51
|
Izycka N, Rucinski M, Andrzejewska M, Szubert S, Nowak-Markwitz E, Sterzynska K. The Prognostic Value of Cancer Stem Cell Markers (CSCs) Expression-ALDH1A1, CD133, CD44-For Survival and Long-Term Follow-Up of Ovarian Cancer Patients. Int J Mol Sci 2023; 24:ijms24032400. [PMID: 36768723 PMCID: PMC9916537 DOI: 10.3390/ijms24032400] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Recurrent disease and treatment-associated chemoresistance are the two main factors accounting for poor clinical outcomes of ovarian cancer (OC) patients. Both can be associated with cancer stem cells (CSCs), which contribute to cancer formation, progression, chemoresistance, and recurrence. Hence, this study investigated whether the expression of known CSC-associated markers ALDH1A, CD44, and CD133 may predict OC patient prognosis. We analyzed their expression in primary epithelial ovarian cancer (EOC) patients using immunohistochemistry and related them to clinicopathological data, including overall survival (OS) and progression-free survival (PFS). Expression of ALDH1A1 was detected in 32%, CD133 in 28%, and CD44 in 33% of cases. While Kaplan-Meier analysis revealed no association of the expression of CD133 and CD44 with PFS and OS, ALDH1A1-positive patients were characterized with both significantly shorter OS (p = 0.00022) and PFS (p = 0.027). Multivariate analysis demonstrated that the expression of ALDH1A1, FIGO stage III-IV, and residual disease after suboptimal debulking or neoadjuvant chemotherapy correlated with shorter OS. The results of this study identify ALDH1A1 as a potential independent prognostic factor of shorter OS and PFS in EOC patients. Therefore, targeting ALDH1A1-positive cancer cells may be a promising therapeutic strategy to influence the disease course and treatment response.
Collapse
Affiliation(s)
- Natalia Izycka
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznań, Poland
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Malgorzata Andrzejewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Sebastian Szubert
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznań, Poland
| | - Ewa Nowak-Markwitz
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznań, Poland
| | - Karolina Sterzynska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
- Correspondence: ; Tel.: +48-61-8546455
| |
Collapse
|
52
|
Luo H, Zhou Y, Zhang J, Zhang Y, Long S, Lin X, Yang A, Duan J, Yang N, Yang Z, Che Q, Yang Y, Guo T, Zi D, Ouyang W, Yang W, Zeng Z, Zhao X. NK cell-derived exosomes enhance the anti-tumor effects against ovarian cancer by delivering cisplatin and reactivating NK cell functions. Front Immunol 2023; 13:1087689. [PMID: 36741396 PMCID: PMC9892755 DOI: 10.3389/fimmu.2022.1087689] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Exosomes are membranous vesicles actively secreted by almost all cells and they deliver certain intracellular molecules, including nucleic acids, proteins, and lipids, to target cells. They are also considered to be good carriers for drug delivery due to their biocompatibility, high permeability, low immunogenicity, and low toxicity. Exosomes from immune cells were also reported to have immunomodulatory activities. Herein we evaluated the application of exosomes derived from expanded natural killer cells (eNK-EXO) for the treatment of ovarian cancer (OC). We demonstrate that eNK-EXO express typical protein markers of natural killer (NK) cells, can be preferentially uptaken by SKOV3 cells, and display cytotoxicity against OC cells. Furthermore, eNK-EXO loaded with cisplatin could sensitize drug-resistant OC cells to the anti-proliferation effect of cisplatin. In addition, we show that eNK-EXO could activate NK cells from immunosuppressive tumor microenvironment, the mechanism of which is explored by transcriptional analysis. In summary, eNK-EXO exhibit anti-tumor activity against OC on its own, could be used to deliver cisplatin and enhance its cytotoxic effect against drug-resistant OC cells and also reverse the immunosuppression of NK cells, which may lead to great prospect of using eNK-EXO in the treatment of OC in the clinic. Our work also builds a strong foundation for further evaluation of eNK-EXO in other solid tumor therapies.
Collapse
Affiliation(s)
- Heyong Luo
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China,Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yanhua Zhou
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China
| | - Jing Zhang
- Department of Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yingchun Zhang
- Department of Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shiqi Long
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaojin Lin
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China,Department of Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Anqing Yang
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China,Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jiangyao Duan
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Na Yang
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China,Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhiru Yang
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China,Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qiyuan Che
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China,Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuxin Yang
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China,Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ting Guo
- Department of gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Dan Zi
- Department of gynaecology and obstetrics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Weiwei Ouyang
- Department of Thoracic Oncology, The Affiliated Hospital/The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Yang
- Department of Oncology, Guizhou Medical University, Guiyang, China
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province/Engineering Research Center of Cellular Immunotherapy of Guizhou Province/Department of Biology and Engineering, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, China,*Correspondence: Xing Zhao, ; Zhu Zeng,
| | - Xing Zhao
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China,Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China,*Correspondence: Xing Zhao, ; Zhu Zeng,
| |
Collapse
|
53
|
Ovejero-Sánchez M, González-Sarmiento R, Herrero AB. DNA Damage Response Alterations in Ovarian Cancer: From Molecular Mechanisms to Therapeutic Opportunities. Cancers (Basel) 2023; 15:448. [PMID: 36672401 PMCID: PMC9856346 DOI: 10.3390/cancers15020448] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
The DNA damage response (DDR), a set of signaling pathways for DNA damage detection and repair, maintains genomic stability when cells are exposed to endogenous or exogenous DNA-damaging agents. Alterations in these pathways are strongly associated with cancer development, including ovarian cancer (OC), the most lethal gynecologic malignancy. In OC, failures in the DDR have been related not only to the onset but also to progression and chemoresistance. It is known that approximately half of the most frequent subtype, high-grade serous carcinoma (HGSC), exhibit defects in DNA double-strand break (DSB) repair by homologous recombination (HR), and current evidence indicates that probably all HGSCs harbor a defect in at least one DDR pathway. These defects are not restricted to HGSCs; mutations in ARID1A, which are present in 30% of endometrioid OCs and 50% of clear cell (CC) carcinomas, have also been found to confer deficiencies in DNA repair. Moreover, DDR alterations have been described in a variable percentage of the different OC subtypes. Here, we overview the main DNA repair pathways involved in the maintenance of genome stability and their deregulation in OC. We also recapitulate the preclinical and clinical data supporting the potential of targeting the DDR to fight the disease.
Collapse
Affiliation(s)
- María Ovejero-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| | - Ana Belén Herrero
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| |
Collapse
|
54
|
Overcoming cancer chemotherapy resistance by the induction of ferroptosis. Drug Resist Updat 2023; 66:100916. [PMID: 36610291 DOI: 10.1016/j.drup.2022.100916] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Development of resistance to chemotherapy in cancer continues to be a major challenge in cancer management. Ferroptosis, a unique type of cell death, is mechanistically and morphologically different from other forms of cell death. Ferroptosis plays a pivotal role in inhibiting tumour growth and has presented new opportunities for treatment of chemotherapy-insensitive tumours in recent years. Emerging studies have suggested that ferroptosis can regulate the therapeutic responses of tumours. Accumulating evidence supports ferroptosis as a potential target for chemotherapy resistance. Pharmacological induction of ferroptosis could reverse drug resistance in tumours. In this review article, we first discuss the key principles of chemotherapeutic resistance in cancer. We then provide a brief overview of the core mechanisms of ferroptosis in cancer chemotherapeutic drug resistance. Finally, we summarise the emerging data that supports the fact that chemotherapy resistance in different types of cancers could be subdued by pharmacologically inducing ferroptosis. This review article suggests that pharmacological induction of ferroptosis by bioactive compounds (ferroptosis inducers) could overcome chemotherapeutic drug resistance. This article also highlights some promising therapeutic avenues that could be used to overcome chemotherapeutic drug resistance in cancer.
Collapse
|
55
|
Henri JL, Nakhjavani M, McCoombe S, Shigdar S. Cytotoxic effects of aptamer-doxorubicin conjugates in an ovarian cancer cell line. Biochimie 2023; 204:108-117. [PMID: 36155804 DOI: 10.1016/j.biochi.2022.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/22/2022] [Accepted: 09/05/2022] [Indexed: 01/12/2023]
Abstract
Despite medical advances in treatment strategies over the past 30-years, epithelial ovarian cancer (EOC) continues to be defined by poor patient survival rates and aggressive, drug resistant relapse. Traditional approaches to cancer chemotherapy are typically limited by severe off-target effects on healthy tissue and aggressive drug-resistant recurrence. Recent shifts towards targeted therapies offer the possibility of circumventing the obstacles experienced by these treatments. While antibodies are the pioneering agents in such targeted therapies, several intrinsic characteristics of antibodies limits their clinical translation and efficacy. In contrast, oligonucleotide chemical antibodies, known as aptamers, are ideal for this application given their small size and lack of immunogenicity. This study explored the efficacy of a DNA aptamer, designed to target a well-established cancer biomarker, EpCAM, to deliver a chemotherapeutic drug. The results from this study support evidence that EpCAM aptamers can bind to epithelial ovarian cancer; and offers a valid alternative as a targeting ligand with tuneable specificity and sensitivity. It also supports the growing body of evidence that aptamers show great potential for application-specific, post-SELEX engineering through rational modifications. Through in vitro assays, these aptamers demonstrated cytotoxicity in both monolayer and tumoursphere assays, as well as in tumourigenic enriching assays. Further experimentation based on the results achieved in this project might aid in the development of novel cancer therapeutics and guide the novel designs of drugs for targeted drug delivery.
Collapse
Affiliation(s)
- Justin L Henri
- School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Maryam Nakhjavani
- School of Medicine, Deakin University, Geelong, VIC, 3220, Australia; Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Scott McCoombe
- Medical School, The University of Western Australia, Perth, WA, 6009, Australia
| | - Sarah Shigdar
- School of Medicine, Deakin University, Geelong, VIC, 3220, Australia; Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, 3220, Australia.
| |
Collapse
|
56
|
Anand S, Khan MA, Singh AP. Turning Adversity into Strength and Transferring It to the Uninitiated: The Tricks Cancer Cells Play to Survive Hypoxic Stress and Fight Chemotherapy. Cancers (Basel) 2022; 15:166. [PMID: 36612162 PMCID: PMC9818293 DOI: 10.3390/cancers15010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Despite significant progress during the past few decades, cancer remains the second most common cause of death in the US after heart disease [...].
Collapse
Affiliation(s)
- Shashi Anand
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
57
|
Psilopatis I, Sykaras AG, Mandrakis G, Vrettou K, Theocharis S. Patient-Derived Organoids: The Beginning of a New Era in Ovarian Cancer Disease Modeling and Drug Sensitivity Testing. Biomedicines 2022; 11:1. [PMID: 36672509 PMCID: PMC9855526 DOI: 10.3390/biomedicines11010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer (OC) is the leading cause of death from gynecological malignancies. Despite great advances in treatment strategies, therapeutic resistance and the gap between preclinical data and actual clinical efficacy justify the necessity of developing novel models for investigating OC. Organoids represent revolutionary three-dimensional cell culture models, deriving from stem cells and reflecting the primary tissue's biology and pathology. The aim of the current review is to study the current status of mouse- and patient-derived organoids, as well as their potential to model carcinogenesis and perform drug screenings for OC. Herein, we describe the role of organoids in the assessment of high-grade serous OC (HGSOC) cells-of-origin, illustrate their use as promising preclinical OC models and highlight the advantages of organoid technology in terms of disease modelling and drug sensitivity testing.
Collapse
Affiliation(s)
- Iason Psilopatis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
- Department of Gynecology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Alexandros G. Sykaras
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
- Department of Cytopathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Georgios Mandrakis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Kleio Vrettou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| |
Collapse
|
58
|
Zhan S, Yung MMH, Siu MKY, Jiao P, Ngan HYS, Chan DW, Chan KKL. New Insights into Ferroptosis Initiating Therapies (FIT) by Targeting the Rewired Lipid Metabolism in Ovarian Cancer Peritoneal Metastases. Int J Mol Sci 2022; 23:ijms232315263. [PMID: 36499591 PMCID: PMC9737695 DOI: 10.3390/ijms232315263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynecological cancers worldwide. The poor prognosis of this malignancy is substantially attributed to the inadequate symptomatic biomarkers for early diagnosis and effective remedies to cure the disease against chemoresistance and metastasis. Ovarian cancer metastasis is often relatively passive, and the single clusters of ovarian cancer cells detached from the primary ovarian tumor are transcoelomic spread by the peritoneal fluid throughout the peritoneum cavity and omentum. Our earlier studies revealed that lipid-enriched ascitic/omental microenvironment enforced metastatic ovarian cancer cells to undertake metabolic reprogramming and utilize free fatty acids as the main energy source for tumor progression and aggression. Intriguingly, cell susceptibility to ferroptosis has been tightly correlated with the dysregulated fatty acid metabolism (FAM), and enhanced iron uptake as the prominent features of ferroptosis are attributed to the strengthened lipid peroxidation and aberrant iron accumulation, suggesting that ferroptosis induction is a targetable vulnerability to prevent cancer metastasis. Therefore, the standpoints about tackling altered FAM in combination with ferroptosis initiation as a dual-targeted therapy against advanced ovarian cancer were highlighted herein. Furthermore, a discussion on the prospect and challenge of inducing ferroptosis as an innovative therapeutic approach for reversing remedial resistance in cancer interventions was included. It is hoped this proof-of-concept review will indicate appropriate directions for speeding up the translational application of ferroptosis-inducing compounds (FINs) to improve the efficacy of ovarian cancer treatment.
Collapse
Affiliation(s)
- Shijie Zhan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mingo M. H. Yung
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michelle K. Y. Siu
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Peili Jiao
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hextan Y. S. Ngan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David W. Chan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Medicine, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, China
- Correspondence: (D.W.C.); (K.K.L.C.); Tel.: +86-755-2351-6153 (D.W.C.); +852-2255-4260 (K.K.L.C.); Fax: +852-2255-0947 (K.K.L.C.)
| | - Karen K. L. Chan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Correspondence: (D.W.C.); (K.K.L.C.); Tel.: +86-755-2351-6153 (D.W.C.); +852-2255-4260 (K.K.L.C.); Fax: +852-2255-0947 (K.K.L.C.)
| |
Collapse
|
59
|
Hassan BAR, Mohammed AH, Alsammarraie AZA, Alabboodi MK, Wayyes AM, Ahmed AA, Shanshal A. Knowledge, Attitude, and Practice of Oncologists toward Chemotherapy Resistance: A Questionnaire Development and Pilot Testing. Asian Pac J Cancer Prev 2022; 23:4275-4284. [PMID: 36580010 PMCID: PMC9971488 DOI: 10.31557/apjcp.2022.23.12.4275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Chemotherapy resistance is caused by a multiplicity of reasons; some of which can be avoided and others that are beyond the scope of current treatment methods. Since chemotherapy is administered under the supervision of health personnel, the role of oncologists cannot be undermined, and yet none is known about their knowledge and perspective. This research is the first-ever study aiming to develop a valid and reliable tool to determine oncologists' knowledge, attitude, and practice (KAP) toward chemotherapy resistance. METHODS Based on information gathered from literature searches, in-depth interviews with oncologists, and discussions with experts, an English-language questionnaire was developed. The questionnaire was tested for validity and reliability. A final version of the questionnaire (63 items) was piloted among 64 practicing oncologists and oncology trainees via convenient sampling. Data analysis was done using SPSS. RESULTS Correlation coefficients for each of the questionnaire's domains were more than 0.7 (P<0.001), which suggests that the questionnaire had strong test-retest reliability. The overall internal consistency (Cronbach's alpha) for knowledge (0.728), attitude (0.722), and practice (0.716) were greater than 0.7 indicating good internal consistency. Participants demonstrated a low level of knowledge and a positive attitude toward chemotherapy resistance. A statistically significant difference was noted between the knowledge score and education level, years of experience in the medical and oncology field, and experiencing resistance cases. CONCLUSION The developed questionnaire was found to be valid and reliable and can be used as an assessment tool for assessing oncologists' knowledge, attitude, and practice toward chemotherapy resistance in future studies. This study also reported that the oncologists have low knowledge on chemotherapy resistance and a predominantly positive attitude towards fighting chemotherapy resistance. Thus, it is essential for current practices in chemotherapy to be optimized to reduce the risk of chemotherapy resistance.
Collapse
Affiliation(s)
| | - Ali Haider Mohammed
- Department of Pharmacy, Al Rafidain University College, Baghdad, Iraq. ,School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.,For Correspondence:
| | | | - Musaab Kadhim Alabboodi
- C4Medical Oncology Department, Alamal National Hospital for Cancer Treatment, Baghdad, Iraq.
| | | | | | - Aisha Shanshal
- Department of Pharmacy, Al Rafidain University College, Baghdad, Iraq.
| |
Collapse
|
60
|
Lee CM, Lee J, Kang MA, Kim HT, Lee J, Park K, Yang YH, Jang KY, Park SH. Linifanib induces apoptosis in human ovarian cancer cells via activation of FOXO3 and reactive oxygen species. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
61
|
Verger A, Dollo G, Martinais S, Molard Y, Cordier S, Amela-Cortes M, Brandhonneur N. Molybdenum-Iodine Cluster Loaded Polymeric Nanoparticles Allowing a Coupled Therapeutic Action with Low Side Toxicity for Treatment of Ovarian Cancer. J Pharm Sci 2022; 111:3377-3383. [PMID: 36126760 DOI: 10.1016/j.xphs.2022.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 01/05/2023]
Abstract
The ability of cancer cells to develop resistance to anti-cancer drugs, known as multidrug resistance, remains a major cause of tumor recurrence and cancer metastasis. This work explores the double mechanism of toxicity of (D, L-lactide-co-glycolide) acid (PLGA) nanoparticles encapsulating a molybdenum cluster compound, namely Cs2[{Mo6I8}(OOCC2F5)6] (CMIF). Hemocompatibility and biocompatibility assays show the safe potential of CMIF loaded nanoparticles (CNPs) as delivery systems intended for tumor targeting for PDT of ovarian cancer with a slight hemolytic activity and a lack of toxicity up to 50 µM CMIF concentration. Cellular uptake shows a preferential uptake of CNPs in lysosomes, which is not interfering with CMIF activity. The double mechanism of CNPs consists in a production of ROS and a DNA damage activity, from 5 µM and 0.5 µM respectively (CMIF concentration). The cellular death mechanism comprises 80% of necrosis and 20% of direct apoptosis by direct DNA damages. This work confirms CMIF loaded PLGA nanoparticles as an efficient and relevant delivery system for PDT.
Collapse
Affiliation(s)
- A Verger
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - G Dollo
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France; CHU de Rennes, Pôle Hospitalo-Universitaire de Pharmacie, F-35033, Rennes, France
| | - S Martinais
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Y Molard
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - S Cordier
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - M Amela-Cortes
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - N Brandhonneur
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France.
| |
Collapse
|
62
|
Chang YH, Chu TY, Ding DC. Spontaneous Transformation of a p53 and Rb-Defective Human Fallopian Tube Epithelial Cell Line after Long Passage with Features of High-Grade Serous Carcinoma. Int J Mol Sci 2022; 23:ijms232213843. [PMID: 36430324 PMCID: PMC9695839 DOI: 10.3390/ijms232213843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynecological cancers, and 80% are high-grade serous carcinomas (HGSOC). Despite advances in chemotherapy and the development of targeted therapies, the survival rate of HGSOC has only moderately improved. Therefore, a cell model that reflects the pathogenesis and clinical characteristics of this disease is urgently needed. We previously developed a human fallopian tube epithelial cell line (FE25) with p53 and Rb deficiencies. After long-term culture in vitro, cells at high-passage numbers showed spontaneous transformation (FE25L). This study aimed to compare FE25 cells cultured in vitro for low (passage 16-31) and high passages (passage 116-139) to determine whether these cells can serve as an ideal cell model of HGSOC. Compared to the cells at low passage, FE25L cells showed increased cell proliferation, clonogenicity, polyploidy, aneuploidy, cell migration, and invasion. They also showed more resistance to chemotherapy and the ability to grow tumors in xenografts. RNA-seq data also showed upregulation of hypoxia, epithelial-mesenchymal transition (EMT), and the NF-κB pathway in FE25L compared to FE25 cells. qRT-PCR confirmed the upregulation of EMT, cytokines, NF-κB, c-Myc, and the Wnt/β-catenin pathway. Cross-platform comparability found that FE25L cells could be grouped with the other most likely HGSOC lines, such as TYKNU and COV362. In conclusion, FE25L cells showed more aggressive malignant behavior than FE25 cells and hence might serve as a more suitable model for HGSOC research.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97005, Taiwan
| | - Tang-Yuan Chu
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97005, Taiwan
- Institute of Medical Sciences, Collagen of Medicine, Tzu Chi University, Hualien 97005, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97005, Taiwan
- Institute of Medical Sciences, Collagen of Medicine, Tzu Chi University, Hualien 97005, Taiwan
- Correspondence: ; Tel.: +886-3856-1825 (ext. 13383); Fax: +886-3857-7161
| |
Collapse
|
63
|
Huang W, Yang S, Cheng YS, Sima N, Sun W, Shen M, Braisted JC, Lu W, Zheng W. Terfenadine resensitizes doxorubicin activity in drug-resistant ovarian cancer cells via an inhibition of CaMKII/CREB1 mediated ABCB1 expression. Front Oncol 2022; 12:1068443. [PMID: 36439493 PMCID: PMC9684669 DOI: 10.3389/fonc.2022.1068443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 10/23/2023] Open
Abstract
Ovarian cancer is one of the most lethal gynecological malignancies. Recurrence or acquired chemoresistance is the leading cause of ovarian cancer therapy failure. Overexpression of ATP-binding cassette subfamily B member 1 (ABCB1), commonly known as P-glycoprotein, correlates closely with multidrug resistance (MDR). However, the mechanism underlying aberrant ABCB1 expression remains unknown. Using a quantitative high-throughput combinational screen, we identified that terfenadine restored doxorubicin sensitivity in an MDR ovarian cancer cell line. In addition, RNA-seq data revealed that the Ca2+-mediated signaling pathway in the MDR cells was abnormally regulated. Moreover, our research demonstrated that terfenadine directly bound to CAMKIID to prevent its autophosphorylation and inhibit the activation of the cAMP-responsive element-binding protein 1 (CREB1)-mediated pathway. Direct inhibition of CAMKII or CREB1 had the same phenotypic effects as terfenadine in the combined treatment, including lower expression of ABCB1 and baculoviral IAP repeat-containing 5 (BIRC5, also known as survivin) and increased doxorubicin-induced apoptosis. In this study, we demonstrate that aberrant regulation of the Ca2+-mediated CAMKIID/CREB1 pathway contributes to ABCB1 over-expression and MDR creation and that CAMKIID and CREB1 are attractive targets for restoring doxorubicin efficacy in ABCB1-mediated MDR ovarian cancer.
Collapse
Affiliation(s)
- Wei Huang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Shu Yang
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yu-Shan Cheng
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ni Sima
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Sun
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Min Shen
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - John C. Braisted
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Weiguo Lu
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Women’s Reproductive Health Research Laboratory of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Zheng
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
64
|
de Melo ALL, Linder A, Sundfeldt K, Lindquist D, Hedman H. Single-molecule array assay reveals the prognostic impact of plasma LRIG1 in ovarian carcinoma. Acta Oncol 2022; 61:1425-1433. [PMID: 36326616 DOI: 10.1080/0284186x.2022.2140016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Ovarian carcinoma is the eighth most common cause of cancer death in women worldwide. The disease is predominantly diagnosed at a late stage. This contributes to high recurrence rates, eventually leading to the development of treatment-resistant disease. Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1) is a transmembrane protein that functions as a tumor suppressor and regulator of growth factor signaling. LRIG1 levels have not been investigated in human plasma previously. MATERIALS AND METHODS A quantitative LRIG1-specific single molecule array assay was developed and validated. LRIG1 levels were quantified in plasma samples from 486 patients with suspicious ovarian masses. RESULTS Among women with ovarian carcinoma, LRIG1 levels were significantly elevated compared to women with benign or borderline type tumors. High LRIG1 plasma levels were associated with worse overall survival and shorter disease-free survival both in the group of all malignant cases and among the stage 3 cases only. LRIG1 was an independent prognostic factor in patients with stage 3 ovarian carcinoma. CONCLUSION LRIG1 plasma levels were elevated in patients with ovarian carcinoma, and high levels were associated with poor prognosis, suggesting that LRIG1 might be an etiologic factor and a potentially useful biomarker in ovarian carcinoma.
Collapse
Affiliation(s)
| | - Anna Linder
- Sahlgrenska Center for Cancer research, Department of Gynecology and Obstetrics, Institute of clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin Sundfeldt
- Sahlgrenska Center for Cancer research, Department of Gynecology and Obstetrics, Institute of clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - David Lindquist
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Håkan Hedman
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| |
Collapse
|
65
|
Ovejero-Sánchez M, Asensio-Juárez G, González M, Puebla P, Vicente-Manzanares M, Pélaez R, González-Sarmiento R, Herrero AB. Panobinostat Synergistically Enhances the Cytotoxicity of Microtubule Destabilizing Drugs in Ovarian Cancer Cells. Int J Mol Sci 2022; 23:13019. [PMID: 36361809 PMCID: PMC9657298 DOI: 10.3390/ijms232113019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022] Open
Abstract
Ovarian cancer (OC) is one of the most common gynecologic neoplasia and has the highest mortality rate, which is mainly due to late-stage diagnosis and chemotherapy resistance. There is an urgent need to explore new and better therapeutic strategies. We have previously described a family of Microtubule Destabilizing Sulfonamides (MDS) that does not trigger multidrug-mediated resistance in OC cell lines. MDS bind to the colchicine site of tubulin, disrupting the microtubule network and causing antiproliferative and cytotoxic effects. In this work, a novel microtubule-destabilizing agent (PILA9) was synthetized and characterized. This compound also inhibited OC cell proliferation and induced G2/M cell cycle arrest and apoptosis. Interestingly, PILA9 was significantly more cytotoxic than MDS. Here, we also analyzed the effect of these microtubule-destabilizing agents (MDA) in combination with Panobinostat, a pan-histone deacetylase inhibitor. We found that Panobinostat synergistically enhanced MDA-cytotoxicity. Mechanistically, we observed that Panobinostat and MDA induced α-tubulin acetylation and that the combination of both agents enhanced this effect, which could be related to the observed synergy. Altogether, our results suggest that MDA/Panobinostat combinations could represent new therapeutic strategies against OC.
Collapse
Affiliation(s)
- María Ovejero-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Gloria Asensio-Juárez
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Myriam González
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Pilar Puebla
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Miguel Vicente-Manzanares
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Rafael Pélaez
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Ana Belén Herrero
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| |
Collapse
|
66
|
Zhang X, Wang J, Fan Y, Zhao Z, Paraghamian SE, Hawkins GM, Buckingham L, O'Donnell J, Hao T, Suo H, Yin Y, Sun W, Kong W, Sun D, Zhao L, Zhou C, Bae-Jump VL. Asparagus officinalis combined with paclitaxel exhibited synergistic anti-tumor activity in paclitaxel-sensitive and -resistant ovarian cancer cells. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04276-8. [PMID: 36006482 DOI: 10.1007/s00432-022-04276-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Although paclitaxel is a promising first-line chemotherapeutic drug for ovarian cancer, acquired resistance to paclitaxel is one of the leading causes of treatment failure, limiting its clinical application. Asparagus officinalis has been shown to have anti-tumorigenic effects on cell growth, apoptosis, cellular stress and invasion of various types of cancer cells and has also been shown to synergize with paclitaxel to inhibit cell proliferation in ovarian cancer. METHODS Human ovarian cancer cell lines MES and its PTX-resistant counterpart MES-TP cell lines were used and were treated with Asparagus officinalis and paclitaxel alone as well as in combination. Cell proliferation, cellular stress, invasion and DMA damage were investigated and the synergistic effect of a combined therapy analyzed. RESULTS In this study, we found that Asparagus officinalis combined with low-dose paclitaxel synergistically inhibited cell proliferation, induced cellular stress and apoptosis and reduced cell invasion in paclitaxel-sensitive and -resistant ovarian cancer cell lines. The combined treatment effects were dependent on DNA damage pathways and suppressing microtubule dynamics, and the AKT/mTOR pathway and microtubule-associated proteins regulated the inhibitory effect through different mechanisms in paclitaxel-sensitive and -resistant cells. CONCLUSION These findings suggest that the combination of Asparagus officinalis and paclitaxel have potential clinical implications for development as a novel ovarian cancer treatment strategy.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China.,Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Jiandong Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China
| | - Yali Fan
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China.,Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Ziyi Zhao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China.,Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Sarah E Paraghamian
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Gabrielle M Hawkins
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Lindsey Buckingham
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Jillian O'Donnell
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Tianran Hao
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Hongyan Suo
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China.,Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Yajie Yin
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China
| | - Delin Sun
- Shandong Juxinyuan Asparagus Industry Development Research Institute, HeZe, 274400, Shandong, People's Republic of China
| | - Luyu Zhao
- Shandong Juxinyuan Agricultural Technology Co. LTD, HeZe, 274400, Shandong, People's Republic of China
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA. .,Division of Gynecologic Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Dr, Chapel Hill, NC, 27599, USA.
| | - Victoria L Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA. .,Division of Gynecologic Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Dr, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
67
|
Lavudi K, Harika VS, Kokkanti RR, Patchigolla S, Sinha A, Patnaik S, Penchalaneni J. 2-Dimensional in vitro culture assessment of ovarian cancer cell line using cost effective silver nanoparticles from Macrotyloma uniflorum seed extracts. Front Bioeng Biotechnol 2022; 10:978846. [PMID: 36051584 PMCID: PMC9425338 DOI: 10.3389/fbioe.2022.978846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022] Open
Abstract
Our research focused on generating AgNPs using Macrotyloma uniflorum (MU) seed extracts and studied their efficacy in combating tumor growth using the 2-Dimensional method for ovarian cancer cell line-PA-1. Characterization studies including a UV-visible spectrophotometer confirmed the surface plasmon resonance peak of 436 nm. Particle size determination data validated the nanoparticle diameter of 91.8 nm. Synthesized AgNPs possess a negative charge of -28.0 mV, which was confirmed through the zeta potential study. Structural characterization studies including XRD determined the crystal phase of AgNPs at four distant peaks at 2θ (38.17, 44.36, 64.52, and 77.46) and were assigned to 111, 200, 220, and 311 planes of the FCC. FTIR studies have confirmed the presence of O-H, N-H, C=O, ethers, C-Br, and C-I groups in AgNPs respectively. DPPH study has confirmed the presence of free radicles and we observed that at 500 μg/ml concentration, 76.08% of free radicles were formed which shows their efficiency. MTT assay shows the efficacy of MU-AgNPs in reducing the cell viability. At lower concentrations of MU-AgNP, 66% viability was observed and 9% of viability was observed at higher dose. ROS production (21%) was observed using MU-AgNPs with respect to 0.45% in controls, which affirms the capacity to induce DNA damage via apoptosis. Standard drug camptothecin generated 26% of ROS production which confirms higher potential of AgNPs in inducing DNA damage in tumor cells without causing lethality to the healthy cells. Further, the Fluorescence-activated cell sorting (FACS) study using a standard Caspase-3 marker confirms the generation of apoptotic bodies using two different concentrations of MU-AgNPs. At 40 μg, 64% of apoptotic cell death was observed, whereas, using 20 μg, 23% of apoptosis was recorded via fluorescent intensity. Propidium iodide-based Cell cycle study has shown a significant decrease in G0/G1 phase compared to control (88.8%), which further confirmed the apoptotic induction. Matrix metalloproteinases (MMP) studies using JC-1 dye, showed a significant increase in green fluorescence owing to lowered membrane potential, thus ensuring the breakdown of mitochondrial potential compared to untreated and standard drugs. With the obtained results, we are concluding that MU-AgNPs has a tremendous capacity to suppress the ovarian cancer cell proliferation in vitro by inducing DNA damage and apoptosis.
Collapse
Affiliation(s)
- Kousalya Lavudi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Venkata Satya Harika
- Department of Biotechnology, Sri Padmavati Mahila Visva Vidyalayam, Tirupati, Andhra Pradesh, India
| | - Rekha Rani Kokkanti
- Department of Biotechnology, Sri Padmavati Mahila Visva Vidyalayam, Tirupati, Andhra Pradesh, India
| | - Swaroopa Patchigolla
- Department of Biotechnology, Sri Padmavati Mahila Visva Vidyalayam, Tirupati, Andhra Pradesh, India
| | - Anupriya Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Srinivas Patnaik
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Josthna Penchalaneni
- Department of Biotechnology, Sri Padmavati Mahila Visva Vidyalayam, Tirupati, Andhra Pradesh, India
- *Correspondence: Josthna Penchalaneni,
| |
Collapse
|
68
|
Chloroquine-Induced DNA Damage Synergizes with Nonhomologous End Joining Inhibition to Cause Ovarian Cancer Cell Cytotoxicity. Int J Mol Sci 2022; 23:ijms23147518. [PMID: 35886866 PMCID: PMC9323666 DOI: 10.3390/ijms23147518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy; therefore, more effective treatments are urgently needed. We recently reported that chloroquine (CQ) increased reactive oxygen species (ROS) in OC cell lines (OCCLs), causing DNA double-strand breaks (DSBs). Here, we analyzed whether these lesions are repaired by nonhomologous end joining (NHEJ), one of the main pathways involved in DSB repair, and if the combination of CQ with NHEJ inhibitors (NHEJi) could be effective against OC. We found that NHEJ inhibition increased the persistence of γH2AX foci after CQ-induced DNA damage, revealing an essential role of this pathway in the repair of the lesions. NHEJi decreased the proliferation of OCCLs and a strong in vitro synergistic effect on apoptosis induction was observed when combined with CQ. This effect was largely abolished by the antioxidant N-Acetyl-L-cysteine, revealing the critical role of ROS and DSB generation in CQ/NHEJi-induced lethality. We also found that the NHEJ efficiency in OCCLs was not affected by treatment with Panobinostat, a pan-histone deacetylase inhibitor that also synergizes with CQ in OCCLs by impairing homologous recombination. Accordingly, the triple combination of CQ-NHEJi-Panobinostat exerted a stronger in vitro synergistic effect. Altogether, our data suggest that the combination of these drugs could represent new therapeutic strategies against OC.
Collapse
|
69
|
MiR-181c sensitizes ovarian cancer cells to paclitaxel by targeting GRP78 through the PI3K/Akt pathway. Cancer Gene Ther 2022; 29:770-783. [PMID: 34145425 DOI: 10.1038/s41417-021-00356-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Primary cytoreductive surgery with platinum-taxane-based chemotherapy is the standard treatment for ovarian cancer (OC) patients; however, resistance to chemotherapy is a contributing factor to OC mortality. Paclitaxel (PTX), the most widely used taxane, has become the first-line drug against OC. The molecular mechanism of PTX resistance is different from that of platinum-based agents and is still not completely elucidated. Our previous study showed that glucose-regulated protein 78 (GRP78) is involved in the resistance of OC cells to PTX. However, little is known regarding endogenous inhibitors of this gene. MicroRNAs (miRNAs) play critical roles in the regulation of gene expression; therefore, we sought to identify miRNA(s) with potential to target GRP78 under the hypothesis that miRNA(s) could serve as potential therapeutic targets. Here, we show that miR-181c, predicted to target GRP78, was downregulated in PTX-resistant OC cells and tissues. MiR-181c downregulated GRP78 expression and induced apoptosis by directly targeting its 3'-untranslated region (UTR). Overexpression of miR-181c sensitized resistant OC to PTX by inhibiting the PI3K/Akt pathway in vitro and in vivo. Taken together, our findings indicate that the delivery of miR-181c can efficiently suppress GRP78 expression and GRP78-mediated PTX resistance in OC and suggest that this strategy has therapeutic potential.
Collapse
|
70
|
Pathania S, Khan MI, Bandyopadhyay S, Singh SS, Rani K, Parashar TR, Jayaram J, Mishra PR, Srivastava A, Mathur S, Hari S, Vanamail P, Hariprasad G. iTRAQ proteomics of sentinel lymph nodes for identification of extracellular matrix proteins to flag metastasis in early breast cancer. Sci Rep 2022; 12:8625. [PMID: 35599267 PMCID: PMC9124668 DOI: 10.1038/s41598-022-12352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/03/2022] [Indexed: 12/24/2022] Open
Abstract
Patients with early breast cancer are affected by metastasis to axillary lymph nodes. Metastasis to these nodes is crucial for staging and quality of surgery. Sentinel Lymph Node Biopsy that is currently used to assess lymph node metastasis is not effective. This necessitates identification of biomarkers that can flag metastasis. Early stage breast cancer patients were recruited. Surgical resection of breast was followed by identification of sentinel lymph nodes. Fresh frozen section biopsy was used to assign metastatic and non-metastatic sentinel lymph nodes. Discovery phase included iTRAQ proteomics coupled with mass spectrometric analysis to identify differentially expressed proteins. Data is available via ProteomeXchange with identifier PXD027668. Validation was done by bioinformatic analysis and ELISA. There were 2398 unique protein groups and 109 differentially expressed proteins comparing metastatic and non-metastatic lymph nodes. Forty nine proteins were up-regulated, and sixty proteins that were down regulated in metastatic group. Bioinformatic analysis showed ECM-receptor interaction pathways to be implicated in lymph node metastasis. ELISA confirmed up-regulation of ECM proteins in metastatic lymph nodes. ECM proteins have requisite parameters to be developed as a diagnostic tool to assess status of sentinel lymph nodes to guide surgical intervention in early breast cancer.
Collapse
|
71
|
Using GPCRs as Molecular Beacons to Target Ovarian Cancer with Nanomedicines. Cancers (Basel) 2022; 14:cancers14102362. [PMID: 35625966 PMCID: PMC9140059 DOI: 10.3390/cancers14102362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
The five-year survival rate for women with ovarian cancer is very poor despite radical cytoreductive surgery and chemotherapy. Although most patients initially respond to platinum-based chemotherapy, the majority experience recurrence and ultimately develop chemoresistance, resulting in fatal outcomes. The current administration of cytotoxic compounds is hampered by dose-limiting severe adverse effects. There is an unmet clinical need for targeted drug delivery systems that transport chemotherapeutics selectively to tumor cells while minimizing off-target toxicity. G protein-coupled receptors (GPCRs) are the largest family of membrane receptors, and many are overexpressed in solid tumors, including ovarian cancer. This review summarizes the progress in engineered nanoparticle research for drug delivery for ovarian cancer and discusses the potential use of GPCRs as molecular entry points to deliver anti-cancer compounds into ovarian cancer cells. A newly emerging treatment paradigm could be the personalized design of nanomedicines on a case-by-case basis.
Collapse
|
72
|
Zhang L, Zhao W, Huang J, Li F, Sheng J, Song H, Chen Y. Development of a Dendritic Cell/Tumor Cell Fusion Cell Membrane Nano-Vaccine for the Treatment of Ovarian Cancer. Front Immunol 2022; 13:828263. [PMID: 35251013 PMCID: PMC8893350 DOI: 10.3389/fimmu.2022.828263] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is a malignant tumor that seriously affects women’s health. In recent years, immunotherapy has shown great potential in tumor treatment. As a major contributor of immunotherapy, dendritic cells (DCs) - based tumor vaccine has been demonstrated to have a positive effect in inducing immune responses in animal experiments. However, the effect of tumor vaccines in clinical trials is not ideal. Therefore, it is urgent to improve the existing tumor vaccines for tumor treatment. Here, we developed a fusion cell membrane (FCM) nano-vaccine FCM-NPs, which is prepared by fusing DCs and OC cells and coating the FCM on the poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with the immune adjuvant CpG-oligodeoxynucleotide (CpG-ODN). The fusion process promoted the maturation of DCs, thus up-regulating the expression of costimulatory molecule CD80/CD86 and accelerating lymph node homing of DCs. Furthermore, FCM-NPs has both the immunogenicity of tumor cells and the antigen presenting ability of DCs, it can stimulate naive T lymphocytes to produce a large number of tumor-specific cytotoxic CD8+ T lymphocytes. FCM-NPs exhibited strong immuno-activating effect both in vitro and in vivo. By establishing subcutaneous transplanted tumor model, patient-derived xenograft tumor model and abdominal metastatic tumor model, FCM-NPs was proved to have the effect of delaying the growth and inhibiting the metastasis of OC. FCM-NPs is expected to become a new tumor vaccine for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, National Clinical Research Centre of Cancer, Tianjin, China
| | - Wei Zhao
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jinke Huang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Fangxuan Li
- Department of Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jindong Sheng
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hualin Song
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ying Chen
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, National Clinical Research Centre of Cancer, Tianjin, China
| |
Collapse
|
73
|
Silva F, Coelho F, Peixoto A, Pinto P, Martins C, Frombach AS, Santo VE, Brito C, Guimarães A, Félix A. Establishment and characterization of a novel ovarian high-grade serous carcinoma cell line-IPO43. Cancer Cell Int 2022; 22:175. [PMID: 35501869 PMCID: PMC9063187 DOI: 10.1186/s12935-022-02600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022] Open
Abstract
Background Epithelial ovarian cancer (EOC) is an aggressive and lethal malignancy and novel EOC cell lines with detailed characterization are needed, to provide researchers with diverse helpful resources to study EOC biological processes and cancer experimental therapies. Methods The IPO43 cell line was established from the ascitic fluid of a patient with a diagnosis of high-grade serous carcinoma (HGSC) of the ovary, previously treated with chemotherapy. Cell immortalization was achieved in 2D cell culture and growth obtained in 2D and 3D cell cultures. The characterization of immortalized cells was done by immunocytochemistry, flow cytometry, cell proliferation, chromosomal Comparative Genomic Hybridization (cCGH), STR profile and Next Generation Sequencing (NGS). Results Characterization studies confirmed that IPO43 cell line is of EOC origin and maintains morphological and molecular features of the primary tumor. cCGH analysis showed a complex profile with gains and losses of specific DNA regions in both primary ascitic fluid and cell line IPO43. The cell line was successfully grown in a 3D system which allows its future application in more complex assays than those performed in 2D models. IPO43 cell line is resistant to standard drug treatment in vitro. Conclusions IPO43 is available for public research and we hope it can contribute to enrich the in vitro models addressing EOC heterogeneity, being useful to investigate EOC and to develop new therapeutic modalities. IPOLFG-SOC43 cell line represents the heterogeneity of Epithelial Ovarian Cancer Genetic alterations in cancer cells confer a selective advantage 3D cultures preserve the phenotypical features of the original tumor
Collapse
Affiliation(s)
- Fernanda Silva
- Chronic Diseases Research Center, (CEDOC-FCM-UNL), NOVA Medical School, NMS, Universidade NOVA de Lisboa, 1169-056, Lisbon, Portugal.
| | - Filipa Coelho
- Chronic Diseases Research Center, (CEDOC-FCM-UNL), NOVA Medical School, NMS, Universidade NOVA de Lisboa, 1169-056, Lisbon, Portugal.,Molecular Pathobiology Research Unit, Portuguese Institute of Oncology Francisco Gentil Lisbon (IPOLFG), 1099-023, Lisbon, Portugal
| | - Ana Peixoto
- Department of Genetics, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Pedro Pinto
- IPO Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Carmo Martins
- Molecular Pathobiology Research Unit, Portuguese Institute of Oncology Francisco Gentil Lisbon (IPOLFG), 1099-023, Lisbon, Portugal
| | - Ann-Sophie Frombach
- IBET, Instituto de Biologia Experimental E Tecnológica PT, 2781-901, Oeiras, Portugal.,Instituto de Tecnologia Química E Biológica António Xavier, Universidade NOVA de Lisboa, 2780-157, Oeiras, Portugal
| | - Vítor E Santo
- IBET, Instituto de Biologia Experimental E Tecnológica PT, 2781-901, Oeiras, Portugal.,Instituto de Tecnologia Química E Biológica António Xavier, Universidade NOVA de Lisboa, 2780-157, Oeiras, Portugal
| | - Catarina Brito
- IBET, Instituto de Biologia Experimental E Tecnológica PT, 2781-901, Oeiras, Portugal.,Instituto de Tecnologia Química E Biológica António Xavier, Universidade NOVA de Lisboa, 2780-157, Oeiras, Portugal
| | | | - Ana Félix
- Chronic Diseases Research Center, (CEDOC-FCM-UNL), NOVA Medical School, NMS, Universidade NOVA de Lisboa, 1169-056, Lisbon, Portugal.,Department of Pathology, IPOLFG, 1099-023, Lisbon, Portugal
| |
Collapse
|
74
|
Phelps DL, Borley JV, Brown R, Takáts Z, Ghaem-Maghami S. The use of biomarkers to stratify surgical care in women with ovarian cancer: Scientific Impact Paper No. 69 March 2022: Scientific Impact Paper No. 69 May 2022. BJOG 2022; 129:e66-e74. [PMID: 35437905 DOI: 10.1111/1471-0528.17142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biomarkers may offer unforeseen insights into clinical diagnosis, as well as the likely course and outcome of a condition. In this paper, the focus is on the use of biological molecules found in body fluids or tissues for diagnosis and prediction of outcome in ovarian cancer patients. In cancer care, biomarkers are being used to develop personalised treatment plans for patients based on the unique characteristics of their tumour. This tailoring of care can be used to pursue specific targets identified by biomarkers, or treat the patient according to specific tumour characteristics. Surgery is one of the core treatments for ovarian cancer, whether it is offered in primary surgery or following chemotherapy in delayed surgery. Biomarkers already exist to guide the treatment of tumours with chemotherapy, but very little research has determined the value of biomarkers in tailoring surgical care for ovarian cancer. Such research is required to identify new biomarkers and assess their effectiveness in a clinical setting as well as to help identify specific tumour types to guide surgery. Biomarkers could help to determine the success of removing the disease surgically, or help to identify tumour deposits that persist after chemotherapy. All of these aspects would improve current practice. This Scientific Impact Paper highlights research that may pave the way towards bespoke surgery according to the biological characteristics of a tumour and aid gynaecological oncologists to provide surgical treatment according to individual need, rather than a blanket approach for all.
Collapse
Affiliation(s)
- D L Phelps
- Royal College of Obstetricians and Gynaecologists, London, UK
| | - J V Borley
- Royal College of Obstetricians and Gynaecologists, London, UK
| | - R Brown
- Royal College of Obstetricians and Gynaecologists, London, UK
| | - Z Takáts
- Royal College of Obstetricians and Gynaecologists, London, UK
| | - S Ghaem-Maghami
- Royal College of Obstetricians and Gynaecologists, London, UK
| | | |
Collapse
|
75
|
Folic Acid-Modified Fluorescent-Magnetic Nanoparticles for Efficient Isolation and Identification of Circulating Tumor Cells in Ovarian Cancer. BIOSENSORS 2022; 12:bios12030184. [PMID: 35323454 PMCID: PMC8946694 DOI: 10.3390/bios12030184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022]
Abstract
Ovarian cancer (OC) is a lethal disease occurring in women worldwide. Due to the lack of obvious clinical symptoms and sensitivity biomarkers, OC patients are often diagnosed in advanced stages and suffer a poor prognosis. Circulating tumor cells (CTCs), released from tumor sites into the peripheral blood, have been recognized as promising biomarkers in cancer prognosis, treatment monitoring, and metastasis diagnosis. However, the number of CTCs in peripheral blood is low, and it is a technical challenge to isolate, enrich, and identify CTCs from the blood samples of patients. This work develops a simple, effective, and inexpensive strategy to capture and identify CTCs from OC blood samples using the folic acid (FA) and antifouling-hydrogel-modified fluorescent-magnetic nanoparticles. The hydrogel showed a good antifouling property against peripheral blood mononuclear cells (PBMCs). The FA was coupled to the hydrogel surface as the targeting molecule for the CTC isolation, held a good capture efficiency for SK-OV-3 cells (95.58%), and successfully isolated 2–12 CTCs from 10 OC patients’ blood samples. The FA-modified fluorescent-magnetic nanoparticles were successfully used for the capture and direct identification of CTCs from the blood samples of OC patients.
Collapse
|
76
|
Binder PS, Hashim YM, Cripe J, Buchanan T, Zamorano A, Vangveravong S, Mutch DG, Hawkins WG, Powell MA, Spitzer D. The targeted SMAC mimetic SW IV-134 augments platinum-based chemotherapy in pre-clinical models of ovarian cancer. BMC Cancer 2022; 22:263. [PMID: 35279106 PMCID: PMC8918278 DOI: 10.1186/s12885-022-09367-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/01/2022] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Ovarian cancer is initially responsive to frontline chemotherapy. Unfortunately, it often recurs and becomes resistant to available therapies and the survival rate for advanced and recurrent ovarian cancer is unacceptably low. We thus hypothesized that it would be possible to achieve more durable treatment responses by combining cisplatin chemotherapy with SW IV-134, a cancer-targeted peptide mimetic and inducer of cell death. SW IV-134 is a recently developed small molecule conjugate linking a sigma-2 ligand with a peptide analog (mimetic) of the intrinsic death pathway activator SMAC (second-mitochondria activator of caspases). The sigma-2 receptor is overexpressed in ovarian cancer and the sigma-2 ligand portion of the conjugate facilitates cancer selectivity. The effector portion of the conjugate is expected to synergize with cisplatin chemotherapy and the cancer selectivity is expected to reduce putative off-target toxicities.
Methods
Ovarian cancer cell lines were treated with cisplatin alone, SW IV-134 alone and a combination of the two drugs. Treatment efficacy was determined using luminescent cell viability assays. Caspase-3/7, − 8 and − 9 activities were measured as complementary indicators of death pathway activation. Syngeneic mouse models and patient-derived xenograft (PDX) models of human ovarian cancer were studied for response to SW IV-134 and cisplatin monotherapy as well as combination therapy. Efficacy of the therapy was measured by tumor growth rate and survival as the primary readouts. Potential drug related toxicities were assessed at necropsy.
Results
The combination treatment was consistently superior in multiple cell lines when compared to the single agents in vitro. The expected mechanism of tumor cell death, such as caspase activation, was confirmed using luminescent and flow cytometry-based assay systems. Combination therapy proved to be superior in both syngeneic and PDX-based murine models of ovarian cancer. Most notably, combination therapy resulted in a complete resolution of established tumors in all study animals in a patient-derived xenograft model of ovarian cancer.
Conclusions
The addition of SW IV-134 in combination with cisplatin chemotherapy represents a promising treatment option that warrants further pre-clinical development and evaluation as a therapy for women with advanced ovarian cancer.
Collapse
|
77
|
You K, Liu Y, Chen L, Ye H, Lin W. Radix ranunculus temate saponins sensitizes ovarian cancer to Taxol via upregulation of miR‑let‑7b. Exp Ther Med 2022; 23:315. [PMID: 35371298 PMCID: PMC8943803 DOI: 10.3892/etm.2022.11244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/07/2021] [Indexed: 11/25/2022] Open
Abstract
A common cause of treatment failure in ovarian cancer is acquired drug resistance. Therefore, effective novel drugs against chemoresistance need to be developed. MicroRNAs (miRNAs or miRs) serve key regulatory roles in tumorigenesis and chemoresistance. The objective of the present study was to explore the role of miR-let-7b in ovarian cancer chemoresistance, and to develop novel strategy for the treatment of drug-resistant ovarian cancer. For this purpose, reverse transcription-quantitative PCR was performed to evaluate the expression level of miR-let-7b in fresh ovarian cancer tissues and cell lines. miR-let-7b mimic was transfected into ovarian cancer cell lines. Functional experiments, cell apoptosis and cell viability assays were carried out to identify the tumor-suppressor function of miR-let-7b. The treatment effect of Radix ranunculus temate saponins (RRTS), one of the primary constituents extracted from the traditional Chinese medicine radix Ranunculi ternati, was identified in vitro and in vivo. The results revealed that miR-let-7b was downregulated significantly in chemoresistant ovarian cancer patients. miR-let-7b overexpression suppressed cell growth and invasion and enhanced sensitivity to Taxol of ovarian cancer cells. Furthermore, miR-let-7b levels in ovarian cancer tissue were inversely associated with collagen type III α1 chain (COL3A1) levels. COL3A1, a non-fibrillar collagen associated with chemoresistance, was targeted by miR-let-7b. RRTS showed cytotoxic effects on ovarian cancer cells through inducing miR-let-7b expression and decreasing COL3A1 expression. In addition, RRTS sensitized ovarian cancer to Taxol both in vitro and in vivo. In conclusion, the present results revealed synergistic cytotoxicity of RRTS and Taxol on against ovarian cancer cells via upregulating expression of miR-let-7b. Combination of Taxol and RRTS may be a novel treatment strategy for patients with TR ovarian cancer.
Collapse
Affiliation(s)
- Keli You
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yuejun Liu
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Le Chen
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Haiyan Ye
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Wumei Lin
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
78
|
Mao G, Xin D, Wang Q, Lai D. Sodium molybdate inhibits the growth of ovarian cancer cells via inducing both ferroptosis and apoptosis. Free Radic Biol Med 2022; 182:79-92. [PMID: 35219846 DOI: 10.1016/j.freeradbiomed.2022.02.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 01/10/2023]
Abstract
Ovarian cancer has the most mortality of all gynecologic malignancies. High-grade serous ovarian carcinoma (HGSOC) is the most common and deadly type of ovarian cancer. Tumor recurrence occurs due to the emergence of chemotherapy resistance. Thus, searching for new therapeutic strategies is essential for the management of ovarian cancer. Deregulation of iron metabolism can be used by ovarian cancer cells to survive, proliferate and metastasize. Here we report that sodium molybdate, a soluble molybdenum (Mo) compound, induces the elevation of the labile iron pool (LIP) in ovarian cancer cells, correlated with the down-regulation of genes involved in extracellular matrix organization. Sodium molybdate also induces depletion of glutathione (GSH) through mediating the production of nitric oxide (NO). Elevation of LIP and depletion of GSH promote the ferroptosis of ovarian cancer cells. Meanwhile, nitric oxide induces mitochondrial damage through inhibiting mitochondrial aconitase activity, ATP production, and mitochondrial membrane potential, leading to apoptosis of ovarian cancer cells. In vivo study shows that sodium molybdate reduces tumor burden in nude mice. Xenografts treated with sodium molybdate are characterized by obvious iron accumulation, increased expression of the iron storage protein ferritin, and lipid peroxide product 4-hydroxynonenal. In addition, an elevated percentage of apoptotic cells is observed in xenografts treated with sodium molybdate. Taken together, these results demonstrate that sodium molybdate can induce both ferroptosis and apoptosis of ovarian cancer cells, making it a potential therapeutic candidate for ovarian cancer.
Collapse
Affiliation(s)
- Guoping Mao
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, PR China
| | - Dedong Xin
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Qian Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, PR China.
| | - Dongmei Lai
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, PR China.
| |
Collapse
|
79
|
Cerqueira M, Belmonte-Reche E, Gallo J, Baltazar F, Bañobre-López M. Magnetic Solid Nanoparticles and Their Counterparts: Recent Advances towards Cancer Theranostics. Pharmaceutics 2022; 14:pharmaceutics14030506. [PMID: 35335882 PMCID: PMC8950239 DOI: 10.3390/pharmaceutics14030506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is currently a leading cause of death worldwide. The World Health Organization estimates an increase of 60% in the global cancer incidence in the next two decades. The inefficiency of the currently available therapies has prompted an urgent effort to develop new strategies that enable early diagnosis and improve response to treatment. Nanomedicine formulations can improve the pharmacokinetics and pharmacodynamics of conventional therapies and result in optimized cancer treatments. In particular, theranostic formulations aim at addressing the high heterogeneity of tumors and metastases by integrating imaging properties that enable a non-invasive and quantitative assessment of tumor targeting efficiency, drug delivery, and eventually the monitoring of the response to treatment. However, in order to exploit their full potential, the promising results observed in preclinical stages need to achieve clinical translation. Despite the significant number of available functionalization strategies, targeting efficiency is currently one of the major limitations of advanced nanomedicines in the oncology area, highlighting the need for more efficient nanoformulation designs that provide them with selectivity for precise cancer types and tumoral tissue. Under this current need, this review provides an overview of the strategies currently applied in the cancer theranostics field using magnetic nanoparticles (MNPs) and solid lipid nanoparticles (SLNs), where both nanocarriers have recently entered the clinical trials stage. The integration of these formulations into magnetic solid lipid nanoparticles—with different composition and phenotypic activity—constitutes a new generation of theranostic nanomedicines with great potential for the selective, controlled, and safe delivery of chemotherapy.
Collapse
Affiliation(s)
- Mónica Cerqueira
- Life and Health Sciences Research Institute (ICVS), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Efres Belmonte-Reche
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Juan Gallo
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Correspondence: (F.B.); (M.B.-L.)
| | - Manuel Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
- Correspondence: (F.B.); (M.B.-L.)
| |
Collapse
|
80
|
Recent Advances in Ovarian Cancer: Therapeutic Strategies, Potential Biomarkers, and Technological Improvements. Cells 2022; 11:cells11040650. [PMID: 35203301 PMCID: PMC8870715 DOI: 10.3390/cells11040650] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Aggressive and recurrent gynecological cancers are associated with worse prognosis and a lack of effective therapeutic response. Ovarian cancer (OC) patients are often diagnosed in advanced stages, when drug resistance, angiogenesis, relapse, and metastasis impact survival outcomes. Currently, surgical debulking, radiotherapy, and/or chemotherapy remain the mainstream treatment modalities; however, patients suffer unwanted side effects and drug resistance in the absence of targeted therapies. Hence, it is urgent to decipher the complex disease biology and identify potential biomarkers, which could greatly contribute to making an early diagnosis or predicting the response to specific therapies. This review aims to critically discuss the current therapeutic strategies for OC, novel drug-delivery systems, and potential biomarkers in the context of genetics and molecular research. It emphasizes how the understanding of disease biology is related to the advancement of technology, enabling the exploration of novel biomarkers that may be able to provide more accurate diagnosis and prognosis, which would effectively translate into targeted therapies, ultimately improving patients’ overall survival and quality of life.
Collapse
|
81
|
CTCFL regulates the PI3K-Akt pathway and it is a target for personalized ovarian cancer therapy. NPJ Syst Biol Appl 2022; 8:5. [PMID: 35132075 PMCID: PMC8821627 DOI: 10.1038/s41540-022-00214-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/05/2022] [Indexed: 12/04/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSC) is the most lethal gynecologic malignancy due to the lack of reliable biomarkers, effective treatment, and chemoresistance. Improving the diagnosis and the development of targeted therapies is still needed. The molecular pathomechanisms driving HGSC progression are not fully understood though crucial for effective diagnosis and identification of novel targeted therapy options. The oncogene CTCFL (BORIS), the paralog of CTCF, is a transcriptional factor highly expressed in ovarian cancer (but in rarely any other tissue in females) with cancer-specific characteristics and therapeutic potential. In this work, we seek to understand the regulatory functions of CTCFL to unravel new target genes with clinical relevance. We used in vitro models to evaluate the transcriptional changes due to the presence of CTCFL, followed by a selection of gene candidates using de novo network enrichment analysis. The resulting mechanistic candidates were further assessed regarding their prognostic potential and druggability. We show that CTCFL-driven genes are involved in cytoplasmic membrane functions; in particular, the PI3K-Akt initiators EGFR1 and VEGFA, as well as ITGB3 and ITGB6 are potential drug targets. Finally, we identified the CTCFL targets ACTBL2, MALT1 and PCDH7 as mechanistic biomarkers to predict survival in HGSC. Finally, we elucidated the value of CTCFL in combination with its targets as a prognostic marker profile for HGSC progression and as putative drug targets.
Collapse
|
82
|
Mengie Ayele T, Tilahun Muche Z, Behaile Teklemariam A, Bogale Kassie A, Chekol Abebe E. Role of JAK2/STAT3 Signaling Pathway in the Tumorigenesis, Chemotherapy Resistance, and Treatment of Solid Tumors: A Systemic Review. J Inflamm Res 2022; 15:1349-1364. [PMID: 35241923 PMCID: PMC8887966 DOI: 10.2147/jir.s353489] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway is a common signaling pathway used to transduce signals from the extracellular to the intracellular (nucleus) upon the binding of cytokines and growth factors to the extracellular domain of specific cell surface receptors. This signaling pathway is tightly regulated and has a multitude of biological functions such as cell proliferation, differentiation, and apoptosis. Besides, the regulated JAK2/STAT3 signaling plays a crucial role in embryonic development, hemopoiesis, and controlling the immune system. Conversely, aberrantly activated JAK2/STAT3 is frequently detected in varieties of tumors and involved in oncogenesis, angiogenesis, and metastasis of many cancer diseases that are usually refractory to the standard chemotherapy. However, the JAK3/STAT3 pathway recently emerged interestingly as a new site for the development of novel anti-tumor agents and becomes a promising therapeutic target in the treatment of many solid malignancies. Herein, this review aimed to provide insight into the JAK2/STAT3 pathway, in the hope to gain an understanding of its potential role in the pathogenesis, progression, chemotherapy resistance, and cancer therapy of solid tumors.
Collapse
Affiliation(s)
- Teklie Mengie Ayele
- Department of Pharmacy, Debre Tabor University, Debre Tabor, Amhara, Ethiopia
| | | | | | | | - Endeshaw Chekol Abebe
- Department of Medical Biochemistry, Debre Tabor University, Debre Tabor, Amhara, Ethiopia
- Correspondence: Endeshaw Chekol Abebe, Tel +251928428133, Email
| |
Collapse
|
83
|
1′-Acetoxyeugenol Acetate Isolated from Thai Ginger Induces Apoptosis in Human Ovarian Cancer Cells by ROS Production via NADPH Oxidase. Antioxidants (Basel) 2022; 11:antiox11020293. [PMID: 35204176 PMCID: PMC8868116 DOI: 10.3390/antiox11020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
The rhizomes of Alpinia galanga (Thai ginger) have been used extensively as a spice in Southeast Asian and Arabian cuisines and reported to possess a wide range of biological properties, such as antioxidant, antimicrobial, and antibacterial. However, the specific molecular and cellular mechanisms underlying the anti-tumor effects induced by Thai ginger and its corresponding active compounds have been poorly characterized. We found that upon EtOH extraction, Thai ginger extract exhibits cytotoxic activity (IC50 < 10 μg/mL) and triggers cell death via caspase-dependent apoptosis in human ovarian cancer cells. Among the three major compounds isolated from the extract, 1′-acetoxyeugenol acetate (AEA) exhibited potent cytotoxic activity in human ovarian cancer cells, SKOV3 and A2780. AEA induced apoptotic cell death through the activation of caspases-3 and -9. Notably, AEA enhanced the intracellular levels of reactive oxygen species (ROS), and the application of an antioxidant markedly reversed AEA-induced apoptosis of ovarian cancer cells. The knockdown of p47phox, a subunit of NADPH oxidase, suppressed both the pro-apoptotic and ROS-inducing effects of AEA. Additionally, the activation of the mitogen-activated protein kinase (MAPK) pathway by AEA through ROS regulation was found to be involved in AEA-induced apoptosis. Altogether, these results suggest that AEA exhibits potent apoptosis-inducing activity through the activation of the intrinsic pathway via ROS-mediated MAPK signaling in human ovarian cancer cells.
Collapse
|
84
|
Hyeraci M, Agnarelli L, Labella L, Marchetti F, Di Paolo ML, Samaritani S, Dalla Via L. trans-Dichloro(triphenylarsino)(N,N-dialkylamino)platinum(II) Complexes: In Search of New Scaffolds to Circumvent Cisplatin Resistance. Molecules 2022; 27:molecules27030644. [PMID: 35163916 PMCID: PMC8838190 DOI: 10.3390/molecules27030644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 02/01/2023] Open
Abstract
The high incidence of the resistance phenomenon represents one of the most important limitations to the clinical usefulness of cisplatin as an anticancer drug. Notwithstanding the considerable efforts to solve this problem, the circumvention of cisplatin resistance remains a challenge in the treatment of cancer. In this work, the synthesis and characterization of two trans-dichloro(triphenylarsino)(N,N-dialkylamino)platinum(II) complexes (1 and 2) were described. The trypan blue exclusion assay demonstrated an interesting antiproliferative effect for complex 1 in ovarian carcinoma-resistant cells, A2780cis. Quantitative analysis performed by ICP-AES demonstrated a scarce ability to platinate DNA, and a significant intracellular accumulation. The investigation of the mechanism of action highlighted the ability of 1 to inhibit the relaxation of supercoiled plasmid DNA mediated by topoisomerase II and to stabilize the cleavable complex. Cytofluorimetric analyses indicated the activation of the apoptotic pathway and the mitochondrial membrane depolarization. Therefore, topoisomerase II and mitochondria could represent possible intracellular targets. The biological properties of 1 and 2 were compared to those of the related trans-dichloro(triphenylphosphino)(N,N-dialkylamino)platinum(II) complexes in order to draw structure–activity relationships useful to face the resistance phenotype.
Collapse
Affiliation(s)
- Mariafrancesca Hyeraci
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Laura Agnarelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (L.A.); (L.L.); (F.M.); (S.S.)
| | - Luca Labella
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (L.A.); (L.L.); (F.M.); (S.S.)
- CISUP—Center for the Integration of Scientific Instruments, University of Pisa, 56126 Pisa, Italy
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (L.A.); (L.L.); (F.M.); (S.S.)
| | - Maria Luisa Di Paolo
- Department of Molecular Medicine, Università degli Studi di Padova, Via G. Colombo 3, 35131 Padova, Italy;
| | - Simona Samaritani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (L.A.); (L.L.); (F.M.); (S.S.)
- CISUP—Center for the Integration of Scientific Instruments, University of Pisa, 56126 Pisa, Italy
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, Via F. Marzolo 5, 35131 Padova, Italy;
- Correspondence: ; Tel.: +39-049-8275712
| |
Collapse
|
85
|
Hwang WY, Lee M, Suh DH, Kim K, No JH, Kim YB, Kim JH. Risk factors for and prognosis of carboplatin-related hypersensitivity in patients with epithelial ovarian cancer. Arch Gynecol Obstet 2022; 306:443-449. [PMID: 35044514 DOI: 10.1007/s00404-022-06403-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE We aimed to identify the predictive risk factors for carboplatin-related hypersensitive reactions (HRs) and investigate their impact on survival outcomes in patients with epithelial ovarian cancer (EOC). METHODS This retrospective study included 222 patients with EOC who received carboplatin infusion between July 2016 and November 2019. We compared the clinicopathologic characteristics and survival outcomes between carboplatin-related hypersensitivity and non-hypersensitivity groups. Hypersensitivity data were classified using the Common Terminology Criteria for Adverse Events (CTCAE) version 5.0, categorizing grades from 1 to 5 as mild/moderate/severe/life-threatening/death. Multiple logistic regression analysis was used to analyze risk factors of HRs. The Cox proportional hazard regression model was used to determine the factors of being significantly associated with overall survival. RESULTS Of the 222 patients, eight exhibited HRs (incidence rate, 3.6%). All HRs were of grade 3 or 4 (life-threatening). In all cases, a desensitization protocol was followed. Advanced stage (III or IV) (P = 0.022), previous history of carboplatin use (P < 0.001), and recurrent ovarian cancer (P = 0.001) were significantly associated with HR to carboplatin. Multivariate logistic analysis showed that a previous history of carboplatin was the only independent risk factor for carboplatin-related hypersensitivity (OR, 20.19; 95% CI 1.22 - 3034.10; P = 0.034). However, HR to carboplatin did not influence the overall survival (P = 0.526). CONCLUSION In EOC patients, prior use of carboplatin was an independent risk factor for carboplatin-related HRs; HRs to carboplatin did not influence the overall survival. Clinicians should not underestimate the possibility risk of carboplatin HSRs when re-administrating carboplatin in EOC patients.
Collapse
Affiliation(s)
- Woo Yeon Hwang
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Minjung Lee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Kidong Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jae Hong No
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Yong Beom Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ju-Hyun Kim
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University School of Medicine, 566 Nonhyeon-ro, Gangnam-gu, Seoul, 06135, Republic of Korea.
| |
Collapse
|
86
|
Blocking autophagy overcomes resistance to dual histone deacetylase and proteasome inhibition in gynecologic cancer. Cell Death Dis 2022; 13:59. [PMID: 35039480 PMCID: PMC8763941 DOI: 10.1038/s41419-022-04508-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022]
Abstract
Histone deacetylase (HDAC) inhibitors and proteasome inhibitors have been approved by the FDA for the treatment of multiple myeloma and lymphoma, respectively, but have not achieved similar activity as single agents in solid tumors. Preclinical studies have demonstrated the activity of the combination of an HDAC inhibitor and a proteasome inhibitor in a variety of tumor models. However, the mechanisms underlying sensitivity and resistance to this combination are not well-understood. This study explores the role of autophagy in adaptive resistance to dual HDAC and proteasome inhibition. Studies focus on ovarian and endometrial gynecologic cancers, two diseases with high mortality and a need for novel treatment approaches. We found that nanomolar concentrations of the proteasome inhibitor ixazomib and HDAC inhibitor romidepsin synergistically induce cell death in the majority of gynecologic cancer cells and patient-derived organoid (PDO) models created using endometrial and ovarian patient tumor tissue. However, some models were not sensitive to this combination, and mechanistic studies implicated autophagy as the main mediator of cell survival in the context of dual HDAC and proteasome inhibition. Whereas the combination of ixazomib and romidepsin reduces autophagy in sensitive gynecologic cancer models, autophagy is induced following drug treatment of resistant cells. Pharmacologic or genetic inhibition of autophagy in resistant cells reverses drug resistance as evidenced by an enhanced anti-tumor response both in vitro and in vivo. Taken together, our findings demonstrate a role for autophagic-mediated cell survival in proteasome inhibitor and HDAC inhibitor-resistant gynecologic cancer cells. These data reveal a new approach to overcome drug resistance by inhibiting the autophagy pathway.
Collapse
|
87
|
Ly TTG, Yun J, Ha JS, Kim YJ, Jang WB, Van Le TH, Rethineswaran VK, Choi J, Kim JH, Min SH, Lee DH, Yang JS, Chung JS, Kwon SM. Inhibitory Effect of Etravirine, a Non-Nucleoside Reverse Transcriptase Inhibitor, via Anterior Gradient Protein 2 Homolog Degradation against Ovarian Cancer Metastasis. Int J Mol Sci 2022; 23:944. [PMID: 35055132 PMCID: PMC8777939 DOI: 10.3390/ijms23020944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Anterior gradient protein 2 homolog (AGR2), an endoplasmic reticulum protein, is secreted in the tumor microenvironment. AGR2 is a member of the disulfide isomerase family, is highly expressed in multiple cancers, and promotes cancer metastasis. In this study, we found that etravirine, which is a non-nucleoside reverse transcriptase inhibitor, could induce AGR2 degradation via autophagy. Moreover, etravirine diminished proliferation, migration, and invasion in vitro. Moreover, in an orthotopic xenograft mouse model, the combination of etravirine and paclitaxel significantly suppressed cancer progression and metastasis. This drug may be a promising therapeutic agent for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Thanh Truong Giang Ly
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Jisoo Yun
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Jong-Seong Ha
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Yeon-Ju Kim
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Woong-Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Thi Hong Van Le
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Vinoth Kumar Rethineswaran
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Jaewoo Choi
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Jae-Ho Kim
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Sang-Hyun Min
- New Drug Development Center, Deagu Gyeongbuk Medical Innovation Foundation, Deagu 41061, Korea;
| | - Dong-Hyung Lee
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (D.-H.L.); (J.-S.Y.)
| | - Ju-Seok Yang
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (D.-H.L.); (J.-S.Y.)
| | - Joo-Seop Chung
- Department of Hematology-Oncology, Pusan National University Hospital Medical Research Institute, Busan 49241, Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| |
Collapse
|
88
|
Li N, Yang L, Zuo H. Arborinine suppresses ovarian cancer development through inhibition of LSD1. Life Sci 2021; 291:120275. [PMID: 34979197 DOI: 10.1016/j.lfs.2021.120275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 10/19/2022]
Abstract
AIMS Epithelial ovarian carcinoma is the most lethal female reproductive malignancy in the world. Paclitaxel and carboplatin are generally the first-line treatment drugs for ovarian cancer patients, but numerous patients may develop chemotherapy resistance. Thus, it is urgent to identify novel drugs for ovarian cancer treatment. Arborinine has been known as a broad-spectrum anti-tumor agent due to it possesses a potent cytotoxic effect on various cancer cells. MATERIALS AND METHODS This study aimed to evaluate its anti-tumor effect and the potential underlying mechanism on ovarian cancer cell line SKOV3. The effect of arborinine on SKOV3 cell proliferation and movement were evaluated by MTT assay and cell migration and invasion assays, respectively. The RT-qPCR and Western Blot assays were employed to determine target gene expression. The tumor-bearing mouse model was applied to assess the anti-tumor effect of arborinine in vivo. KEY FINDINGS Our results demonstrated that arborinine treatment significantly inhibited the cell proliferation and tumor growth of SKOV3 in a dose-dependent manner. Arborinine treatment dose-dependently reduced LSD1 expression, resulting in increased H3K4m1 expression. Importantly, arborinine also potently suppressed cell migration and invasion of SKOV3 via reducing epithelial-mesenchymal transition (EMT) of SKOV3. SIGNIFICANCE Arborinine may serve as a potential drug candidate for developing new strategies for ovarian cancer treatment.
Collapse
Affiliation(s)
- Nan Li
- Department of Gynecology, the Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang 050000, Hebei, China.
| | - Liang Yang
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang 050000, Hebei, China.
| | - Hongling Zuo
- Department of Gynecology, the Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang 050000, Hebei, China
| |
Collapse
|
89
|
Flat W, Borowski S, Paraschiakos T, Blechner C, Windhorst S. DIAPH1 facilitates paclitaxel-mediated cytotoxicity of ovarian cancer cells. Biochem Pharmacol 2021; 197:114898. [PMID: 34968485 DOI: 10.1016/j.bcp.2021.114898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
The chemotherapeutic agent paclitaxel (PTX) selectively binds to and stabilizes microtubule (MTs). Also, the activated formin Diaphanous Related Formin 1 (DIAPH1) binds to MTs and increases its stability. In a recent study, we found that high DIAPH1 levels correlated with increased survival of ovarian cancer (Ovca) patients. A possible explanation for this finding is that Ovca cells with high DIAPH1 levels are more sensitive to PTX. To examine this assumption, in this study the effect of DIAPH1 depletion on PTX-mediated cytotoxicity of OVCAR8 and OAW42 cells was analyzed. Our data showed that down-regulation of DIAPH1 expression decreased PTX sensitivity in both cell lines by reducing apoptosis or necrosis. Analysis of MT stability by Western blotting revealed a decreased concentration of stable, detyrosinated MTs in PTX-treated DIAPH1 knock-down compared to control cells. Also, in fixed metaphase cells the level of stable, detyrosinated spindle MTs decreased in cells with reduced DIAPH1 expression. In vitro analysis with recombinant DIAPH1 protein showed that PTX and DIAPH1 exhibited additive effects on MT-polymerization, showing that also in a cell-free system DIAPH1 increased the effect of PTX on MT-stability. Together, our data strongly indicate that DIAPH1 increases the response of Ovca cells to PTX by enhancing PTX-mediated MT-stability.
Collapse
Affiliation(s)
- Wilhelm Flat
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Sarah Borowski
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Themistoklis Paraschiakos
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Christine Blechner
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| |
Collapse
|
90
|
Lin N, Lin JZ, Tanaka Y, Sun P, Zhou X. Identification and validation of a five-lncRNA signature for predicting survival with targeted drug candidates in ovarian cancer. Bioengineered 2021; 12:3263-3274. [PMID: 34224310 PMCID: PMC8806566 DOI: 10.1080/21655979.2021.1946632] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/05/2023] Open
Abstract
The dysregulation of long non-coding RNAs (lncRNAs) plays a crucial role in ovarian cancer (OC). In this study, we screened out five differentially expressed lncRNAs (AC092718.4, AC138035.1, BMPR1B-DT, RNF157-AS1, and TPT1-AS1) between OC and normal ovarian based on TCGA and GTEx RNA-seq databases by using Kaplan-Meier analysis and univariate Cox, LASSO, and multivariate Cox regression. Then, a risk signature was constructed, with 1, 3, 5-year survival prediction accuracy confirmed by ROC curves, and an online survival calculator for easier clinical use. With lncRNA-microRNA-mRNA regulatory networks established, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed, suggesting the involvement of a variety of cancer-related functions and pathways. Finally, five candidate small-molecule drugs (thioridazine, trifluoperazine, loperamide, LY294002, and puromycin) were predicted by Connectivity Map. In conclusion, we identified a 5-lncRNA signature of prognostic value with its ceRNA networks, and five candidate drugs against OC.[Figure: see text].
Collapse
Affiliation(s)
- Nuan Lin
- Obstetrics & Gynecology Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, People’s Republic of China
- Stem Cell Research Center, Shantou University Medical College, Shantou, People’s Republic of China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, People’s Republic of China
| | - Jia-zhe Lin
- Neurosurgical Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, People’s Republic of China
| | - Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Pingnan Sun
- Stem Cell Research Center, Shantou University Medical College, Shantou, People’s Republic of China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, People’s Republic of China
| | - Xiaoling Zhou
- Stem Cell Research Center, Shantou University Medical College, Shantou, People’s Republic of China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, People’s Republic of China
- CONTACT Xiaoling Zhou Stem Cell Research Center, the Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou515041, China
| |
Collapse
|
91
|
Ghoneum A, Almousa S, Warren B, Abdulfattah AY, Shu J, Abouelfadl H, Gonzalez D, Livingston C, Said N. Exploring the clinical value of tumor microenvironment in platinum-resistant ovarian cancer. Semin Cancer Biol 2021; 77:83-98. [PMID: 33476723 PMCID: PMC8286277 DOI: 10.1016/j.semcancer.2020.12.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/20/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Platinum resistance in epithelial ovarian cancer (OvCa) is rising at an alarming rate, with recurrence of chemo-resistant high grade serous OvCa (HGSC) in roughly 75 % of all patients. Additionally, HGSC has an abysmal five-year survival rate, standing at 39 % and 17 % for FIGO stages III and IV, respectively. Herein we review the crucial cellular interactions between HGSC cells and the cellular and non-cellular components of the unique peritoneal tumor microenvironment (TME). We highlight the role of the extracellular matrix (ECM), ascitic fluid as well as the mesothelial cells, tumor associated macrophages, neutrophils, adipocytes and fibroblasts in platinum-resistance. Moreover, we underscore the importance of other immune-cell players in conferring resistance, including natural killer cells, myeloid-derived suppressive cells (MDSCs) and T-regulatory cells. We show the clinical relevance of the key platinum-resistant markers and their correlation with the major pathways perturbed in OvCa. In parallel, we discuss the effect of immunotherapies in re-sensitizing platinum-resistant patients to platinum-based drugs. Through detailed analysis of platinum-resistance in HGSC, we hope to advance the development of more effective therapy options for this aggressive disease.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Sameh Almousa
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Bailey Warren
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Ammar Yasser Abdulfattah
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Alexandria University School of Medicine, Alexandria, Egypt
| | - Junjun Shu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; The Third Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hebatullah Abouelfadl
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Department of Genetics, Animal Health Research Institute, Dokki, Egypt
| | - Daniela Gonzalez
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Christopher Livingston
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Comprehensive Cancer Center, Winston Salem, NC, 27157, USA.
| |
Collapse
|
92
|
Liang M, Li Q, Shi S, Tian YN, Feng Y, Yang Y, Dong M, Zhang J, He J. Overexpression of miR-138-5p Sensitizes Taxol-Resistant Epithelial Ovarian Cancer Cells through Targeting Cyclin-Dependent Kinase 6. Gynecol Obstet Invest 2021; 86:533-541. [PMID: 34818258 DOI: 10.1159/000518510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/02/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ovarian cancer, one of the most malignant diseases in female, is associated with poor diagnosis and low 5-year survival rate. Taxol is a widely used chemotherapeutic drug for the treatment of ovarian cancer by targeting the microtubules of the mitotic spindle to induce cancer cell death. However, with the widespread clinical applications of Taxol, a large fraction of ovarian cancer patients developed drug resistance. RESULTS Here, we report miR-138-5p is significantly downregulated in epithelial ovarian cancer tissues compared with their matched normal ovarian tissues. Overexpression of miR-138-5p effectively sensitized ovarian cancer cells to Taxol. By establishing Taxol-resistant cell line from the epithelial ovarian cancer cell line, HO-8910, we found miR-138-5p was significantly downregulated in Taxol-resistant cells. Furthermore, overexpression of miR-138-5p dramatically overcame the chemoresistance of Taxol-resistant cells. Intriguingly, bioinformatic analysis indicated miR-138-5p had putative binding sites for cyclin-dependent kinase 6 (CDK6). This negative regulation was further verified from epithelial ovarian cancer tissues. Luciferase assay demonstrated miR-138-5p could directly bind to 3'UTR of CDK6. Importantly, silencing CDK6 expression by siRNA successfully increased the sensitivity of both parental and Taxol-resistant ovarian cancer cells. Finally, rescue experiments clearly elucidated restoration of CDK6 in miR-138-5p-overexpressing ovarian cancer cells successfully recovered the Taxol resistance. CONCLUSION In summary, these findings suggest important molecular mechanisms for the miR-138-5p-mediated Taxol sensitivity of ovarian cancer via directly targeting CDK6, suggesting miR-138-5p is an effective therapeutic target for the noncoding RNA-based anti-chemoresistance treatment.
Collapse
Affiliation(s)
- Man Liang
- Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qin Li
- Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shuai Shi
- Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ya-Ning Tian
- Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yanhong Feng
- Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yongkang Yang
- Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Miao Dong
- Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Zhang
- Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jihong He
- Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
93
|
McFadden M, Singh SK, Oprea-Ilies G, Singh R. Nano-Based Drug Delivery and Targeting to Overcome Drug Resistance of Ovarian Cancers. Cancers (Basel) 2021; 13:cancers13215480. [PMID: 34771642 PMCID: PMC8582784 DOI: 10.3390/cancers13215480] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OvCa) is a destructive malignancy due to difficulties in early detection and late advanced-stage diagnoses, leading to high morbidity and mortality rates for women. Currently, the quality treatment for OvCa includes tumor debulking surgery and intravenous platinum-based chemotherapy. However, numerous patients either succumb to the disease or undergo relapse due to drug resistance, such as to platinum drugs. There are several mechanisms that cause cancer cells' resistance to chemotherapy, such as inactivation of the drug, alteration of the drug targets, enhancement of DNA repair of drug-induced damage, and multidrug resistance (MDR). Some targeted therapies, such as nanoparticles, and some non-targeted therapies, such as natural products, reverse MDR. Nanoparticle targeting can lead to the reversal of MDR by allowing direct access for agents to specific tumor sites. Natural products have many anti-cancer properties that adversely regulate the factors contributing to MDR. The present review displays the current problems in OvCa treatments that lead to resistance and proposes using nanotechnology and natural products to overcome drug resistance.
Collapse
Affiliation(s)
- Melayshia McFadden
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.M.); (S.K.S.)
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.M.); (S.K.S.)
| | - Gabriela Oprea-Ilies
- Department of Pathology & Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.M.); (S.K.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Correspondence:
| |
Collapse
|
94
|
Peanut-Shaped Gold Nanoparticles with Shells of Ceragenin CSA-131 Display the Ability to Inhibit Ovarian Cancer Growth In Vitro and in a Tumor Xenograft Model. Cancers (Basel) 2021; 13:cancers13215424. [PMID: 34771587 PMCID: PMC8582422 DOI: 10.3390/cancers13215424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/17/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Despite a spectrum of therapeutics available for the treatment of ovarian tumors, there is a constant need to develop novel treatment options, particularly due to a high incidence of drug resistant tumors and low 5-year survival of patients diagnosed with ovarian carcinomas. In this study, we employed a nanotechnology-based approach to present a novel nanosystem based on ceragenin CSA-131 attached to the surface of a peanut-shaped gold nanoparticle. We demonstrate that such a prepared nanoformulation was highly effective against ovarian cancer cells in in vitro settings and, with limited toxicity, was able to prevent the growth of ovarian tumors in treated animals. Based on obtained data we suggest that ceragenin-containing nanosystems should be considered and further tested as potential therapeutics for ovarian malignancy. Abstract Gold nanoparticles-assisted delivery of antineoplastics into cancerous cells is presented as an effective approach for overcoming the limitations of systemic chemotherapy. Although ceragenins show great potential as anti-cancer agents, in some tumors, effective inhibition of cancer cells proliferation requires application of ceragenins at doses within their hemolytic range. For the purpose of toxicity/efficiency ratio control, peanut-shaped gold nanoparticles (AuP NPs) were functionalized with a shell of ceragenin CSA-131 and the cytotoxicity of AuP@CSA-131 against ovarian cancer SKOV-3 cells and were then analyzed. In vivo efficiency of intravenously and intratumorally administered CSA-131 and AuP@CSA-131 was examined using a xenograft ovarian cancer model. Serum parameters were estimated using ELISA methods. Comparative analysis revealed that AuP@CSA-131 exerted stronger anti-cancer effects than free ceragenin, which was determined by enhanced ability to induce caspase-dependent apoptosis and autophagy processes via reactive oxygen species (ROS)-mediated pathways. In an animal study, AuP@CSA-131 was characterized by delayed clearance and prolonged blood circulation when compared with free ceragenin, as well as enhanced anti-tumor efficiency, particularly when applied intratumorally. Administration of CSA-131 and AuP@CSA-131 prevented the inflammatory response associated with cancer development. These results present the possibility of employing non-spherical gold nanoparticles as an effective nanoplatform for the delivery of antineoplastics for the treatment of ovarian malignancy.
Collapse
|
95
|
Yang L, Zhang W, Qiu Q, Su Z, Tang M, Bai P, Si W, Zhu Z, Liu Y, Yang J, Kuang S, Liu J, Yan W, Shi M, Ye H, Yang Z, Chen L. Discovery of a Series of Hydroxamic Acid-Based Microtubule Destabilizing Agents with Potent Antitumor Activity. J Med Chem 2021; 64:15379-15401. [PMID: 34648295 DOI: 10.1021/acs.jmedchem.1c01451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydroxamic acid group is one of the characteristic pharmacophores of histone deacetylase (HDAC) inhibitors. But here, we discovered a series of hydroxamic acid-based microtubule destabilizing agents (MDAs), which were derived from shortening the length of the linker in HDAC6 inhibitor SKLB-23bb. Interestingly, the low nanomolar antiproliferative activity of these MDAs depended on the presence of hydroxamic acid groups, but their inhibitory effects on HDAC were lost. Among them, 12b showed favorable metabolism stability, high bioavailability, and potent antitumor activity in multidrug-resistant cell lines and A2780/T xenograft model. More importantly, in the patient-derived xenograft models of triple-negative breast cancer and osimertinib-resistant non-small-cell lung cancer, both 20 mg/kg oral and 10 mg/kg intravenous administration of 12b could induce more than 70% tumor inhibition without obvious toxicity. Overall, we discovered that 12b, as a novel MDA based on hydroxamic acid, could serve as a potential MDA for further investigation.
Collapse
Affiliation(s)
- Linyu Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Wanhua Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China.,Department of Hematology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiang Qiu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhengying Su
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Peng Bai
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenting Si
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Zejiang Zhu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Yan Liu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jianhong Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Shuang Kuang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiang Liu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Yan
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Mingsong Shi
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
96
|
Pisano S, Lenna S, Healey GD, Izardi F, Meeks L, Jimenez YS, Velazquez OS, Gonzalez D, Conlan RS, Corradetti B. Assessment of the immune landscapes of advanced ovarian cancer in an optimized in vivo model. Clin Transl Med 2021; 11:e551. [PMID: 34709744 PMCID: PMC8506632 DOI: 10.1002/ctm2.551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is typically diagnosed late, associated with high rates of metastasis and the onset of ascites during late stage disease. Understanding the tumor microenvironment and how it impacts the efficacy of current treatments, including immunotherapies, needs effective in vivo models that are fully characterized. In particular, understanding the role of immune cells within the tumor and ascitic fluid could provide important insights into why OC fails to respond to immunotherapies. In this work, we comprehensively described the immune cell infiltrates in tumor nodules and the ascitic fluid within an optimized preclinical model of advanced ovarian cancer. METHODS Green Fluorescent Protein (GFP)-ID8 OC cells were injected intraperitoneally into C57BL/6 mice and the development of advanced stage OC monitored. Nine weeks after tumor injection, mice were sacrificed and tumor nodules analyzed to identify specific immune infiltrates by immunohistochemistry. Ascites, developed in tumor bearing mice over a 10-week period, was characterized by mass cytometry (CyTOF) to qualitatively and quantitatively assess the distribution of the immune cell subsets, and their relationship to ascites from ovarian cancer patients. RESULTS Tumor nodules in the peritoneal cavity proved to be enriched in T cells, antigen presenting cells and macrophages, demonstrating an active immune environment and cell-mediated immunity. Assessment of the immune landscape in the ascites showed the predominance of CD8+ , CD4+ , B- , and memory T cells, among others, and the coexistance of different immune cell types within the same tumor microenvironment. CONCLUSIONS We performed, for the first time, a multiparametric analysis of the ascitic fluid and specifically identify immune cell populations in the peritoneal cavity of mice with advanced OC. Data obtained highlights the impact of CytOF as a diagnostic tool for this malignancy, with the opportunity to concomitantly identify novel targets, and define personalized therapeutic options.
Collapse
Affiliation(s)
- Simone Pisano
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Center for NanoHealthSwansea University Medical SchoolSwanseaUK
| | - Stefania Lenna
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
| | | | | | - Lucille Meeks
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
| | - Yajaira S. Jimenez
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Texas A&M Health Science CenterCollege of MedicineBryanTexas
| | - Oscar S Velazquez
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
| | | | - Robert Steven Conlan
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Center for NanoHealthSwansea University Medical SchoolSwanseaUK
| | - Bruna Corradetti
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexas
- Center for NanoHealthSwansea University Medical SchoolSwanseaUK
- Texas A&M Health Science CenterCollege of MedicineBryanTexas
| |
Collapse
|
97
|
Esmail S, Danter WR. Stem-cell based, machine learning approach for optimizing natural killer cell-based personalized immunotherapy for high-grade ovarian cancer. FEBS J 2021; 289:985-998. [PMID: 34582617 DOI: 10.1111/febs.16214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/01/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022]
Abstract
Advanced high-grade serous ovarian cancer continues to be a therapeutic challenge for those affected using the current therapeutic interventions. There is an increasing interest in personalized cancer immunotherapy using activated natural killer (NK) cells. NK cells account for approximately 15% of circulating white blood cells. They are also an important element of the tumor microenvironment (TME) and the body's immune response to cancers. In the present study, DeepNEU-C2Rx, a machine learning platform, was first used to create validated artificially induced pluripotent stem cell simulations. These simulations were then used to generate wild-type artificially induced NK cells (aiNK-WT) and TME simulations. Once validated, the aiNK-WT simulations were exposed to artificially induced high-grade serous ovarian cancer represented by aiOVCAR3. Cytolytic activity of aiNK was evaluated in presence and absence of aiOVCAR3 and data were compared with the literature for validation. The TME simulations suggested 26 factors that could be evaluated based on their ability to enhance aiNK-WT cytolytic activity in the presence of aiOVCAR3. The addition of programmed cell death-1 inhibitor leads to significant reinvigoration of aiNK cytolytic activity. The combination of programmed cell death-1 and glycogen synthase kinase 3 inhibitors showed further improvement. Further addition of ascitic fluid factor inhibitors leads to optimal aiNK activation. Our data showed that NK cell simulations could be used not only to pinpoint novel immunotherapeutic targets to reinvigorate the activity of NK cells against cancers, but also to predict the outcome of targeting tumors with specific genetic expression and mutation profiles.
Collapse
|
98
|
Guo R, Xu Q, Liu L, Liu H, Liu Y, Wei W, Qin Y. Bioactive Hexapeptide Reduced the Resistance of Ovarian Cancer Cells to DDP by Affecting HSF1/HSP70 Signaling Pathway. J Cancer 2021; 12:6081-6093. [PMID: 34539881 PMCID: PMC8425193 DOI: 10.7150/jca.62285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/10/2021] [Indexed: 12/05/2022] Open
Abstract
Ovarian cancer is the leading cause of death in gynecologic malignancies. Ovarian cancer as a metastatic malignant tumor is highly recurrent and prone to drug resistance. Bioactive peptides are an emerging area of biomedical research in reducing resistance of tumor cell to drugs. In this paper, we investigated the effects and mechanisms of bioactive hexapeptide (PGPIPN) derived in milk protein on the sensitivity of ovarian cancer cells to cis-dichlorodiammine platinum (DDP). Human ovarian cancer cell lines (SKOV3 and COC1), their DDP-resistant sublines (SKOV3/DDP and COC1/DDP) and human primary ovarian cancer cells were cultured in vitro under the combined treatment of DDP (close to IC50) and different concentrations of PGPIPN. The viabilities, apoptosis and cell cycle changes were respectively measured by WST-8 and flow cytometry. The mRNA and protein expression levels of HSF1, HSP70, MDR1, ERCC1 and β-actin gene were respectively assayed by RT-qPCR and western blotting. The results showed that PGPIPN significantly increased the sensitivity of human ovarian cancer cells to DDP in inhibiting viability and inducing apoptosis in vitro. But the effects in sensitive cells were lower than DDP-resistant cells. PGPIPN significantly changed the cell cycles in all human ovarian cancer cells, which leaded to a significant increase in the percentage of cells blocked at G2/M phase and decrease the percentage of cells at G1 phases in a dose-dependent manner. PGPIPN affected the expression levels of HSF1, HSP70, MDR1 and ERCC1 genes. Compared with cells in DDP treatment alone, the expression levels of HSF1 and HSP70 in human ovarian cancer cells treated with DDP and PGPIPN together significantly decreased in dose-dependent manner. PGPIPN significantly decreased MDR1 and ERCC1 of drug-resistant ovarian cancer cell lines and human primary ovarian cancer cell in a dose-dependent manner. Pifithrin-μ (PFTμ, HSP70 inhibitor) decreased or removed the effects of peptide in increasing the sensitivity of ovarian cancer cells to DDP. This suggests that PGPIPN enhanced the sensitivity of ovarian cancer cells to DDP partially via reducing the activity of HSF1/HSP70 signaling pathway, thus inducing cell apoptosis and decreasing repairment of DNA damage.
Collapse
Affiliation(s)
- Ruowen Guo
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qia Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Liwei Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Medical Laboratory Centre, PLA Clinical College (901 Hospital) of Anhui Medical University, Hefei, Anhui 230031, P.R. China
| | - Hui Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wenmei Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yide Qin
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
99
|
Ying H, Zhao R, Yu Q, Zhang K, Deng Q. CircATL2 enhances paclitaxel resistance of ovarian cancer via impacting miR-506-3p/NFIB axis. Drug Dev Res 2021; 83:512-524. [PMID: 34541682 DOI: 10.1002/ddr.21882] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/30/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022]
Abstract
Circular RNAs (circRNAs) play vital regulatory roles in the development of ovarian cancer (OC). However, the functions of circRNA Atlastin GTPase 2 (circATL2) in paclitaxel (PTX) resistance of OC are still unclear. As a result, circATL2 was upregulated in PTX-resistant OC tissues and cells. CircATL2 knockdown reduced IC50 of PTX, inhibited colony formation ability and promoted cell cycle arrest and apoptosis in PTX-resistant OC cells. Silencing of circATL2 restrained PTX resistance in vivo. Furthermore, miR-506-3p could be targeted by circATL2 and miR-506-3p inhibition reversed the impacts of circATL2 knockdown on PTX resistance and cell progression in PTX-resistant OC cells. NFIB was identified as the target of miR-506-3p. MiR-506-3p overexpression suppressed PTX resistance and malignant behaviors of PTX-resistant OC cells, with NFIB elevation rescued the impacts. To summarize, circATL2 promoted the resistance of OC to PTX by sponging miR-506-3p to upregulate NFIB expression, providing a new sight in chemoresistance of OC.
Collapse
Affiliation(s)
- Hanyue Ying
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruping Zhao
- Department of Radiotherapy, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingqing Yu
- Department of Radiotherapy, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Zhang
- Department of Radiotherapy, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qinghua Deng
- Department of Radiotherapy, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
100
|
Capilliposide from Lysimachia capillipes promotes terminal differentiations and reverses paclitaxel resistance in A2780T cells of human ovarian cancer by regulating Fos/Jun pathway. CHINESE HERBAL MEDICINES 2021; 14:111-116. [PMID: 36120123 PMCID: PMC9476669 DOI: 10.1016/j.chmed.2021.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/01/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
Objective To investigate the potential effect of Lysimachia capillipes capilliposide (LCC) on the chemo sensitivity and the stemness of human ovarian cancer cells. Methods Cell Counting Kit-8 (CCK8) was used to measure the IC50 values. The apoptosis of cells was measured through flow cytometry. Evaluation of the stemness and differentiation markers was performed by the immunoblotting and the immunostaining assays. RNA-seq was performed through the Illumina HiSeq PE150 platform and differentially expressed genes (DEGs) were screened out through the bioinformation analysis. Overexpression or knockdown of Fos gene was achieved by shRNA transfection. Results Pre-exposure of A2780T cells with 10 μg/mL LCC sensitized them to paclitaxel, of which the IC50 value reduced from 8.644 μmol/L (95%CI: 7.315–10.082 μmol/L) to 2.5 μmol/L (95%CI: 2.233–2.7882 μmol/L). Exposure with LCC enhanced the paclitaxel-induced apoptosis and inhibited the colony formation of A2780T cells. LCC exposure reduced the expression of cancer stemness markers, ALDH1, Myd88 and CD44, while promoting that of terminal differentiation markers, NFATc1, Cathepsin K and MMP9. RNA-seq analysis revealed that the expressions of FOS and JUN were upregulated in LCC-treated A2780T cells. A2780T cells overexpressing Fos gene displayed increased paclitaxel-sensitivity and reduced cell stemness, and shared common phenotypes with LCC-treated A2780T cells. Conclusion These findings suggested that LCC promoted terminal differentiations of ovarian cancer cells and sensitized them to paclitaxel through activating the Fos/Jun pathway. LCC might become a novel therapy that targets at cancer stem cells and enhances the chemotherapeutic effect of ovarian cancer treatments.
Collapse
|