51
|
Ambach A, Bonnekoh B, Gollnick H. UVA1 radiation (340–400nm) interferes with the perforin-granule system of CD8hi+ cytotoxic T lymphocytes in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 82:236-43. [PMID: 16466930 DOI: 10.1016/j.jphotobiol.2005.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 12/20/2005] [Accepted: 12/25/2005] [Indexed: 10/25/2022]
Abstract
UVA1-irradiation was introduced as an innovative and effective phototherapy of atopic dermatitis (AD) and other skin diseases. In AD, a defect of a central apoptosis inducing effector system involved in immunoregulation and immune defense, i.e., the system of perforin-granules in cytotoxic T lymphocytes (CTL), was recently reported: perforin-reduction and perforin-hyperreleasability. We now investigated UVA1-effects on the perforin-granule system in vitro. Peripheral blood CTLs were exposed in vitro to 10-100 J/cm2 UVA1 (340-400 nm), and to 30-150 mJ/cm2 UVB (280-315 nm) as a control. A time-dependent perforin-granule release was induced by phorbol 12-myristate 13-acetate (PMA) and ionomycin. This release was inhibited dose-dependently by UVA1, but not by UVB. An UVA1-dose dependent pattern of sensitive (80%) and insensitive (20%) individuals was found. The kinetics of perforin release in AD-CTLs, i.e. hyperreleasability, was normalized by 50 J/cm2 UVA1 in vitro. Sodium azide as a quencher of reactive oxygen species prevented the UVA1-mediated inhibition of perforin-granule release. Our data demonstrate for the first time a dose- and wavelength-dependent UVA1-effect in vitro on a major effector system of cytotoxic lymphocytes, the system of perforin-granules. This might contribute to the further understanding of immunomodulatory UVA1-effects in vivo.
Collapse
Affiliation(s)
- Andreas Ambach
- Clinic of Dermatology and Venereology, Otto-von-Guericke-University, Leipziger Strasse 44, D-39120 Magdeburg, Germany.
| | | | | |
Collapse
|
52
|
Han D, Leith J, Alejandro R, Bolton W, Ricordi C, Kenyon NS. Peripheral blood cytotoxic lymphocyte gene transcript levels differ in patients with long-term type 1 diabetes compared to normal controls. Cell Transplant 2005; 14:403-9. [PMID: 16180659 DOI: 10.3727/000000005783982972] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to compare mRNA levels of the cytotoxic lymphocyte (CL) gene products: granzyme B (GB), perforin (P), and fas ligand (FasL) in patients with long-term type 1 diabetes and healthy controls. The objective was to utilize this information to follow patients as they undergo islet cell transplantation at our center and to determine if changes in CL gene transcript levels correlate with graft status. We have measured mRNA levels for CL genes in peripheral blood samples from 65 long-term (>5 years) type 1 diabetes patients and 29 healthy controls. Total RNA was extracted from EDTA anticoagulated peripheral blood samples and reverse transcribed into first-strand cDNA using SuperScript II reverse Transcriptase. Quantitative, real-time PCR was utilized to determine CL gene transcript levels. mRNA levels of P and FasL genes were found to be significantly lower for patients with type 1 diabetes compared to normal controls (p < 0.05). However, there was no significant difference for GB mRNA levels between patients and controls (p > 0.05). The decreased expression of P and FasL in patients with long-term type 1 diabetes might contribute to the inability to maintain normal levels of peripheral tolerance, which is essential for protection from autoimmune disease.
Collapse
Affiliation(s)
- Dongmei Han
- Diabetes Research Institute, University of Miami School of Medicine, 1450 N.W. 10th Avenue, Miami, FL 33136, USA.
| | | | | | | | | | | |
Collapse
|
53
|
Puliaev RA, Puliaeva IA, Ryan AE, Via CS. The Parent-into-F1 Model of Graft-vs-Host Disease as a Model of In Vivo T Cell Function and Immunomodulation. ACTA ACUST UNITED AC 2005; 5:575-583. [PMID: 19865585 DOI: 10.2174/156801305774962204] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Since its description roughly 30 years ago, the parent-into-F1 model of graft-vs.-host disease has provided insights into the mechanisms of in vivo T cell activation and the pathogenesis of autoimmune conditions. A new and emerging role for the P-->F1 model is one of identifying agents with immunomodulatory activity and defining in vivo mechanisms that promote cell mediated or antibody mediated immune responses. Because F1 mice are not irradiated prior to donor cell transfer, the P-->F1 model has in the past not been strictly analogous to human hematopoetic stem cell transplantation. However with the advent of newer non-myeloablative conditioning regimens, the model may assume more relevance. In this article, we first provide a review of relevant earlier fundamental observations followed by a summary of recent work from our laboratory in which acute and chronic GVHD in this model have been used not only to study normal T cell responses in vivo but also to define mechanisms important in the pathogenesis of autoimmunity and immunomodulation.
Collapse
Affiliation(s)
- R A Puliaev
- Pathology Department, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
54
|
Niculescu F, Niculescu T, Nguyen P, Puliaev R, Papadimitriou JC, Gaspari A, Rus H, Via CS. Both apoptosis and complement membrane attack complex deposition are major features of murine acute graft-vs.-host disease. Exp Mol Pathol 2005; 79:136-45. [PMID: 15979610 DOI: 10.1016/j.yexmp.2005.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2005] [Accepted: 03/31/2005] [Indexed: 12/11/2022]
Abstract
The parent-into-F1 mouse model (P-->F1) of acute graft-vs.-host disease (GVHD) is a useful model of human acute GVHD because it allows the study of the T cell contribution to pathology without the complicating effects of conditioning regimens. To determine the similarity of this model to human GVHD, we assessed injury in organs typically involved in human acute GVHD (skin, liver) and less typically involved organs (spleen, kidney, lung). Mice were assessed histologically at early (2 weeks), intermediate (3 months) and late (6 month) time points. Based on the emerging roles of Fas ligand killing and complement deposition in allograft rejection, we correlated the amount of tissue specific TUNEL positive apoptosis and deposition of complement (C5b-9) with histopathologic changes. Our results indicate a striking similarity histologically between acute GVHD occurring in this model and in humans following bone marrow transplant. Moreover, C5b-9 deposition and apoptotic cell accumulation were found to parallel tissue injury in major organs of acute GVHD mice, although not all organs exhibited the same kinetic pattern. These results indicate a role for both adaptive immunity and innate immunity in this model of GVHD and support its use in modeling human acute GVHD in the nonmyeloablative setting.
Collapse
Affiliation(s)
- Florin Niculescu
- Department of Medicine, Division of Rheumatology and Clinical Immunology, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Kang HK, Michaels MA, Berner BR, Datta SK. Very low-dose tolerance with nucleosomal peptides controls lupus and induces potent regulatory T cell subsets. THE JOURNAL OF IMMUNOLOGY 2005; 174:3247-55. [PMID: 15749855 DOI: 10.4049/jimmunol.174.6.3247] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We induced very low-dose tolerance by injecting lupus prone (SWR x NZB)F1 (SNF1) mice with 1 mug nucleosomal histone peptide autoepitopes s.c. every 2 wk. The subnanomolar peptide therapy diminished autoantibody levels and prolonged life span by delaying nephritis, especially by reducing inflammatory cell reaction and infiltration in kidneys. H4(71-94) was the most effective autoepitope. Low-dose tolerance therapy induced CD8+, as well as CD4+ CD25+ regulatory T (Treg) cell subsets containing autoantigen-specific cells. These adaptive Treg cells suppressed IFN-gamma responses of pathogenic lupus T cells to nucleosomal epitopes at up to a 1:100 ratio and reduced autoantibody production up to 90-100% by inhibiting nucleosome-stimulated T cell help to nuclear autoantigen-specific B cells. Both CD4+ CD25+ and CD8+ Treg cells produced and required TGF-beta1 for immunosuppression, and were effective in suppressing lupus autoimmunity upon adoptive transfer in vivo. The CD4+ CD25+ T cells were partially cell contact dependent, but CD8+ T cells were contact independent. Thus, low-dose tolerance with highly conserved histone autoepitopes repairs a regulatory defect in systemic lupus erythematosus by generating long-lasting, TGF-beta-producing Treg cells, without causing allergic/anaphylactic reactions or generalized immunosuppression.
Collapse
Affiliation(s)
- Hee-Kap Kang
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
56
|
Kim J, Choi WS, La S, Suh JH, Kim BS, Cho HR, Kwon BS, Kwon B. Stimulation with 4-1BB (CD137) inhibits chronic graft-versus-host disease by inducing activation-induced cell death of donor CD4+ T cells. Blood 2005; 105:2206-13. [PMID: 15522958 DOI: 10.1182/blood-2004-06-2080] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
4-1BB, a member of the tumor necrosis factor (TNF) receptor superfamily, is a costimulator for activated T cells. Previous studies have established that treatment with agonistic anti–4-BB monoclonal antibody (3H3) is effective in reversing the progression of spontaneous systemic lupus erythematosus. Its therapeutic effect is mediated by suppression of autoantibody production. In this report, we show that a single injection of 3H3 blocks chronic graft-versus-host disease (cGVHD) in the parent-into-F1 model. In particular, donor CD4+ T cells are rapidly eliminated from host spleens by activation-induced cell death after 4-1BB triggering. Since donor CD4+ T cells are required for the development of cGVHD, and 3H3-mediated inhibition of autoantibody production occurs without donor CD8+ T cells, 3H3 blocks cGVHD by preventing alloreactive donor CD4+ T cells from activating host B cells. Importantly, 3H3 treatment can reverse the progression of advanced cGVHD. Our findings indicate that agonistic anti–4-1BB monoclonal antibody has potential as an immunotherapeutic agent for preventing and treating cGVHD.
Collapse
Affiliation(s)
- Juyang Kim
- The Immunomodulation Research Center, University of Ulsan, San29, Mukeo-dong, Nam-ku, Ulsan 680-749, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
Perforin is critical for cytotoxicity mediated by granules present in natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Perforin-deficient mice have impaired cytotoxicity by NK cells and CTLs, resulting in failure to control infections with certain viruses or bacteria. Infection of perforin-deficient mice with lymphocytic choriomeningitis virus results in haemophagocytic lymphohistiocytosis and elevated levels of pro-inflammatory cytokines. Mutations throughout the perforin gene have been identified in patients with familial haemophagocytic lymphohistiocytosis (FHL) type 2. These patients present with fever, hepatosplenomegaly, pancytopenia, have marked elevations of T-helper type 1 and type 2 cytokines, and have impaired NK cell and CTL cytotoxicity. A number of infectious pathogens have been implicated as triggering the onset of disease. Identification of mutations in perforin as the cause of FHL should allow prenatal diagnosis of the disorder. While stem cell transplantation is curative, gene therapy might be effective in the future.
Collapse
Affiliation(s)
- Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | | |
Collapse
|
58
|
Shier LR, Schultz KR, Imren S, Regan J, Issekutz A, Sadek I, Gilman A, Luo Z, Panzarella T, Eaves CJ, Couban S. Differential effects of granulocyte colony-stimulating factor on marrow- and blood-derived hematopoietic and immune cell populations in healthy human donors. Biol Blood Marrow Transplant 2005; 10:624-34. [PMID: 15319774 DOI: 10.1016/j.bbmt.2004.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A recent phase III trial comparing granulocyte colony-stimulating factor (G-CSF)-stimulated bone marrow (G-BM) and G-CSF-mobilized peripheral blood (G-PB) in matched sibling allograft recipients showed that G-BM produced a similar hematologic recovery but a reduced incidence of extensive chronic graft-versus-host disease, indicating differences in the cell populations infused. As a first step toward identifying these differences, we treated a group of healthy adult humans with 4 daily doses of G-CSF 10 microg/kg and monitored the effects on various hematopoietic and immune cell types in the PB and BM over 12 days. G-CSF treatment caused rapid and large but transient increases in the number of circulating CD34+ cells, colony-forming cells, and long-term culture-initiating cells and in the short-term repopulating activity detectable in nonobese diabetic/severe combined immunodeficiency/beta2-microglobulin-null mice. Similar but generally less marked changes occurred in the same cell populations in the BM. G-CSF also caused transient perturbations in some immune cell types in both PB and BM: these included a greater increase in the frequency of naive B cells and CD123+ dendritic cells in the BM. The rapidity of the effects of G-CSF on the early progenitor activity of the BM provides a rationale for the apparent equivalence in rates of hematologic recovery obtained with G-BM and G-PB allotransplants. Accompanying effects on immune cell populations are consistent with a greater ability of G-BM to promote tolerance in allogeneic recipients, and this could contribute to a lower rate of chronic graft-versus-host disease.
Collapse
Affiliation(s)
- Luke R Shier
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
MacDonald KPA, Rowe V, Filippich C, Johnson D, Morris ES, Clouston AD, Ferrara JLM, Hill GR. Chronic graft-versus-host disease after granulocyte colony-stimulating factor-mobilized allogeneic stem cell transplantation: the role of donor T-cell dose and differentiation. Biol Blood Marrow Transplant 2005; 10:373-85. [PMID: 15148491 DOI: 10.1016/j.bbmt.2004.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The use of granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood as a source of stem cells has resulted in a high incidence of severe chronic graft-versus-host disease (cGVHD), which compromises the outcome of clinical allogeneic stem cell transplantation. We have studied the effect of G-CSF on both immune complex and fibrotic cGVHD directed to major (DBA/2 --> B6D2F1) or minor (B10.D2 --> BALB/c) histocompatibility antigens. In both models, donor pretreatment with G-CSF reduced cGVHD mortality in association with type 2 differentiation. However, after escalation of the donor T-cell dose, scleroderma occurred in 90% of the recipients of grafts from G-CSF-treated donors. In contrast, only 11% of the recipients of control grafts developed scleroderma, and the severity of hepatic cGVHD was also reduced. Mixing studies confirmed that in the presence of high donor T-cell doses, the severity of scleroderma was determined by the non-T-cell fraction of grafts from G-CSF-treated donors. These data confirm that the induction of cGVHD after donor treatment with G-CSF is dependent on the transfer of large numbers of donor T cells in conjunction with a putatively expanded myeloid lineage, providing a further rationale for the limitation of cell dose in allogeneic stem cell transplantation.
Collapse
|
60
|
Maeda Y, Levy RB, Reddy P, Liu C, Clouthier SG, Teshima T, Ferrara JLM. Both perforin and Fas ligand are required for the regulation of alloreactive CD8+ T cells during acute graft-versus-host disease. Blood 2004; 105:2023-7. [PMID: 15466930 DOI: 10.1182/blood-2004-08-3036] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fas ligand (FasL) and perforin pathways not only are the major mechanisms of T cell-mediated cytotoxicity but also are involved in homeostatic regulation of these T cells. In the present study, we tested whether CD8+ donor T cells that are deficient in both perforin and FasL (cytotoxic double deficient [cdd]) could induce graft-versus-host disease (GVHD) in a major histocompatibility complex class I-mismatched lethally irradiated murine model. Interestingly, recipients of cdd CD8+ T cells demonstrated significantly greater serum levels of interferon gamma and tumor necrosis factor alpha and histopathologic damage from GVHD than wild-type (wt) T cells on day 30 after allogeneic bone marrow transplantation (P<.05). Wt and either perforin-deficient or FasL-deficient CD8+ T cells expanded early after transplantation followed by a contraction phase in which the majority of expanded CD8+ T cells were eliminated. In contrast, cdd CD8+ T cells exhibited prolonged expansion and reduced apoptosis to alloantigen stimulation in vivo and in vitro. Together these results suggest that donor cdd CD8+ T cells expand continuously and cause lethal GVHD, and that both perforin and FasL are required for the contraction of allo-reactive CD8+ T cells.
Collapse
Affiliation(s)
- Yoshinobu Maeda
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, 1500 East Medical Center Dr, Ann Arbor, MI 48109-0942, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Puliaev R, Nguyen P, Finkelman FD, Via CS. Differential Requirement for IFN-γ in CTL Maturation in Acute Murine Graft-versus-Host Disease. THE JOURNAL OF IMMUNOLOGY 2004; 173:910-9. [PMID: 15240678 DOI: 10.4049/jimmunol.173.2.910] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although IFN-gamma is the archetypal Th1 cytokine, its role in CTL maturation is uncertain. We used an in vivo mouse model of CTL development, parent-into-F(1) acute graft-vs-host disease (AGVHD), to evaluate this issue. In AGVHD, transfer of naive parental T cells into F(1) hosts stimulates the development of allospecific CTL effectors that eliminate host lymphocytes, particularly B cells. Complete elimination of IFN-gamma, using IFN-gamma-deficient donors and administering anti-IFN-gamma mAb, suppressed B cell elimination, down-regulated TNF-alpha production, and enhanced Th2 cytokine production, but did not allow the B cell expansion characteristic of chronic GVHD (CGVHD). Because complete CTL inhibition results in full-blown CGVHD that is IFN-gamma independent, these observations indicate that IFN-gamma elimination only partially blocks CTL development. IFN-gamma elimination did not inhibit donor T cell engraftment or activation in the AGVHD model, but almost completely blocked Fas/Fas ligand (FasL) gene expression, protein up-regulation, and Fas/FasL-mediated CTL killing. In contrast, IFN-gamma elimination only partially inhibited perforin gene expression and perforin-mediated CTL activity. The contributions of IFN-gamma to CTL development were indirect, because IFN-gamma receptor-deficient donor cells differentiated normally into allospecific CTLs. Consistent with the view that the Fas/FasL and perforin pathways each mediate CTL killing in AGVHD, the absence of both perforin and IFN-gamma (perforin knockout donor cells and anti-IFN-gamma mAb) converted AGVHD to CGVHD. Thus, both IFN-gamma-dependent induction of Fas/FasL and IFN-gamma-independent induction of perforin contribute to CTL-mediated elimination of host B cells in AGVHD. Suppression of both pathways is required for typical CGVHD development.
Collapse
Affiliation(s)
- Roman Puliaev
- Research Service, Baltimore Veterans Affairs Medical Center, and Division of Rheumatology and Clinical Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
62
|
Ambach A, Bonnekoh B, Gollnick H. UVA Radiation Induces Suppression of Perforin-Granule Release from CD8hi+ Cytotoxic T Lymphocytes Ex Vivo. J Invest Dermatol 2004; 123:237-9. [PMID: 15191566 DOI: 10.1111/j.0022-202x.2004.22705.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
63
|
Lang TJ, Nguyen P, Papadimitriou JC, Via CS. Increased Severity of Murine Lupus in Female Mice Is Due to Enhanced Expansion of Pathogenic T Cells. THE JOURNAL OF IMMUNOLOGY 2003; 171:5795-801. [PMID: 14634088 DOI: 10.4049/jimmunol.171.11.5795] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A strong female predominance is a well-recognized feature of human lupus. The mechanism by which sex influences disease expression and severity is not fully understood. To address this question, we used the parent-into-F(1) (p-->F(1)) model of chronic graft-vs-host disease (cGVHD) in which lupus-like humoral autoimmunity and renal disease are induced in normal F(1) mice. An advantage of this model is that the pathogenic T cells driving disease (donor strain) can be studied separately from nonspecifically activated T cells (host strain). We observed that lupus-like disease using female donor and host mice (f-->F cGVHD) is characterized by more severe long-term disease (glomerulonephritis) than with male donor and host (m-->M cGVHD). Interestingly, differences in disease parameters could be seen at 2 wk after parental cell transfer, as evidenced by a 2- to 3-fold greater engraftment of donor CD4(+) T cells in f-->F cGVHD mice, which persisted throughout disease course. Enhanced engraftment of donor CD4(+) T cells in f-->F cGVHD mice was not due to differences in splenic homing, alloreactive precursor frequency, initial proliferation rates, or apoptotic rates, but rather to sustained high proliferation rates during wk 2 of disease compared with m-->M cGVHD mice. Crossover studies (m-->F, f-->M) demonstrated that enhanced donor CD4(+) T cell proliferation and engraftment segregate with the sex of the host. These results demonstrate that the sex of the recipient can influence the expansion of pathogenic T cells, thus increasing long-term the burden of autoreactive T cells and resulting in greater disease severity.
Collapse
Affiliation(s)
- Thomas J Lang
- Research Service, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
64
|
Noble A, Leggat JA, Inderberg EM. CD8+ immunoregulatory cells in the graft-versus-host reaction: CD8 T cells activate dendritic cells to secrete interleukin-12/interleukin-18 and induce T helper 1 autoantibody. Immunology 2003; 109:476-86. [PMID: 12871213 PMCID: PMC1783005 DOI: 10.1046/j.1365-2567.2003.01687.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Initiation of cell-mediated immunity or autoimmunity requires secretion of interleukin (IL)-12 from dendritic cells (DC), which drives the generation of T helper 1 (Th1) effector cells in synergy with IL-18. Induction of IL-12 can be triggered by microbial stimuli but also requires signals from activated T cells. We investigated interactions between alloreactive CD4 and CD8 T cells in mixed lymphocyte reactions (MLR) in vitro and in the graft-versus-host reaction (GVHR) in vivo. In a parent-into-F1 model of GVHR, donor CD8 cells were found to suppress the hyper-immunoglobulin E (IgE) syndrome, anti-DNA immunoglobulin G1 (IgG1) autoantibodies and donor CD4-cell expansion, but were essential for Th1-dependent immunoglobulin G2a (IgG2a) autoantibody production and release of serum IL-12 p40. In vitro, addition of alloreactive CD8 cells to CD4 cells and mature DC enhanced Th1 development. CD4 and CD8 T cells induced IL-18 from DC and primed for IL-12 p70 secretion via interferon-gamma (IFN-gamma) or tumour necrosis factor-alpha (TNF-alpha). However CD8 T cells, but not CD4 cells, released IFN-gamma/TNF-alpha after primary stimulation. The data suggest that rapid release of inflammatory cytokines from central memory-type CD8 cells early in immunity is critical for induction of Th1 cells via DC activation and IL-12 production. This pathway could provide a means for amplification of cell-mediated autoimmunity in the absence of microbial stimuli.
Collapse
Affiliation(s)
- Alistair Noble
- Department of Immunology, Guy's, King's and St Thomas' School of Medicine, King's College London, London, UK.
| | | | | |
Collapse
|
65
|
Ratanatharathorn V, Ayash L, Reynolds C, Silver S, Reddy P, Becker M, Ferrara JLM, Uberti JP. Treatment of chronic graft-versus-host disease with anti-CD20 chimeric monoclonal antibody. Biol Blood Marrow Transplant 2003; 9:505-11. [PMID: 12931119 DOI: 10.1016/s1083-8791(03)00216-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We reviewed the clinical outcome of 8 patients with steroid-refractory chronic graft-versus-host disease (GVHD) who received an anti-CD20 chimeric monoclonal antibody (rituximab). Rituximab was given by intravenous infusion at a weekly dose of 375 mg/m(2) for 4 weeks. All patients had received extensive treatment with various immunosuppressive agents; 6 patients had also received extracorporeal photopheresis. All patients had extensive chronic GVHD with diffuse or localized sclerodermoid GVHD and xerophthalmia. Other extracutaneous involvements included cold agglutinin disease with the Raynaud phenomenon, membranous glomerulonephritis, and restrictive or obstructive lung disease. Four patients responded to treatment with ongoing resolution or improvement ranging from 265 to 846 days after therapy, despite recovery of B cells in 3 patients. Rituximab seems to have significant activity in the treatment of refractory chronic GVHD and should be considered for further study in patients with early disease. This study suggests a participating role of B cells in the pathogenesis of chronic GVHD.
Collapse
Affiliation(s)
- Voravit Ratanatharathorn
- Blood and Marrow Stem Cell Transplantation Program, University of Michigan Health System, Ann Arbor, USA.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
de Saint Basile G, Fischer A. Defective cytotoxic granule-mediated cell death pathway impairs T lymphocyte homeostasis. Curr Opin Rheumatol 2003; 15:436-45. [PMID: 12819472 DOI: 10.1097/00002281-200307000-00011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hemophagocytic syndrome is a severe and often fatal syndrome resulting from excessive activation and proliferation of T lymphocytes and macrophages. Onset of a hemophagocytic syndrome characterized the course of several human inherited immune disorders, all of them resulting from molecular defects of the perforin-dependent cytotoxic process exerted by both T and Natural Killer (NK) lymphocytes. These disorders highlight the determinant role of this lytic pathway in the control of lymphocyte expansion and homeostasis. New effectors of this secretory pathway have been thus identified.
Collapse
|
67
|
Bose A, Inoue Y, Kokko KE, Lakkis FG. Cutting edge: perforin down-regulates CD4 and CD8 T cell-mediated immune responses to a transplanted organ. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1611-4. [PMID: 12574320 DOI: 10.4049/jimmunol.170.4.1611] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Perforin mediates target cell apoptosis by CTLs and NK cells. Although perforin expression correlates strongly with acute allograft rejection, perforin-deficient mice reject allografts with the same kinetics as wild-type recipients. In this study, we tested the hypothesis that while perforin is dispensable for acute rejection, it is essential for down-regulating the alloimmune response by inducing the apoptosis of host immune cells. Using a skin transplantation model, we found that perforin-deficient mice are resistant to the induction of allograft acceptance by agents that block T cell costimulation. Failure to induce allograft acceptance in these mice was observed irrespective of whether the alloimmune response was CD4 or CD8 T cell-mediated and could be attributed to defective apoptosis of activated CD4 and CD8 T cells. In contrast, perforin did not influence T cell proliferation. Therefore, perforin is an essential immunoregulatory molecule that may be required for the induction of transplantation tolerance.
Collapse
Affiliation(s)
- Anirban Bose
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
68
|
Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2002; 2:735-47. [PMID: 12360212 DOI: 10.1038/nri911] [Citation(s) in RCA: 874] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Perforin/granzyme-induced apoptosis is the main pathway used by cytotoxic lymphocytes to eliminate virus-infected or transformed cells. Studies in gene-disrupted mice indicate that perforin is vital for cytotoxic effector function; it has an indispensable, but undefined, role in granzyme-mediated apoptosis. Despite its vital importance, the molecular and cellular functions of perforin and the basis of perforin and granzyme synergy remain poorly understood. The purpose of this review is to evaluate critically recent findings on cytotoxic granule-mediated cell death and to assess the functional significance of postulated cell-death pathways in appropriate pathophysiological contexts, including virus infection and susceptibility to experimental or spontaneous tumorigenesis.
Collapse
Affiliation(s)
- Joseph A Trapani
- Cancer Immunology Laboratory, Trescowthick Research Laboratories, Research Division, Peter MacCallum Cancer Institute, Locked Bag 1, A'Beckett Street, Melbourne 8006, Australia.
| | | |
Collapse
|
69
|
Street SEA, Trapani JA, MacGregor D, Smyth MJ. Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J Exp Med 2002; 196:129-34. [PMID: 12093877 PMCID: PMC2194011 DOI: 10.1084/jem.20020063] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The immunosurveillance of transformed cells by the immune system remains one of the most controversial and poorly understood areas of immunity. Gene-targeted mice have greatly aided our understanding of the key effector molecules in tumor immunity. Herein, we describe spontaneous tumor development in gene-targeted mice lacking interferon (IFN)-gamma and/or perforin (pfp), or the immunoregulatory cytokines, interleukin (IL)-12, IL-18, and tumor necrosis factor (TNF). Both IFN-gamma and pfp were critical for suppression of lymphomagenesis, however the level of protection afforded by IFN-gamma was strain specific. Lymphomas arising in IFN-gamma-deficient mice were very nonimmunogenic compared with those derived from pfp-deficient mice, suggesting a comparatively weaker immunoselection pressure by IFN-gamma. Single loss of IL-12, IL-18, or TNF was not sufficient for spontaneous tumor development. A significant incidence of late onset adenocarcinoma observed in both IFN-gamma- and pfp-deficient mice indicated that some epithelial tissues were also subject to immunosurveillance.
Collapse
Affiliation(s)
- Shayna E A Street
- Cancer Immunology Program, Trescowthick Laboratories, Peter MacCallum Cancer Institute, East Melbourne, Victoria 8006, Australia
| | | | | | | |
Collapse
|
70
|
Lang TJ, Nguyen P, Peach R, Gause WC, Via CS. In vivo CD86 blockade inhibits CD4+ T cell activation, whereas CD80 blockade potentiates CD8+ T cell activation and CTL effector function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3786-92. [PMID: 11937530 DOI: 10.4049/jimmunol.168.8.3786] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To address whether a functional dichotomy exists between CD80 and CD86 in naive T cell activation in vivo, we administered anti-CD80 or CD86 blocking mAb alone or in combination to mice with parent-into-F(1) graft-vs-host disease (GVHD). In this model, the injection of naive parental T cells into unirradiated F(1) mice results in either a Th1 cytokine-driven, cell-mediated immune response (acute GVHD) or a Th2 cytokine-driven, Ab-mediated response (chronic GVHD) in the same F(1) recipient. Combined CD80/CD86 blockade beginning at the time of donor cell transfer mimicked previous results seen with CTLA4Ig and completely abrogated either acute or chronic GVHD by preventing the activation and maturation of donor CD4(+) T cells as measured by a block in acquisition of memory marker phenotype and cytokine production. Similar results were seen with selective CD86 blockade; however, the degree of CD4 inhibition was always less than that seen with combined CD80/CD86 blockade. A more striking effect was seen with selective CD80 blockade in that chronic GVHD was converted to acute GVHD. This effect was associated with the induction of Th1 cytokine production, donor CD8(+) T cell activation, and development of antihost CTL. The similarity of this effect to that reported for selective CTLA4 blockade suggests that CD80 is a critical ligand for CTLA4 in mediating the down-regulation of Th1 responses and CD8(+) T cell activation. In contrast, CD86 is critical for the activation of naive CD4(+) T cells in either a Th1 or a Th2 cytokine-mediated response.
Collapse
Affiliation(s)
- Thomas J Lang
- Research Service, Baltimore Veterans Affairs Medical Center, and Division of Rheumatology and Clinical Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
71
|
van den Brink MRM, Burakoff SJ. Cytolytic pathways in haematopoietic stem-cell transplantation. Nat Rev Immunol 2002; 2:273-81. [PMID: 12001998 DOI: 10.1038/nri775] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The remarkable activity of donor T cells against malignant cells in the context of an allogeneic haematopoietic stem-cell transplantation (HSCT) is arguably, at present, the most potent clinical immunotherapy for cancer. However, alloreactive donor T cells are also important effector cells in the development of graft-versus-host disease (GVHD), which is a potentially lethal complication for recipients of an allogeneic HSCT. Therefore, the separation of the GVHD and graft-versus-tumour (GVT) activity of donor T cells has become a topic of great interest for many investigators. Recent studies have shown that donor T cells make differential use of their cytolytic pathways in mediating GVHD and GVT effects. Therefore, the selective blockade or enhancement of cytolytic pathways provides an intriguing therapeutic opportunity to separate the desired GVT effect from the potentially devastating GVHD.
Collapse
|
72
|
Lü FX, Abel K, Ma Z, Rourke T, Lu D, Torten J, McChesney M, Miller CJ. The strength of B cell immunity in female rhesus macaques is controlled by CD8+ T cells under the influence of ovarian steroid hormones. Clin Exp Immunol 2002; 128:10-20. [PMID: 11982585 PMCID: PMC1906365 DOI: 10.1046/j.1365-2249.2002.01780.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To understand more clearly how mucosal and systemic immunity is regulated by ovarian steroid hormones during the menstrual cycle, we evaluated the frequency of immunoglobulin- and antibody-secreting cells (ISC, AbSC) in genital tract and systemic lymphoid tissues of normal cycling female rhesus macaques. The frequency of ISC and AbSC was significantly higher in tissues collected from animals in the periovulatory period of the menstrual cycle than in tissues collected from animals at other stages of the cycle. The observed changes were not due to changes in the relative frequency of lymphocyte subsets and B cells in tissues, as these did not change during the menstrual cycle. In vitro, progesterone had a dose-dependent inhibitory effect, and oestrogen had a dose-dependent stimulatory effect on the frequency of ISC in peripheral blood mononuclear cell (PBMC) cultures. The in vitro effect of progesterone and oestrogen on ISC frequency could not be produced by incubating enriched B cells alone with hormone, but required the presence of CD8+ T cells. Following oestrogen stimulation, a CD8+ enriched cell population expressed high levels of IFN-gamma and IL-12. The changes in B cell Ig secretory activity that we document in the tissues of female rhesus macaques during the menstrual cycle is due apparently to the action of ovarian steroid hormones on CD8+ T cells. Thus, CD8+ T cells control B cell secretory activity in both mucosal and systemic immune compartments. Understanding, and eventually manipulating, the CD8+ regulatory cell-B cell interactions in females may produce novel therapeutic approaches for autoimmune diseases and new vaccine strategies to prevent sexually transmitted diseases.
Collapse
Affiliation(s)
- F X Lü
- California Regional Primate Research Center, School of Veterinary Medicine, University of California-Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Teshima T, Ferrara JLM. Understanding the alloresponse: new approaches to graft-versus-host disease prevention. Semin Hematol 2002; 39:15-22. [PMID: 11799525 DOI: 10.1053/shem.2002.29246] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Graft-versus-host disease (GVHD) has been the primary limitation to the wider application of allogeneic bone marrow transplantation (BMT). GVHD occurs when donor T cells react to host antigens on antigen-presenting cells (APCs) and attack host tissues, with sequential activation of donor T cells and monocytes/macrophages. The net effects of dysregulated cytokine production in this complex system are the severe inflammatory manifestations that we recognize as clinical acute GVHD. Long-term outcomes are also adversely affected by chronic GVHD, which has distinctive clinical and pathologic manifestations that mimic autoimmune disease, although its exact pathogenesis remains ambiguous. The ultimate goal for preventing GVHD is the induction of specific tolerance to host antigens, thereby maintaining favorable aspects of donor immunity. Tolerance may be achieved by costimulatory blockade, deletion of activated cells, suppression by regulatory T cells, and immune deviation. This report will focus on these mechanisms as they relate to the pathophysiology of acute GVHD.
Collapse
Affiliation(s)
- Takanori Teshima
- Department of Internal Medicine, University of Michigan Cancer Center, Ann Arbor, MI 48109-0942, USA
| | | |
Collapse
|
74
|
Via CS, Shustov A, Rus V, Lang T, Nguyen P, Finkelman FD. In vivo neutralization of TNF-alpha promotes humoral autoimmunity by preventing the induction of CTL. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6821-6. [PMID: 11739498 DOI: 10.4049/jimmunol.167.12.6821] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neutralization of TNF-alpha in humans with rheumatoid arthritis or Crohn's disease has been associated with the development of humoral autoimmunity. To determine the effect of TNF-alpha neutralization on cell-mediated and humoral-mediated responses, we administered anti-TNF-alpha mAb to mice undergoing acute graft-vs-host disease (GVHD) using the parent-into-F(1) model. In vivo neutralization of TNF-alpha blocked the lymphocytopenic features characteristic of acute GVHD and induced a lupus-like chronic GVHD phenotype (lymphoproliferation and autoantibody production). These effects resulted from complete inhibition of detectable antihost CTL activity and required the presence of anti-TNF-alpha mAb for the first 4 days after parental cell transfer, indicating that TNF-alpha plays a critical role in the induction of CTL. Moreover, an in vivo blockade of TNF-alpha preferentially inhibited the production of IFN-gamma and blocked IFN-gamma-dependent up-regulation of Fas; however, cytokines such as IL-10, IL-6, or IL-4 were not inhibited. These results suggest that a therapeutic TNF-alpha blockade may promote humoral autoimmunity by selectively inhibiting the induction of a CTL response that would normally suppress autoreactive B cells.
Collapse
Affiliation(s)
- C S Via
- Research Service, Department of Veterans Affairs Medical Center and Division of Rheumatology and Clinical Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | |
Collapse
|
75
|
Porakishvili N, Roschupkina T, Kalber T, Jewell AP, Patterson K, Yong K, Lydyard PM. Expansion of CD4+ T cells with a cytotoxic phenotype in patients with B-chronic lymphocytic leukaemia (B-CLL). Clin Exp Immunol 2001; 126:29-36. [PMID: 11678896 PMCID: PMC1906168 DOI: 10.1046/j.1365-2249.2001.01639.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abnormal CD4/CD8 ratios and T-cell function have previously been shown in patients with B-chronic lymphocytic leukaemia (B-CLL). We have demonstrated that CD4+ T cells containing both serine esterase and perforin (PF) are increased in the blood of these patients. Using flow cytometry, we have shown that the CD4+ PF+ cells were CD57+ but lacked expression of CD28, suggesting a mature population. The same phenotype in CD8+ T cells is characteristic of mature cytotoxic T cells. However, in contrast to the CD8+ T cells, the CD4+ T cells were more frequently CD45RO positive than CD45RA positive, indicating prior antigen experience. In contrast, this population lacked expression of either CD69 or HLA-DR, arguing that they were not activated or that they are an abnormal population of T cells. Their constitutive cytokine levels showed them mainly to contain IL4 and not IFNgamma, suggesting a Th2 phenotype. The role of the CD4+ PF+ T-cell population is at present uncertain. However, this potentially cytotoxic T-cell population could contribute both to enhancing survival of the B-CLL tumour cells through production of IL4, and to the immunodeficient state frequently seen in patients with this tumour, independent of drug treatment.
Collapse
Affiliation(s)
- N Porakishvili
- Department of Immunology & Molecular Pathology, Royal Free and Middlesex Hospital Medical School, London, UK.
| | | | | | | | | | | | | |
Collapse
|
76
|
|
77
|
Smyth MJ, Kelly JM, Sutton VR, Davis JE, Browne KA, Sayers TJ, Trapani JA. Unlocking the secrets of cytotoxic granule proteins. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.1.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Mark J. Smyth
- Cancer Immunology Division, Trescowthick Laboratories, Peter MacCallum Cancer Institute, Melbourne, Australia; and
| | - Janice M. Kelly
- Cancer Immunology Division, Trescowthick Laboratories, Peter MacCallum Cancer Institute, Melbourne, Australia; and
| | - Vivien R. Sutton
- Cancer Immunology Division, Trescowthick Laboratories, Peter MacCallum Cancer Institute, Melbourne, Australia; and
| | - Joanne E. Davis
- Cancer Immunology Division, Trescowthick Laboratories, Peter MacCallum Cancer Institute, Melbourne, Australia; and
| | - Kylie A. Browne
- Cancer Immunology Division, Trescowthick Laboratories, Peter MacCallum Cancer Institute, Melbourne, Australia; and
| | - Thomas J. Sayers
- Laboratory of Experimental Immunology, National Cancer Institute, FDR‐DC, NIH, Frederick, Maryland
| | - Joseph A. Trapani
- Cancer Immunology Division, Trescowthick Laboratories, Peter MacCallum Cancer Institute, Melbourne, Australia; and
| |
Collapse
|
78
|
|
79
|
Goldman M, Le Moine A, Braun M, Flamand V, Abramowicz D. A role for eosinophils in transplant rejection. Trends Immunol 2001; 22:247-51. [PMID: 11323281 DOI: 10.1016/s1471-4906(01)01893-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Eosinophils release inflammatory mediators and cationic proteins that are instrumental in the pathogenesis of allergic diseases such as bronchial asthma. Here, we review experimental observations indicating that eosinophils are also involved in the rejection of allografts. We propose that their role as effectors of transplant damage becomes crucial when classical pathways of rejection are inhibited and T helper 2 (Th2) cells dominate the alloimmune response.
Collapse
Affiliation(s)
- M Goldman
- Laboratory of Experimental Immunology, Faculty of Medicine, Université Libre de Bruxelles, 808 route de Lennik, B-1070 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
80
|
Smyth MJ, Godfrey DI, Trapani JA. A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2001; 2:293-9. [PMID: 11276199 DOI: 10.1038/86297] [Citation(s) in RCA: 511] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite major advances in our understanding of adaptive immunity and dendritic cells, consistent and durable responses to cancer vaccines remain elusive and active immunotherapy is still not an established treatment modality. The key to developing an effective anti-tumor response is understanding why, initially, the immune system is unable to detect transformed cells and is subsequently tolerant of tumor growth and metastasis. Ineffective antigen presentation limits the adaptive immune response; however, we are now learning that the host's innate immune system may first fail to recognize the tumor as posing a danger. Recent descriptions of stress-induced ligands on tumor cells recognized by innate effector cells, new subsets of T cells that regulate tumor tolerance and the development of spontaneous tumors in mice that lack immune effector molecules, beckon a reflection on our current perspectives on the interaction of transformed cells with the immune system and offer new hope of stimulating therapeutic immunity to cancer.
Collapse
Affiliation(s)
- M J Smyth
- Cancer Immunology, Trescowthick Laboratories, Peter MacCallum Cancer Institute, Locked Bag 1, A'Beckett St, 8006, Australia.
| | | | | |
Collapse
|
81
|
Murphy WJ. Revisiting graft-versus-host disease models of autoimmunity: new insights in immune regulatory processes. J Clin Invest 2000; 106:745-7. [PMID: 10995784 PMCID: PMC381400 DOI: 10.1172/jci11088] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- W J Murphy
- Transplantation Biology Laboratory, SAIC-Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA.
| |
Collapse
|