542 DOI: 10.1016/j.clml.2018.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
Abstract
In the past few months, 2 main streams of research have dominated the panorama of myelodysplastic syndrome (MDS) investigations: deepening the insight into the pathogenic role, hierarchy, and prognostic effect of somatic mutations and, as a consequence, into the effect of inherited congenital predisposing conditions and the second, quite interlinked with the first, analyzing inflammation and innate immunity in patients with MDS. The research devoted to clarifying the mechanisms of action and mechanisms of resistance to hypomethylating agents has also advanced, mostly resulting from different approaches to the study of DNA methylation. Recent observations have reinforced support for targeted therapies for selected subgroups of MDS patients.
Collapse
Affiliation(s)
- Valeria Santini
- MDS Unit, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy.
| |
Collapse
|
81
|
Efficacy of azacitidine is independent of molecular and clinical characteristics - an analysis of 128 patients with myelodysplastic syndromes or acute myeloid leukemia and a review of the literature. Oncotarget 2018; 9:27882-27894. [PMID: 29963245 PMCID: PMC6021252 DOI: 10.18632/oncotarget.25328] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/24/2018] [Indexed: 12/16/2022] Open
Abstract
Azacitidine is the first drug to demonstrate a survival benefit for patients with MDS. However, only half of patients respond and almost all patients eventually relapse. Limited and conflicting data are available on predictive factors influencing response. We analyzed 128 patients from two institutions with MDS or AML treated with azacitidine to identify prognostic indicators. Genetic mutations in ASXL1, RUNX1, DNMT3A, IDH1, IDH2, TET2, TP53, NRAS, KRAS, FLT3, KMT2A-PTD, EZH2, SF3B1, and SRSF2 were assessed by next-generation sequencing. With a median follow up of 5.6 years median survival was 1.3 years with a response rate of 49%. The only variable with significant influence on response was del(20q). All 6 patients responded (p = 0.012) but survival was not improved. No other clinical, cytogenetic or molecular marker for response or survival was identified. Interestingly, patients from poor-risk groups as high-risk cytogenetics (55%), t-MDS/AML (54%), TP53 mutated (48%) or relapsed after chemotherapy (60%) showed a high response rate. Factors associated with shorter survival were low platelets, AML vs. MDS, therapy-related disease, TP53 and KMT2A-PTD. In multivariate analysis anemia, platelets, FLT3-ITD, and therapy-related disease remained in the model. Poor-risk factors such as del(7q)/-7, complex karyotype, ASXL1, RUNX1, EZH2, and TP53 did not show an independent impact. Thus, no clear biomarker for response and survival can be identified. Although a number of publications on predictive markers for response to AZA exist, results are inconsistent and improved response rates did not translate to improved survival. Here, we provide a comprehensive overview comparing the studies published to date.
Collapse
|
82
|
DNA Methyltransferase Inhibitors in Myeloid Cancer: Clonal Eradication or Clonal Differentiation? ACTA ACUST UNITED AC 2018; 23:277-285. [PMID: 28926428 DOI: 10.1097/ppo.0000000000000282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA methyltransferase inhibitors, so-called hypomethylating agents (HMAs), are the only drugs approved for the treatment of higher-risk myelodysplastic syndromes and are widely used in this context. However, it is still unclear why some patients respond to HMAs, whereas others do not. Recent sequencing efforts have identified molecular disease entities that may be specifically sensitive to these drugs, and many attempts are being made to clarify how HMAs affect the malignant clone during treatment. Here, we review the most recent data on the clinical effects of HMAs in myeloid malignancies.
Collapse
|
83
|
Duchmann M, Yalniz FF, Sanna A, Sallman D, Coombs CC, Renneville A, Kosmider O, Braun T, Platzbecker U, Willems L, Adès L, Fontenay M, Rampal R, Padron E, Droin N, Preudhomme C, Santini V, Patnaik MM, Fenaux P, Solary E, Itzykson R. Prognostic Role of Gene Mutations in Chronic Myelomonocytic Leukemia Patients Treated With Hypomethylating Agents. EBioMedicine 2018; 31:174-181. [PMID: 29728305 PMCID: PMC6013781 DOI: 10.1016/j.ebiom.2018.04.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/20/2018] [Indexed: 12/02/2022] Open
Abstract
Somatic mutations contribute to the heterogeneous prognosis of chronic myelomonocytic leukemia (CMML). Hypomethylating agents (HMAs) are active in CMML, but analyses of small series failed to identify mutations predicting response or survival. We analyzed a retrospective multi-center cohort of 174 CMML patients treated with a median of 7 cycles of azacitidine (n = 68) or decitabine (n = 106). Sequencing data before treatment initiation were available for all patients, from Sanger (n = 68) or next generation (n = 106) sequencing. Overall response rate (ORR) was 52%, including complete response (CR) in 28 patients (17%). In multivariate analysis, ASXL1 mutations predicted a lower ORR (Odds Ratio [OR] = 0.85, p = 0.037), whereas TET2mut/ASXL1wt genotype predicted a higher CR rate (OR = 1.18, p = 0.011) independently of clinical parameters. With a median follow-up of 36.7 months, overall survival (OS) was 23.0 months. In multivariate analysis, RUNX1mut (Hazard Ratio [HR] = 2.00, p = .011), CBLmut (HR = 1.90, p = 0.03) genotypes and higher WBC (log10(WBC) HR = 2.30, p = .005) independently predicted worse OS while the TET2mut/ASXL1wt predicted better OS (HR = 0.60, p = 0.05). CMML-specific scores CPSS and GFM had limited predictive power. Our results stress the need for robust biomarkers of HMA activity in CMML and for novel treatment strategies in patients with myeloproliferative features and RUNX1 mutations. TET2mut/ASXL1wt genotype predicts higher complete response rate and prolonged survival in CMML with hypomethylating agents. Conversely, RUNX1mut and CBLmut genotypes are associated with poorer outcome, independently of higher leukocyte count. CPSS and GFM prognostic scores showed modest performance when calculated at initiation of hypomethylating agents.
Somatic mutations contribute to the heterogeneous prognosis of chronic myelomonocytic leukemia (CMML). Hypomethylating agents (HMAs) are active in CMML. Response and survival in MDS and AML patients treated with HMAs is difficult to predict. We explore the predictive role of recurrent somatic mutations in a large retrospective cohort of 174 HMA-treated CMMLs. Consistent with MDS studies, we report a higher response rate in TET2mut/ASXL1wt patients. We also identify a CMML-specific molecular pattern (RUNX1mut or CBLmut) associated with shorter survival. Our results can inform treatment decision in CMML, for instance by using HMAs prior to transplant in TET2mut/ASXL1wt patients.
Collapse
Affiliation(s)
| | | | - Alessandro Sanna
- MDS Unit-Hematology, Università di Firenze AOU careggi, Firenze, Italy
| | - David Sallman
- Malignant Hematology Department, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Catherine C Coombs
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aline Renneville
- Laboratory of Hematology, Biology and Pathology Center, CHRU of Lille, Lille, France
| | - Olivier Kosmider
- Laboratory of Hematology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thorsten Braun
- Department of Hematology, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Uwe Platzbecker
- Department of Hematology and Oncology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Lise Willems
- Department of Hematology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lionel Adès
- Department of Hematology, St Louis Hospital, Assistance Publique-Hôpitaux de Paris, University Paris Diderot, Paris, France
| | - Michaela Fontenay
- Laboratory of Hematology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Raajit Rampal
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Padron
- Malignant Hematology Department, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Nathalie Droin
- INSERM U1170, Gustave Roussy Cancer Center, Villejuif, France
| | - Claude Preudhomme
- Laboratory of Hematology, Biology and Pathology Center, CHRU of Lille, Lille, France
| | - Valeria Santini
- MDS Unit-Hematology, Università di Firenze AOU careggi, Firenze, Italy
| | | | - Pierre Fenaux
- Department of Hematology, St Louis Hospital, Assistance Publique-Hôpitaux de Paris, University Paris Diderot, Paris, France
| | - Eric Solary
- INSERM U1170, Gustave Roussy Cancer Center, Villejuif, France; Department of Hematology, Gustave Roussy Cancer Center, University Paris Sud, Villejuif, France
| | - Raphael Itzykson
- Department of Hematology, St Louis Hospital, Assistance Publique-Hôpitaux de Paris, University Paris Diderot, Paris, France; INSERM/CNRS UMR 944/7212, Saint-Louis Institute, Paris, France.
| |
Collapse
|
84
|
Vidal V, Robert G, Goursaud L, Durand L, Ginet C, Karsenti JM, Luciano F, Gastaud L, Garnier G, Braun T, Hirsch P, Raffoux E, Nloga AM, Padua RA, Dombret H, Rohrlich P, Ades L, Chomienne C, Auberger P, Fenaux P, Cluzeau T. BCL2L10 positive cells in bone marrow are an independent prognostic factor of azacitidine outcome in myelodysplastic syndrome and acute myeloid leukemia. Oncotarget 2018; 8:47103-47109. [PMID: 28514758 PMCID: PMC5564547 DOI: 10.18632/oncotarget.17482] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/14/2017] [Indexed: 12/12/2022] Open
Abstract
Azacitidine (AZA), the reference treatment for most higher-risk myelodysplastic (MDS) patients can also improve overall survival (OS) in elderly acute myeloid leukemia (AML) patients ineligible for intensive chemotherapy, but reliable biological markers predicting response and OS in patients treated with AZA are lacking. In a preliminary study, we found that an increase of the percentage of BCL2L10, an anti-apoptotic member of the bcl-2 family, was correlated with AZA resistance. In this study, we assessed prospectively by flow cytometry the prognostic value of BCL2L10 positive bone marrow mononuclear cells in 70 patients (42 MDS and 28 AML), prior to AZA treatment. In patients with baseline marrow blasts below 30%, the baseline percentage of bone marrow BCL2L10 positive cells inversely correlated with response to AZA and OS independently of the International Prognostic Scoring System (IPSS) and IPSS-revised (IPSS-R). Specifically, OS was significantly lower in patients with more than 10% BCL2L10 positive cells (median 8.3 vs 22.9 months in patients with less than 10% positivity, p = 0,001). In summary, marrow BCL2L10 positive cells may be a biomarker for azacitidine response and OS, with a potential impact in clinical practice.
Collapse
Affiliation(s)
- Valérie Vidal
- INSERM U1131, Institut Universitaire d'hématologie, Paris, France
| | - Guillaume Robert
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Laure Goursaud
- INSERM U1131, Institut Universitaire d'hématologie, Paris, France
| | - Laetitia Durand
- INSERM U1131, Institut Universitaire d'hématologie, Paris, France
| | - Clemence Ginet
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Jean Michel Karsenti
- Cote d'azur University, Nice Sophia Antipolis University, CHU of Nice, Nice, France
| | - Frederic Luciano
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Lauris Gastaud
- Centre Antoine Lacassagne, Service d'oncologie, Nice, France
| | - Georges Garnier
- CH Princesse Grace, Service de Médecine Interne, Monaco, Monaco
| | - Thorsten Braun
- Hôpital Avicenne, Paris 13 University, APHP, Bobigny, France
| | - Pierre Hirsch
- Hôpital Saint Antoine, Service d'Hématologie Clinique et de Thérapie Cellulaire, Paris, France.,Sorbonne Universités, UPMC Univ Paris 6, UMRS 938, CDR Saint-Antoine, Paris, France
| | - Emmanuel Raffoux
- Hôpital Saint Louis, Paris 7 University, Service d'Hématologie Adulte, APHP, Paris, France
| | - Anne Marie Nloga
- Hôpital Saint Louis, Paris 7 University, Service d'Hématologie Sénior, APHP, Paris, France
| | - Rose Ann Padua
- INSERM U1131, Institut Universitaire d'hématologie, Paris, France
| | - Hervé Dombret
- Hôpital Saint Louis, Paris 7 University, Service d'Hématologie Adulte, APHP, Paris, France
| | - Pierre Rohrlich
- Cote d'azur University, Nice Sophia Antipolis University, CHU of Nice, Nice, France
| | - Lionel Ades
- INSERM U1131, Institut Universitaire d'hématologie, Paris, France.,Hôpital Saint Louis, Paris 7 University, Service d'Hématologie Sénior, APHP, Paris, France
| | | | - Patrick Auberger
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Cote d'azur University, Nice Sophia Antipolis University, CHU of Nice, Nice, France
| | - Pierre Fenaux
- INSERM U1131, Institut Universitaire d'hématologie, Paris, France.,Hôpital Saint Louis, Paris 7 University, Service d'Hématologie Sénior, APHP, Paris, France
| | - Thomas Cluzeau
- INSERM U1131, Institut Universitaire d'hématologie, Paris, France.,INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Cote d'azur University, Nice Sophia Antipolis University, CHU of Nice, Nice, France
| |
Collapse
|
85
|
Picot T, Aanei CM, Flandrin Gresta P, Noyel P, Tondeur S, Tavernier Tardy E, Guyotat D, Campos Catafal L. Evaluation by Flow Cytometry of Mature Monocyte Subpopulations for the Diagnosis and Follow-Up of Chronic Myelomonocytic Leukemia. Front Oncol 2018; 8:109. [PMID: 29707521 PMCID: PMC5906716 DOI: 10.3389/fonc.2018.00109] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/28/2018] [Indexed: 01/22/2023] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is a myelodysplastic/myeloproliferative neoplasm, characterized by persistent monocytosis and dysplasia in at least one myeloid cell lineage. This persistent monocytosis should be distinguished from the reactive monocytosis which is sometimes observed in a context of infections or solid tumors. In 2015, Selimoglu-Buet et al. observed an increased percentage of classical monocytes (CD14+/CD16- >94%) in the peripheral blood (PB) of CMML patients. In this study, using multiparametric flow cytometry (MFC), we assessed the monocytic distribution in PB samples and in bone marrow aspirates from 63 patients with monocytosis or CMML suspicion, and in seven follow-up blood samples from CMML patients treated with hypomethylating agents (HMA). A control group of 12 healthy age-matched donors was evaluated in parallel in order to validate the analysis template. The CMML diagnosis was established in 15 cases in correlation with other clinical manifestations and biological tests. The MFC test for the evaluation of the repartition of monocyte subsets, as previously described by Selimoglu-Buet et al. showed a specificity of 97% in blood and 100% in marrow samples. Additional information regarding the expression of intermediate MO2 monocytes percentage improved the specificity to 100% in blood samples allowing the screening of abnormal monocytosis. The indicative thresholds of CMML monocytosis were different in PB compared to BM samples (classical monocytes >95% for PB and >93% for BM). A decrease of monocyte levels in PB and BM, along with a normalization of monocytes distribution, was observed after treatment in 4/7 CMML patients with favorable evolution. No significant changes were observed in 3/7 patients who did not respond to HMA therapy and also presented unfavorable molecular prognostic factors at diagnosis (ASXL1, TET2, and IDH2 mutations). Considering its simplicity and robustness, the monocyte subsets evaluation by MFC provides relevant information for CMML diagnosis.
Collapse
Affiliation(s)
- Tiphanie Picot
- Laboratoire d'Hématologie, CHU de Saint-Etienne, Saint-Etienne, France
| | | | | | - Pauline Noyel
- Laboratoire d'Hématologie, CHU de Saint-Etienne, Saint-Etienne, France
| | - Sylvie Tondeur
- Laboratoire d'Hématologie, CHU de Saint-Etienne, Saint-Etienne, France
| | - Emmanuelle Tavernier Tardy
- Département d'Hématologie et Thérapie Cellulaire, Institut de Cancérologie Lucien Neuwirth, Saint-Etienne, France
| | - Denis Guyotat
- Département d'Hématologie et Thérapie Cellulaire, Institut de Cancérologie Lucien Neuwirth, Saint-Etienne, France
| | | |
Collapse
|
86
|
Watanabe J, Sato K, Osawa Y, Horiuchi T, Kato S, Hikota-Saga R, Maekawa T, Yamamura T, Kobayashi A, Kobayashi S, Kimura F. CBL mutation and MEFV single-nucleotide variant are important genetic predictors of tumor reduction in glucocorticoid-treated patients with chronic myelomonocytic leukemia. Int J Hematol 2018; 108:47-57. [PMID: 29600428 DOI: 10.1007/s12185-018-2436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 03/17/2018] [Accepted: 03/19/2018] [Indexed: 11/28/2022]
Abstract
Glucocorticoid (GC) therapy occasionally relieves tumor-related fever and promotes tumor reduction in patients with chronic myelomonocytic leukemia (CMML). A mutation analysis of 24 patients with CMML revealed the relationship of GC effectiveness, defined as a monocyte reduction of > 50% within 3 days of methylprednisolone administration, with the MEFV single-nucleotide variant (SNV) and CBL mutation. Lipopolysaccharide-stimulated monocytes harboring MEFV E148Q produced greater amounts of IL-1β and TNF-α than did wild-type monocytes; this was effectively suppressed by GC. Primary CMML cells harboring the MEFV SNV and CBL mutation, and the myelomonocytic leukemia cell line GDM-1, harboring the CBL mutation, were both more significantly suppressed than non-mutated cells following GC treatment in the presence of GM-CSF. A loss-of-function CBL mutation prolonged STAT5 phosphorylation after GM-CSF stimulation, which was rapidly terminated in both patient samples and GDM-1 cells. In conclusion, GC therapy effectively treats CMML cells harboring the MEFV SNV and CBL mutation by reducing inflammatory cytokine production and terminating prolonged STAT5 phosphorylation in the GM-CSF signaling pathway.
Collapse
Affiliation(s)
- Junichi Watanabe
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Ken Sato
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Yukiko Osawa
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Toshikatsu Horiuchi
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Shoichiro Kato
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Reina Hikota-Saga
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Takaaki Maekawa
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Takeshi Yamamura
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Ayako Kobayashi
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Shinichi Kobayashi
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Fumihiko Kimura
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| |
Collapse
|
87
|
Than H, Qiao Y, Huang X, Yan D, Khorashad JS, Pomicter AD, Kovacsovics TJ, Marth GT, O'Hare T, Deininger MW. Ongoing clonal evolution in chronic myelomonocytic leukemia on hypomethylating agents: a computational perspective. Leukemia 2018; 32:2049-2054. [PMID: 29588547 PMCID: PMC6128729 DOI: 10.1038/s41375-018-0050-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Hein Than
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, USA.,Department of Hematology, Singapore General Hospital, Singapore, Singapore
| | - Yi Qiao
- Eccles Institute of Human Genetics, The University of Utah, Salt Lake City, UT, USA
| | - Xiaomeng Huang
- Eccles Institute of Human Genetics, The University of Utah, Salt Lake City, UT, USA
| | - Dongqing Yan
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, USA
| | - Jamshid S Khorashad
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, USA.,Centre for Hematology, Department of Medicine, Imperial College, London, UK
| | - Anthony D Pomicter
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, USA
| | | | - Gabor T Marth
- Eccles Institute of Human Genetics, The University of Utah, Salt Lake City, UT, USA
| | - Thomas O'Hare
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, USA.,Division of Hematology and Hematologic Malignancies, The University of Utah, Salt Lake City, UT, USA
| | - Michael W Deininger
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, USA. .,Division of Hematology and Hematologic Malignancies, The University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
88
|
Tobiasson M, Abdulkadir H, Lennartsson A, Katayama S, Marabita F, De Paepe A, Karimi M, Krjutskov K, Einarsdottir E, Grövdal M, Jansson M, Ben Azenkoud A, Corddedu L, Lehmann S, Ekwall K, Kere J, Hellström-Lindberg E, Ungerstedt J. Comprehensive mapping of the effects of azacitidine on DNA methylation, repressive/permissive histone marks and gene expression in primary cells from patients with MDS and MDS-related disease. Oncotarget 2018; 8:28812-28825. [PMID: 28427179 PMCID: PMC5438694 DOI: 10.18632/oncotarget.15807] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/01/2017] [Indexed: 02/07/2023] Open
Abstract
Azacitidine (Aza) is first-line treatment for patients with high-risk myelodysplastic syndromes (MDS), although its precise mechanism of action is unknown. We performed the first study to globally evaluate the epigenetic effects of Aza on MDS bone marrow progenitor cells assessing gene expression (RNA seq), DNA methylation (Illumina 450k) and the histone modifications H3K18ac and H3K9me3 (ChIP seq). Aza induced a general increase in gene expression with 924 significantly upregulated genes but this increase showed no correlation with changes in DNA methylation or H3K18ac, and only a weak association with changes in H3K9me3. Interestingly, we observed activation of transcripts containing 15 endogenous retroviruses (ERVs) confirming previous cell line studies. DNA methylation decreased moderately in 99% of all genes, with a median β-value reduction of 0.018; the most pronounced effects seen in heterochromatin. Aza-induced hypomethylation correlated significantly with change in H3K9me3. The pattern of H3K18ac and H3K9me3 displayed large differences between patients and healthy controls without any consistent pattern induced by Aza. We conclude that the marked induction of gene expression only partly could be explained by epigenetic changes, and propose that activation of ERVs may contribute to the clinical effects of Aza in MDS.
Collapse
Affiliation(s)
- Magnus Tobiasson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Hani Abdulkadir
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm County, Sweden
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm County, Sweden
| | - Francesco Marabita
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,National Bioinformatics Infrastructure Sweden, Stockholm, Sweden
| | - Ayla De Paepe
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Mohsen Karimi
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Kaarel Krjutskov
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm County, Sweden.,Molecular Neurology Research Program, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland.,Competence Centre on Health Technologies, Tartu, Estonia
| | - Elisabet Einarsdottir
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm County, Sweden.,Molecular Neurology Research Program, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Michael Grövdal
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Monika Jansson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Asmaa Ben Azenkoud
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Lina Corddedu
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm County, Sweden
| | - Sören Lehmann
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm County, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm County, Sweden.,Molecular Neurology Research Program, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Eva Hellström-Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Johanna Ungerstedt
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| |
Collapse
|
89
|
Palomo L, Malinverni R, Cabezón M, Xicoy B, Arnan M, Coll R, Pomares H, García O, Fuster-Tormo F, Grau J, Feliu E, Solé F, Buschbeck M, Zamora L. DNA methylation profile in chronic myelomonocytic leukemia associates with distinct clinical, biological and genetic features. Epigenetics 2018; 13:8-18. [PMID: 29160764 DOI: 10.1080/15592294.2017.1405199] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chromosomal abnormalities are detected in 20-30% of patients with chronic myelomonocytic leukemia (CMML) and correlate with prognosis. On the mutation level, disruptive alterations are particularly frequent in chromatin regulatory genes. However, little is known about the consequential alterations in the epigenetic marking of the genome. Here, we report the analysis of genomic DNA methylation patterns of 64 CMML patients and 10 healthy controls, using a DNA methylation microarray focused on promoter regions. Differential methylation analysis between patients and controls allowed us to identify abnormalities in DNA methylation, including hypermethylation of specific genes and large genome regions with aberrant DNA methylation. Unsupervised hierarchical cluster analysis identified two main clusters that associated with the clinical, biological, and genetic features of patients. Group 1 was enriched in patients with adverse clinical and biological characteristics and poorer overall and progression-free survival. In addition, significant differences in DNA methylation were observed between patients with low risk and intermediate/high risk karyotypes and between TET2 mutant and wild type patients. Taken together, our results demonstrate that altered DNA methylation patterns reflect the CMML disease state and allow to identify patient groups with distinct clinical features.
Collapse
Affiliation(s)
- Laura Palomo
- a MDS Group. Josep Carreras Leukaemia Research Institute (IJC), ICO-Hospital Germans Trias i Pujol , Universitat Autònoma de Barcelona , Carretera de Can Ruti, Camí de les Escoles, s/n. 08916, Badalona ( Barcelona ), Spain.,b Departament de Bioquímica i Biologia Molecular , Universitat Autònoma de Barcelona , Campus de la UAB, Plaça Cívica, s/n. 08913, Bellaterra ( Barcelona ), Spain
| | - Roberto Malinverni
- c Chromatin, Metabolism and Cell Fate Group. Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol , Program for Predictive and Personalized Medicine of Cancer at the Institute Germans Trias i Pujol (PMPPC-IGTP) , Carretera de Can Ruti, Camí de les Escoles, s/n. 08916, Badalona ( Barcelona ), Spain
| | - Marta Cabezón
- d Hematology Service, ICO-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute (IJC) , Universitat Autònoma de Barcelona , Carretera del Canyet, s/n. 08916, Badalona ( Barcelona ), Spain
| | - Blanca Xicoy
- d Hematology Service, ICO-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute (IJC) , Universitat Autònoma de Barcelona , Carretera del Canyet, s/n. 08916, Badalona ( Barcelona ), Spain
| | - Montserrat Arnan
- e Hematology Service , ICO-Hospital Duran i Reynals , Avinguda de la Gran Via de l'Hospitalet, 199-203, 08908 Hospitalet de Llobregat ( Barcelona ), Spain
| | - Rosa Coll
- f Hematology Service , ICO-Girona Hospital Josep Trueta, Girona, Spain , Avenida França, s/n. 17007 Girona , Spain
| | - Helena Pomares
- e Hematology Service , ICO-Hospital Duran i Reynals , Avinguda de la Gran Via de l'Hospitalet, 199-203, 08908 Hospitalet de Llobregat ( Barcelona ), Spain
| | - Olga García
- d Hematology Service, ICO-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute (IJC) , Universitat Autònoma de Barcelona , Carretera del Canyet, s/n. 08916, Badalona ( Barcelona ), Spain
| | - Francisco Fuster-Tormo
- a MDS Group. Josep Carreras Leukaemia Research Institute (IJC), ICO-Hospital Germans Trias i Pujol , Universitat Autònoma de Barcelona , Carretera de Can Ruti, Camí de les Escoles, s/n. 08916, Badalona ( Barcelona ), Spain
| | - Javier Grau
- d Hematology Service, ICO-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute (IJC) , Universitat Autònoma de Barcelona , Carretera del Canyet, s/n. 08916, Badalona ( Barcelona ), Spain
| | - Evarist Feliu
- d Hematology Service, ICO-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute (IJC) , Universitat Autònoma de Barcelona , Carretera del Canyet, s/n. 08916, Badalona ( Barcelona ), Spain
| | - Francesc Solé
- a MDS Group. Josep Carreras Leukaemia Research Institute (IJC), ICO-Hospital Germans Trias i Pujol , Universitat Autònoma de Barcelona , Carretera de Can Ruti, Camí de les Escoles, s/n. 08916, Badalona ( Barcelona ), Spain
| | - Marcus Buschbeck
- c Chromatin, Metabolism and Cell Fate Group. Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol , Program for Predictive and Personalized Medicine of Cancer at the Institute Germans Trias i Pujol (PMPPC-IGTP) , Carretera de Can Ruti, Camí de les Escoles, s/n. 08916, Badalona ( Barcelona ), Spain
| | - Lurdes Zamora
- d Hematology Service, ICO-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute (IJC) , Universitat Autònoma de Barcelona , Carretera del Canyet, s/n. 08916, Badalona ( Barcelona ), Spain
| |
Collapse
|
90
|
Montalban-Bravo G, Garcia-Manero G. Myelodysplastic syndromes: 2018 update on diagnosis, risk-stratification and management. Am J Hematol 2018; 93:129-147. [PMID: 29214694 DOI: 10.1002/ajh.24930] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 12/12/2022]
Abstract
DISEASE OVERVIEW The myelodysplastic syndromes (MDS) are a very heterogeneous group of myeloid disorders characterized by peripheral blood cytopenias and increased risk of transformation to acute myelogenous leukemia (AML). MDS occurs more frequently in older males and in individuals with prior exposure to cytotoxic therapy. DIAGNOSIS Diagnosis of MDS is based on morphological evidence of dysplasia upon visual examination of a bone marrow aspirate and biopsy. Information obtained from additional studies such as karyotype, flow cytometry or molecular genetics is usually complementary and may help refine diagnosis. RISK-STRATIFICATION Prognosis of patients with MDS can be calculated using a number of scoring systems. In general, all these scoring systems include analysis of peripheral cytopenias, percentage of blasts in the bone marrow and cytogenetic characteristics. The most commonly used system is probably the International Prognostic Scoring System (IPSS). IPSS is now replaced by the revised IPSS-R score. Although not systematically incorporated into new validated prognostic systems, somatic mutations can help define prognosis and should be considered as new prognostic factors. RISK-ADAPTED THERAPY Therapy is selected based on risk, transfusion needs, percent of bone marrow blasts and cytogenetic and mutational profiles. Goals of therapy are different in lower risk patients than in higher risk. In lower risk, the goal is to decrease transfusion needs and transformation to higher risk disease or AML, as well as to improve survival. In higher risk, the goal is to prolong survival. Current available therapies include growth factor support, lenalidomide, hypomethylating agents, intensive chemotherapy and allogeneic stem cell transplantation. The use of lenalidomide has significant clinical activity in patients with lower risk disease, anemia and a chromosome 5 alteration. 5-azacitidine and decitabine have activity in both lower and higher-risk MDS. 5-azacitidine has been shown to improve survival in higher risk MDS. A number of new molecular lesions have been described in MDS that may serve as new therapeutic targets or aid in the selection of currently available agents. Additional supportive care measures may include the use of prophylactic antibiotics and iron chelation. MANAGEMENT OF PROGRESSIVE OR REFRACTORY DISEASE At the present time there are no approved interventions for patients with progressive or refractory disease particularly after hypomethylating based therapy. Options include participation in a clinical trial or cytarabine based therapy and stem cell transplantation.
Collapse
|
91
|
Abstract
Acute leukemias are hematologic malignancies with aggressive behavior especially in adult population. With the introduction of new gene expression and sequencing technologies there have been advances in the knowledge of the genetic landscape of acute leukemias. A more detailed analysis allows for the identification of additional alterations in epigenetic regulators that have a profound impact in cellular biology without changes in DNA sequence. These epigenetic alterations disturb the physiological balance between gene activation and gene repression and contribute to aberrant gene expression, contributing significantly to the leukemic pathogenesis and maintenance. We review epigenetic changes in acute leukemia in relation to what is known about their mechanism of action, their prognostic role and their potential use as therapeutic targets, with important implications for precision medicine.
Collapse
|
92
|
Dombret H, Itzykson R. How and when to decide between epigenetic therapy and chemotherapy in patients with AML. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:45-53. [PMID: 29222236 PMCID: PMC6142607 DOI: 10.1182/asheducation-2017.1.45] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Remission induction with chemotherapy has long been the frontline treatment of acute myeloid leukemia (AML). However, intensive therapy is limited in frail patients by its associated toxicity and higher rates of failure or relapse in patients with chemoresistant disease, such as secondary AML or poor-risk cytogenetics. Frailty and chemoresistance are more frequent in older adults with AML. In recent years, epigenetic therapies with the hypomethylating agents decitabine and azacitidine have been thoroughly explored in AML. The results of two pivotal studies carried out with these agents in older adults with newly diagnosed AML have challenged the role of intensive chemotherapy as the frontline treatment option in this high-risk population. Here, we review the results of treatment with intensive chemotherapy and hypomethylating agents in older patients with AML; discuss the patient- and disease-specific criteria to integrate into treatment decision making; and also, highlight the methodological limitations of cross-study comparison in this population.
Collapse
Affiliation(s)
- Hervé Dombret
- Hôpital Saint-Louis, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France
| | - Raphael Itzykson
- Hôpital Saint-Louis, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France
| |
Collapse
|
93
|
Unnikrishnan A, Vo ANQ, Pickford R, Raftery MJ, Nunez AC, Verma A, Hesson LB, Pimanda JE. AZA-MS: a novel multiparameter mass spectrometry method to determine the intracellular dynamics of azacitidine therapy in vivo. Leukemia 2017; 32:900-910. [PMID: 29249821 PMCID: PMC5886051 DOI: 10.1038/leu.2017.340] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 01/19/2023]
Abstract
The cytidine analogue, 5-azacytidine (AZA; 5-AZA-cR), is the primary treatment for myelodysplastic syndrome and chronic myelomonocytic leukaemia. However, only ~50% of treated patients will respond to AZA and the drivers of AZA resistance in vivo are poorly understood. To better understand the intracellular dynamics of AZA upon therapy and decipher the molecular basis for AZA resistance, we have developed a novel, multiparameter, quantitative mass spectrometry method (AZA-MS). Using AZA-MS, we have accurately quantified the abundance of the ribonucleoside (5-AZA-cR) and deoxyribonucleoside (5-AZA-CdR) forms of AZA in RNA, DNA and the cytoplasm within the same sample using nanogram quantities of input material. We report that although AZA induces DNA demethylation in a dose-dependent manner, it has no corresponding effect on RNA methylation. By applying AZA-MS to primary bone marrow samples from patients undergoing AZA therapy, we have identified that responders accumulate more 5-AZA-CdR in their DNA compared with nonresponders. AZA resistance was not a result of impaired AZA metabolism or intracellular accumulation. Furthermore, AZA-MS has helped to uncover different modes of AZA resistance. Whereas some nonresponders fail to incorporate sufficient 5-AZA-CdR into DNA, others incorporate 5-AZA-CdR and effect DNA demethylation like AZA responders, but show no clinical benefit.
Collapse
Affiliation(s)
- A Unnikrishnan
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - A N Q Vo
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - R Pickford
- Bioanalytical Mass Spectrometry Facility, UNSW Sydney, Sydney, New South Wales, Australia
| | - M J Raftery
- Bioanalytical Mass Spectrometry Facility, UNSW Sydney, Sydney, New South Wales, Australia
| | - A C Nunez
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - A Verma
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales, Australia
| | - L B Hesson
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - J E Pimanda
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia.,Department of Pathology, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia.,Haematology Department, Prince of Wales Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
94
|
Hypomethylating agents for treatment and prevention of relapse after allogeneic blood stem cell transplantation. Int J Hematol 2017; 107:138-150. [DOI: 10.1007/s12185-017-2364-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022]
|
95
|
Gu J, Wang Z, Xiao M, Mao X, Zhu L, Wang Y, Huang W. Chronic myelomonocytic leukemia with double-mutations in DNMT3A and FLT3-ITD treated with decitabine and sorafenib. Cancer Biol Ther 2017; 18:843-849. [PMID: 28102729 DOI: 10.1080/15384047.2017.1281491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is a heterogeneous neoplastic hematologic disorder with worse overall survival. Half of CMML have mutations, but case with concomitant mutations of DNA methyltransferase 3A (DNMT3A) and Internal tandem duplications of the juxtamembrane domain of FLT3 (FLT3-ITD) in CMML was not reported before. We reported a 51-year-old man who had CMML with concomitant mutations in DNMT3A and FLT3-ITD.The patient received decitabine and sorafenib combined treatment. In this report, we reviewed DNMT3A mutation and FLT3 mutation, and we reviewed treatment of decitabine and sorafenib. This report is significant. First: This is the first report on CMML with double-mutations of DNMT3A and FLT3-ITD. Second: It shows the importance of targeted drug in combined treatment of CMML.
Collapse
Affiliation(s)
- Jia Gu
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Jiefang Da Dao, Wuhan , P. R. China
| | - Zhiqiong Wang
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Jiefang Da Dao, Wuhan , P. R. China
| | - Min Xiao
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Jiefang Da Dao, Wuhan , P. R. China
| | - Xia Mao
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Jiefang Da Dao, Wuhan , P. R. China
| | - Li Zhu
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Jiefang Da Dao, Wuhan , P. R. China
| | - Ying Wang
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Jiefang Da Dao, Wuhan , P. R. China
| | - Wei Huang
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Jiefang Da Dao, Wuhan , P. R. China
| |
Collapse
|
96
|
|
97
|
Niscola P, Abruzzese E, Trawinska MM, Palombi M, Tendas A, Giovannini M, Scaramucci L, Cupelli L, Fratoni S, Noguera NI, Catalano G, de Fabritiis P. Decitabine treatment of multiple extramedullary acute myeloid leukemia involvements after essential thrombocytemia transformation. Acta Oncol 2017; 56:1331-1333. [PMID: 28488914 DOI: 10.1080/0284186x.2017.1324215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Pasquale Niscola
- Haematology Unit and Pathology Department, S. Eugenio Hospital, Rome, Italy
| | | | | | | | - Andrea Tendas
- Haematology Unit and Pathology Department, S. Eugenio Hospital, Rome, Italy
| | - Marco Giovannini
- Haematology Unit and Pathology Department, S. Eugenio Hospital, Rome, Italy
| | - Laura Scaramucci
- Haematology Unit and Pathology Department, S. Eugenio Hospital, Rome, Italy
| | - Luca Cupelli
- Haematology Unit and Pathology Department, S. Eugenio Hospital, Rome, Italy
| | - Stefano Fratoni
- Haematology Unit and Pathology Department, S. Eugenio Hospital, Rome, Italy
| | | | | | - Paolo de Fabritiis
- Haematology Unit and Pathology Department, S. Eugenio Hospital, Rome, Italy
| |
Collapse
|
98
|
Thota S, Gerds AT. Myelodysplastic and myeloproliferative neoplasms: updates on the overlap syndromes. Leuk Lymphoma 2017; 59:803-812. [PMID: 28771058 DOI: 10.1080/10428194.2017.1357179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Myelodysplastic and myeloproliferative neoplasms (MDS/MPN) is a rare and distinct group of myeloid neoplasms with overlapping MDS and MPN features. Next generation sequencing studies have led to an improved understanding of MDS/MPN disease biology by identifying recurrent somatic mutations. Combining the molecular findings to patho-morphologic features has improved the precision of diagnosis and prognostic models in MDS/MPN. We discuss and highlight these updates in MDS/MPN nomenclature and diagnostic criteria per revised 2016 WHO classification of myeloid neoplasms in this article. There is an ongoing effort for data integration allowing for comprehensive genomic characterization, development of improved prognostic tools, and investigation for novel therapies using an international front specific for MDS/MPN. In this article, we discuss updates in prognostic models and current state of treatment for MDS/MPN.
Collapse
Affiliation(s)
- Swapna Thota
- a Leukemia and Myeloid Disorders Program , Taussig Cancer Institute, Cleveland Clinic Foundation , Cleveland , OH , USA
| | - Aaron T Gerds
- a Leukemia and Myeloid Disorders Program , Taussig Cancer Institute, Cleveland Clinic Foundation , Cleveland , OH , USA
| |
Collapse
|
99
|
Niscola P, Neri B, Catalano G, Morino L, Giovannini M, Scaramucci L, Fratoni S, Noguera NI, Cordone I, de Fabritiis P. Decitabine as salvage therapy for primary induction failure of acute myeloid leukemia. Acta Oncol 2017; 56:1120-1121. [PMID: 28406054 DOI: 10.1080/0284186x.2017.1287947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Iole Cordone
- Clinical Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | | |
Collapse
|
100
|
Xu Y, Li Y, Xu Q, Chen Y, Lv N, Jing Y, Dou L, Bo J, Hou G, Guo J, Wang X, Wang L, Li Y, Chen C, Yu L. Implications of mutational spectrum in myelodysplastic syndromes based on targeted next-generation sequencing. Oncotarget 2017; 8:82475-82490. [PMID: 29137279 PMCID: PMC5669905 DOI: 10.18632/oncotarget.19628] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/30/2017] [Indexed: 02/01/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of myeloid hematological malignancies, with a high risk of progression to acute myeloid leukemia (AML). To explore the role of acquired mutations in MDS, 111 MDS-associated genes were screened using next-generation sequencing (NGS), in 125 patients. One or more mutations were detected in 84% of the patients. Some gene mutations are specific for MDS and were associated with disease subtypes, and the patterns of mutational pathways could be associated with progressive MDS. The patterns, frequencies and functional pathways of gene mutations are different, but somehow related, between MDS and AML. Multivariate analysis suggested that patients with ≥ 2 mutations had poor progression-free survival, while GATA1/GATA2, DNMT3A and KRAS/NRAS mutations were associated with poor overall survival. Based on a novel system combining IPSS-R and molecular markers, these MDS patients were further divided into 3 more accurate prognostic subgroups. A panel of 11 target genes was proposed for genetic profiling of MDS. The study offers new insights into the molecular signatures of MDS and the genetic consistency between MDS and AML. Furthermore, results indicate that MDS could be classified by mutation combinations to guide the administration of individualized therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of Hematology and BMT center, Chinese PLA General Hospital, Beijing 100853, China.,Department of Hematology, Hainan Branch of Chinese PLA General Hospital, Sanya 572013, Hainan Province, China
| | - Yan Li
- Department of Hematology and BMT center, Chinese PLA General Hospital, Beijing 100853, China.,Department of Hematology, Hainan Branch of Chinese PLA General Hospital, Sanya 572013, Hainan Province, China
| | - Qingyu Xu
- Department of Hematology and BMT center, Chinese PLA General Hospital, Beijing 100853, China.,Medical school of Nankai University, Tianjin 300071, China
| | - Yuelong Chen
- Annoroad Gene Technology Co. Ltd, Beijing 100176, China
| | - Na Lv
- Department of Hematology and BMT center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Jing
- Department of Hematology and BMT center, Chinese PLA General Hospital, Beijing 100853, China
| | - Liping Dou
- Department of Hematology and BMT center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jian Bo
- Department of Hematology and BMT center, Chinese PLA General Hospital, Beijing 100853, China
| | - Guangyuan Hou
- Annoroad Gene Technology Co. Ltd, Beijing 100176, China
| | - Jing Guo
- Annoroad Gene Technology Co. Ltd, Beijing 100176, China
| | - Xiuli Wang
- Annoroad Gene Technology Co. Ltd, Beijing 100176, China
| | - Lili Wang
- Department of Hematology and BMT center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yonghui Li
- Department of Hematology and BMT center, Chinese PLA General Hospital, Beijing 100853, China
| | | | - Li Yu
- Department of Hematology and BMT center, Chinese PLA General Hospital, Beijing 100853, China.,Department of Hematology, General Hospital of Shenzhen University, Shenzhen 518060, China
| |
Collapse
|