51
|
Kooiman K, Roovers S, Langeveld SAG, Kleven RT, Dewitte H, O'Reilly MA, Escoffre JM, Bouakaz A, Verweij MD, Hynynen K, Lentacker I, Stride E, Holland CK. Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1296-1325. [PMID: 32165014 PMCID: PMC7189181 DOI: 10.1016/j.ultrasmedbio.2020.01.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 05/03/2023]
Abstract
Therapeutic ultrasound strategies that harness the mechanical activity of cavitation nuclei for beneficial tissue bio-effects are actively under development. The mechanical oscillations of circulating microbubbles, the most widely investigated cavitation nuclei, which may also encapsulate or shield a therapeutic agent in the bloodstream, trigger and promote localized uptake. Oscillating microbubbles can create stresses either on nearby tissue or in surrounding fluid to enhance drug penetration and efficacy in the brain, spinal cord, vasculature, immune system, biofilm or tumors. This review summarizes recent investigations that have elucidated interactions of ultrasound and cavitation nuclei with cells, the treatment of tumors, immunotherapy, the blood-brain and blood-spinal cord barriers, sonothrombolysis, cardiovascular drug delivery and sonobactericide. In particular, an overview of salient ultrasound features, drug delivery vehicles, therapeutic transport routes and pre-clinical and clinical studies is provided. Successful implementation of ultrasound and cavitation nuclei-mediated drug delivery has the potential to change the way drugs are administered systemically, resulting in more effective therapeutics and less-invasive treatments.
Collapse
Affiliation(s)
- Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Silke Roovers
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Simone A G Langeveld
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert T Kleven
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Heleen Dewitte
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Laboratory for Molecular and Cellular Therapy, Medical School of the Vrije Universiteit Brussel, Jette, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Martin D Verweij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Christy K Holland
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
52
|
Smith CAB, Coussios CC. Spatiotemporal Assessment of the Cellular Safety of Cavitation-Based Therapies by Passive Acoustic Mapping. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1235-1243. [PMID: 32111455 DOI: 10.1016/j.ultrasmedbio.2020.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/09/2019] [Accepted: 01/13/2020] [Indexed: 05/09/2023]
Abstract
Many useful therapeutic bio-effects can be generated using ultrasound-induced cavitation. However, cavitation is also capable of causing unwanted cellular and vascular damage, which should be monitored to ensure treatment safety. In this work, the unique opportunity provided by passive acoustic mapping (PAM) to quantify cavitation dose across an entire volume of interest during therapy is utilised to provide setup-independent measures of spatially localised cavitation dose. This spatiotemporally quantifiable cavitation dose is then related to the level of cellular damage generated. The cavitation-mediated destruction of equine red blood cells mixed with one of two types of cavitation nuclei at a variety of concentrations is investigated. The blood is placed within a 0.5-MHz ultrasound field and exposed to a range of peak rarefactional pressures up to 2 MPa, with 50 to 50,000 cycle pulses maintaining a 5% duty cycle. Two co-planar linear arrays at 90° to each other are used to generate 400-µm-resolution frequency domain robust capon beamforming PAM maps, which are then used to generate estimates of cavitation dose. A relationship between this cavitation dose and the levels of haemolysis generated was found which was comparable regardless of the applied acoustic pressure, pulse length, cavitation agent type or concentration used. PAM was then used to monitor cellular damage in multiple locations within a tissue phantom simultaneously, with the damage-cavitation dose relationship being similar for the two experimental models tested. These results lay the groundwork for this method to be applied to other measures of safety, allowing for improved ultrasound monitoring of cavitation-based therapies.
Collapse
Affiliation(s)
- Cameron A B Smith
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Constantin C Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
53
|
Pouliopoulos AN, Wu SY, Burgess MT, Karakatsani ME, Kamimura HAS, Konofagou EE. A Clinical System for Non-invasive Blood-Brain Barrier Opening Using a Neuronavigation-Guided Single-Element Focused Ultrasound Transducer. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:73-89. [PMID: 31668690 PMCID: PMC6879801 DOI: 10.1016/j.ultrasmedbio.2019.09.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 05/07/2023]
Abstract
Focused ultrasound (FUS)-mediated blood-brain barrier (BBB) opening is currently being investigated in clinical trials. Here, we describe a portable clinical system with a therapeutic transducer suitable for humans, which eliminates the need for in-line magnetic resonance imaging (MRI) guidance. A neuronavigation-guided 0.25-MHz single-element FUS transducer was developed for non-invasive clinical BBB opening. Numerical simulations and experiments were performed to determine the characteristics of the FUS beam within a human skull. We also validated the feasibility of BBB opening obtained with this system in two non-human primates using U.S. Food and Drug Administration (FDA)-approved treatment parameters. Ultrasound propagation through a human skull fragment caused 44.4 ± 1% pressure attenuation at a normal incidence angle, while the focal size decreased by 3.3 ± 1.4% and 3.9 ± 1.8% along the lateral and axial dimension, respectively. Measured lateral and axial shifts were 0.5 ± 0.4 mm and 2.1 ± 1.1 mm, while simulated shifts were 0.1 ± 0.2 mm and 6.1 ± 2.4 mm, respectively. A 1.5-MHz passive cavitation detector transcranially detected cavitation signals of Definity microbubbles flowing through a vessel-mimicking phantom. T1-weighted MRI confirmed a 153 ± 5.5 mm3 BBB opening in two non-human primates at a mechanical index of 0.4, using Definity microbubbles at the FDA-approved dose for imaging applications, without edema or hemorrhage. In conclusion, we developed a portable system for non-invasive BBB opening in humans, which can be achieved at clinically relevant ultrasound exposures without the need for in-line MRI guidance. The proposed FUS system may accelerate the adoption of non-invasive FUS-mediated therapies due to its fast application, low cost and portability.
Collapse
Affiliation(s)
| | - Shih-Ying Wu
- Department of Biomedical Engineering, Columbia University, New York City, New York, USA
| | - Mark T Burgess
- Department of Biomedical Engineering, Columbia University, New York City, New York, USA
| | | | - Hermes A S Kamimura
- Department of Biomedical Engineering, Columbia University, New York City, New York, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York City, New York, USA; Department of Radiology, Columbia University, New York City, New York, USA.
| |
Collapse
|
54
|
Cheng B, Bing C, Chopra R. The effect of transcranial focused ultrasound target location on the acoustic feedback control performance during blood-brain barrier opening with nanobubbles. Sci Rep 2019; 9:20020. [PMID: 31882579 PMCID: PMC6934715 DOI: 10.1038/s41598-019-55629-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/30/2019] [Indexed: 01/30/2023] Open
Abstract
Real-time acoustic feedback control based on harmonic emissions of stimulated microbubbles may be important for facilitating the clinical adoption of focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening, both to ensure safe acoustic exposures, and to achieve repeatable and consistent opening. Previously our group demonstrated that successful BBB opening was achievable with both commercially available microbubbles and custom-made nanobubbles under acoustic feedback control. In a recent study, we demonstrated the acoustic control performance was not sensitive to the nanobubble concentration within 109–1011 bubbles/ml. The goal of this study was to examine the effect of the ultrasound target location in the rat brain on the acoustic control quality during BBB opening with nanobubbles. Temporal analysis of the received acoustic signals during each ultrasound pulse indicated that stable nanobubble oscillation was present throughout the entire 10 ms ultrasound exposure. The acoustic feedback control signals were very sensitive to the brain spatial location in rats. There appears to be a shared pattern of acoustic control stability in the brain across different animals, suggesting anatomical features are an underlying cause. The findings emphasize the importance of tuning acoustic feedback control algorithms for specific rodent brain regions of interest to ensure optimal performance.
Collapse
Affiliation(s)
- Bingbing Cheng
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Chenchen Bing
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA. .,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
55
|
Sinharay S, Tu TW, Kovacs ZI, Schreiber-Stainthorp W, Sundby M, Zhang X, Papadakis GZ, Reid WC, Frank JA, Hammoud DA. In vivo imaging of sterile microglial activation in rat brain after disrupting the blood-brain barrier with pulsed focused ultrasound: [18F]DPA-714 PET study. J Neuroinflammation 2019; 16:155. [PMID: 31345243 PMCID: PMC6657093 DOI: 10.1186/s12974-019-1543-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/09/2019] [Indexed: 12/26/2022] Open
Abstract
Background Magnetic resonance imaging (MRI)-guided pulsed focused ultrasound combined with the infusion of microbubbles (pFUS+MB) induces transient blood-brain barrier opening (BBBO) in targeted regions. pFUS+MB, through the facilitation of neurotherapeutics’ delivery, has been advocated as an adjuvant treatment for neurodegenerative diseases and malignancies. Sterile neuroinflammation has been recently described following pFUS+MB BBBO. In this study, we used PET imaging with [18F]-DPA714, a biomarker of translocator protein (TSPO), to assess for neuroinflammatory changes following single and multiple pFUS+MB sessions. Methods Three groups of Sprague-Dawley female rats received MRI-guided pFUS+MB (Optison™; 5–8 × 107 MB/rat) treatments to the left frontal cortex and right hippocampus. Group A rats were sonicated once. Group B rats were sonicated twice and group C rats were sonicated six times on weekly basis. Passive cavitation detection feedback (PCD) controlled the peak negative pressure during sonication. We performed T1-weighted scans immediately after sonication to assess efficiency of BBBO and T2*-weighted scans to evaluate for hypointense voxels. [18F]DPA-714 PET/CT scans were acquired after the BBB had closed, 24 h after sonication in group A and within an average of 10 days from the last sonication in groups B and C. Ratios of T1 enhancement, T2* values, and [18F]DPA-714 percent injected dose/cc (%ID/cc) values in the targeted areas to the contralateral brain were calculated. Histological assessment for microglial activation/astrocytosis was performed. Results In all groups, [18F]DPA-714 binding was increased at the sonicated compared to non-sonicated brain (%ID/cc ratios > 1). Immunohistopathology showed increased staining for microglial and astrocytic markers in the sonicated frontal cortex compared to contralateral brain and to a lesser extent in the sonicated hippocampus. Using MRI, we documented BBB disruption immediately after sonication with resolution of BBBO 24 h later. We found more T2* hypointense voxels with increasing number of sonications. In a longitudinal group of animals imaged after two and after six sonications, there was no cumulative increase of neuroinflammation on PET. Conclusion Using [18F]DPA-714 PET, we documented in vivo neuroinflammatory changes in association with pFUS+MB. Our protocol (utilizing PCD feedback to minimize damage) resulted in neuroinflammation visualized 24 h post one sonication. Our findings were supported by immunohistochemistry showing microglial activation and astrocytosis. Experimental sonication parameters intended for BBB disruption should be evaluated for neuroinflammatory sequelae prior to implementation in clinical trials. Electronic supplementary material The online version of this article (10.1186/s12974-019-1543-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sanhita Sinharay
- Hammoud Laboratory, Center for Infectious Disease Imaging, Clinical Center, National Institutes of Health, 10 Center Drive, Building 10, Room 1C-368, Bethesda, MD, 20892, USA.,University of Texas, MD Anderson Cancer Center, Houston, USA
| | - Tsang-Wei Tu
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Radiology, Howard University, Washington DC, USA
| | - Zsofia I Kovacs
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.,Institute for Biomedical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - William Schreiber-Stainthorp
- Hammoud Laboratory, Center for Infectious Disease Imaging, Clinical Center, National Institutes of Health, 10 Center Drive, Building 10, Room 1C-368, Bethesda, MD, 20892, USA
| | - Maggie Sundby
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Xiang Zhang
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Georgios Z Papadakis
- Hammoud Laboratory, Center for Infectious Disease Imaging, Clinical Center, National Institutes of Health, 10 Center Drive, Building 10, Room 1C-368, Bethesda, MD, 20892, USA.,Department of Radiology, University of Crete and Department of Medical Imaging Heraklion University Hospital, Crete, Greece
| | - William C Reid
- Hammoud Laboratory, Center for Infectious Disease Imaging, Clinical Center, National Institutes of Health, 10 Center Drive, Building 10, Room 1C-368, Bethesda, MD, 20892, USA
| | - Joseph A Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.,National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Dima A Hammoud
- Hammoud Laboratory, Center for Infectious Disease Imaging, Clinical Center, National Institutes of Health, 10 Center Drive, Building 10, Room 1C-368, Bethesda, MD, 20892, USA.
| |
Collapse
|
56
|
Jones RM, Hynynen K. Advances in acoustic monitoring and control of focused ultrasound-mediated increases in blood-brain barrier permeability. Br J Radiol 2019; 92:20180601. [PMID: 30507302 DOI: 10.1259/bjr.20180601] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transcranial focused ultrasound (FUS) combined with intravenously circulating microbubbles can transiently and selectively increase blood-brain barrier permeability to enable targeted drug delivery to the central nervous system, and is a technique that has the potential to revolutionize the way neurological diseases are managed in medical practice. Clinical testing of this approach is currently underway in patients with brain tumors, early Alzheimer's disease, and amyotrophic lateral sclerosis. A major challenge that needs to be addressed in order for widespread clinical adoption of FUS-mediated blood-brain barrier permeabilization to occur is the development of systems and methods for real-time treatment monitoring and control, to ensure that safe and effective acoustic exposure levels are maintained throughout the procedures. This review gives a basic overview of the oscillation dynamics, acoustic emissions, and biological effects associated with ultrasound-stimulated microbubbles in vivo, and provides a summary of recent advances in acoustic-based strategies for detecting, controlling, and mapping microbubble activity in the brain. Further development of next-generation clinical FUS brain devices tailored towards microbubble-mediated applications is warranted and required for translation of this potentially disruptive technology into routine clinical practice.
Collapse
Affiliation(s)
- Ryan M Jones
- 1 Physical Sciences Platform, Sunnybrook Research Institute , Toronto, ON , Canada
| | - Kullervo Hynynen
- 1 Physical Sciences Platform, Sunnybrook Research Institute , Toronto, ON , Canada.,2 Department of Medical Biophysics, University of Toronto , Toronto, ON , Canada.,3 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
57
|
Patel A, Schoen SJ, Arvanitis CD. Closed Loop Spatial and Temporal Control of Cavitation Activity with Passive Acoustic Mapping. IEEE Trans Biomed Eng 2018; 66:10.1109/TBME.2018.2882337. [PMID: 30475706 PMCID: PMC6690816 DOI: 10.1109/tbme.2018.2882337] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ultrasonically actuated microbubble oscillations hold great promise for minimally invasive therapeutic interventions. While several preclinical studies have demonstrated the potential of this technology, real-time methods to control the amplitude and type of microbubble oscillations (stable vs inertial acoustic cavitation) and ensure that cavitation occurs within the targeted region are needed for their successful translation to the clinic. In this paper, we propose a real-time nonlinear state controller that uses specific frequency bands of the microbubble acoustic emissions (harmonic, ultra-harmonic, etc.) to control cavitation activity (observer states). To attain both spatial and temporal control of cavitation activity with high signal to noise ratio, we implement a controller using fast frequency-selective passive acoustic mapping (PAM) based on the angular spectrum approach. The controller includes safety states based on the recorded broadband signal level and is able to reduce sensing inaccuracies with the inclusion of multiple frequency bands. In its simplest implementation the controller uses the peak intensity of the passive acoustic maps, reconstructed using the 3rd harmonic (4.896 × 0.019 MHz) of the excitation frequency. Our results show that the proposed real-time nonlinear state controller based on PAM is able to reach the targeted level of observer state (harmonic emissions) in less than 6 seconds and remain within 10 % of tolerance for the duration of the experiment (45 seconds). Similar response was observed using the acoustic emissions from single element passive cavitation detection, albeit with higher susceptibility to background noise and lack of spatial information. Importantly, the proposed PAM-based controller was able to control cavitation activity with spatial selectivity when cavitation existed simultaneously in multiple regions. The robustness of the controller is demonstrated using a range of controller parameters, multiple observer states concurrently (harmonic, ultra-harmonic, and broadband), noise levels (°6 to 12 dB SNR), and bubble concentrations (0.3 to 180 × 103 bubbles per microliter). More research in this direction under preclinical and clinical conditions is warranted.
Collapse
Affiliation(s)
- Arpit Patel
- School of Mechanical Engineering Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Scott J. Schoen
- School of Mechanical Engineering Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Costas D. Arvanitis
- School of Mechanical Engineering Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
58
|
Meng Y, Suppiah S, Surendrakumar S, Bigioni L, Lipsman N. Low-Intensity MR-Guided Focused Ultrasound Mediated Disruption of the Blood-Brain Barrier for Intracranial Metastatic Diseases. Front Oncol 2018; 8:338. [PMID: 30211117 PMCID: PMC6121246 DOI: 10.3389/fonc.2018.00338] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022] Open
Abstract
Low-intensity MR-guided focused ultrasound in combination with intravenously injected microbubbles is a promising platform for drug delivery to the central nervous system past the blood-brain barrier. The blood-brain barrier is a key bottleneck for cancer therapeutics via limited inter- and intracellular transport. Further, drugs that cross the blood-brain barrier when delivered in a spatially nonspecific way, result in adverse effects on normal brain tissue, or at high concentrations, result in increasing risks to peripheral organs. As such, various anti-cancer drugs that have been developed or to be developed in the future would benefit from a noninvasive, temporary, and repeatable method of targeted opening of the blood-brain barrier to treat metastatic brain diseases. MR-guided focused ultrasound is a potential solution to these design requirements. The safety, feasibility and preliminary efficacy of MRgFUS aided delivery have been demonstrated in various animal models. In this review, we discuss this preclinical evidence, mechanisms of focused ultrasound mediated blood-brain barrier opening, and translational efforts to neuro-oncology patients.
Collapse
Affiliation(s)
- Ying Meng
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Suganth Suppiah
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Shanan Surendrakumar
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Luca Bigioni
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
59
|
Song KH, Harvey BK, Borden MA. State-of-the-art of microbubble-assisted blood-brain barrier disruption. Theranostics 2018; 8:4393-4408. [PMID: 30214628 PMCID: PMC6134932 DOI: 10.7150/thno.26869] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/06/2018] [Indexed: 11/23/2022] Open
Abstract
Focused ultrasound with microbubbles promises unprecedented advantages for blood-brain barrier disruption over existing intracranial drug delivery methods, as well as a significant number of tunable parameters that affect its safety and efficacy. This review provides an engineering perspective on the state-of-the-art of the technology, considering the mechanism of action, effects of microbubble properties, ultrasound parameters and physiological variables, as well as safety and potential therapeutic applications. Emphasis is placed on the use of unified parameters, such as microbubble volume dose (MVD) and ultrasound mechanical index, to optimize the procedure and establish safety limits. It is concluded that, while efficacy has been demonstrated in several animal models with a wide range of payloads, acceptable measures of safety should be adopted to accelerate collaboration and improve understanding and clinical relevance.
Collapse
Affiliation(s)
- Kang-Ho Song
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309
| | - Brandon K. Harvey
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Mark A. Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309
| |
Collapse
|