51
|
Vuong V, Patterson KK, Cole LP, Henechowicz TL, Sheridan C, Green REA, Thaut MH. Relationship Between Cognition and Gait at 2- and 12-Months Post-Traumatic Brain Injury. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:726452. [PMID: 36188837 PMCID: PMC9397897 DOI: 10.3389/fresc.2021.726452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022]
Abstract
Background: A common and debilitating challenge experienced by people with TBI is gait-associated mobility impairment and persisting cognitive impairments. Cognitive and physical impairments are often addressed independently during rehabilitation, however, increasing evidence links cognitive and motor processes more closely. Objectives: (1) To determine if correlations exist between measures of cognitive and gait recovery, post-TBI. (2) To investigate the predictive power of cognition at 2-months on gait outcomes at 12-months post-TBI. Methods: In this secondary, longitudinal study of cognitive and neural recovery, data from 93 participants admitted to an inpatient neurorehabilitation program were analyzed. Spatiotemporal gait variables [velocity, step time variability (STV), step length variability (SLV)] were collected along with cognitive variables [Trail Making Test-B (TMT-B), Digit Span-Forward (DS-F)]. Spearman's correlation coefficients were calculated between gait and cognitive variables. Multilinear and step wise regression analyses were calculated to determine predictive value of cognitive variables at 2-months on gait performance at 12-months-post TBI. Results: At 2-months post-injury, TMT-B was significantly correlated with gait velocity and STV; and DS-F was significantly correlated with velocity. At 12-months post-injury, TMT-B and DS-F was still significant correlated with velocity. TMT-B at 2-months was correlated with SLV and STV at 12-months; and DS-F correlated significantly with velocity. Regression models showed TMT-B at 2-months predicting STV, SLV, and velocity at 12-months. Conclusions: Significant associations and predictions between physical and cognitive recovery post-TBI were observed in this study. Future directions may consider a "neural internetwork" model as a salient rehabilitation approach in TBI that integrates physical and cognitive functions.
Collapse
Affiliation(s)
- Veronica Vuong
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Kara K. Patterson
- Knowledge, Innovation, Talent, Everywhere (KITE) Research Institute, University Health Network, Toronto, ON, Canada
- Department of Physical Therapy, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lauren Patricia Cole
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
| | - Tara Lynn Henechowicz
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
| | - Conor Sheridan
- Knowledge, Innovation, Talent, Everywhere (KITE) Research Institute, University Health Network, Toronto, ON, Canada
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Robin E. A. Green
- Knowledge, Innovation, Talent, Everywhere (KITE) Research Institute, University Health Network, Toronto, ON, Canada
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael H. Thaut
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
52
|
Heaw YC, Singh DKA, Tan MP, Kumar S. Bidirectional association between executive and physical functions among older adults: A systematic review. Australas J Ageing 2021; 41:20-41. [PMID: 34724301 DOI: 10.1111/ajag.13008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE We aimed to examine the bidirectional associations between specific executive function (EF) and physical function (PF) subdomains among older adults. METHODS A systematic literature search (MEDLINE, EMBASE, PsycINFO, EBSCOHOST, Scopus and EmCare) was undertaken from February 2018 to May 2020. Observational studies measuring associations between EF and PF subdomains among older adults were included. RESULTS Twenty-nine studies met the inclusion criteria. Twenty-seven studies reported associations between EF and PF. There were bidirectional associations between slower processing speed and slower gait speed; slower processing speed and lower muscle strength; and lower verbal fluency and slower gait speed. Lower muscle strength was unilaterally associated with lower working memory. CONCLUSIONS We found consistent bidirectional associations between processing speed with gait speed and muscle strength, and verbal fluency and gait speed. There was a unidirectional association between muscle strength and working memory. Common causal mechanisms for EF and PF require further studies.
Collapse
Affiliation(s)
- Yu Chi Heaw
- Physiotherapy Programme and Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Physiotherapy Programme, Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Devinder Kaur Ajit Singh
- Physiotherapy Programme and Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Maw Pin Tan
- Division of Geriatric Medicine, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Saravana Kumar
- Allied Health and Human Performance Unit, City East Campus, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
53
|
Belli VD, Orcioli-Silva D, Beretta VS, Vitório R, Zampier VC, Nóbrega-Sousa P, Conceição NRD, Gobbi LTB. Prefrontal Cortical Activity During Preferred and Fast Walking in Young and Older Adults: An fNIRS Study. Neuroscience 2021; 473:81-89. [PMID: 34455013 DOI: 10.1016/j.neuroscience.2021.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022]
Abstract
Age-related changes may affect the performance during fast walking speed. Although, several studies have been focused on the contribution of the prefrontal cortex (PFC) during challenging walking tasks, the neural mechanism underling fast walking speed in older people remain poorly understood. Therefore, the aim of this study was to investigate the influence of aging on PFC activity during overground walking at preferred and fast speeds. Twenty-five older adults (67.37 ± 5.31 years) and 24 young adults (22.70 ± 1.30 years) walked overground in two conditions: preferred speed and fast walking speed. Five trials were performed for each condition. A wireless functional near-infrared spectroscopy (fNIRS) system measured PFC activity. Gait parameters were evaluated using the GAITRite system. Overall, older adults presented higher PFC activity than young adults in both conditions. Speed-related change in PFC activity was observed for older adults, but not for young adults. Older adults significantly increased activity in the left PFC from the preferred to fast walking condition whereas young adults had similar levels of PFC activity across conditions. Our findings suggest that older adults need to recruit additional prefrontal cognitive resources to control walking, indicating a compensatory mechanism. In addition, left PFC seems to be involved in the modulation of gait speed in older adults.
Collapse
Affiliation(s)
- Vinicius de Belli
- São Paulo State University (UNESP), Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil
| | - Diego Orcioli-Silva
- São Paulo State University (UNESP), Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Victor Spiandor Beretta
- São Paulo State University (UNESP), Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Rodrigo Vitório
- São Paulo State University (UNESP), Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, Brazil; Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Vinicius Cavassano Zampier
- São Paulo State University (UNESP), Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Priscila Nóbrega-Sousa
- São Paulo State University (UNESP), Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Núbia Ribeiro da Conceição
- São Paulo State University (UNESP), Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Lilian Teresa Bucken Gobbi
- São Paulo State University (UNESP), Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, Brazil.
| |
Collapse
|
54
|
Ibitoye RT, Castro P, Desowska A, Cooke J, Edwards AE, Guven O, Arshad Q, Murdin L, Kaski D, Bronstein AM. Small vessel disease disrupts EEG postural brain networks in 'unexplained dizziness in the elderly'. Clin Neurophysiol 2021; 132:2751-2762. [PMID: 34583117 PMCID: PMC8559782 DOI: 10.1016/j.clinph.2021.07.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/15/2021] [Accepted: 07/25/2021] [Indexed: 11/28/2022]
Abstract
Unexplained dizziness in the elderly may result from
cerebral small vessel disease. Dizzy elderly patients differed from controls in EEG
power when standing. EEG power when standing correlated with subjective
(perceived) instability.
Objective To examine the hypothesis that small vessel disease
disrupts postural networks in older adults with unexplained dizziness in the
elderly (UDE). Methods Simultaneous electroencephalography and postural sway
measurements were undertaken in upright, eyes closed standing, and sitting
postures (as baseline) in 19 younger adults, 33 older controls and 36 older
patients with UDE. Older adults underwent magnetic resonance imaging to
determine whole brain white matter hyperintensity volumes, a measure of small
vessel disease. Linear regression was used to estimate the effect of instability
on electroencephalographic power and connectivity. Results Ageing increased theta and alpha desynchronisation on
standing. In older controls, delta and gamma power increased, and theta and
alpha power reduced with instability. Dizzy older patients had higher white
matter hyperintensity volumes and more theta desynchronisation during periods of
instability. White matter hyperintensity volume and delta power during periods
of instability were correlated, positively in controls but negatively in dizzy
older patients. Delta power correlated with subjective dizziness and
instability. Conclusions Neural resource demands of postural control increase
with age, particularly in patients with UDE, driven by small vessel
disease. Significance EEG correlates of postural control saturate in older
adults with UDE, offering a neuro-physiological basis to this common
syndrome.
Collapse
Affiliation(s)
- R T Ibitoye
- Neuro-otology Unit, Imperial College London, London, UK; The Computational, Cognitive and Clinical Neuroimaging Laboratory (C3NL), Imperial College London, London, UK
| | - P Castro
- Neuro-otology Unit, Imperial College London, London, UK
| | - A Desowska
- The Computational, Cognitive and Clinical Neuroimaging Laboratory (C3NL), Imperial College London, London, UK
| | - J Cooke
- Neuro-otology Unit, Imperial College London, London, UK
| | - A E Edwards
- Neuro-otology Unit, Imperial College London, London, UK
| | - O Guven
- Neuro-otology Unit, Imperial College London, London, UK
| | - Q Arshad
- Neuro-otology Unit, Imperial College London, London, UK; inAmind Laboratory, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - L Murdin
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - D Kaski
- Neuro-otology Unit, Imperial College London, London, UK; Department of Clinical and Movement Neurosciences, University College London, London, UK
| | - A M Bronstein
- Neuro-otology Unit, Imperial College London, London, UK.
| |
Collapse
|
55
|
Goh HT, Pearce M, Vas A. Task matters: an investigation on the effect of different secondary tasks on dual-task gait in older adults. BMC Geriatr 2021; 21:510. [PMID: 34563129 PMCID: PMC8465774 DOI: 10.1186/s12877-021-02464-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/29/2021] [Indexed: 11/12/2022] Open
Abstract
Background Dual-task gait performance declines as humans age, leading to increased fall risk among older adults. It is unclear whether different secondary cognitive tasks mediate age-related decline in dual-task gait. This study aimed to examine how type and difficulty level of the secondary cognitive tasks differentially affect dual-task gait in older adults. Methods Twenty young and twenty older adults participated in this single-session study. We employed four different types of secondary tasks and each consisted of two difficulty levels, yielding eight different dual-task conditions. The dual-task conditions included walking and 1) counting backward by 3 s or by 7 s; 2) remembering a 5-item or 7-item lists; 3) responding to a simple or choice reaction time tasks; 4) generating words from single or alternated categories. Gait speed and cognitive task performance under single- and dual-task conditions were used to compute dual-task cost (DTC, %) with a greater DTC indicating a worse performance. Results A significant three-way interaction was found for the gait speed DTC (p = .04). Increased difficulty in the reaction time task significantly increased gait speed DTC for older adults (p = .01) but not for young adults (p = .90). In contrast, increased difficulty level in the counting backward task significantly increased gait speed DTC for young adults (p = .03) but not for older adults (p = .85). Both groups responded similarly to the increased task difficulty in the other two tasks. Conclusions Older adults demonstrated a different response to dual-task challenges than young adults. Aging might have different impacts on various cognitive domains and result in distinctive dual-task gait interference patterns.
Collapse
Affiliation(s)
- Hui-Ting Goh
- School of Physical Therapy-Dallas, Texas Woman's University, Dallas, TX, USA.
| | - Miranda Pearce
- School of Physical Therapy-Dallas, Texas Woman's University, Dallas, TX, USA
| | - Asha Vas
- School of Occupational Therapy-Dallas, Texas Woman's University, Dallas, TX, USA
| |
Collapse
|
56
|
PARK JINHYUCK. CAN COGNITIVE TRAINING USING A TABLET COMPUTER ENHANCE COGNITIVE FUNCTION OF HEALTHY OLDER ADULTS? AN ALTERNATING-TREATMENT DESIGN. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421400443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Even though a variety of cognitive interventions have been conducted to ameliorate age-related cognitive declines, the effects of cognitive intervention using activities in everyday life are still unknown. The purpose of this study was to compare the effects between tablet computer-based productive and receptive cognitive engagement using an alternating-treatment design. Three healthy older adults performed a total of 19 sessions consisting of three baseline periods and 16 alternating training sessions. The training sessions were divided into four blocks and each block involved four treatment sessions. Productive and receptive engagements were randomly allocated to four treatment sessions. All participants alternatively received productive engagement that requires learning new practical applications and receptive engagement requiring little new learning such as listening to music. Prefrontal cortex (PFC) activity using functional near-infrared spectroscopy and executive function through the Trail Making Test were assessed at the baseline and the end of each session. All data were visually analyzed. Visual analysis results showed that the productive engagement was associated with higher PFC activity and faster performance in the Trail Making Test, compared to those utilizing receptive engagement. These results suggest that productive engagement might be effective in facilitating PFC activity and improving the executive function of healthy older adults, indicating cognitively challenging activities are more beneficial relative to nonchallenging activities.
Collapse
Affiliation(s)
- JIN-HYUCK PARK
- College of Medical Science, Soonchunhyang University, Soonchunhyang-ro 22-20, Republic of Korea
| |
Collapse
|
57
|
Zhou J, Manor B, Yu W, Lo OY, Gouskova N, Salvador R, Katz R, Cornejo Thumm P, Brozgol M, Ruffini G, Pascual-Leone A, Lipsitz LA, Hausdorff JM. Targeted tDCS Mitigates Dual-Task Costs to Gait and Balance in Older Adults. Ann Neurol 2021; 90:428-439. [PMID: 34216034 DOI: 10.1002/ana.26156] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Among older adults, the ability to stand or walk while performing cognitive tasks (ie, dual-tasking) requires coordinated activation of several brain networks. In this multicenter, double-blinded, randomized, and sham-controlled study, we examined the effects of modulating the excitability of the left dorsolateral prefrontal cortex (L-DLPFC) and the primary sensorimotor cortex (SM1) on dual-task performance "costs" to standing and walking. METHODS Fifty-seven older adults without overt illness or disease completed 4 separate study visits during which they received 20 minutes of transcranial direct current stimulation (tDCS) optimized to facilitate the excitability of the L-DLPFC and SM1 simultaneously, or each region separately, or neither region (sham). Before and immediately after stimulation, participants completed a dual-task paradigm in which they were asked to stand and walk with and without concurrent performance of a serial-subtraction task. RESULTS tDCS simultaneously targeting the L-DLPFC and SM1, as well as tDCS targeting the L-DLPFC alone, mitigated dual-task costs to standing and walking to a greater extent than tDCS targeting SM1 alone or sham (p < 0.02). Blinding efficacy was excellent and participant subjective belief in the type of stimulation received (real or sham) did not contribute to the observed functional benefits of tDCS. INTERPRETATION These results demonstrate that in older adults, dual-task decrements may be amenable to change and implicate L-DPFC excitability as a modifiable component of the control system that enables dual-task standing and walking. tDCS may be used to improve resilience and the ability of older results to walk and stand under challenging conditions, potentially enhancing everyday functioning and reducing fall risks. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Junhong Zhou
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA.,Beth Israel Deaconess Medical Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Brad Manor
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA.,Beth Israel Deaconess Medical Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Wanting Yu
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA
| | - On-Yee Lo
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA.,Beth Israel Deaconess Medical Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Natalia Gouskova
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA
| | | | | | - Pablo Cornejo Thumm
- Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Marina Brozgol
- Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA.,Harvard Medical School, Boston, MA.,Guttman Brain Health Institute, Institut Guttmann de Neurorehabilitació, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Lewis A Lipsitz
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA.,Beth Israel Deaconess Medical Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Jeffrey M Hausdorff
- Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Rush Alzheimer's Disease Center and Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| |
Collapse
|
58
|
Conceição NR, Gobbi LTB, Nóbrega-Sousa P, Orcioli-Silva D, Beretta VS, Lirani-Silva E, Okano AH, Vitório R. Aerobic Exercise Combined With Transcranial Direct Current Stimulation Over the Prefrontal Cortex in Parkinson Disease: Effects on Cortical Activity, Gait, and Cognition. Neurorehabil Neural Repair 2021; 35:717-728. [PMID: 34047235 DOI: 10.1177/15459683211019344] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Since people with Parkinson disease (PD) rely on limited prefrontal executive resources for the control of gait, interventions targeting the prefrontal cortex (PFC) may help in managing PD-related gait impairments. Transcranial direct current stimulation (tDCS) can be used to modulate PFC excitability and improve prefrontal cognitive functions and gait. OBJECTIVE We investigated the effects of adding anodal tDCS applied over the PFC to a session of aerobic exercise on gait, cognition, and PFC activity while walking in people with PD. METHODS A total of 20 people with PD participated in this randomized, double-blinded, sham-controlled crossover study. Participants attended two 30-minute sessions of aerobic exercise (cycling at moderate intensity) combined with different tDCS conditions (active- or sham-tDCS), 1 week apart. The order of sessions was counterbalanced across the sample. Anodal tDCS (2 mA for 20 minutes [active-tDCS] or 10 s [sham-tDCS]) targeted the PFC in the most affected hemisphere. Spatiotemporal gait parameters, cognitive functions, and PFC activity while walking were assessed before and immediately after each session. RESULTS Compared with the pre-assessment, participants decreased step time variability (effect size: -0.4), shortened simple and choice reaction times (effect sizes: -0.73 and -0.57, respectively), and increased PFC activity in the stimulated hemisphere while walking (effect size: 0.54) only after aerobic exercise + active-tDCS. CONCLUSION The addition of anodal tDCS over the PFC to a session of aerobic exercise led to immediate positive effects on gait variability, processing speed, and executive control of walking in people with PD.
Collapse
Affiliation(s)
- Núbia Ribeiro Conceição
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Rio Claro, SP, Brazil
| | - Lilian Teresa Bucken Gobbi
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Rio Claro, SP, Brazil
| | - Priscila Nóbrega-Sousa
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Rio Claro, SP, Brazil
| | - Diego Orcioli-Silva
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Rio Claro, SP, Brazil
| | - Victor Spiandor Beretta
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Rio Claro, SP, Brazil
| | - Ellen Lirani-Silva
- Oregon Health and Science University, Department of Neurology, Portland, OR, USA
| | - Alexandre Hideki Okano
- Federal University of ABC (UFABC), Center for Mathematics, Computation and Cognition, São Bernardo do Campo, SP, Brazil
| | - Rodrigo Vitório
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Rio Claro, SP, Brazil.,Oregon Health and Science University, Department of Neurology, Portland, OR, USA
| |
Collapse
|
59
|
Devezas MÂM. Shedding light on neuroscience: Two decades of functional near-infrared spectroscopy applications and advances from a bibliometric perspective. J Neuroimaging 2021; 31:641-655. [PMID: 34002425 DOI: 10.1111/jon.12877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical brain-imaging technique that detects changes in hemoglobin concentration in the cerebral cortex. fNIRS devices are safe, silent, portable, robust against motion artifacts, and have good temporal resolution. fNIRS is reliable and trustworthy, as well as an alternative and a complement to other brain-imaging modalities, such as electroencephalography or functional magnetic resonance imaging. Given these advantages, fNIRS has become a well-established tool for neuroscience research, used not only for healthy cortical activity but also as a biomarker during clinical assessment in individuals with schizophrenia, major depressive disorder, bipolar disease, epilepsy, Alzheimer's disease, vascular dementia, and cancer screening. Owing to its wide applicability, studies on fNIRS have increased exponentially over the last two decades. In this study, scientific publications indexed in the Web of Science databases were collected and a bibliometric-type methodology was developed. For this purpose, a comprehensive science mapping analysis, including top-ranked authors, journals, institutions, countries, and co-occurring keywords network, was conducted. From a total of 2310 eligible documents, 6028 authors and 531 journals published fNIRS-related papers, Fallgatter published the highest number of articles and was the most cited author. University of Tübingen in Germany has produced the most trending papers since 2000. USA was the most prolific country with the most active institutions, followed by China, Japan, Germany, and South Korea. The results also revealed global trends in emerging areas of research, such as neurodevelopment, aging, and cognitive and emotional assessment.
Collapse
|
60
|
Vitorio R, Hasegawa N, Carlson-Kuhta P, Nutt JG, Horak FB, Mancini M, Shah VV. Dual-Task Costs of Quantitative Gait Parameters While Walking and Turning in People with Parkinson's Disease: Beyond Gait Speed. JOURNAL OF PARKINSONS DISEASE 2021; 11:653-664. [PMID: 33386812 DOI: 10.3233/jpd-202289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND There is a lack of recommendations for selecting the most appropriate gait measures of Parkinson's disease (PD)-specific dual-task costs to use in clinical practice and research. OBJECTIVE We aimed to identify measures of dual-task costs of gait and turning that best discriminate performance in people with PD from healthy individuals. We also investigated the relationship between the most discriminative measures of dual-task costs of gait and turning with disease severity and disease duration. METHODS People with mild-to-moderate PD (n = 144) and age-matched healthy individuals (n = 79) wore 8 inertial sensors while walking under single and dual-task (reciting every other letter of the alphabet) conditions. Outcome measures included 26 objective measures within four gait domains (upper/lower body, turning and variability). The area under the curve (AUC) from the receiver-operator characteristic plot was calculated to compare discriminative ability of dual-task costs on gait across outcome measures. RESULTS PD-specific, dual-task interference was identified for arm range of motion, foot strike angle, turn velocity and turn duration. Arm range of motion (AUC = 0.73) and foot strike angle (AUC = 0.68) had the largest AUCs across dual-task costs measures and they were associated with disease severity and/or disease duration. In contrast, the most commonly used dual-task gait measure, gait speed, showed an AUC of only 0.54. CONCLUSION Findings suggest that people with PD rely more than healthy individuals on executive-attentional resources to control arm swing, foot strike, and turning, but not gait speed. The dual-task costs of arm range of motion best discriminated people with PD from healthy individuals.
Collapse
Affiliation(s)
- Rodrigo Vitorio
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Naoya Hasegawa
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | | | - John G Nutt
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Fay B Horak
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Martina Mancini
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Vrutangkumar V Shah
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
61
|
Orcioli-Silva D, Vitório R, Nóbrega-Sousa P, Beretta VS, Conceição NRD, Oliveira AS, Pereira MP, Gobbi LTB. Cortical Activity Underlying Gait Improvements Achieved With Dopaminergic Medication During Usual Walking and Obstacle Avoidance in Parkinson Disease. Neurorehabil Neural Repair 2021; 35:406-418. [PMID: 33754884 DOI: 10.1177/15459683211000736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dopaminergic medication improves gait in people with Parkinson disease (PD). However, it remains unclear if dopaminergic medication modulates cortical activity while walking. OBJECTIVE We investigated the effects of dopaminergic medication on cortical activity during unobstructed walking and obstacle avoidance in people with PD. METHODS A total of 23 individuals with PD, in both off (PDOFF) and on (PDON) medication states, and 30 healthy older adults (control group [CG]) performed unobstructed walking and obstacle avoidance conditions. Cortical activity was acquired through a combined functional near-infrared spectroscopy electroencephalography (EEG) system, along with gait parameters, through an electronic carpet. Prefrontal cortex (PFC) oxygenated hemoglobin (HbO2) and EEG absolute power from FCz, Cz, and CPz channels were calculated. RESULTS HbO2 concentration reduced for people with PDOFF during obstacle avoidance compared with unobstructed walking. In contrast, both people with PDON and the CG had increased HbO2 concentration when avoiding obstacles compared with unobstructed walking. Dopaminergic medication increased step length, step velocity, and β and γ power in the CPz channel, regardless of walking condition. Moreover, dopaminergic-related changes (ie, on-off) in FCz/CPz γ power were associated with dopaminergic-related changes in step length for both walking conditions. CONCLUSIONS PD compromises the activation of the PFC during obstacle avoidance, and dopaminergic medication facilitates its recruitment. In addition, PD medication increases sensorimotor integration during walking by increasing posterior parietal cortex (CPz) activity. Increased γ power in the CPz and FCz channels is correlated with step length improvements achieved with dopaminergic medication during unobstructed walking and obstacle avoidance in PD.
Collapse
Affiliation(s)
- Diego Orcioli-Silva
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| | - Rodrigo Vitório
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| | - Priscila Nóbrega-Sousa
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| | - Victor Spiandor Beretta
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| | - Núbia Ribeiro da Conceição
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| | | | - Marcelo Pinto Pereira
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| | - Lilian Teresa Bucken Gobbi
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| |
Collapse
|
62
|
Ranchet M, Hoang I, Cheminon M, Derollepot R, Devos H, Perrey S, Luauté J, Danaila T, Paire-Ficout L. Changes in Prefrontal Cortical Activity During Walking and Cognitive Functions Among Patients With Parkinson's Disease. Front Neurol 2020; 11:601686. [PMID: 33362703 PMCID: PMC7758480 DOI: 10.3389/fneur.2020.601686] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Walking becomes more and more degraded as Parkinson's Disease (PD) progresses. Previous research examined factors contributing to this deterioration. Among them, changes in brain cortical activity during walking have been less studied in this clinical population. Objectives: This study aimed to: (1) investigate changes in dorsolateral prefrontal cortex (DLPFC) activation during usual walking and dual-task walking conditions in patients with PD; (2) examine the association between cortical activity and behavioral/cognitive outcomes; and (3) explore which factors best predict increased activation of the DLPFC during usual walking. Methods: Eighteen patients with early stage PD and 18 controls performed 4 conditions: (1) standing while subtracting, (2) usual walking, (3) walking while counting forward, and (4) walking while subtracting. Cortical activity in DLPFC, assessed by changes in oxy-hemoglobin (ΔHbO2) and deoxy-hemoglobin (ΔHbR), was measured using functional near infrared spectroscopy (fNIRS). Gait performance was recorded using wearables sensors. Cognition was also assessed using neuropsychological tests, including the Trail Making Test (TMT). Results: DLPFC activity was higher in patients compared to controls during both usual walking and walking while subtracting conditions. Patients had impaired walking performance compared to controls only during walking while subtracting task. Moderate-to-strong correlations between ΔHbO2 and coefficients of variation of all gait parameters were found for usual walking and during walking while counting forward conditions. Part-B of TMT predicted 21% of the variance of ΔHbO2 during usual walking after adjustment for group status. Conclusions: The increased DLPFC activity in patients during usual walking suggests a potential compensation for executive deficits. Understanding changes in DLPFC activity during walking may have implications for rehabilitation of gait in patients with PD.
Collapse
Affiliation(s)
- Maud Ranchet
- TS2-LESCOT, Univ Gustave Eiffel, IFSTTAR, Univ Lyon, Lyon, France
| | - Isabelle Hoang
- TS2-LESCOT, Univ Gustave Eiffel, IFSTTAR, Univ Lyon, Lyon, France
| | - Maxime Cheminon
- Service de Médecine Physique et de Réadaptation Neurologique, Hôpital Henry-Gabrielle, Hospices Civils de Lyon, Lyon, France
| | | | - Hannes Devos
- Department of Physical Therapy and Rehabilitation Science, School of Health Professions, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Stephane Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mînes Ales, Montpellier, France
| | - Jacques Luauté
- Service de Médecine Physique et de Réadaptation Neurologique, Hôpital Henry-Gabrielle, Hospices Civils de Lyon, Lyon, France.,Inserm UMR-S 1028, CNRS UMR 529, ImpAct, Center de Recherche en Neurosciences de Lyon, Université Lyon-1, Bron, France.,Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Teodor Danaila
- Center de Neurosciences Cognitives, Service de Neurologie C, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Université Claude Bernard Lyon I, Lyon, France
| | | |
Collapse
|