51
|
Induction of TNF-alfa and CXCL-2 mRNAs in different organs of mice infected with pathogenic Leptospira. Microb Pathog 2012; 52:206-16. [PMID: 22342618 DOI: 10.1016/j.micpath.2012.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/27/2011] [Accepted: 01/03/2012] [Indexed: 01/24/2023]
Abstract
The role of innate immune response in protection against leptospirosis is poorly understood. We examined the expression of the chemokine CXCL2/MIP-2 and the cytokine TNF-α in experimental resistant and susceptible mice models, C3H/HeJ, C3H/HePas and BALB/c strains, using a virulent strain of Leptospira interrogans serovar Copenhageni. Animals were infected intraperitoneally with 10(7) cells and the development of the disease was followed. Mortality of C3H/HeJ mice was observed whereas C3H/HePas presented jaundice and BALB/c mice remained asymptomatic. The infection was confirmed by the presence of leptospiral DNA in the organs of the animals, demonstrated by PCR. Sections of the organs were analyzed, after H&E stain. The relative expression of mRNA of chemokine CXCL2/MIP-2 and cytokine TNF-α was measured in lung, kidney and liver of the mice by qPCR. The concentrations of these proteins were measured in extracts of tissues and in serum of the animals, by ELISA. Increasing levels of transcripts and protein CXCL2/MIP-2 were detected since the first day of infection. The highest expression was observed at third day of infection in kidney, liver and lung of BALB/c mice. In C3H/HeJ the expression of CXCL2/MIP-2 was delayed, showing highest protein concentration in lung and kidney at the 5th day. Increasing in TNF-α transcripts were detected after infection, in kidney and liver of animals from the three mice strains. The expression of TNF-α protein in C3H/HeJ was also delayed, being detected in kidney and lung. Our data demonstrated that Leptospira infection stimulates early expression of CXCL2/MIP-2 and TNF-α in the resistant strain of mice. Histological analysis suggests that the expression of those molecules may be related to the influx of distinct immune cells and plays a role in the naturally acquired protective immunity.
Collapse
|
52
|
Luo Y, Liu Y, Sun D, Ojcius DM, Zhao J, Lin X, Wu D, Zhang R, Chen M, Li L, Yan J. InvA protein is a Nudix hydrolase required for infection by pathogenic Leptospira in cell lines and animals. J Biol Chem 2011; 286:36852-63. [PMID: 21862592 PMCID: PMC3196074 DOI: 10.1074/jbc.m111.219931] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 08/01/2011] [Indexed: 12/11/2022] Open
Abstract
Leptospirosis caused by pathogenic species of the genus Leptospira is a re-emerging zoonotic disease, which affects a wide variety of host species and is transmitted by contaminated water. The genomes of several pathogenic Leptospira species contain a gene named invA, which contains a Nudix domain. However, the function of this gene has never been characterized. Here, we demonstrated that the invA gene was highly conserved in protein sequence and present in all tested pathogenic Leptospira species. The recombinant InvA protein of pathogenic L. interrogans strain Lai hydrolyzed several specific dinucleoside oligophosphate substrates, reflecting the enzymatic activity of Nudix in Leptospira species. Pathogenic leptospires did not express this protein in media but temporarily expressed it at early stages (within 60 min) of infection of macrophages and nephric epithelial cells. Comparing with the wild type, the invA-deficient mutant displayed much lower infectivity and a significantly reduced survival rate in macrophages and nephric epithelial cells. Moreover, the invA-deficient leptospires presented an attenuated virulence in hamsters, caused mild histopathological damage, and were transmitted in lower numbers in the urine, compared with the wild-type strain. The invA revertant, made by complementing the invA-deficient mutant with the invA gene, reacquired virulence similar to the wild type in vitro and in vivo. The LD(50) in hamsters was 1000-fold higher for the invA-deficient mutant than for the invA revertant and wild type. These results demonstrate that the InvA protein is a Nudix hydrolase, and the invA gene is essential for virulence in pathogenic Leptospira species.
Collapse
Affiliation(s)
- Yihui Luo
- From the Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical College, Hangzhou, Zhejiang 310003, China
- the Department of Medical Microbiology and Parasitology, College of Medicine, and
| | - Yan Liu
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dexter Sun
- the New York Presbyterian Hospital and Hospital for Special Surgery, Weill Medical College, Cornell University SinoUnited Health, New York, New York 10021, and
| | - David M. Ojcius
- the Health Sciences Research Institute and School of Natural Sciences, University of California, Merced, California 95343
| | - Jinfang Zhao
- From the Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical College, Hangzhou, Zhejiang 310003, China
- the Department of Medical Microbiology and Parasitology, College of Medicine, and
| | - Xuai Lin
- From the Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical College, Hangzhou, Zhejiang 310003, China
- the Department of Medical Microbiology and Parasitology, College of Medicine, and
| | - Dong Wu
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongguang Zhang
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Chen
- the Department of Bioinformatics, College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lanjuan Li
- From the Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical College, Hangzhou, Zhejiang 310003, China
| | - Jie Yan
- From the Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical College, Hangzhou, Zhejiang 310003, China
- the Department of Medical Microbiology and Parasitology, College of Medicine, and
| |
Collapse
|
53
|
Toma C, Okura N, Takayama C, Suzuki T. Characteristic features of intracellular pathogenic Leptospira in infected murine macrophages. Cell Microbiol 2011; 13:1783-92. [PMID: 21819516 DOI: 10.1111/j.1462-5822.2011.01660.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Leptospira interrogans is a spirochaete responsible for a zoonotic disease known as leptospirosis. Leptospires are able to penetrate the abraded skin and mucous membranes and rapidly disseminate to target organs such as the liver, lungs and kidneys. How this pathogen escape from innate immune cells and spread to target organs remains poorly understood. In this paper, the intracellular trafficking undertaken by non-pathogenic Leptospira biflexa and pathogenic L. interrogans in mouse bone marrow-derived macrophages was compared. The delayed in the clearance of L. interrogans was observed. Furthermore, the acquisition of lysosomal markers by L. interrogans-containing phagosomes lagged behind that of L. biflexa-containing phagosomes, and although bone marrow-derived macrophages could degrade L. biflexa as well as L. interrogans, a population of L. interrogans was able to survive and replicate. Intact leptospires were found within vacuoles at 24 h post infection, suggesting that bacterial replication occurs within a membrane-bound compartment. In contrast, L. biflexa were completely degraded at 24 h post infection. Furthermore, L. interrogans but not L. biflexa, were released to the extracellular milieu. These results suggest that pathogenic leptospires are able to survive, replicate and exit from mouse macrophages, enabling their eventual spread to target organs.
Collapse
Affiliation(s)
- Claudia Toma
- Department of Molecular Bacteriology and Immunology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0125, Japan.
| | | | | | | |
Collapse
|
54
|
Fraga TR, Barbosa AS, Isaac L. Leptospirosis: aspects of innate immunity, immunopathogenesis and immune evasion from the complement system. Scand J Immunol 2011; 73:408-19. [PMID: 21204903 DOI: 10.1111/j.1365-3083.2010.02505.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira. It constitutes a major public health problem in developing countries, with outcomes ranging from subclinical infections to fatal pulmonary haemorrhage and Weil's syndrome. To successfully establish an infection, leptospires bind to extracellular matrix compounds and host cells. The interaction of leptospires with pathogen recognition receptors is a fundamental issue in leptospiral immunity as well as in immunophatology. Pathogenic but not saprophytic leptospires are able to evade the host complement system, circulate in the blood and spread into tissues. The target organs in human leptospirosis include the kidneys and the lungs. The association of an autoimmune process with these pathologies has been explored and diverse mechanisms that permit leptospires to survive in the kidneys of reservoir animals have been proposed. However, despite the intense research aimed at the development of a leptospirosis vaccine supported by the genome sequencing of Leptospira strains, there have been relatively few studies focused on leptospiral immunity. The knowledge of evasion strategies employed by pathogenic leptospires to subvert the immune system is of extreme importance as they may represent targets for the development of new treatments and prophylactic approaches in leptospirosis.
Collapse
Affiliation(s)
- T R Fraga
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
55
|
Cerqueira GM, Souza NM, Araújo ER, Barros AT, Morais ZM, Vasconcellos SA, Nascimento ALTO. Development of transcriptional fusions to assess Leptospira interrogans promoter activity. PLoS One 2011; 6:e17409. [PMID: 21445252 PMCID: PMC3060810 DOI: 10.1371/journal.pone.0017409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/31/2011] [Indexed: 11/29/2022] Open
Abstract
Background Leptospirosis is a zoonotic infectious disease that affects both humans and animals. The existing genetic tools for Leptospira spp. have improved our understanding of the biology of this spirochete as well as the interaction of pathogenic leptospires with the mammalian host. However, new tools are necessary to provide novel and useful information to the field. Methodology and Principal Findings A series of promoter-probe vectors carrying a reporter gene encoding green fluorescent protein (GFP) were constructed for use in L. biflexa. They were tested by constructing transcriptional fusions between the lipL41, Leptospiral Immunoglobulin-like A (ligA) and Sphingomielynase 2 (sph2) promoters from L. interrogans and the reporter gene. ligA and sph2 promoters were the most active, in comparison to the lipL41 promoter and the non-induced controls. The results obtained are in agreement with LigA expression from the L. interrogans Fiocruz L1-130 strain. Conclusions The novel vectors facilitated the in vitro evaluation of L. interrogans promoter activity under defined growth conditions which simulate the mammalian host environment. The fluorescence and rt-PCR data obtained closely reflected transcriptional regulation of the promoters, thus demonstrating the suitability of these vectors for assessing promoter activity in L. biflexa.
Collapse
|
56
|
Evangelista KV, Coburn J. Leptospira as an emerging pathogen: a review of its biology, pathogenesis and host immune responses. Future Microbiol 2011; 5:1413-25. [PMID: 20860485 DOI: 10.2217/fmb.10.102] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Leptospirosis, the most widespread zoonosis in the world, is an emerging public health problem, particularly in large urban centers of developing countries. Several pathogenic species of the genus Leptospira can cause a wide range of clinical manifestations, from a mild, flu-like illness to a severe disease form characterized by multiorgan system complications leading to death. However, the mechanisms of pathogenesis of Leptospira are largely unknown. This article will address the animal models of acute and chronic leptospire infections, and the recent developments in the genetic manipulation of the bacteria, which facilitate the identification of virulence factors involved in pathogenesis and the assessment of their potential values in the control and prevention of leptospirosis.
Collapse
Affiliation(s)
- Karen V Evangelista
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, USA
| | | |
Collapse
|
57
|
Xue F, Dong H, Wu J, Wu Z, Hu W, Sun A, Troxell B, Yang XF, Yan J. Transcriptional responses of Leptospira interrogans to host innate immunity: significant changes in metabolism, oxygen tolerance, and outer membrane. PLoS Negl Trop Dis 2010; 4:e857. [PMID: 21049008 PMCID: PMC2964297 DOI: 10.1371/journal.pntd.0000857] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/27/2010] [Indexed: 12/31/2022] Open
Abstract
Background Leptospira interrogans is the major causative agent of leptospirosis. Phagocytosis plays important roles in the innate immune responses to L. interrogans infection, and L. interrogans can evade the killing of phagocytes. However, little is known about the adaptation of L. interrogans during this process. Methodology/Principal Findings To better understand the interaction of pathogenic Leptospira and innate immunity, we employed microarray and comparative genomics analyzing the responses of L. interrogans to macrophage-derived cells. During this process, L. interrogans altered expressions of many genes involved in carbohydrate and lipid metabolism, energy production, signal transduction, transcription and translation, oxygen tolerance, and outer membrane proteins. Among them, the catalase gene expression was significantly up-regulated, suggesting it may contribute to resisting the oxidative pressure of the macrophages. The expressions of several major outer membrane protein (OMP) genes (e.g., ompL1, lipL32, lipL41, lipL48 and ompL47) were dramatically down-regulated (10–50 folds), consistent with previous observations that the major OMPs are differentially regulated in vivo. The persistent down-regulations of these major OMPs were validated by immunoblotting. Furthermore, to gain initial insight into the gene regulation mechanisms in L. interrogans, we re-defined the transcription factors (TFs) in the genome and identified the major OmpR TF gene (LB333) that is concurrently regulated with the major OMP genes, suggesting a potential role of LB333 in OMPs regulation. Conclusions/Significance This is the first report on global responses of pathogenic Leptospira to innate immunity, which revealed that the down-regulation of the major OMPs may be an immune evasion strategy of L. interrogans, and a putative TF may be involved in governing these down-regulations. Alterations of the leptospiral OMPs up interaction with host antigen-presenting cells (APCs) provide critical information for selection of vaccine candidates. In addition, genome-wide annotation and comparative analysis of TFs set a foundation for further studying regulatory networks in Leptospira spp. Leptospirosis is an important tropical disease around the world, particularly in humid tropical and subtropical countries. As a major pathogen of this disease, Leptospira interrogans can be shed from the urine of reservoir hosts, survive in soil and water, and infect humans through broken skin or mucous membranes. Recently, host adaptability and immune evasion of L. interrogans to host innate immunity was partially elucidated in infection or animal models. A better understanding of the molecular mechanisms of L. interrogans in response to host innate immunity is required to learn the nature of early leptospirosis. This study focused on the transcriptome of L. interrogans during host immune cells interaction. Significant changes in energy metabolism, oxygen tolerance and outer membrane protein profile were identified as potential immune evasion strategies by pathogenic Leptospira during the early stage of infection. The major outer membrane proteins (OMPs) of L. interrogans may be regulated by the major OmpR specific transcription factor (LB333). These results provide a foundation for further studying the pathogenesis of leptospirosis, as well as identifying gene regulatory networks in Leptospira spp.
Collapse
Affiliation(s)
- Feng Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Medical College, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyan Dong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Medical College, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinyu Wu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Institute of Biomedical Informatics, Wenzhou Medical College, Wenzhou, China
| | - Zuowei Wu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Weilin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Medical College, Zhejiang University School of Medicine, Hangzhou, China
| | - Aihua Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Medical College, Zhejiang University School of Medicine, Hangzhou, China
| | - Bryan Troxell
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jie Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Medical College, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail:
| |
Collapse
|