51
|
Barraza G, Deiva K, Husson B, Adamsbaum C. Imaging in Pediatric Multiple Sclerosis : An Iconographic Review. Clin Neuroradiol 2020; 31:61-71. [PMID: 32676699 DOI: 10.1007/s00062-020-00929-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/20/2020] [Indexed: 11/29/2022]
Abstract
Pediatric-onset multiple sclerosis (POMS) is defined by a first multiple sclerosis (MS) attack occurring before 18 years old and is diagnosed by demonstration of dissemination in time (DIT) and space (DIS). Although guidelines evolved over the years, they always recognized the importance of magnetic resonance imaging (MRI) for diagnosis. The 2017 McDonald criteria are increasingly used and have been validated in several cohorts. The use of MRI is the most important tool for the early diagnosis, monitoring, and assessment of treatment response of MS and standard protocols include precontrast and postcontrast T1, T2, fluid attenuation inversion recovery (FLAIR) and diffusion sequences. A distinctive MS lesion compromises white matter and it is well-demarcated and confluent, showing demyelination, inflammation, gliosis, and relative axonal preservation. Considering the growing recognition of pediatric MS as a differential diagnosis for children presenting with a clinical central nervous system event, we present a POMS lesions guide (periventricular, juxtacortical, infratentorial, spinal cord, cortical, tumefactive, black hole, contrast-enhanced). Owing to its rareness, POMS is a diagnosis by exclusion and MRI plays a fundamental role in distinguishing POMS from other demyelinating and non-demyelinating conditions. Three main groups of disorders can mimic POMS: inflammatory, metabolic and tumoral; however, imaging patterns earlier described lower the possibilities of alternative diagnoses and strongly suggest POMS when likely.
Collapse
Affiliation(s)
- Gonzalo Barraza
- Pediatric Radiology Department, Hôpitaux Universitaires Paris-Sud, Bicêtre AP-HP, 94270, Le Kremlin-Bicêtre, France.
| | - Kumaran Deiva
- Pediatric Neurology Department, Hôpitaux Universitaires Paris-Sud, Bicêtre AP-HP, 94270, Le Kremlin-Bicêtre, France.,Inserm UMR1184 "Immunology of viral infections and autoimmune diseases", CEA, IDMIT, Faculty of Medicine, Paris-Sud University, 94270, Le Kremlin-Bicêtre, France
| | - Béatrice Husson
- Pediatric Radiology Department, Hôpitaux Universitaires Paris-Sud, Bicêtre AP-HP, 94270, Le Kremlin-Bicêtre, France.,Pediatric stroke National Reference Center, Hôpitaux Universitaires Paris-Sud, Bicêtre AP-HP, 94270, Le Kremlin-Bicêtre, France
| | - Catherine Adamsbaum
- Pediatric Radiology Department, Hôpitaux Universitaires Paris-Sud, Bicêtre AP-HP, 94270, Le Kremlin-Bicêtre, France.,Faculty of Medicine, Paris-Sud University, 94270, Le Kremlin-Bicêtre, France
| |
Collapse
|
52
|
Abstract
Multiple sclerosis (MS) is an aggravating autoimmune disease that cripples young patients slowly with physical, sensory and cognitive deficits. The break of self-tolerance to neuronal antigens is the key to the pathogenesis of MS, with autoreactive T cells causing demyelination that subsequently leads to inflammation-mediated neurodegenerative events in the central nervous system. The exact etiology of MS remains elusive; however, the interplay of genetic and environmental factors contributes to disease development and progression. Given that genetic variation only accounts for a fraction of risk for MS, extrinsic risk factors including smoking, infection and lack of vitamin D or sunshine, which cause changes in gene expression, contribute to disease development through epigenetic regulation. To date, there is a growing body of scientific evidence to support the important roles of epigenetic processes in MS. In this chapter, the three main layers of epigenetic regulatory mechanisms, namely DNA methylation, histone modification and microRNA-mediated gene regulation, will be discussed, with a particular focus on the role of epigenetics on dysregulated immune responses and neurodegenerative events in MS. Also, the potential for epigenetic modifiers as biomarkers and therapeutics for MS will be reviewed.
Collapse
Affiliation(s)
- Vera Sau-Fong Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Queen Mary Hospital, Hong Kong SAR, China.
| |
Collapse
|
53
|
Senousy MA, Shaker OG, Sayed NH, Fathy N, Kortam MA. LncRNA GAS5 and miR-137 Polymorphisms and Expression are Associated with Multiple Sclerosis Risk: Mechanistic Insights and Potential Clinical Impact. ACS Chem Neurosci 2020; 11:1651-1660. [PMID: 32348112 DOI: 10.1021/acschemneuro.0c00150] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) is influenced by the interaction of genetic and epigenetic mechanisms. The long noncoding RNA GAS5 acts as a competing endogenous RNA for microRNA-137 and is involved in demyelination. We investigated the association of GAS5 and miR-137 expression and their polymorphisms with MS susceptibility. One hundred and eight MS patients and 104 healthy controls were included. Expression analysis and genotyping of GAS5-rs2067079 and miR-137-rs1625579 single nucleotide polymorphisms were performed by qPCR. Serum GAS5 was upregulated, while serum miR-137 was downregulated in MS compared with the controls. Serum miR-137 was an excellent discriminator of MS patients from the controls (AUC = 0.97) and a negative independent predictor of MS in multivariate logistic analysis. Serum GAS5 expression was positively correlated with the expanded disability status scale scores in the relapsing-remitting MS patients. The rs2067079TT minor homozygote genotype was associated with an increased MS risk, while the rs1625579G minor allele was protective. rs1625579 showed an age-specific effect, while the rs2067079 affected the MS risk in gender- and age-specific manners. In MS patients, rs2067079TT was associated with a higher serum GAS5 than other genotypes, while serum miR-137 did not differ between rs1625579 genotypes. Our results suggest serum GAS5 and miR-137 as MS biomarkers, with miR-137 as a negative predictor of MS risk and GAS5 as a marker of MS severity. We propose rs2067079 and rs1625579 as novel genetic markers of MS susceptibility, and at least, rs2067079 possibly impacts the crosstalk between GAS5 and miR-137.
Collapse
Affiliation(s)
- Mahmoud A. Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Olfat G. Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Noha H. Sayed
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Nevine Fathy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mona A. Kortam
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
54
|
Fooladi M, Riyahi Alam N, Sharini H, Firouznia K, Shakiba M, Harirchian M. Multiparametric qMTI Assessment and Monitoring of Normal Appearing White Matter and Classified T1 Hypointense Lesions in Relapsing-Remitting Multiple Sclerosis. Ing Rech Biomed 2020. [DOI: 10.1016/j.irbm.2020.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
55
|
Brisset JC, Kremer S, Hannoun S, Bonneville F, Durand-Dubief F, Tourdias T, Barillot C, Guttmann C, Vukusic S, Dousset V, Cotton F, Ameli R, Anxionnat R, Audoin B, Attye A, Bannier E, Barillot C, Ben Salem D, Boncoeur-Martel MP, Bonhomme G, Bonneville F, Boutet C, Brisset J, Cervenanski F, Claise B, Commowick O, Constans JM, Cotton F, Dardel P, Desal H, Dousset V, Durand-Dubief F, Ferre JC, Gaultier A, Gerardin E, Glattard T, Grand S, Grenier T, Guillevin R, Guttmann C, Krainik A, Kremer S, Lion S, Champfleur NMD, Mondot L, Outteryck O, Pyatigorskaya N, Pruvo JP, Rabaste S, Ranjeva JP, Roch JA, Sadik JC, Sappey-Marinier D, Savatovsky J, Stankoff B, Tanguy JY, Tourbah A, Tourdias T, Brochet B, Casey R, Cotton F, De Sèze J, Douek P, Guillemin F, Laplaud D, Lebrun-Frenay C, Mansuy L, Moreau T, Olaiz J, Pelletier J, Rigaud-Bully C, Stankoff B, Vukusic S, Debouverie M, Edan G, Ciron J, Lubetzki C, Vermersch P, Labauge P, Defer G, Berger E, Clavelou P, Gout O, Thouvenot E, Heinzlef O, Al-Khedr A, Bourre B, Casez O, Cabre P, Montcuquet A, Créange A, Camdessanché JP, Bakchine S, Maurousset A, Patry I, De Broucker T, Pottier C, Neau JP, Labeyrie C, Nifle C. New OFSEP recommendations for MRI assessment of multiple sclerosis patients: Special consideration for gadolinium deposition and frequent acquisitions. J Neuroradiol 2020; 47:250-258. [DOI: 10.1016/j.neurad.2020.01.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 01/04/2023]
|
56
|
Carstensen M, Christensen T, Stilund M, Møller HJ, Petersen EL, Petersen T. Activated monocytes and markers of inflammation in newly diagnosed multiple sclerosis. Immunol Cell Biol 2020; 98:549-562. [PMID: 32253768 PMCID: PMC7496724 DOI: 10.1111/imcb.12337] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/08/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022]
Abstract
In multiple sclerosis (MS), the inflammation and demyelination of the central nervous system (CNS) develop in distinct ways. This makes diagnosing patients difficult, imperative to initiating early and proper treatment. Several common features exist, among them a profound infiltration of monocytes into the CNS mediating demyelination and tissue destruction. In the periphery, monocytes are divided into three subsets depending on expression of CD14 and CD16, representing different stages of activation and differentiation. To investigate their involvement in MS, peripheral blood mononuclear cells (PBMCs) from 61 patients with incipient, untreated MS and 22 symptomatic control (SC) patients as well as 6 patients with radiologically isolated syndrome (RIS) were characterized ex vivo. In addition, paired serum and cerebrospinal fluid (CSF) samples were analyzed with a panel of biomarkers. In PBMC samples, we demonstrate decreased levels of nonclassical monocytes with a concomitant significant decrease of human endogenous retrovirus (HERV) H3 envelope epitopes on this monocyte subset compared with SC and RIS. The observed HERV expression is present on nonclassical monocytes irrespective of MS and thus presumably a result of the inflammatory activation. For the other surface markers analyzed, we found significantly decreased expression between classical and nonclassical monocytes. In matched samples of CSF a highly significant increase in levels of soluble markers of activation and inflammation is shown, and notably this is not the case for the serum samples. Of the soluble markers investigated, interleukin (IL)‐12/IL‐23p40 had the highest discriminatory power in differentiating patients with MS from SC and RIS, almost comparable to the immunoglobulin G index.
Collapse
Affiliation(s)
- Mikkel Carstensen
- Department of Biomedicine, Aarhus University, Skou Building, Høegh-Guldbergsgade 10, DK-8000, Aarhus C, Denmark
| | - Tove Christensen
- Department of Biomedicine, Aarhus University, Skou Building, Høegh-Guldbergsgade 10, DK-8000, Aarhus C, Denmark
| | - Morten Stilund
- Department of Biomedicine, Aarhus University, Skou Building, Høegh-Guldbergsgade 10, DK-8000, Aarhus C, Denmark.,Department of Neurology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, DK-8200, Aarhus N, Denmark
| | - Holger J Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
| | - Eva L Petersen
- Department of Biomedicine, Aarhus University, Skou Building, Høegh-Guldbergsgade 10, DK-8000, Aarhus C, Denmark
| | - Thor Petersen
- Department of Neurology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, DK-8200, Aarhus N, Denmark
| |
Collapse
|
57
|
Arnold DL, Banwell B, Bar-Or A, Ghezzi A, Greenberg BM, Waubant E, Giovannoni G, Wolinsky JS, Gärtner J, Rostásy K, Krupp L, Tardieu M, Brück W, Stites TE, Pearce GL, Häring DA, Merschhemke M, Chitnis T. Effect of fingolimod on MRI outcomes in patients with paediatric-onset multiple sclerosis: results from the phase 3 PARADIG MS study. J Neurol Neurosurg Psychiatry 2020; 91:483-492. [PMID: 32132224 PMCID: PMC7231437 DOI: 10.1136/jnnp-2019-322138] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE PARADIGMS demonstrated superior efficacy and comparable safety of fingolimod versus interferon β-1a (IFN β-1a) in paediatric-onset multiple sclerosis (PoMS). This study aimed to report all predefined MRI outcomes from this study. METHODS Patients with multiple sclerosis (MS) (aged 10-<18 years) were randomised to once-daily oral fingolimod (n=107) or once-weekly intramuscular IFN β-1a (n=108) in this flexible duration study. MRI was performed at baseline and every 6 months for up to 2 years or end of the study (EOS) in case of early treatment discontinuation/completion. Key MRI endpoints included the annualised rate of formation of new/newly enlarging T2 lesions, gadolinium-enhancing (Gd+) T1 lesions, new T1 hypointense lesions and combined unique active (CUA) lesions (6 months onward), changes in T2 and Gd+ T1 lesion volumes and annualised rate of brain atrophy (ARBA). RESULTS Of the randomised patients, 107 each were treated with fingolimod and IFN β-1a for up to 2 years. Fingolimod reduced the annualised rate of formation of new/newly enlarging T2 lesions (52.6%, p<0.001), number of Gd+ T1 lesions per scan (66.0%, p<0.001), annualised rate of new T1 hypointense lesions (62.8%, p<0.001) and CUA lesions per scan (60.7%, p<0.001) versus IFN β-1a at EOS. The percent increases from baseline in T2 (18.4% vs 32.4%, p<0.001) and Gd+ T1 (-72.3% vs 4.9%, p=0.001) lesion volumes and ARBA (-0.48% vs -0.80%, p=0.014) were lower with fingolimod versus IFN β-1a, the latter partially due to accelerated atrophy in the IFN β-1a group. CONCLUSION Fingolimod significantly reduced MRI activity and ARBA for up to 2 years versus IFN β-1a in PoMS.
Collapse
Affiliation(s)
- Douglas L Arnold
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada .,NeuroRx Research, Montreal, Quebec, Canada
| | - Brenda Banwell
- The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amit Bar-Or
- Perelman School of Medicine, University of Pennsylvania, Philadephia, Pennsylvania, USA, Montreal, Quebec, Canada.,Neuroimmunology Unit, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada, Philadephia, Pennsylvania, USA
| | - Angelo Ghezzi
- Centro Studi Sclerosi Multipla, Ospedale di Gallarate, Gallarate, Italy
| | - Benjamin M Greenberg
- Department of Neurology and Neurotherapeutics, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Emmanuelle Waubant
- Department of Neurology, University of California, San Francisco, California, USA
| | - Gavin Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University, London, UK
| | - Jerry S Wolinsky
- McGovern Medical School, Department of Neurology, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA, Houston, Texas, USA
| | - Jutta Gärtner
- Department of Paediatrics and Adolescent Medicine, German Centre for Multiple Sclerosis in Childhood and Adolescence, University Medical Centre, Göttingen, Germany
| | - Kevin Rostásy
- Division of Paediatric Neurology, Children's Hospital Datteln, University Witten/Herdecke, Datteln, Germany
| | - Lauren Krupp
- Department of Neurology; Pediatric MS Center, NYU Langone Health, New York, NY USA, USA, New York, USA
| | - Marc Tardieu
- Hôpitaux universitaires Paris Sud, Paediatric Neurology Department, Assistance Publique-Hôpitaux de Paris, Paris France, Paris, France
| | - Wolfgang Brück
- Department of Neuropathology, University Medical Centre, Göttingen, Germany
| | - Tracy E Stites
- Neuroscience TA, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | | | | | - Tanuja Chitnis
- Partners Pediatric Multiple Sclerosis Center, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
58
|
Maretzke F, Bechthold A, Egert S, Ernst JB, Melo van Lent D, Pilz S, Reichrath J, Stangl GI, Stehle P, Volkert D, Wagner M, Waizenegger J, Zittermann A, Linseisen J. Role of Vitamin D in Preventing and Treating Selected Extraskeletal Diseases-An Umbrella Review. Nutrients 2020; 12:nu12040969. [PMID: 32244496 PMCID: PMC7231149 DOI: 10.3390/nu12040969] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Evidence is accumulating that vitamin D may have beneficial effects on respiratory tract, autoimmune, neuro-degenerative, and mental diseases. The present umbrella review of systematic reviews (SRs) of cohort studies and randomised controlled trials (RCTs), plus single Mendelian randomisation studies aims to update current knowledge on the potential role of vitamin D in preventing and treating these extraskeletal diseases. Altogether, 73 SRs were identified. Observational data on primary prevention suggest an inverse association between vitamin D status and the risk of acute respiratory tract infections (ARI), dementia and cognitive decline, and depression, whereas studies regarding asthma, multiple sclerosis (MS), and type 1 diabetes mellitus (T1DM) are scarce. SRs of RCTs support observational data only for the risk of ARI. No respective RCTs are available for the prevention of chronic obstructive pulmonary disease (COPD), MS, and T1DM. SRs of RCTs indicate beneficial therapeutic effects in vitamin D-deficient patients with asthma and COPD, while effects on major depression and T1DM need to be further elucidated. Mendelian randomisation studies do not consistently support the results of SRs. Since several limitations of the included SRs and existing RCTs do not permit definitive conclusions regarding vitamin D and the selected diseases, further high-quality RCTs are warranted.
Collapse
Affiliation(s)
- Friederike Maretzke
- German Nutrition Society, 53175 Bonn, Germany; (F.M.); (A.B.); (J.B.E.); (J.L.)
| | - Angela Bechthold
- German Nutrition Society, 53175 Bonn, Germany; (F.M.); (A.B.); (J.B.E.); (J.L.)
| | - Sarah Egert
- Institute of Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Jana B. Ernst
- German Nutrition Society, 53175 Bonn, Germany; (F.M.); (A.B.); (J.B.E.); (J.L.)
| | - Debora Melo van Lent
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX 78229, USA;
| | - Stefan Pilz
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Jörg Reichrath
- Department of Adult and Pediatric Dermatology, Venereology, Allergology, University Hospital Saarland, 66424 Homburg, Germany;
| | - Gabriele I. Stangl
- Institute for Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Peter Stehle
- Department of Nutrition and Food Sciences, University of Bonn, 53115 Bonn, Germany;
| | - Dorothee Volkert
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, 90408 Nuremberg, Germany;
| | - Michael Wagner
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany;
| | - Julia Waizenegger
- German Nutrition Society, 53175 Bonn, Germany; (F.M.); (A.B.); (J.B.E.); (J.L.)
- Correspondence: ; Tel.: +49-228-3776-628
| | - Armin Zittermann
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center North Rhine-Westphalia, 32545 Bad Oeynhausen, Germany;
| | - Jakob Linseisen
- German Nutrition Society, 53175 Bonn, Germany; (F.M.); (A.B.); (J.B.E.); (J.L.)
- University Center of Health Sciences at Klinikum Augsburg (UNIKA-T), Ludwig Maximilian University of Munich, 86156 Augsburg, Germany
| |
Collapse
|
59
|
Wang S, Millward JM, Hanke-Vela L, Malla B, Pilch K, Gil-Infante A, Waiczies S, Mueller S, Boehm-Sturm P, Guo J, Sack I, Infante-Duarte C. MR Elastography-Based Assessment of Matrix Remodeling at Lesion Sites Associated With Clinical Severity in a Model of Multiple Sclerosis. Front Neurol 2020; 10:1382. [PMID: 31998225 PMCID: PMC6970413 DOI: 10.3389/fneur.2019.01382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Magnetic resonance imaging (MRI) with gadolinium based contrast agents (GBCA) is routinely used in the clinic to visualize lesions in multiple sclerosis (MS). Although GBCA reveal endothelial permeability, they fail to expose other aspects of lesion formation such as the magnitude of inflammation or tissue changes occurring at sites of blood-brain barrier (BBB) disruption. Moreover, evidence pointing to potential side effects of GBCA has been increasing. Thus, there is an urgent need to develop GBCA-independent imaging tools to monitor pathology in MS. Using MR-elastography (MRE), we previously demonstrated in both MS and the animal model experimental autoimmune encephalomyelitis (EAE) that inflammation was associated with a reduction of brain stiffness. Now, using the relapsing-remitting EAE model, we show that the cerebellum—a region with predominant inflammation in this model—is especially prone to loss of stiffness. We also demonstrate that, contrary to GBCA-MRI, reduction of brain stiffness correlates with clinical disability and is associated with enhanced expression of the extracellular matrix protein fibronectin (FN). Further, we show that FN is largely expressed by activated astrocytes at acute lesions, and reflects the magnitude of tissue remodeling at sites of BBB breakdown. Therefore, MRE could emerge as a safe tool suitable to monitor disease activity in MS.
Collapse
Affiliation(s)
- Shuangqing Wang
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany.,Department of Neurology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Jason M Millward
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany.,Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Laura Hanke-Vela
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Bimala Malla
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Kjara Pilch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Ana Gil-Infante
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Susanne Mueller
- Department of Experimental Neurology and Center for Stroke Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carmen Infante-Duarte
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| |
Collapse
|
60
|
Eden D, Gros C, Badji A, Dupont SM, De Leener B, Maranzano J, Zhuoquiong R, Liu Y, Granberg T, Ouellette R, Stawiarz L, Hillert J, Talbott J, Bannier E, Kerbrat A, Edan G, Labauge P, Callot V, Pelletier J, Audoin B, Rasoanandrianina H, Brisset JC, Valsasina P, Rocca MA, Filippi M, Bakshi R, Tauhid S, Prados F, Yiannakas M, Kearney H, Ciccarelli O, Smith SA, Andrada Treaba C, Mainero C, Lefeuvre J, Reich DS, Nair G, Shepherd TM, Charlson E, Tachibana Y, Hori M, Kamiya K, Chougar L, Narayanan S, Cohen-Adad J. Spatial distribution of multiple sclerosis lesions in the cervical spinal cord. Brain 2020; 142:633-646. [PMID: 30715195 DOI: 10.1093/brain/awy352] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/25/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022] Open
Abstract
Spinal cord lesions detected on MRI hold important diagnostic and prognostic value for multiple sclerosis. Previous attempts to correlate lesion burden with clinical status have had limited success, however, suggesting that lesion location may be a contributor. Our aim was to explore the spatial distribution of multiple sclerosis lesions in the cervical spinal cord, with respect to clinical status. We included 642 suspected or confirmed multiple sclerosis patients (31 clinically isolated syndrome, and 416 relapsing-remitting, 84 secondary progressive, and 73 primary progressive multiple sclerosis) from 13 clinical sites. Cervical spine lesions were manually delineated on T2- and T2*-weighted axial and sagittal MRI scans acquired at 3 or 7 T. With an automatic publicly-available analysis pipeline we produced voxelwise lesion frequency maps to identify predilection sites in various patient groups characterized by clinical subtype, Expanded Disability Status Scale score and disease duration. We also measured absolute and normalized lesion volumes in several regions of interest using an atlas-based approach, and evaluated differences within and between groups. The lateral funiculi were more frequently affected by lesions in progressive subtypes than in relapsing in voxelwise analysis (P < 0.001), which was further confirmed by absolute and normalized lesion volumes (P < 0.01). The central cord area was more often affected by lesions in primary progressive than relapse-remitting patients (P < 0.001). Between white and grey matter, the absolute lesion volume in the white matter was greater than in the grey matter in all phenotypes (P < 0.001); however when normalizing by each region, normalized lesion volumes were comparable between white and grey matter in primary progressive patients. Lesions appearing in the lateral funiculi and central cord area were significantly correlated with Expanded Disability Status Scale score (P < 0.001). High lesion frequencies were observed in patients with a more aggressive disease course, rather than long disease duration. Lesions located in the lateral funiculi and central cord area of the cervical spine may influence clinical status in multiple sclerosis. This work shows the added value of cervical spine lesions, and provides an avenue for evaluating the distribution of spinal cord lesions in various patient groups.
Collapse
Affiliation(s)
- Dominique Eden
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Charley Gros
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Atef Badji
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Department of Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Sara M Dupont
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Benjamin De Leener
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Josefina Maranzano
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada.,Department of Anatomy, Université de Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Ren Zhuoquiong
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, P. R. China
| | - Yaou Liu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, P. R. China.,Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Massachusetts General Hospital, Boston, USA
| | - Russell Ouellette
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Massachusetts General Hospital, Boston, USA
| | - Leszek Stawiarz
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jason Talbott
- Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Elise Bannier
- CHU Rennes, Radiology Department, Rennes, France.,Univ Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, EMPENN - ERL U 1228, Rennes, France
| | - Anne Kerbrat
- Univ Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, EMPENN - ERL U 1228, Rennes, France.,CHU Rennes, Neurology Department, Rennes, France
| | - Gilles Edan
- Univ Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, EMPENN - ERL U 1228, Rennes, France.,CHU Rennes, Neurology Department, Rennes, France
| | - Pierre Labauge
- MS Unit, Department of Neurology, University Hospital of Montpellier, Montpellier, France
| | - Virginie Callot
- Aix Marseille University, CNRS, CRMBM, Marseille, France.,APHM, CHU Timone, CEMEREM, Marseille, France
| | - Jean Pelletier
- APHM, CHU Timone, CEMEREM, Marseille, France.,APHM, Department of Neurology, CHU Timone, APHM, Marseille
| | - Bertrand Audoin
- APHM, CHU Timone, CEMEREM, Marseille, France.,APHM, Department of Neurology, CHU Timone, APHM, Marseille
| | - Henitsoa Rasoanandrianina
- Aix Marseille University, CNRS, CRMBM, Marseille, France.,APHM, CHU Timone, CEMEREM, Marseille, France
| | - Jean-Christophe Brisset
- Observatoire Français de la Sclérose en Plaques (OFSEP) ; Université de Lyon, Université Claude Bernard Lyon 1; Hospices Civils de Lyon; CREATIS-LRMN, UMR 5220 CNRS and U 1044 INSERM; Lyon, France
| | - Paola Valsasina
- Neuroimaging Research Unit, INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Rohit Bakshi
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Shahamat Tauhid
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Ferran Prados
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London,UK.,Center for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Marios Yiannakas
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London,UK
| | - Hugh Kearney
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London,UK
| | - Olga Ciccarelli
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London,UK
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Jennifer Lefeuvre
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | - Daniel S Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | - Govind Nair
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | | | - Erik Charlson
- Department of Radiology, NYU Langone Medical Center, New York, USA
| | | | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kouhei Kamiya
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Lydia Chougar
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan.,Hospital Cochin, Paris, France
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Department of Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC, Canada.,Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
61
|
Brugnara G, Isensee F, Neuberger U, Bonekamp D, Petersen J, Diem R, Wildemann B, Heiland S, Wick W, Bendszus M, Maier-Hein K, Kickingereder P. Automated volumetric assessment with artificial neural networks might enable a more accurate assessment of disease burden in patients with multiple sclerosis. Eur Radiol 2020; 30:2356-2364. [PMID: 31900702 DOI: 10.1007/s00330-019-06593-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Patients with multiple sclerosis (MS) regularly undergo MRI for assessment of disease burden. However, interpretation may be time consuming and prone to intra- and interobserver variability. Here, we evaluate the potential of artificial neural networks (ANN) for automated volumetric assessment of MS disease burden and activity on MRI. METHODS A single-institutional dataset with 334 MS patients (334 MRI exams) was used to develop and train an ANN for automated identification and volumetric segmentation of T2/FLAIR-hyperintense and contrast-enhancing (CE) lesions. Independent testing was performed in a single-institutional longitudinal dataset with 82 patients (266 MRI exams). We evaluated lesion detection performance (F1 scores), lesion segmentation agreement (DICE coefficients), and lesion volume agreement (concordance correlation coefficients [CCC]). Independent evaluation was performed on the public ISBI-2015 challenge dataset. RESULTS The F1 score was maximized in the training set at a detection threshold of 7 mm3 for T2/FLAIR lesions and 14 mm3 for CE lesions. In the training set, mean F1 scores were 0.867 for T2/FLAIR lesions and 0.636 for CE lesions, as compared to 0.878 for T2/FLAIR lesions and 0.715 for CE lesions in the test set. Using these thresholds, the ANN yielded mean DICE coefficients of 0.834 and 0.878 for segmentation of T2/FLAIR and CE lesions in the training set (fivefold cross-validation). Corresponding DICE coefficients in the test set were 0.846 for T2/FLAIR lesions and 0.908 for CE lesions, and the CCC was ≥ 0.960 in each dataset. CONCLUSIONS Our results highlight the capability of ANN for quantitative state-of-the-art assessment of volumetric lesion load on MRI and potentially enable a more accurate assessment of disease burden in patients with MS. KEY POINTS • Artificial neural networks (ANN) can accurately detect and segment both T2/FLAIR and contrast-enhancing MS lesions in MRI data. • Performance of the ANN was consistent in a clinically derived dataset, with patients presenting all possible disease stages in MRI scans acquired from standard clinical routine rather than with high-quality research sequences. • Computer-aided evaluation of MS with ANN could streamline both clinical and research procedures in the volumetric assessment of MS disease burden as well as in lesion detection.
Collapse
Affiliation(s)
- Gianluca Brugnara
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Fabian Isensee
- Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulf Neuberger
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - David Bonekamp
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens Petersen
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
- Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ricarda Diem
- Department of Neurology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Brigitte Wildemann
- Department of Neurology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology, University of Heidelberg Medical Center, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Klaus Maier-Hein
- Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Kickingereder
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany.
| |
Collapse
|
62
|
Cetin O, Seymen V, Sakoglu U. Multiple sclerosis lesion detection in multimodal MRI using simple clustering-based segmentation and classification. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
63
|
Cavaliere C, Vilades E, Alonso-Rodríguez MC, Rodrigo MJ, Pablo LE, Miguel JM, López-Guillén E, Morla EMS, Boquete L, Garcia-Martin E. Computer-Aided Diagnosis of Multiple Sclerosis Using a Support Vector Machine and Optical Coherence Tomography Features. SENSORS 2019; 19:s19235323. [PMID: 31816925 PMCID: PMC6928765 DOI: 10.3390/s19235323] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 12/16/2022]
Abstract
The purpose of this paper is to evaluate the feasibility of diagnosing multiple sclerosis (MS) using optical coherence tomography (OCT) data and a support vector machine (SVM) as an automatic classifier. Forty-eight MS patients without symptoms of optic neuritis and forty-eight healthy control subjects were selected. Swept-source optical coherence tomography (SS-OCT) was performed using a DRI (deep-range imaging) Triton OCT device (Topcon Corp., Tokyo, Japan). Mean values (right and left eye) for macular thickness (retinal and choroidal layers) and peripapillary area (retinal nerve fibre layer, retinal, ganglion cell layer—GCL, and choroidal layers) were compared between both groups. Based on the analysis of the area under the receiver operator characteristic curve (AUC), the 3 variables with the greatest discriminant capacity were selected to form the feature vector. A SVM was used as an automatic classifier, obtaining the confusion matrix using leave-one-out cross-validation. Classification performance was assessed with Matthew’s correlation coefficient (MCC) and the AUCCLASSIFIER. The most discriminant variables were found to be the total GCL++ thickness (between inner limiting membrane to inner nuclear layer boundaries), evaluated in the peripapillary area and macular retina thickness in the nasal quadrant of the outer and inner rings. Using the SVM classifier, we obtained the following values: MCC = 0.81, sensitivity = 0.89, specificity = 0.92, accuracy = 0.91, and AUCCLASSIFIER = 0.97. Our findings suggest that it is possible to classify control subjects and MS patients without previous optic neuritis by applying machine-learning techniques to study the structural neurodegeneration in the retina.
Collapse
Affiliation(s)
- Carlo Cavaliere
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.C.); (J.M.M.); (E.L.-G.)
| | - Elisa Vilades
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (E.V.); (L.E.P.)
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), University of Zaragoza, 50009 Zaragoza, Spain
| | - Mª C. Alonso-Rodríguez
- Department of Physics and Mathematics, University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - María Jesús Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (E.V.); (L.E.P.)
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), University of Zaragoza, 50009 Zaragoza, Spain
- RETICS-Oftared: Thematic Networks for Co-operative Research in Health for Ocular Diseases, 28040 Madrid, Spain
- Correspondence: (M.J.R.); (L.B.); (E.G.-M.); Tel.: +34-976765558 (E.G.-M.); Fax: +34-97656623 (E.G.-M.)
| | - Luis Emilio Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (E.V.); (L.E.P.)
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), University of Zaragoza, 50009 Zaragoza, Spain
| | - Juan Manuel Miguel
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.C.); (J.M.M.); (E.L.-G.)
| | - Elena López-Guillén
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.C.); (J.M.M.); (E.L.-G.)
| | - Eva Mª Sánchez Morla
- Department of Psychiatry, 12 Octubre University Hospital Research Institute (i+12), 28041 Madrid, Spain;
- Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- CIBERSAM: Biomedical Research Networking Centre in Mental Health, 28029 Madrid, Spain
| | - Luciano Boquete
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.C.); (J.M.M.); (E.L.-G.)
- RETICS-Oftared: Thematic Networks for Co-operative Research in Health for Ocular Diseases, 28040 Madrid, Spain
- Correspondence: (M.J.R.); (L.B.); (E.G.-M.); Tel.: +34-976765558 (E.G.-M.); Fax: +34-97656623 (E.G.-M.)
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (E.V.); (L.E.P.)
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), University of Zaragoza, 50009 Zaragoza, Spain
- RETICS-Oftared: Thematic Networks for Co-operative Research in Health for Ocular Diseases, 28040 Madrid, Spain
- Correspondence: (M.J.R.); (L.B.); (E.G.-M.); Tel.: +34-976765558 (E.G.-M.); Fax: +34-97656623 (E.G.-M.)
| |
Collapse
|
64
|
Ebrahimkhani S, Beadnall HN, Wang C, Suter CM, Barnett MH, Buckland ME, Vafaee F. Serum Exosome MicroRNAs Predict Multiple Sclerosis Disease Activity after Fingolimod Treatment. Mol Neurobiol 2019; 57:1245-1258. [PMID: 31721043 DOI: 10.1007/s12035-019-01792-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022]
Abstract
We and others have previously demonstrated the potential for circulating exosome microRNAs to aid in disease diagnosis. In this study, we sought the possible utility of serum exosome microRNAs as biomarkers for disease activity in multiple sclerosis patients in response to fingolimod therapy. We studied patients with relapsing-remitting multiple sclerosis prior to and 6 months after treatment with fingolimod. Disease activity was determined using gadolinium-enhanced magnetic resonance imaging. Serum exosome microRNAs were profiled using next-generation sequencing. Data were analysed using univariate/multivariate modelling and machine learning to determine microRNA signatures with predictive utility. Accordingly, we identified 15 individual miRNAs that were differentially expressed in serum exosomes from post-treatment patients with active versus quiescent disease. The targets of these microRNAs clustered in ontologies related to the immune and nervous systems and signal transduction. While the power of individual microRNAs to predict disease status post-fingolimod was modest (average 77%, range 65 to 91%), several combinations of 2 or 3 miRNAs were able to distinguish active from quiescent disease with greater than 90% accuracy. Further stratification of patients identified additional microRNAs associated with stable remission, and a positive response to fingolimod in patients with active disease prior to treatment. Overall, these data underscore the value of serum exosome microRNA signatures as non-invasive biomarkers of disease in multiple sclerosis and suggest they may be used to predict response to fingolimod in future clinical practice. Additionally, these data suggest that fingolimod may have mechanisms of action beyond its known functions.
Collapse
Affiliation(s)
- Saeideh Ebrahimkhani
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Heidi N Beadnall
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.,Department of Neurology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Chenyu Wang
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Catherine M Suter
- Division of Molecular Structural and Computational Biology, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,Faculty of Medicine, University of New South Wales (UNSW Sydney), Kensington, NSW, Australia
| | - Michael H Barnett
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.,Department of Neurology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW Sydney), 2106, L2 West, Bioscience South E26, UNSW, Sydney, NSW, 2052, Australia.
| |
Collapse
|
65
|
Boquete L, López-Guillén E, Vilades E, Miguel-Jiménez JM, Pablo LE, De Santiago L, Ortiz del Castillo M, Alonso-Rodríguez MC, Morla EMS, López-Dorado A, Garcia-Martin E. Diagnostic ability of multifocal electroretinogram in early multiple sclerosis using a new signal analysis method. PLoS One 2019; 14:e0224500. [PMID: 31703082 PMCID: PMC6839873 DOI: 10.1371/journal.pone.0224500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/15/2019] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To determine if a novel analysis method will increase the diagnostic value of the multifocal electroretinogram (mfERG) in diagnosing early-stage multiple sclerosis (MS). METHODS We studied the mfERG signals of OD (Oculus Dexter) eyes of fifteen patients diagnosed with early-stage MS (in all cases < 12 months) and without a history of optic neuritis (ON) (F:M = 11:4), and those of six controls (F:M = 3:3). We obtained values of amplitude and latency of N1 and P1 waves, and a method to assess normalized root-mean-square error (FNRMSE) between model signals and mfERG recordings was used. Responses of each eye were analysed at a global level, and by rings, quadrants and hemispheres. AUC (area under the ROC curve) is used as discriminant factor. RESULTS The standard method of analysis obtains further discrimination between controls and MS in ring R3 (AUC = 0.82), analysing N1 waves amplitudes. In all of the retina analysis regions, FNRMSE value shows a greater discriminating power than the standard method. The highest AUC value (AUC = 0.91) was in the superior temporal quadrant. CONCLUSION By analysing mfERG recordings and contrasting them with those of healthy controls it is possible to detect early-stage MS in patients without a previous history of ON.
Collapse
Affiliation(s)
- L. Boquete
- Biomedical Engineering Group, Electronics Department, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Madrid, Spain
| | - E. López-Guillén
- Biomedical Engineering Group, Electronics Department, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - E. Vilades
- RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Madrid, Spain
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Innovative and Research Group Miguel Servet Ophthalmology (GIMSO), University of Zaragoza, Zaragoza, Spain
| | - J. M. Miguel-Jiménez
- Biomedical Engineering Group, Electronics Department, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - L. E. Pablo
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Innovative and Research Group Miguel Servet Ophthalmology (GIMSO), University of Zaragoza, Zaragoza, Spain
| | - L. De Santiago
- Biomedical Engineering Group, Electronics Department, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - M. Ortiz del Castillo
- Biomedical Engineering Group, Electronics Department, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - M. C. Alonso-Rodríguez
- Physics and Mathematics Department, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | | | - A. López-Dorado
- Biomedical Engineering Group, Electronics Department, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - E. Garcia-Martin
- RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Madrid, Spain
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Innovative and Research Group Miguel Servet Ophthalmology (GIMSO), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
66
|
Amaral LLFD, Fragoso DC, Rocha AJD. Improving acute demyelinating lesion detection: which T1-weighted magnetic resonance acquisition is more sensitive to gadolinium enhancement? ARQUIVOS DE NEURO-PSIQUIATRIA 2019; 77:485-492. [PMID: 31365640 DOI: 10.1590/0004-282x20190082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/14/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Because of the need for a standardized and accurate method for detecting multiple sclerosis (MS) inflammatory activity, different magnetic resonance (MR) acquisitions should be compared in order to choose the most sensitive sequence for clinical routine. To compare the sensitivity of a T1-weighted image to a single dose of gadolinium (Gd) administration both with and without magnetization transfer to detect contrast enhancement in active demyelinating focal lesions. METHODS A sample of relapsing-remitting MS patients were prospectively examined separately by two neuroradiologists using a 1.5 Tesla scanner. The outcome parameters were focused on Gd-enhancement detection attributed to acute demyelination. All MR examinations with at least one Gd-enhancing lesion were considered positive (MR+) and each lesion was analyzed according to its size and contrast ratio. RESULTS Thirty-six MR examinations were analyzed with a high inter-observer agreement for MR+ detection (k coefficient > 0.8), which was excellent for the number of Gd-enhancing lesions (0.91 T1 spin-echo (SE), 0.88 T1 magnetization transfer contrast (MTC) sequence and 0.99 magnetization-prepared rapid acquisition with gradient-echo (MPRAGE). Significantly more MR+ were reported on the T1 MTC scans, followed by the T1 SE, and MPRAGE scans. Confidently, the T1 MTC sequence demonstrated higher accuracy in the detection of Gd-enhancing lesions, followed by the T1 SE and MPRAGE sequences. Further comparisons showed that there was a statistically significant increase in the contrast ratio and area of Gd-enhancement on the T1 MTC images when compared with both the SE and MPRAGE images. CONCLUSION Single-dose Gd T1 MTC sequence was confirmed to be the most sensitive acquisition for predicting inflammatory active lesions using a 1.5 T magnet in this sample of MS patients.
Collapse
Affiliation(s)
- Lázaro Luiz Faria do Amaral
- Hospital Beneficência Portuguesa de São Paulo, BP Medicina Diagnóstica, Departamento de Neurorradiologia, São Paulo SP, Brasil.,Irmandade da Santa Casa de Misericórdia de São Paulo, Departamento de Radiologia, São Paulo SP, Brasil
| | - Diego Cardoso Fragoso
- Irmandade da Santa Casa de Misericórdia de São Paulo, Departamento de Radiologia, São Paulo SP, Brasil
| | - Antonio José da Rocha
- Irmandade da Santa Casa de Misericórdia de São Paulo, Departamento de Radiologia, São Paulo SP, Brasil
| |
Collapse
|
67
|
Baldassari LE, Feng J, Clayton BLL, Oh SH, Sakaie K, Tesar PJ, Wang Y, Cohen JA. Developing therapeutic strategies to promote myelin repair in multiple sclerosis. Expert Rev Neurother 2019; 19:997-1013. [PMID: 31215271 DOI: 10.1080/14737175.2019.1632192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Approved disease-modifying therapies for multiple sclerosis (MS) lessen inflammatory disease activity that causes relapses and MRI lesions. However, chronic inflammation and demyelination lead to axonal degeneration and neuronal loss, for which there currently is no effective treatment. There has been increasing interest in developing repair-promoting strategies, but there are important unanswered questions regarding the mechanisms and appropriate methods to evaluate these treatments. Areas covered: The rationale for remyelinating agents in MS is discussed, with an overview of both myelin physiology and endogenous repair mechanisms. This is followed by a discussion of the identification and development of potential remyelinating drugs. Potential biomarkers of remyelination are reviewed, including considerations regarding measuring remyelination in clinical trials. Information and data were obtained from a search of recent literature through PubMed. Peer-reviewed original articles and review articles were included. Expert opinion: There are several obstacles to the translation of potential remyelinating agents to clinical trials, particularly uncertainty regarding the most appropriate study population and method to monitor remyelination. Refinements in clinical trial design and outcome measurement, potentially via advanced imaging techniques, are needed to optimize detection of repair in patients with MS.
Collapse
Affiliation(s)
- Laura E Baldassari
- Mellen Center for MS Treatment and Research, Cleveland Clinic , Cleveland , OH , USA
| | - Jenny Feng
- Mellen Center for MS Treatment and Research, Cleveland Clinic , Cleveland , OH , USA
| | - Benjamin L L Clayton
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Se-Hong Oh
- Department of Biomedical Engineering, Hankuk University of Foreign Studies , Yongin , Republic of Korea
| | - Ken Sakaie
- Imaging Institute, Cleveland Clinic , Cleveland , OH , USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Yanming Wang
- Department of Radiology, Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Jeffrey A Cohen
- Mellen Center for MS Treatment and Research, Cleveland Clinic , Cleveland , OH , USA
| |
Collapse
|
68
|
Engels K, Schiffmann I, Weierstall R, Rahn AC, Daubmann A, Pust G, Chard D, Lukas C, Scheiderbauer J, Stellmann J, Heesen C. Emotions towards magnetic resonance imaging in people with multiple sclerosis. Acta Neurol Scand 2019; 139:497-504. [PMID: 30802931 DOI: 10.1111/ane.13082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/21/2019] [Accepted: 02/15/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVES People with multiple sclerosis (pwMS) often have magnetic resonance imaging (MRI) examinations. While MRI can help guide MS management, it may be a source of anxiety for pwMS. We aimed to develop and validate a questionnaire on the "EMotions and Attitudes towards MRI" (MRI-EMA). MATERIAL AND METHODS The questionnaire was developed, tested in two samples of pwMS and validated in a sample of n = 457 pwMS using exploratory (EFA) and confirmatory factor analysis (CFA). RESULTS EFA revealed four factors underlying the questionnaire: fear of MRI scan, fear of MRI results, feeling of control over the disease and feeling of competence in the patient-physician encounter. CFA confirmed the model fit. Receiving the MRI results, but not undergoing the procedure was associated with anxiety. Seeing MRI results gave participants a feeling of control over the disease. Only 50% felt competent to discuss MRI findings with their physician. Fear of MRI results was especially high and feeling of competence low in participants with a short disease duration and little MRI experience. CONCLUSION PwMS do not feel competent when discussing the role, MRI plays in their care. Receiving MRI results caused anxiety and provides some pwMS with a-perhaps false-feeling of control over the disease. The MRI-EMA constitutes a new tool for the assessments of pwMS' feelings towards MRI, that can be applied in future research and clinical settings.
Collapse
Affiliation(s)
- Katharina Engels
- Institute of Neuroimmunology and Multiple Sclerosis University Medical Centre Hamburg‐Eppendorf Hamburg Germany
| | - Insa Schiffmann
- Institute of Neuroimmunology and Multiple Sclerosis University Medical Centre Hamburg‐Eppendorf Hamburg Germany
- Department of Neurology University Medical Centre Hamburg‐Eppendorf (UKE) Hamburg Germany
| | | | - Anne Christin Rahn
- Institute of Neuroimmunology and Multiple Sclerosis University Medical Centre Hamburg‐Eppendorf Hamburg Germany
| | - Anne Daubmann
- Department of Medical Biometry and Epidemiology University Medical Centre Hamburg‐Eppendorf Hamburg Germany
| | - Gesa Pust
- Institute of Neuroimmunology and Multiple Sclerosis University Medical Centre Hamburg‐Eppendorf Hamburg Germany
| | - Declan Chard
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation University College London (UCL) Institute of Neurology London UK
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre London UK
| | - Carsten Lukas
- Department of Neuroradiology, St. Josef‐Hospital Ruhr University Bochum Germany
| | | | - Jan‐Patrick Stellmann
- Institute of Neuroimmunology and Multiple Sclerosis University Medical Centre Hamburg‐Eppendorf Hamburg Germany
- Department of Neurology University Medical Centre Hamburg‐Eppendorf (UKE) Hamburg Germany
| | - Christoph Heesen
- Institute of Neuroimmunology and Multiple Sclerosis University Medical Centre Hamburg‐Eppendorf Hamburg Germany
- Department of Neurology University Medical Centre Hamburg‐Eppendorf (UKE) Hamburg Germany
| |
Collapse
|
69
|
Fleischer V, Koirala N, Droby A, Gracien RM, Deichmann R, Ziemann U, Meuth SG, Muthuraman M, Zipp F, Groppa S. Longitudinal cortical network reorganization in early relapsing-remitting multiple sclerosis. Ther Adv Neurol Disord 2019; 12:1756286419838673. [PMID: 31040880 PMCID: PMC6482642 DOI: 10.1177/1756286419838673] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/09/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Network science provides powerful access to essential organizational principles of the brain. The aim of this study was to investigate longitudinal evolution of gray matter networks in early relapsing-remitting MS (RRMS) compared with healthy controls (HCs) and contrast network dynamics with conventional atrophy measurements. METHODS For our longitudinal study, we investigated structural cortical networks over 1 year derived from 3T MRI in 203 individuals (92 early RRMS patients with mean disease duration of 12.1 ± 14.5 months and 101 HCs). Brain networks were computed based on cortical thickness inter-regional correlations and fed into graph theoretical analysis. Network connectivity measures (modularity, clustering coefficient, local efficiency, and transitivity) were compared between patients and HCs, and between patients with and without disease activity. Moreover, we calculated longitudinal brain volume changes and cortical atrophy patterns. RESULTS Our analyses revealed strengthening of local network properties shown by increased modularity, clustering coefficient, local efficiency, and transitivity over time. These network dynamics were not detectable in the cortex of HCs over the same period and occurred independently of patients' disease activity. Most notably, the described network reorganization was evident beyond detectable atrophy as characterized by conventional morphometric methods. CONCLUSION In conclusion, our findings provide evidence for gray matter network reorganization subsequent to clinical disease manifestation in patients with early RRMS. An adaptive cortical response with increased local network characteristics favoring network segregation could play a primordial role for maintaining brain function in response to neuroinflammation.
Collapse
Affiliation(s)
- Vinzenz Fleischer
- Department of Neurology and Neuroimaging Center (NIC) of the Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nabin Koirala
- Department of Neurology and Neuroimaging Center (NIC) of the Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Amgad Droby
- Department of Neurology and Neuroimaging Center (NIC) of the Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - René-Maxime Gracien
- Department of Neurology, and Brain Imaging Center, Goethe University, Frankfurt/Main, Frankfurt am Main, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University, Frankfurt/Main, Frankfurt am Main, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls University, Tübingen, Germany
| | - Sven G Meuth
- Department of Neurology, University of Muenster, Muenster, Germany
| | - Muthuraman Muthuraman
- Department of Neurology and Neuroimaging Center (NIC) of the Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology and Neuroimaging Center (NIC) of the Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main-Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr.1, 55131 Mainz, Germany
| |
Collapse
|
70
|
de Santiago L, Sánchez Morla EM, Ortiz M, López E, Amo Usanos C, Alonso-Rodríguez MC, Barea R, Cavaliere-Ballesta C, Fernández A, Boquete L. A computer-aided diagnosis of multiple sclerosis based on mfVEP recordings. PLoS One 2019; 14:e0214662. [PMID: 30947273 PMCID: PMC6449069 DOI: 10.1371/journal.pone.0214662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/18/2019] [Indexed: 01/07/2023] Open
Abstract
Introduction The aim of this study is to develop a computer-aided diagnosis system to identify subjects at differing stages of development of multiple sclerosis (MS) using multifocal visual-evoked potentials (mfVEPs). Using an automatic classifier, diagnosis is performed first on the eyes and then on the subjects. Patients MfVEP signals were obtained from patients with Radiologically Isolated Syndrome (RIS) (n = 30 eyes), patients with Clinically Isolated Syndrome (CIS) (n = 62 eyes), patients with definite MS (n = 56 eyes) and 22 control subjects (n = 44 eyes). The CIS and MS groups were divided into two subgroups: those with eyes affected by optic neuritis (ON) and those without (non-ON). Methods For individual eye diagnosis, a feature vector was formed with information about the intensity, latency and singular values of the mfVEP signals. A flat multiclass classifier (FMC) and a hierarchical classifier (HC) were tested and both were implemented using the k-Nearest Neighbour (k-NN) algorithm. The output of the best eye classifier was used to classify the subjects. In the event of divergence, the eye with the best mfVEP recording was selected. Results In the eye classifier, the HC performed better than the FMC (accuracy = 0.74 and extended Matthew Correlation Coefficient (MCC) = 0.68). In the subject classification, accuracy = 0.95 and MCC = 0.93, confirming that it may be a promising tool for MS diagnosis. Conclusion In addition to amplitude (axonal loss) and latency (demyelination), it has shown that the singular values of the mfVEP signals provide discriminatory information that may be used to identify subjects with differing degrees of the disease.
Collapse
Affiliation(s)
- Luis de Santiago
- Grupo de Ingeniería Biomédica, Departamento de Electrónica, Universidad de Alcalá, Alcalá de Henares, Spain
| | - E. M. Sánchez Morla
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Miguel Ortiz
- Grupo de Ingeniería Biomédica, Departamento de Electrónica, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Elena López
- Grupo de Ingeniería Biomédica, Departamento de Electrónica, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Carlos Amo Usanos
- Grupo de Ingeniería Biomédica, Departamento de Electrónica, Universidad de Alcalá, Alcalá de Henares, Spain
| | | | - R. Barea
- Grupo de Ingeniería Biomédica, Departamento de Electrónica, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Carlo Cavaliere-Ballesta
- Grupo de Ingeniería Biomédica, Departamento de Electrónica, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Alfredo Fernández
- Grupo de Ingeniería Biomédica, Departamento de Electrónica, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Luciano Boquete
- Grupo de Ingeniería Biomédica, Departamento de Electrónica, Universidad de Alcalá, Alcalá de Henares, Spain
- RETICS: Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares Oftared, Madrid, Spain
- * E-mail:
| |
Collapse
|
71
|
Heckova E, Strasser B, Hangel GJ, Považan M, Dal-Bianco A, Rommer PS, Bednarik P, Gruber S, Leutmezer F, Lassmann H, Trattnig S, Bogner W. 7 T Magnetic Resonance Spectroscopic Imaging in Multiple Sclerosis: How Does Spatial Resolution Affect the Detectability of Metabolic Changes in Brain Lesions? Invest Radiol 2019; 54:247-254. [PMID: 30433892 PMCID: PMC7612616 DOI: 10.1097/rli.0000000000000531] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this study was to assess the utility of increased spatial resolution of magnetic resonance spectroscopic imaging (MRSI) at 7 T for the detection of neurochemical changes in multiple sclerosis (MS)-related brain lesions. MATERIALS AND METHODS This prospective, institutional review board-approved study was performed in 20 relapsing-remitting MS patients (9 women/11 men; mean age ± standard deviation, 30.8 ± 7.7 years) after receiving written informed consent. Metabolic patterns in MS lesions were compared at 3 different spatial resolutions of free induction decay MRSI with implemented parallel imaging acceleration: 2.2 × 2.2 × 8 mm; 3.4 × 3.4 × 8 mm; and 6.8 × 6.8 × 8 mm voxel volumes, that is, matrix sizes of 100 × 100, 64 × 64, and 32 × 32, respectively. The quality of data was assessed by signal-to-noise ratio and Cramér-Rao lower bounds. Statistical analysis was performed using Wilcoxon signed-rank tests with correction for multiple testing. RESULTS Seventy-seven T2-hyperintense MS lesions were investigated (median volume, 155.7 mm; range, 10.8-747.0 mm). The mean metabolic ratios in lesions differed significantly between the 3 MRSI resolutions (ie, 100 × 100 vs 64 × 64, 100 × 100 vs 32 × 32, and 64 × 64 vs 32 × 32; P < 0.001). With the ultra-high resolution (100 × 100), we obtained 40% to 80% higher mean metabolic ratios and 100% to 150% increase in maximum metabolic ratios in the MS lesions compared with the lowest resolution (32 × 32), while maintaining good spectral quality (signal-to-noise ratio >12, Cramér-Rao lower bounds <20%) and measurement time of 6 minutes. There were 83% of MS lesions that showed increased myo-inositol/N-acetylaspartate with the 100 × 100 resolution, but only 66% were distinguishable with the 64 × 64 resolution and 35% with the 32 × 32 resolution. CONCLUSIONS Ultra-high-resolution MRSI (~2 × 2 × 8 mm voxel volume) can detect metabolic alterations in MS, which cannot be recognized by conventional MRSI resolutions, within clinically acceptable time.
Collapse
Affiliation(s)
- Eva Heckova
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Bernhard Strasser
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Gilbert J. Hangel
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michal Považan
- Russell H. Morgan Department of Radiology and Radiological Science, The John Hopkins University School of Medicine, Baltimore, Maryland, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
| | | | - Paulus S. Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Petr Bednarik
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Stephan Gruber
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| |
Collapse
|
72
|
Zinnhardt B, Belloy M, Fricke IB, Orije J, Guglielmetti C, Hermann S, Wagner S, Schäfers M, Van der Linden A, Jacobs AH. Molecular Imaging of Immune Cell Dynamics During De- and Remyelination in the Cuprizone Model of Multiple Sclerosis by [ 18F]DPA-714 PET and MRI. Theranostics 2019; 9:1523-1537. [PMID: 31037121 PMCID: PMC6485187 DOI: 10.7150/thno.32461] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022] Open
Abstract
Background: Activation and dysregulation of innate, adaptive and resident immune cells in response to damage determine the pathophysiology of demyelinating disorders. Among the plethora of involved cells, microglia/macrophages and astrocytes play an important role in the pathogenesis of demyelinating disorders. The in-depth investigation of the spatio-temporal profile of these cell types in vivo may inform about the exact disease state and localization as well as may allow to monitor therapeutic modulation of the components of the neuroinflammatory response during the course of multiple sclerosis (MS). In this study, we aimed to non-invasively decipher the degree and temporal profile of neuroinflammation (TSPO - [18F]DPA-714 PET) in relation to selected magnetic resonance imaging (MRI) parameters (T2 maps) in the cuprizone (CPZ)-induced model of demyelination. Methods: C57Bl6 (n=30) mice were fed with a standard chow mixed with 0.2% (w/w) CPZ for 4 (n=10; demyelination) and 6 weeks (n=10; spontaneous remyelination). The degree of neuroinflammation at de- and remyelination was assessed by [18F]DPA-714 PET, multi-echo T2 MRI, autoradiography and immunohistochemistry. Results: CPZ-induced brain alterations were confirmed by increase of T2 relaxation times in both white and grey matter after 3 and 5 weeks of CPZ. Peak [18F]DPA-714 was found in the corpus callosum (CC, white matter), the hippocampus (HC, grey matter) and thalamus (grey matter) after 4 weeks of CPZ treatment and declined after 6 weeks of CPZ. Ex vivo autoradiography and dedicated immunofluorescence showed demyelination/remyelination with corresponding increased/decreased TSPO levels in the CC and hippocampus, confirming the spatial distribution of [18F]DPA-714 in vivo. The expression of TSPO microglia and astrocytes is time-dependent in this model. Microglia predominantly express TSPO at demyelination, while the majority of astrocytes express TSPO during remyelination. The combination of PET- and MRI-based imaging biomarkers demonstrated the regional and temporal development of the CPZ model-associated neuroinflammatory response in grey and white matter regions. Conclusions: The combination of [18F]DPA-714 PET and T2 mapping may allow to further elucidate the regional and temporal profile of inflammatory signals depending on the myelination status, although the underlying inflammatory microenvironment changes. A combination of the described imaging biomarkers may facilitate the development of patient-tailored strategies for immunomodulatory and neuro-restorative therapies in MS.
Collapse
Affiliation(s)
- Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
- Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium
- PET Imaging in Drug Design and Development (PET3D)
- Department of Nuclear Medicine, Universitätsklinikum Münster, Münster, Germany
| | - Michaël Belloy
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium
| | - Inga B. Fricke
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
- Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium
- Current affiliation: TECHNA Institute for the Advancement of Technology for Health, University Health Network; Institute of Biomaterials and Biomedical Engineering, University of Toronto; both Toronto, Ontario, Canada
| | - Jasmien Orije
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium
| | - Caroline Guglielmetti
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Stefan Wagner
- Department of Nuclear Medicine, Universitätsklinikum Münster, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
- Department of Nuclear Medicine, Universitätsklinikum Münster, Münster, Germany
| | - Annemie Van der Linden
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium
| | - Andreas H. Jacobs
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
- Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium
- PET Imaging in Drug Design and Development (PET3D)
- Department of Geriatrics, Johanniter Hospital, Evangelische Kliniken, Bonn, Germany
| |
Collapse
|
73
|
Huhn K, Engelhorn T, Linker RA, Nagel AM. Potential of Sodium MRI as a Biomarker for Neurodegeneration and Neuroinflammation in Multiple Sclerosis. Front Neurol 2019; 10:84. [PMID: 30804885 PMCID: PMC6378293 DOI: 10.3389/fneur.2019.00084] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/22/2019] [Indexed: 01/18/2023] Open
Abstract
In multiple sclerosis (MS), experimental and ex vivo studies indicate that pathologic intra- and extracellular sodium accumulation may play a pivotal role in inflammatory as well as neurodegenerative processes. Yet, in vivo assessment of sodium in the microenvironment is hard to achieve. Here, sodium magnetic resonance imaging (23NaMRI) with its non-invasive properties offers a unique opportunity to further elucidate the effects of sodium disequilibrium in MS pathology in vivo in addition to regular proton based MRI. However, unfavorable physical properties and low in vivo concentrations of sodium ions resulting in low signal-to-noise-ratio (SNR) as well as low spatial resolution resulting in partial volume effects limited the application of 23NaMRI. With the recent advent of high-field MRI scanners and more sophisticated sodium MRI acquisition techniques enabling better resolution and higher SNR, 23NaMRI revived. These studies revealed pathologic total sodium concentrations in MS brains now even allowing for the (partial) differentiation of intra- and extracellular sodium accumulation. Within this review we (1) demonstrate the physical basis and imaging techniques of 23NaMRI and (2) analyze the present and future clinical application of 23NaMRI focusing on the field of MS thus highlighting its potential as biomarker for neuroinflammation and -degeneration.
Collapse
Affiliation(s)
- Konstantin Huhn
- Department of Neurology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ralf A Linker
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Armin M Nagel
- Department of Radiology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
74
|
The Influence of Contrast-to-Noise Ratio on the Discrimination Between Cortical and Juxtacortical Lesions in Multiple Sclerosis. J Comput Assist Tomogr 2019; 43:958-962. [DOI: 10.1097/rct.0000000000000939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
75
|
Kolasa M, Hakulinen U, Brander A, Hagman S, Dastidar P, Elovaara I, Sumelahti ML. Diffusion tensor imaging and disability progression in multiple sclerosis: A 4-year follow-up study. Brain Behav 2019; 9:e01194. [PMID: 30588771 PMCID: PMC6346728 DOI: 10.1002/brb3.1194] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Diffusion tensor imaging (DTI) is sensitive technique to detect widespread changes in water diffusivity in the normal-appearing white matter (NAWM) that appears unaffected in conventional magnetic resonance imaging. We aimed to investigate the prognostic value and stability of DTI indices in the NAWM of the brain in an assessment of disability progression in patients with a relapsing-onset multiple sclerosis (MS). METHODS Forty-six MS patients were studied for DTI indices (fractional anisotropy (FA), mean diffusivity (MD), radial (RD), and axial (AD) diffusivity) in the NAWM of the corpus callosum (CC) and the internal capsule at baseline and at 1 year after. DTI analysis for 10 healthy controls was also performed at baseline. Simultaneously, focal brain lesion volume and atrophy measurements were done at baseline for MS patients. Associations between DTI indices, volumetric measurements, and disability progression over 4 years were studied by multivariate logistic regression analysis. RESULTS At baseline, most DTI metrics differed significantly between MS patients and healthy controls. There was tendency for associations between baseline DTI indices in the CC and disability progression (p < 0.05). Changes in DTI indices over 1 year were observed only in the CC (p < 0.008), and those changes were not found to predict clinical worsening over 4 years. Clear-cut association with disability progression was not detected for baseline volumetric measurements. CONCLUSION Aberrant diffusivity measures in the NAWM of the CC may provide additional information for individual disability progression over 4 years in MS with the relapsing-onset disease. CC may be a good target for DTI measurements in monitoring disease activity in MS, and more studies are needed to assess the related prognostic potential.
Collapse
Affiliation(s)
- Marcin Kolasa
- Faculty of Medicine and Life Sciences, Tampere University, Tampere, Finland.,Department of Radiology, Medical Imaging Center of Pirkanmaa Hospital District, Tampere University Hospital, Tampere, Finland
| | - Ullamari Hakulinen
- Department of Radiology, Medical Imaging Center of Pirkanmaa Hospital District, Tampere University Hospital, Tampere, Finland.,Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland.,Department of Medical Physics, Medical Imaging Center, Tampere University Hospital, Tampere, Finland
| | - Antti Brander
- Department of Radiology, Medical Imaging Center of Pirkanmaa Hospital District, Tampere University Hospital, Tampere, Finland
| | - Sanna Hagman
- Faculty of Medicine and Life Sciences, Tampere University, Tampere, Finland
| | - Prasun Dastidar
- Department of Radiology, Medical Imaging Center of Pirkanmaa Hospital District, Tampere University Hospital, Tampere, Finland
| | - Irina Elovaara
- Faculty of Medicine and Life Sciences, Tampere University, Tampere, Finland
| | | |
Collapse
|
76
|
Crocker CE, Tibbo PG. Confused Connections? Targeting White Matter to Address Treatment Resistant Schizophrenia. Front Pharmacol 2018; 9:1172. [PMID: 30405407 PMCID: PMC6201564 DOI: 10.3389/fphar.2018.01172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
Despite development of comprehensive approaches to treat schizophrenia and other psychotic disorders and improve outcomes, there remains a proportion (approximately one-third) of patients who are treatment resistant and will not have remission of psychotic symptoms despite adequate trials of pharmacotherapy. This level of treatment response is stable across all stages of the spectrum of psychotic disorders, including early phase psychosis and chronic schizophrenia. Our current pharmacotherapies are beneficial in decreasing positive symptomology in most cases, however, with little to no impact on negative or cognitive symptoms. Not all individuals with treatment resistant psychosis unfortunately, even benefit from the potential pharmacological reductions in positive symptoms. The existing pharmacotherapy for psychosis is targeted at neurotransmitter receptors. The current first and second generation antipsychotic medications all act on dopamine type 2 receptors with the second generation drugs also interacting significantly with serotonin type 1 and 2 receptors, and with varying pharmacodynamic profiles overall. This focus on developing dopaminergic/serotonergic antipsychotics, while beneficial, has not reduced the proportion of patients experiencing treatment resistance to date. Another pharmacological approach is imperative to address treatment resistance both for response overall and for negative symptoms in particular. There is research suggesting that changes in white matter integrity occur in schizophrenia and these may be more associated with cognition and even negative symptomology. Here we review the evidence that white matter abnormalities in the brain may be contributing to the symptomology of psychotic disorders. Additionally, we propose that white matter may be a viable pharmacological target for pharmacoresistant schizophrenia and discuss current treatments in development for schizophrenia that target white matter.
Collapse
Affiliation(s)
- Candice E Crocker
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,Department of Diagnostic Imaging, Nova Scotia Health Authority, Halifax, NS, Canada
| | - Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
77
|
Jokubaitis VG, Zhou Y, Butzkueven H, Taylor BV. Genotype and Phenotype in Multiple Sclerosis-Potential for Disease Course Prediction? Curr Treat Options Neurol 2018; 20:18. [PMID: 29687310 DOI: 10.1007/s11940-018-0505-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE OF REVIEW This review will examine the current evidence that genetic and/or epigenetic variation may influence the multiple sclerosis (MS) clinical course, phenotype, and measures of MS severity including disability progression and relapse rate. RECENT FINDINGS There is little evidence that MS clinical phenotype is under significant genetic control. There is increasing evidence that there may be genetic determinants of the rate of disability progression. However, studies that can analyse disability progression and take into account all the confounding variables such as treatment, clinical characteristics, and environmental factors are by necessity longitudinal, relatively small, and generally of short duration, and thus do not lend themselves to the assessment of hundreds of thousands of genetic variables obtained from GWAS. Despite this, there is recent evidence to support the association of genetic loci with relapse rate. Recent progress suggests that genetic variations could be associated with disease severity, but not MS clinical phenotype, but these findings are not definitive and await replication. Pooling of study results, application of other genomic techniques including epigenomics, and analysis of biomarkers of progression could functionally validate putative severity markers.
Collapse
Affiliation(s)
- Vilija G Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Medicine and Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville, Australia
| | - Yuan Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Medicine and Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville, Australia
- Department of Neurology, Box Hill Hospital, Box Hill, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
- Department of Neurology, Royal Hobart Hospital, Hobart, Australia.
| |
Collapse
|
78
|
|