51
|
Davidov T, Efraim Y, Dahan N, Baruch L, Machluf M. Porcine arterial ECM hydrogel: Designing an in vitro angiogenesis model for long-term high-throughput research. FASEB J 2020; 34:7745-7758. [PMID: 32337805 DOI: 10.1096/fj.202000264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
Abstract
The field of angiogenesis research provides deep understanding regarding this important process, which plays fundamental roles in tissue development and different abnormalities. In vitro models offer the advantages of low-cost high-throughput research of angiogenesis while sparing animal lives, and enabling the use of human cells. Nevertheless, prevailing in vitro models lack stability and are limited to a few days' assays. This study, therefore, examines the hypothesis that closely mimicking the vascular microenvironment can more reliably support longer angiogenesis processes in vitro. To this end, porcine arterial extracellular matrix (paECM)- a key component of blood vessels-was isolated and processed into a thermally induced hydrogel and characterized in terms of composition, structure, and mechanical properties, thus confirming the preservation of important characteristics of arterial extracellular matrix. This unique hydrogel was further tailored into a three-dimensional model of angiogenesis using endothelial cells and supporting cells, in a configuration that allows high-throughput quantitative analysis of cell viability and proliferation, cell migration, and apoptosis, thus revealing the advantages of paECM over frequently used biomaterials. Markedly, when applied with well-known effectors of angiogenesis, the model measures reflected the expected response, hence validating its efficacy and establishing its potential as a promising tool for the research of angiogenesis.
Collapse
Affiliation(s)
- Tzila Davidov
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yael Efraim
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nitsan Dahan
- Infrastructure Unit, Life Science and Engineering Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Limor Baruch
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Marcelle Machluf
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
52
|
Kaur S, Tripathi DM, Venugopal JR, Ramakrishna S. Advances in biomaterials for hepatic tissue engineering. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2020.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
53
|
Ansari T, Southgate A, Obiri-Yeboa I, Jones LG, Greco K, Olayanju A, Mbundi L, Somasundaram M, Davidson B, Sibbons PD. Development and Characterization of a Porcine Liver Scaffold. Stem Cells Dev 2020; 29:314-326. [PMID: 31854227 DOI: 10.1089/scd.2019.0069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The growing number of patients requiring liver transplantation for chronic liver disease cannot be currently met due to a shortage in donor tissue. As such, alternative tissue engineering approaches combining the use of acellular biological scaffolds and different cell populations (hepatic or progenitor) are being explored to augment the demand for functional organs. Our goal was to produce a clinically relevant sized scaffold from a sustainable source within 24 h, while preserving the extracellular matrix (ECM) to facilitate cell repopulation at a later stage. Whole porcine livers underwent perfusion decellularization via the hepatic artery and hepatic portal vein using a combination of saponin, sodium deoxycholate, and deionized water washes resulting in an acellular scaffold with an intact vasculature and preserved ECM. Molecular and immunohistochemical analysis (collagen I and IV and laminin) showed complete removal of any DNA material, together with excellent retention of glycosaminoglycans and collagen. Fourier-transform infrared spectroscopy (FTIR) analysis showed both absence of nuclear material and removal of any detergent residue, which was successfully achieved after additional ethanol gradient washes. Samples of the decellularized scaffold were assessed for cytotoxicity by seeding with porcine adipose-derived mesenchymal stem cells in vitro, these cells over a 10-day period showed attachment and proliferation. Perfusion of the vascular tree with contrast media followed by computed tomography (CT) imaging showed an intact vascular network. In vivo implantation of whole intact nonseeded livers, into a porcine model (as auxiliary graft) showed uniform perfusion macroscopically and histologically. Using this method, it is possible to create an acellular, clinically sized, liver scaffold with intact vasculature in less than 24 h.
Collapse
Affiliation(s)
- Tahera Ansari
- Tissue Engineering and Regenerative Medicine, Northwick Park Institute for Medical Research (NPIMR), Harrow, United Kingdom
| | - Aaron Southgate
- Tissue Engineering and Regenerative Medicine, Northwick Park Institute for Medical Research (NPIMR), Harrow, United Kingdom
| | - Irene Obiri-Yeboa
- Tissue Engineering and Regenerative Medicine, Northwick Park Institute for Medical Research (NPIMR), Harrow, United Kingdom
| | - Lauren G Jones
- Tissue Engineering and Regenerative Medicine, Northwick Park Institute for Medical Research (NPIMR), Harrow, United Kingdom
| | - Karin Greco
- Tissue Engineering and Regenerative Medicine, Northwick Park Institute for Medical Research (NPIMR), Harrow, United Kingdom
| | - Adedamola Olayanju
- Tissue Engineering and Regenerative Medicine, Northwick Park Institute for Medical Research (NPIMR), Harrow, United Kingdom
| | - Lubinda Mbundi
- Tissue Engineering and Regenerative Medicine, Northwick Park Institute for Medical Research (NPIMR), Harrow, United Kingdom
| | - Murali Somasundaram
- Tissue Engineering and Regenerative Medicine, Northwick Park Institute for Medical Research (NPIMR), Harrow, United Kingdom
| | - Brian Davidson
- Department of Surgery, Royal Free Campus, UCL Medical School, London, United Kingdom
| | - Paul D Sibbons
- Tissue Engineering and Regenerative Medicine, Northwick Park Institute for Medical Research (NPIMR), Harrow, United Kingdom
| |
Collapse
|
54
|
Bual RP, Ijima H. Intact extracellular matrix component promotes maintenance of liver-specific functions and larger aggregates formation of primary rat hepatocytes. Regen Ther 2019; 11:258-268. [PMID: 31667205 PMCID: PMC6813644 DOI: 10.1016/j.reth.2019.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/25/2022] Open
Abstract
The extracellular matrix (ECM) in a liver-specific extracellular matrix (L-ECM) scaffold facilitates hepatocyte viability and maintains hepatocyte functions in vitro. However, whether an intact composition of ECM is required for an efficient ECM-based substrate design remains to be clarified. In this study, two L-ECM hydrogels, namely L-ECM I and L-ECM II, were prepared by pepsin solubilization at 4 °C and 25 °C, respectively. The solubility at 4 °C was 50% whereas that at 25 °C was 95%, thus indicating well-preserved L-ECM. Analysis confirmed higher ECM protein components (especially collagen) in L-ECM II, along with denser fiber network and larger fiber diameter. L-ECM II gel exhibited high compression strength and suitable viscoelastic properties. Furthermore, hepatocytes in L-ECM II showed higher expression of liver-specific functions in 3D culture and wider spread while maintaining the cell-cell contacts in 2D culture. Therefore, an intact L-ECM is important to realize effective substrates for liver tissue engineering.
Collapse
Affiliation(s)
- Ronald P. Bual
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 Japan
- Department of Chemical Engineering & Technology, College of Engineering, Mindanao State University-Iligan Institute of Technology, Andres Bonifacio Avenue, Tibanga, 9200 Iligan City, Philippines
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 Japan
| |
Collapse
|
55
|
Hosseini V, Maroufi NF, Saghati S, Asadi N, Darabi M, Ahmad SNS, Hosseinkhani H, Rahbarghazi R. Current progress in hepatic tissue regeneration by tissue engineering. J Transl Med 2019; 17:383. [PMID: 31752920 PMCID: PMC6873477 DOI: 10.1186/s12967-019-02137-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Liver, as a vital organ, is responsible for a wide range of biological functions to maintain homeostasis and any type of damages to hepatic tissue contributes to disease progression and death. Viral infection, trauma, carcinoma, alcohol misuse and inborn errors of metabolism are common causes of liver diseases are a severe known reason for leading to end-stage liver disease or liver failure. In either way, liver transplantation is the only treatment option which is, however, hampered by the increasing scarcity of organ donor. Over the past years, considerable efforts have been directed toward liver regeneration aiming at developing new approaches and methodologies to enhance the transplantation process. These approaches include producing decellularized scaffolds from the liver organ, 3D bio-printing system, and nano-based 3D scaffolds to simulate the native liver microenvironment. The application of small molecules and micro-RNAs and genetic manipulation in favor of hepatic differentiation of distinct stem cells could also be exploited. All of these strategies will help to facilitate the application of stem cells in human medicine. This article reviews the most recent strategies to generate a high amount of mature hepatocyte-like cells and updates current knowledge on liver regenerative medicine.
Collapse
Affiliation(s)
- Vahid Hosseini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Nazari Soltan Ahmad
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
56
|
Han W, Duan Z. Different drug metabolism behavior between species in drug-induced hepatotoxicity: limitations and novel resolutions. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1639060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Weijia Han
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Zhongping Duan
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| |
Collapse
|
57
|
Coronado RE, Somaraki-Cormier M, Ong JL, Halff GA. Hepatocyte-like cells derived from human amniotic epithelial, bone marrow, and adipose stromal cells display enhanced functionality when cultured on decellularized liver substrate. Stem Cell Res 2019; 38:101471. [PMID: 31163390 DOI: 10.1016/j.scr.2019.101471] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/30/2019] [Accepted: 05/25/2019] [Indexed: 01/02/2023] Open
Abstract
Transplantation of primary hepatocytes has been used in treatments for various liver pathologies and end-stage liver disease. However, shortage of donor tissue and the inability of hepatocyte proliferation in vitro have lead to alternative methods such as stem cell-derived hepatocyte-like cells (HLCs). Mesenchymal stromal/stem cells, and amniotic epithelial cells were isolated from human bone marrow (BM-MSCs), lipoaspirates (ASCs), and amniotic tissue (AECs) respectively. All cells were differentiated into HLCs on plates coated with Type I collagen or Porcine Liver Extracellular Matrix (PLECM-AA) matrix. Flow cytometry of BM-MSCs and ASCs, and AECs showed high expression of MSC-specific and embryonic stem cell markers respectively. All cell types differentiated into osteocytes, chondrocytes, and adipocytes. All cell type-derived HLCs presented the typical cuboidal primary hepatocyte morphology on PLECM-AA and fewer vacuoles (AECs) compared to HLCs cultured on type I collagen. Gene analysis of all cell type-derived HLCs cultured on PLECM-AA revealed higher upregulation of genes involved in drug transportation and metabolism compared to HLCs cultured on type I collagen. Although, HLCs cultured on PLECM-AA displayed some hepatocyte-related function and bioactivity, overall gene expression was lower compared to that of primary hepatocytes suggesting that caution should be taken when considering using HLCs to replace total hepatocyte functionality.
Collapse
Affiliation(s)
- Ramon E Coronado
- Lester Smith Medical Research Institute, San Antonio, TX 78229, USA.
| | | | - Joo L Ong
- Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Glenn A Halff
- Transplant Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
58
|
Advances in Hepatic Tissue Bioengineering with Decellularized Liver Bioscaffold. Stem Cells Int 2019; 2019:2693189. [PMID: 31198426 PMCID: PMC6526559 DOI: 10.1155/2019/2693189] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/08/2019] [Accepted: 03/17/2019] [Indexed: 12/28/2022] Open
Abstract
The burden of liver diseases continues to grow worldwide, and liver transplantation is the only option for patients with end-stage liver disease. This procedure is limited by critical issues, including the low availability of donor organs; thus, novel therapeutic strategies are greatly needed. Recently, bioengineering approaches using decellularized liver scaffolds have been proposed as a novel strategy to overcome these challenges. The aim of this systematic literature review was to identify the major advances in the field of bioengineering using decellularized liver scaffolds and to identify obstacles and challenges for clinical application. The main findings of the articles and each contribution for technique optimization were highlighted, including the protocols of perfusion and decellularization, duration, demonstration of quality control—scaffold acellularity, matrix composition, and preservation of growth factors—and tissue functionality after recellularization. In previous years, many advances have been made as this technique has evolved from studies in animal models to human livers. As the field develops and this promising technique has become much more feasible, many challenges remain, including the selection of appropriate cell types for recellularization, route of cell administration, cell-seeding protocol, and scalability that must be standardized prior to clinical application.
Collapse
|
59
|
Decellularized caprine liver-derived biomimetic and pro-angiogenic scaffolds for liver tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:939-948. [DOI: 10.1016/j.msec.2019.01.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 12/07/2018] [Accepted: 01/08/2019] [Indexed: 12/18/2022]
|
60
|
Rezaei Topraggaleh T, Rezazadeh Valojerdi M, Montazeri L, Baharvand H. A testis-derived macroporous 3D scaffold as a platform for the generation of mouse testicular organoids. Biomater Sci 2019; 7:1422-1436. [DOI: 10.1039/c8bm01001c] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Extracellular matrix-derived scaffolds provide an efficient platform for the generation of organ-like structures.
Collapse
Affiliation(s)
| | | | - Leila Montazeri
- Department of Cell Engineering
- Cell Science Research Center
- Royan Institute for Stem Cell Biology and Technology
- ACECR
- Tehran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center
- Royan Institute for Stem Cell Biology and Technology
- ACECR
- Tehran
- Iran
| |
Collapse
|