51
|
Gatlin AE, Dhar S. History and Lingering Impact of the Arbitrary 25-dB Cutoff for Normal Hearing. Am J Audiol 2021; 30:231-234. [PMID: 33662219 DOI: 10.1044/2020_aja-20-00181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Since its inception nearly a century ago, the audiogram has become the gold standard for reporting an individual's hearing status. The interpretation of the audiogram, namely, where normal hearing ends and hearing loss begins, impacts all areas of audiology: research, clinical, and medicolegal. Where to define normal hearing was the subject of great debate during the early decades of audiology. Revisiting this history reveals how the 25-dB HL cutoff came to be; a decision concerned more with the legal consequences than the scientific persuasiveness of the definition of normal hearing. Since the 1970s, the 25-dB HL cutoff has defined normal-hearing control groups in research and informed treatment recommendations in the clinic. Conclusions Today, in 2020, closer evaluation of this so-called normal-hearing group reveals a variety of deficits not captured by the audiogram. The history of how normal hearing came to be defined in conjunction with this growing body of research serves as a good reminder to look beyond the audiogram. This is especially important as the field of audiology looks ahead toward improved diagnostics, earlier detection, and new technologies/treatments.
Collapse
Affiliation(s)
- Andrea E. Gatlin
- Department of Communication Sciences & Disorders, School of Communication, Northwestern University, Evanston, IL
| | - Sumitrajit Dhar
- Department of Communication Sciences & Disorders, School of Communication, Northwestern University, Evanston, IL
- Knowles Hearing Center, Northwestern University, Evanston, IL
| |
Collapse
|
52
|
Lu H, McKinney MF, Zhang T, Oxenham AJ. Investigating age, hearing loss, and background noise effects on speaker-targeted head and eye movements in three-way conversations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:1889. [PMID: 33765809 DOI: 10.1121/10.0003707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Although beamforming algorithms for hearing aids can enhance performance, the wearer's head may not always face the target talker, potentially limiting real-world benefits. This study aimed to determine the extent to which eye tracking improves the accuracy of locating the current talker in three-way conversations and to test the hypothesis that eye movements become more likely to track the target talker with increasing background noise levels, particularly in older and/or hearing-impaired listeners. Conversations between a participant and two confederates were held around a small table in quiet and with background noise levels of 50, 60, and 70 dB sound pressure level, while the participant's eye and head movements were recorded. Ten young normal-hearing listeners were tested, along with ten older normal-hearing listeners and eight hearing-impaired listeners. Head movements generally undershot the talker's position by 10°-15°, but head and eye movements together predicted the talker's position well. Contrary to our original hypothesis, no major differences in listening behavior were observed between the groups or between noise levels, although the hearing-impaired listeners tended to spend less time looking at the current talker than the other groups, especially at the highest noise level.
Collapse
Affiliation(s)
- Hao Lu
- Department of Psychology, University of Minnesota, 75 East River Parkway, Minneapolis, Minnesota 55455, USA
| | - Martin F McKinney
- Starkey Hearing Technologies, 6700 Washington Avenue South, Eden Prairie, Minnesota 55344, USA
| | - Tao Zhang
- Starkey Hearing Technologies, 6700 Washington Avenue South, Eden Prairie, Minnesota 55344, USA
| | - Andrew J Oxenham
- Department of Psychology, University of Minnesota, 75 East River Parkway, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
53
|
Rocha CH, Lisboa G, Padilha FYOMM, Rabelo CM, Samelli AG. Effects of hearing protector devices on speech intelligibility: the importance of individualized assessment. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2021; 28:1227-1234. [PMID: 33502290 DOI: 10.1080/10803548.2021.1880763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objectives. This study aimed to compare speech intelligibility in noise with and without hearing protection devices (HPDs). Methods. Fifty-one workers were distributed into three groups: noise-induced hearing loss group (NIHLG), normally hearing noise-exposed group (NG) and normally hearing non-exposed to noise group (CG). A free field system was used to emit monosyllables (65, 70 and 75 dB) and pink noise in different signal-to-noise ratios (SNRs) (0, -5, -10 and -15). Results. In situations with HPDs, all groups showed a decrease in the percentage of correct responses with an increase in noise level. The HPD had little effect on speech intelligibility in the NIHLG and NG. Considering the effect caused by the HPD on speech intelligibility, it was observed that the group with the greatest loss was the CG for SNRs of -5, -10 and -15. Conclusion. Although speech intelligibility is influenced by the hearing threshold, the noise level and SNR are crucial for good speech intelligibility, either with or without an HPD. It is highlighted that the NG had worse results when compared with the CG, which may indicate changes in the auditory pathway resulting from continuous noise exposure, even in the absence of changes in the audiometric thresholds.
Collapse
Affiliation(s)
- Clayton H Rocha
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Brazil
| | - Gabriela Lisboa
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Brazil
| | | | - Camila M Rabelo
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Brazil
| | | |
Collapse
|
54
|
Zhao HB, Zhu Y, Liu LM. Excess extracellular K + causes inner hair cell ribbon synapse degeneration. Commun Biol 2021; 4:24. [PMID: 33398038 PMCID: PMC7782724 DOI: 10.1038/s42003-020-01532-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
Inner hair cell (IHC) ribbon synapses are the first synapse in the auditory system and can be degenerated by noise and aging, thereby leading to hidden hearing loss (HHL) and other hearing disorders. However, the mechanism underlying this cochlear synaptopathy remains unclear. Here, we report that elevation of extracellular K+, which is a consequence of noise exposure, could cause IHC ribbon synapse degeneration and swelling. Like intensity dependence in noise-induced cochlear synaptopathy, the K+-induced degeneration was dose-dependent, and could be attenuated by BK channel blockers. However, application of glutamate receptor (GluR) agonists caused ribbon swelling but not degeneration. In addition, consistent with synaptopathy in HHL, both K+ and noise exposure only caused IHC but not outer hair cell ribbon synapse degeneration. These data reveal that K+ excitotoxicity can degenerate IHC ribbon synapses in HHL, and suggest that BK channel may be a potential target for prevention and treatment of HHL.
Collapse
Affiliation(s)
- Hong-Bo Zhao
- Dept. of Otolaryngology, University of Kentucky Medical School, 800 Rose Street, Lexington, KY, 40536, USA.
| | - Yan Zhu
- Dept. of Otolaryngology, University of Kentucky Medical School, 800 Rose Street, Lexington, KY, 40536, USA
| | - Li-Man Liu
- Dept. of Otolaryngology, University of Kentucky Medical School, 800 Rose Street, Lexington, KY, 40536, USA
| |
Collapse
|
55
|
Lutfi RA, Rodriguez B, Lee J. The Listener Effect in Multitalker Speech Segregation and Talker Identification. Trends Hear 2021; 25:23312165211051886. [PMID: 34693853 PMCID: PMC8544763 DOI: 10.1177/23312165211051886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/20/2021] [Indexed: 12/04/2022] Open
Abstract
Over six decades ago, Cherry (1953) drew attention to what he called the "cocktail-party problem"; the challenge of segregating the speech of one talker from others speaking at the same time. The problem has been actively researched ever since but for all this time one observation has eluded explanation. It is the wide variation in performance of individual listeners. That variation was replicated here for four major experimental factors known to impact performance: differences in task (talker segregation vs. identification), differences in the voice features of talkers (pitch vs. location), differences in the voice similarity and uncertainty of talkers (informational masking), and the presence or absence of linguistic cues. The effect of these factors on the segregation of naturally spoken sentences and synthesized vowels was largely eliminated in psychometric functions relating the performance of individual listeners to that of an ideal observer, d'ideal. The effect of listeners remained as differences in the slopes of the functions (fixed effect) with little within-listener variability in the estimates of slope (random effect). The results make a case for considering the listener a factor in multitalker segregation and identification equal in status to any major experimental variable.
Collapse
Affiliation(s)
- Robert A. Lutfi
- Auditory Behavioral Research Lab, Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida
| | - Briana Rodriguez
- Auditory Behavioral Research Lab, Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida
| | - Jungmee Lee
- Auditory Behavioral Research Lab, Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida
| |
Collapse
|
56
|
Age-related hearing loss pertaining to potassium ion channels in the cochlea and auditory pathway. Pflugers Arch 2020; 473:823-840. [PMID: 33336302 PMCID: PMC8076138 DOI: 10.1007/s00424-020-02496-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/27/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Age-related hearing loss (ARHL) is the most prevalent sensory deficit in the elderly and constitutes the third highest risk factor for dementia. Lifetime noise exposure, genetic predispositions for degeneration, and metabolic stress are assumed to be the major causes of ARHL. Both noise-induced and hereditary progressive hearing have been linked to decreased cell surface expression and impaired conductance of the potassium ion channel KV7.4 (KCNQ4) in outer hair cells, inspiring future therapies to maintain or prevent the decline of potassium ion channel surface expression to reduce ARHL. In concert with KV7.4 in outer hair cells, KV7.1 (KCNQ1) in the stria vascularis, calcium-activated potassium channels BK (KCNMA1) and SK2 (KCNN2) in hair cells and efferent fiber synapses, and KV3.1 (KCNC1) in the spiral ganglia and ascending auditory circuits share an upregulated expression or subcellular targeting during final differentiation at hearing onset. They also share a distinctive fragility for noise exposure and age-dependent shortfalls in energy supply required for sustained surface expression. Here, we review and discuss the possible contribution of select potassium ion channels in the cochlea and auditory pathway to ARHL. We postulate genes, proteins, or modulators that contribute to sustained ion currents or proper surface expressions of potassium channels under challenging conditions as key for future therapies of ARHL.
Collapse
|
57
|
Haro S, Smalt CJ, Ciccarelli GA, Quatieri TF. Deep Neural Network Model of Hearing-Impaired Speech-in-Noise Perception. Front Neurosci 2020; 14:588448. [PMID: 33384579 PMCID: PMC7770113 DOI: 10.3389/fnins.2020.588448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/10/2020] [Indexed: 01/15/2023] Open
Abstract
Many individuals struggle to understand speech in listening scenarios that include reverberation and background noise. An individual's ability to understand speech arises from a combination of peripheral auditory function, central auditory function, and general cognitive abilities. The interaction of these factors complicates the prescription of treatment or therapy to improve hearing function. Damage to the auditory periphery can be studied in animals; however, this method alone is not enough to understand the impact of hearing loss on speech perception. Computational auditory models bridge the gap between animal studies and human speech perception. Perturbations to the modeled auditory systems can permit mechanism-based investigations into observed human behavior. In this study, we propose a computational model that accounts for the complex interactions between different hearing damage mechanisms and simulates human speech-in-noise perception. The model performs a digit classification task as a human would, with only acoustic sound pressure as input. Thus, we can use the model's performance as a proxy for human performance. This two-stage model consists of a biophysical cochlear-nerve spike generator followed by a deep neural network (DNN) classifier. We hypothesize that sudden damage to the periphery affects speech perception and that central nervous system adaptation over time may compensate for peripheral hearing damage. Our model achieved human-like performance across signal-to-noise ratios (SNRs) under normal-hearing (NH) cochlear settings, achieving 50% digit recognition accuracy at -20.7 dB SNR. Results were comparable to eight NH participants on the same task who achieved 50% behavioral performance at -22 dB SNR. We also simulated medial olivocochlear reflex (MOCR) and auditory nerve fiber (ANF) loss, which worsened digit-recognition accuracy at lower SNRs compared to higher SNRs. Our simulated performance following ANF loss is consistent with the hypothesis that cochlear synaptopathy impacts communication in background noise more so than in quiet. Following the insult of various cochlear degradations, we implemented extreme and conservative adaptation through the DNN. At the lowest SNRs (<0 dB), both adapted models were unable to fully recover NH performance, even with hundreds of thousands of training samples. This implies a limit on performance recovery following peripheral damage in our human-inspired DNN architecture.
Collapse
Affiliation(s)
- Stephanie Haro
- Human Health and Performance Systems, Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA, United States
- Speech and Hearing Biosciences and Technology, Harvard Medical School, Boston, MA, United States
| | - Christopher J. Smalt
- Human Health and Performance Systems, Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA, United States
| | - Gregory A. Ciccarelli
- Human Health and Performance Systems, Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA, United States
| | - Thomas F. Quatieri
- Human Health and Performance Systems, Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA, United States
- Speech and Hearing Biosciences and Technology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
58
|
Sheppard A, Ralli M, Gilardi A, Salvi R. Occupational Noise: Auditory and Non-Auditory Consequences. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8963. [PMID: 33276507 PMCID: PMC7729999 DOI: 10.3390/ijerph17238963] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/13/2022]
Abstract
Occupational noise exposure accounts for approximately 16% of all disabling hearing losses, but the true value and societal costs may be grossly underestimated because current regulations only identify hearing impairments in the workplace if exposures result in audiometric threshold shifts within a limited frequency region. Research over the past several decades indicates that occupational noise exposures can cause other serious auditory deficits such as tinnitus, hyperacusis, extended high-frequency hearing loss, and poor speech perception in noise. Beyond the audiogram, there is growing awareness that hearing loss is a significant risk factor for other debilitating and potentially life-threatening disorders such as cardiovascular disease and dementia. This review discusses some of the shortcomings and limitations of current noise regulations in the United States and Europe.
Collapse
Affiliation(s)
- Adam Sheppard
- Department of Communicative Disorders and Sciences and Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14221, USA;
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (M.R.); (A.G.)
| | - Antonio Gilardi
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (M.R.); (A.G.)
| | - Richard Salvi
- Department of Communicative Disorders and Sciences and Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14221, USA;
| |
Collapse
|
59
|
Enhancing the sensitivity of the envelope-following response for cochlear synaptopathy screening in humans: The role of stimulus envelope. Hear Res 2020; 400:108132. [PMID: 33333426 DOI: 10.1016/j.heares.2020.108132] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Auditory de-afferentation, a permanent reduction in the number of inner-hair-cells and auditory-nerve synapses due to cochlear damage or synaptopathy, can reliably be quantified using temporal bone histology and immunostaining. However, there is an urgent need for non-invasive markers of synaptopathy to study its perceptual consequences in live humans and to develop effective therapeutic interventions. While animal studies have identified candidate auditory-evoked-potential (AEP) markers for synaptopathy, their interpretation in humans has suffered from translational issues related to neural generator differences, unknown hearing-damage histopathologies or lack of measurement sensitivity. To render AEP-based markers of synaptopathy more sensitive and differential to the synaptopathy aspect of sensorineural hearing loss, we followed a combined computational and experimental approach. Starting from the known characteristics of auditory-nerve physiology, we optimized the stimulus envelope to stimulate the available auditory-nerve population optimally and synchronously to generate strong envelope-following-responses (EFRs). We further used model simulations to explore which stimuli evoked a response that was sensitive to synaptopathy, while being maximally insensitive to possible co-existing outer-hair-cell pathologies. We compared the model-predicted trends to AEPs recorded in younger and older listeners (N=44, 24f) who had normal or impaired audiograms with suspected age-related synaptopathy in the older cohort. We conclude that optimal stimulation paradigms for EFR-based quantification of synaptopathy should have sharply rising envelope shapes, a minimal plateau duration of 1.7-2.1 ms for a 120-Hz modulation rate, and inter-peak intervals which contain near-zero amplitudes. From our recordings, the optimal EFR-evoking stimulus had a rectangular envelope shape with a 25% duty cycle and a 95% modulation depth. Older listeners with normal or impaired audiometric thresholds showed significantly reduced EFRs, which were consistent with how (age-induced) synaptopathy affected these responses in the model.
Collapse
|
60
|
Lutfi RA, Rodriguez B, Lee J, Pastore T. A test of model classes accounting for individual differences in the cocktail-party effect. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:4014. [PMID: 33379927 PMCID: PMC7775115 DOI: 10.1121/10.0002961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/06/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Listeners differ widely in the ability to follow the speech of a single talker in a noisy crowd-what is called the cocktail-party effect. Differences may arise for any one or a combination of factors associated with auditory sensitivity, selective attention, working memory, and decision making required for effective listening. The present study attempts to narrow the possibilities by grouping explanations into model classes based on model predictions for the types of errors that distinguish better from poorer performing listeners in a vowel segregation and talker identification task. Two model classes are considered: those for which the errors are predictably tied to the voice variation of talkers (decision weight models) and those for which the errors occur largely independently of this variation (internal noise models). Regression analyses of trial-by-trial responses, for different tasks and task demands, show overwhelmingly that the latter type of error is responsible for the performance differences among listeners. The results are inconsistent with models that attribute the performance differences to differences in the reliance listeners place on relevant voice features in this decision. The results are consistent instead with models for which largely stimulus-independent, stochastic processes cause information loss at different stages of auditory processing.
Collapse
Affiliation(s)
- Robert A Lutfi
- Auditory Behavioral Research Lab, Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida 33620, USA
| | - Briana Rodriguez
- Auditory Behavioral Research Lab, Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida 33620, USA
| | - Jungmee Lee
- Auditory Behavioral Research Lab, Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida 33620, USA
| | - Torben Pastore
- Spatial Hearing Lab, College of Health Solutions, Arizona State University, Tempe, Arizona 85281, USA
| |
Collapse
|
61
|
Carcagno S, Plack CJ. Effects of age on psychophysical measures of auditory temporal processing and speech reception at low and high levels. Hear Res 2020; 400:108117. [PMID: 33253994 PMCID: PMC7812372 DOI: 10.1016/j.heares.2020.108117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/18/2020] [Accepted: 11/17/2020] [Indexed: 01/21/2023]
Abstract
We found little evidence of greater age-related hearing declines at high sound levels. There are age-related temporal-processing declines independent of hearing loss. No evidence of age-related speech-reception deficits independent of hearing loss.
Age-related cochlear synaptopathy (CS) has been shown to occur in rodents with minimal noise exposure, and has been hypothesized to play a crucial role in age-related hearing declines in humans. It is not known to what extent age-related CS occurs in humans, and how it affects the coding of supra-threshold sounds and speech in noise. Because in rodents CS affects mainly low- and medium-spontaneous rate (L/M-SR) auditory-nerve fibers with rate-level functions covering medium-high levels, it should lead to greater deficits in the processing of sounds at high than at low stimulus levels. In this cross-sectional study the performance of 102 listeners across the age range (34 young, 34 middle-aged, 34 older) was assessed in a set of psychophysical temporal processing and speech reception in noise tests at both low, and high stimulus levels. Mixed-effect multiple regression models were used to estimate the effects of age while partialing out effects of audiometric thresholds, lifetime noise exposure, cognitive abilities (assessed with additional tests), and musical experience. Age was independently associated with performance deficits on several tests. However, only for one out of 13 tests were age effects credibly larger at the high compared to the low stimulus level. Overall these results do not provide much evidence that age-related CS, to the extent to which it may occur in humans according to the rodent model of greater L/M-SR synaptic loss, has substantial effects on psychophysical measures of auditory temporal processing or on speech reception in noise.
Collapse
Affiliation(s)
- Samuele Carcagno
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF, United Kingdom.
| | - Christopher J Plack
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF, United Kingdom; Manchester Centre for Audiology and Deafness, University of Manchester, Academic Health Science Centre, M13 9PL, United Kingdom
| |
Collapse
|
62
|
Asadpour A, Jahed M, Mahmoudian S. Aberrant Frequency Related Change-Detection Activity in Chronic Tinnitus. Front Neurosci 2020; 14:543134. [PMID: 33192241 PMCID: PMC7645156 DOI: 10.3389/fnins.2020.543134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Tinnitus is the perception of sound without the occurrence of an acoustic event. The deficit in auditory sensory or echoic memory may be the cause of the perception of tinnitus. This study considered the mismatch negativity (MMN) to investigate the potential difference between and within groups of persons with normal hearing (NH) and tinnitus. Using an auditory multi-feature paradigm to elicit the MMN, this study considered the MMN peak amplitude at two central frequencies for two MMN subcomponents. These central frequencies were 1 and 5 kHz, which the latter was closer to the perceived tinnitus frequency in the group with tinnitus. The deviants were higher frequency, lower frequency, higher intensity, lower intensity, duration, location (left), location (right), and gap. The pure tone audiometry (PTA) test and distortion product otoacoustic emissions (DPOAE) test showed no meaningful difference between the two groups. For the frontal subcomponent, the mean amplitudes of the MMN peak for the two groups illustrated less negative meaningful MMN peak amplitudes in the group of persons with tinnitus. For the supratemporal component at 5 kHz central frequency, amplitudes were lower for the group of persons with tinnitus, whereas for the central frequency of 1 kHz, most deviants exhibited meaningful differences. Additionally, within-group comparisons indicated that mean amplitudes for both groups were more negative at the central frequency of 1 kHz for the frontal MMN subcomponent. In comparison, the supratemporal component illustrated a lower peak amplitude at 5 kHz central frequency in the group of persons with tinnitus and no difference in the NH group, which is a unique observation of this study. Results of the between-groups are in accordance with previous studies and within-group comparisons consider the probability of decreasing the change detection capability of the brain. The results of this study indicate that increasing the frequency of the stimuli close to the tinnitus perceived frequencies decreases the prediction error, including the prediction error of the silence. Such a decrease may cause the prediction error of the spontaneous neural activity in the auditory pathway to exceed the silence prediction error, and as a result, increases the probability of occurrence of tinnitus in higher frequencies according to the predictive coding model.
Collapse
Affiliation(s)
- Abdoreza Asadpour
- School of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mehran Jahed
- School of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Saeid Mahmoudian
- ENT-Head and Neck Research Center, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.,The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
63
|
Anderson S, Karawani H. Objective evidence of temporal processing deficits in older adults. Hear Res 2020; 397:108053. [PMID: 32863099 PMCID: PMC7669636 DOI: 10.1016/j.heares.2020.108053] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
The older listener's ability to understand speech in challenging environments may be affected by impaired temporal processing. This review summarizes objective evidence of degraded temporal processing from studies that have used the auditory brainstem response, auditory steady-state response, the envelope- or frequency-following response, cortical auditory-evoked potentials, and neural tracking of continuous speech. Studies have revealed delayed latencies and reduced amplitudes/phase locking in subcortical responses in older vs. younger listeners, in contrast to enhanced amplitudes of cortical responses in older listeners. Reconstruction accuracy of responses to continuous speech (e.g., cortical envelope tracking) shows over-representation in older listeners. Hearing loss is a factor in many of these studies, even though the listeners would be considered to have clinically normal hearing thresholds. Overall, the ability to draw definitive conclusions regarding these studies is limited by the use of multiple stimulus conditions, small sample sizes, and lack of replication. Nevertheless, these objective measures suggest a need to incorporate new clinical measures to provide a more comprehensive assessment of the listener's speech understanding ability, but more work is needed to determine the most efficacious measure for clinical use.
Collapse
Affiliation(s)
- Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD 20742, United States.
| | - Hanin Karawani
- Department of Communication Sciences and Disorders, University of Haifa, Haifa, Israel.
| |
Collapse
|
64
|
Singh J, Doherty KA. Use of a Mild-Gain Hearing Aid by Middle-Age Normal-Hearing Adults Who Do and Do Not Self-Report Trouble Hearing in Background Noise. Am J Audiol 2020; 29:419-428. [PMID: 32603602 DOI: 10.1044/2020_aja-19-00051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose The aim of the study was to assess how the use of a mild-gain hearing aid can affect hearing handicap, motivation, and attitudes toward hearing aids for middle-age, normal-hearing adults who do and do not self-report trouble hearing in background noise. Method A total of 20 participants (45-60 years of age) with clinically normal-hearing thresholds (< 25 dB HL) were enrolled in this study. Ten self-reported difficulty hearing in background noise, and 10 did not self-report difficulty hearing in background noise. All participants were fit with mild-gain hearing aids, bilaterally, and were asked to wear them for 2 weeks. Hearing handicap, attitudes toward hearing aids and hearing loss, and motivation to address hearing problems were evaluated before and after participants wore the hearing aids. Participants were also asked if they would consider purchasing a hearing aid before and after 2 weeks of hearing aid use. Results After wearing the hearing aids for 2 weeks, hearing handicap scores decreased for the participants who self-reported difficulty hearing in background noise. No changes in hearing handicap scores were observed for the participants who did not self-report trouble hearing in background noise. The participants who self-reported difficulty hearing in background noise also reported greater personal distress from their hearing problems, were more motivated to address their hearing problems, and had higher levels of hearing handicap compared to the participants who did not self-report trouble hearing in background noise. Only 20% (2/10) of the participants who self-reported trouble hearing in background noise reported that they would consider purchasing a hearing aid after 2 weeks of hearing aid use. Conclusions The use of mild-gain hearing aids has the potential to reduce hearing handicap for normal-hearing, middle-age adults who self-report difficulty hearing in background noise. However, this may not be the most appropriate treatment option for their current hearing problems given that only 20% of these participants would consider purchasing a hearing aid after wearing hearing aids for 2 weeks.
Collapse
Affiliation(s)
- Jasleen Singh
- Department of Communication Sciences and Disorders, Syracuse University, NY
| | - Karen A. Doherty
- Department of Communication Sciences and Disorders, Syracuse University, NY
| |
Collapse
|
65
|
Makashay MJ, Solomon NP. Clear versus casual consonant identification by hearing-impaired and normal-hearing listeners. CLINICAL LINGUISTICS & PHONETICS 2020; 34:734-755. [PMID: 31801385 DOI: 10.1080/02699206.2019.1694586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Hearing-impaired (HI) listeners who benefit from hearing-aid use in quiet often continue to have difficulty understanding speech in noise. Requesting talkers to speak clearly is one strategy to overcome this deficit. Paradoxically, one feature of clear speech is a shift to higher frequencies, which may move speech energy into a frequency range that is inaudible or more distorted for some HI listeners. Casual (or conversational) speech, on the other hand, may shift speech energy into a lower frequency range that is more audible or less distorted. This study examined the intelligibility of 21 amplified, casually- and clearly-spoken, US English coda consonants in nonsense syllables for 10 normal-hearing (NH) and 17 HI listeners. Most clear-speech consonants yielded higher recognition scores as expected. However, certain phonological processes common in casual speech, such as palatalization of higher frequency alveolar into lower frequency postalveolar consonants, generated significantly higher scores than their clear counterparts for some HI listeners in noise. These results have implications for coaching conversational partners of aided HI listeners. For the military, talkers can be instructed how to speak to Service members with hearing loss or in noisy environments.
Collapse
Affiliation(s)
- Matthew J Makashay
- Army Hearing Division, U.S. Army Public Health Center , Aberdeen Proving Ground, Maryland, USA
- National Military Audiology & Speech Pathology Center, Walter Reed National Military Medical Center , Bethesda, Maryland, USA
| | - Nancy Pearl Solomon
- National Military Audiology & Speech Pathology Center, Walter Reed National Military Medical Center , Bethesda, Maryland, USA
| |
Collapse
|
66
|
Aedo C, Aguilar E. Cochlear synaptopathy: new findings in animal and human research. Rev Neurosci 2020; 31:605-615. [PMID: 32681786 DOI: 10.1515/revneuro-2020-0002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/25/2020] [Indexed: 12/30/2022]
Abstract
In animal models, prolonged exposure (2 h) to high-level noise causes an irreparable damage to the synapses between the inner hair cells and auditory nerve fibers within the cochlea. Nevertheless, this injury does not necessarily alter the hearing threshold. Similar findings have been observed as part of typical aging in animals. This type of cochlear synaptopathy, popularly called "hidden hearing loss," has been a significant issue in neuroscience research and clinical audiology scientists. The results obtained in different investigations are inconclusive in their diagnosis and suggest new strategies for both prognosis and treatment of cochlear synaptopathy. Here we review the major physiological findings regarding cochlear synaptopathy in animals and humans and discuss mathematical models. We also analyze the potential impact of these results on clinical practice and therapeutic options.
Collapse
Affiliation(s)
- Cristian Aedo
- Laboratorio de Audiología y Percepción Auditiva, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| | - Enzo Aguilar
- Laboratorio de Audiología y Percepción Auditiva, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| |
Collapse
|
67
|
Search for Electrophysiological Indices of Hidden Hearing Loss in Humans: Click Auditory Brainstem Response Across Sound Levels and in Background Noise. Ear Hear 2020; 42:53-67. [PMID: 32675590 DOI: 10.1097/aud.0000000000000905] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Recent studies in animals indicate that even moderate levels of exposure to noise can damage synaptic ribbons between the inner hair cells and auditory nerve fibers without affecting audiometric thresholds, giving rise to the use of the term "hidden hearing loss" (HHL). Despite evidence across several animal species, there is little consistent evidence for HHL in humans. The aim of the study is to evaluate potential electrophysiological changes specific to individuals at risk for HHL. DESIGN Participants forming the high-risk experimental group consisted of 28 young normal-hearing adults who participated in marching band for at least 5 years. Twenty-eight age-matched normal-hearing adults who were not part of the marching band and had little or no history of recreational or occupational exposure to loud sounds formed the low-risk control group. Measurements included pure tone audiometry of conventional and high frequencies, distortion product otoacoustic emissions, and electrophysiological measures of auditory nerve and brainstem function as reflected in the click-evoked auditory brainstem response (ABR). In experiment 1, ABRs were recorded in a quiet background across stimulus levels (30-90 dB nHL) presented in 10 dB steps. In experiment 2, the ABR was elicited by a 70 dB nHL click stimulus presented in a quiet background, and in the presence of simultaneous ipsilateral continuous broadband noise presented at 50, 60, and 70 dB SPL using an insert earphone (Etymotic, ER2). RESULTS There were no differences between the low- and high-risk groups in audiometric thresholds or distortion product otoacoustic emission amplitude. Experiment 1 demonstrated smaller wave-I amplitudes at moderate and high sound levels for high-risk compared to low-risk group with similar wave III and wave V amplitude. Enhanced amplitude ratio V/I, particularly at moderate sound level (60 dB nHL), suggesting central compensation for reduced input from the periphery for high-risk group. The results of experiment 2 show that the decrease in wave I amplitude with increasing background noise level was relatively smaller for the high-risk compared to the low-risk group. However, wave V amplitude reduction was essentially similar for both groups. These results suggest that masking induced wave I amplitude reduction is smaller in individuals at high risk for cochlear synaptopathy. Unlike previous studies, we did not observe a difference in the noise-induced wave V latency shift between low- and high-risk groups. CONCLUSIONS Results of experiment 1 are consistent with findings in both animal studies (that suggest cochlear synaptopathy involving selective damage of low-spontaneous rate and medium-spontaneous rate fibers), and in several human studies that show changes in a range of ABR metrics that suggest the presence of cochlear synaptopathy. However, without postmortem examination by harvesting human temporal bone (the gold standard for identifying synaptopathy) with different noise exposure background, no direct inferences can be derived for the presence/extent of cochlear synaptopathy in high-risk group with high sound over-exposure history. Results of experiment 2 demonstrate that to the extent response amplitude reflects both the number of neural elements responding and the neural synchrony of the responding elements, the relatively smaller change in response amplitude for the high-risk group would suggest a reduced susceptibility to masking. One plausible mechanism would be that suppressive effects that kick in at moderate to high levels are different in these two groups, particularly at moderate levels of the masking noise. Altogether, a larger scale dataset with different noise exposure background, longitudinal measurements (changes due to recreational over-exposure by studying middle-school to high-school students enrolled in marching band) with an array of behavioral and electrophysiological tests are needed to understand the complex pathogenesis of sound over-exposure damage in normal-hearing individuals.
Collapse
|
68
|
Füllgrabe C, Moody M, Moore BCJ. No evidence for a link between noise exposure and auditory temporal processing for young adults with normal audiograms. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:EL465. [PMID: 32611153 DOI: 10.1121/10.0001346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
The link between lifetime noise exposure and temporal processing abilities was investigated for 45 normal-hearing participants, recruited from a population of undergraduate students, aged 18 to 23 years. A self-report instrument was employed to assess the amount of neuropathic noise (here defined as sounds with levels exceeding approximately 80 dBA) each participant had been exposed to and sensitivity to temporal-fine-structure and temporal-envelope information was determined using frequency discrimination and envelope irregularity detection tasks, respectively. Despite sizable individual variability in all measures, correlations between noise exposure and the ability to process temporal cues were small and non-significant.
Collapse
Affiliation(s)
- Christian Füllgrabe
- School of Sport, Exercise and Health Sciences, Loughborough University, Ashby Road, Loughborough LE11 3TU, United Kingdom
| | - Matthew Moody
- School of Sport, Exercise and Health Sciences, Loughborough University, Ashby Road, Loughborough LE11 3TU, United Kingdom
| | - Brian C J Moore
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United , ,
| |
Collapse
|
69
|
Mussoi BSS, Brown CJ. Age-Related Changes in Temporal Resolution Revisited: Electrophysiological and Behavioral Findings From Cochlear Implant Users. Ear Hear 2020; 40:1328-1344. [PMID: 31033701 PMCID: PMC6814519 DOI: 10.1097/aud.0000000000000732] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The mechanisms underlying age-related changes in speech perception are still unclear, most likely multifactorial and often can be difficult to parse out from the effects of hearing loss. Age-related changes in temporal resolution (i.e., the ability to track rapid changes in sounds) have long been associated with speech perception declines exhibited by many older individuals. The goals of this study were as follows: (1) to assess age-related changes in temporal resolution in cochlear implant (CI) users, and (2) to examine the impact of changes in temporal resolution and cognition on the perception of speech in noise. In this population, it is possible to bypass the cochlea and stimulate the auditory nerve directly in a noninvasive way. Additionally, CI technology allows for manipulation of the temporal properties of a signal without changing its spectrum. DESIGN Twenty postlingually deafened Nucleus CI users took part in this study. They were divided into groups of younger (18 to 40 years) and older (68 to 82 years) participants. A cross-sectional study design was used. The speech processor was bypassed and a mid-array electrode was used for stimulation. We compared peripheral and central physiologic measures of temporal resolution with perceptual measures obtained using similar stimuli. Peripherally, temporal resolution was assessed with measures of the rate of recovery of the electrically evoked compound action potential (ECAP), evoked using a single pulse and a pulse train as maskers. The acoustic change complex (ACC) to gaps in pulse trains was used to assess temporal resolution more centrally. Psychophysical gap detection thresholds were also obtained. Cognitive assessment included two tests of processing speed (Symbol Search and Coding) and one test of working memory (Digit Span Test). Speech perception was tested in the presence of background noise (QuickSIN test). A correlational design was used to explore the relationship between temporal resolution, cognition, and speech perception. RESULTS The only metric that showed significant age effects in temporal processing was the ECAP recovery function recorded using pulse train maskers. Younger participants were found to have faster rates of neural recovery following presentation of pulse trains than older participants. Age was not found to have a significant effect on speech perception. When results from both groups were combined, digit span was the only measure significantly correlated with speech perception performance. CONCLUSIONS In this sample of CI users, few effects of advancing age on temporal resolution were evident. While this finding would be consistent with a general lack of aging effects on temporal resolution, it is also possible that aging effects are influenced by processing peripheral to the auditory nerve, which is bypassed by the CI. However, it is known that cross-fiber neural synchrony is improved with electrical (as opposed to acoustic) stimulation. This change in neural synchrony may, in turn, make temporal cues more robust/perceptible to all CI users. Future studies involving larger sample sizes should be conducted to confirm these findings. Results of this study also add to the growing body of literature that suggests that working memory is important for the perception of degraded speech.
Collapse
Affiliation(s)
- Bruna S. S. Mussoi
- Kent State University, Speech Pathology and Audiology Program, Kent, Ohio, USA
| | - Carolyn J. Brown
- University of Iowa, Department of Communication Sciences and Disorders / Department of Otolaryngology – Head and Neck Surgery, Iowa City, Iowa, USA
| |
Collapse
|
70
|
Kamerer AM, Kopun JG, Fultz SE, Neely ST, Rasetshwane DM. Reliability of Measures Intended to Assess Threshold-Independent Hearing Disorders. Ear Hear 2020; 40:1267-1279. [PMID: 30882533 PMCID: PMC6745005 DOI: 10.1097/aud.0000000000000711] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Recent animal studies have shown that noise exposure can cause cochlear synaptopathy without permanent threshold shift. Because the noise exposure preferentially damaged auditory nerve fibers that processed suprathreshold sounds (low-spontaneous rate fibers), it has been suggested that synaptopathy may underlie suprathreshold hearing deficits in humans. Recently, several researchers have suggested measures to identify the pathology or pathologies underlying suprathreshold hearing deficits in humans based on results from animal studies; however, the reliability of some of these measures have not been assessed. The purpose of this study was to assess the test-retest reliability of measures that may have the potential to relate suprathreshold hearing deficits to site(s)-of-lesion along the peripheral auditory system in humans. DESIGN Adults with audiometric normal hearing were tested on a battery of behavioral and physiologic measures that included (1) thresholds in quiet (TIQ), (2) thresholds in noise (TIN), (3) frequency-modulation detection threshold (FMDT), (4) word recognition in four listening conditions, (5) distortion-product otoacoustic emissions (DPOAE), (6) middle ear muscle reflex (MEMR), (7) tone burst-elicited auditory brainstem response (tbABR), and (8) speech-evoked ABR (sABR). Data collection for each measure was repeated over two visits separated by at least one week. The residuals of the correlation between the suprathreshold measures and TIQ serve as functional and quantitative proxies for threshold-independent hearing disorders because they represent the portion of the raw measures that is not dependent on TIQ. Reliability of the residual measures was assessed using intraclass correlation (ICC). RESULTS Reliability for the residual measures was good (ICC ≥ 0.75) for FMDT, DPOAEs, and MEMR. Residual measures showing moderate reliability (0.5 ≤ ICC < 0.75) were tbABR wave I amplitude, TIN, and word recognition in quiet, noise, and time-compressed speech with reverberation. Wave V of the tbABR, waves of the sABR, and recognition of time-compressed words had poor test-retest reliability (ICC < 0.5). CONCLUSIONS Reliability of residual measures was mixed, suggesting that care should be taken when selecting measures for diagnostic tests of threshold-independent hearing disorders. Quantifying hidden hearing loss as the variance in suprathreshold measures of auditory function that is not due to TIQ may provide a reliable estimate of threshold-independent hearing disorders in humans.
Collapse
Affiliation(s)
| | - Judy G. Kopun
- Boys Town National Research Hospital, Omaha, NE 68131
| | - Sara E. Fultz
- Boys Town National Research Hospital, Omaha, NE 68131
| | | | | |
Collapse
|
71
|
Tepe V, Papesh M, Russell S, Lewis MS, Pryor N, Guillory L. Acquired Central Auditory Processing Disorder in Service Members and Veterans. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:834-857. [PMID: 32163310 DOI: 10.1044/2019_jslhr-19-00293] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purpose A growing body of evidence suggests that military service members and military veterans are at risk for deficits in central auditory processing. Risk factors include exposure to blast, neurotrauma, hazardous noise, and ototoxicants. We overview these risk factors and comorbidities, address implications for clinical assessment and care of central auditory processing deficits in service members and veterans, and specify knowledge gaps that warrant research. Method We reviewed the literature to identify studies of risk factors, assessment, and care of central auditory processing deficits in service members and veterans. We also assessed the current state of the science for knowledge gaps that warrant additional study. This literature review describes key findings relating to military risk factors and clinical considerations for the assessment and care of those exposed. Conclusions Central auditory processing deficits are associated with exposure to known military risk factors. Research is needed to characterize mechanisms, sources of variance, and differential diagnosis in this population. Existing best practices do not explicitly consider confounds faced by military personnel. Assessment and rehabilitation strategies that account for these challenges are needed. Finally, investment is critical to ensure that Veterans Affairs and Department of Defense clinical staff are informed, trained, and equipped to implement effective patient care.
Collapse
Affiliation(s)
- Victoria Tepe
- Department of Defense Hearing Center of Excellence, JBSA Lackland, TX
- The Geneva Foundation, Tacoma, WA
| | - Melissa Papesh
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Shoshannah Russell
- Walter Reed National Military Medical Center, Bethesda, MD
- Henry Jackson Foundation, Bethesda, MD
| | - M Samantha Lewis
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
- School of Audiology, Pacific University, Hillsboro, OR
| | - Nina Pryor
- Department of Defense Hearing Center of Excellence, JBSA Lackland, TX
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH
| | - Lisa Guillory
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia
| |
Collapse
|
72
|
Koponen LM, Goetz SM, Tucci DL, Peterchev AV. Sound comparison of seven TMS coils at matched stimulation strength. Brain Stimul 2020; 13:873-880. [PMID: 32289720 PMCID: PMC7263763 DOI: 10.1016/j.brs.2020.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 02/11/2020] [Accepted: 03/04/2020] [Indexed: 11/30/2022] Open
Abstract
Background: Accurate data on the sound emitted by transcranial magnetic stimulation (TMS) coils is lacking. Methods: We recorded the sound waveforms of seven coils with high bandwidth. We estimated the neural stimulation strength by measuring the induced electric field and applying a strengtheduration model to account for different waveforms. Results: Across coils, at maximum stimulator output and 25 cm distance, the sound pressure level (SPL) was 98–125 dB(Z) per pulse and 76–98 dB(A) for a 20 Hz pulse train. At 5 cm distance, these values were estimated to increase to 112–139 dB(Z) and 90–112 dB(A), respectively. Conclusions: The coils’ airborne sound can exceed some exposure limits for TMS subjects and, in some cases, for operators. These findings are consistent with the current TMS safety guidelines that recommend the use of hearing protection.
Collapse
Affiliation(s)
- Lari M Koponen
- Department of Psychiatry & Behavioral Sciences, Duke University, Durham, NC, 27710, USA
| | - Stefan M Goetz
- Department of Psychiatry & Behavioral Sciences, Duke University, Durham, NC, 27710, USA; Department of Electrical & Computer Engineering, Duke University, Durham, NC, 27708, USA; Department of Neurosurgery, Duke University, Durham, NC, 27710, USA
| | - Debara L Tucci
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham, NC, 27710, USA
| | - Angel V Peterchev
- Department of Psychiatry & Behavioral Sciences, Duke University, Durham, NC, 27710, USA; Department of Electrical & Computer Engineering, Duke University, Durham, NC, 27708, USA; Department of Neurosurgery, Duke University, Durham, NC, 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
73
|
Moroe NF, Khoza-Shangase K. Recent advances in hearing conservation programmes: A systematic review. SOUTH AFRICAN JOURNAL OF COMMUNICATION DISORDERS 2020; 67:e1-e11. [PMID: 32129659 PMCID: PMC7136823 DOI: 10.4102/sajcd.v67i2.675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/17/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022] Open
Abstract
Background Current evidence from low- and middle-income (LAMI) countries, such as South Africa, indicates that occupational noise-induced hearing loss (ONIHL) continues to be a health and safety challenge for the mining industry. There is also evidence of hearing conservation programmes (HCPs) being implemented with limited success. Objectives The aim of this study was to explore and document current evidence reflecting recent advances in HCPs in order to identify gaps within the South African HCPs. Method A systematic literature review was conducted in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis. Electronic databases including Sage, Science Direct, PubMed, Scopus MEDLINE, ProQuest and Google Scholar were searched for potential studies published in English between 2010 and 2019 reporting on recent advances in HCPs within the mining industry. Results The study findings revealed a number of important recent advances internationally, which require deliberation for possible implementation within the South African HCPs context. These advances have been presented under seven themes: (1) the use of metrics, (2) pharmacological interventions and hair cell regeneration, (3) artificial neural network, (4) audiology assessment measures, (5) noise monitoring advances, (6) conceptual approaches to HCPs and (7) buying quiet. Conclusion The study findings raise important advances that may have significant implications for HCPs in LAMI countries where ONIHL remains a highly prevalent occupational health challenge. Establishing feasibility and efficacy of these advances in these contexts to ensure contextual relevance and responsiveness is one of the recommendations to facilitate the success of HCPs targets.
Collapse
Affiliation(s)
- Nomfundo F Moroe
- Department of Speech Pathology and Audiology, Faculty of Humanities, University of the Witwatersrand, Johannesburg.
| | | |
Collapse
|
74
|
Megarbane L, Fuente A. Association between speech perception in noise and electrophysiological measures: an exploratory study of possible techniques to evaluate cochlear synaptopathy in humans. Int J Audiol 2020; 59:427-433. [DOI: 10.1080/14992027.2020.1718783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Lynn Megarbane
- Audiology Department, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
- École d’orthophonie et d’audiologie, Faculté de médecine, Université de Montréal and Centre de recherche de l’Institut universitaire de gériatrie de Montréal, Montreal, QC, Canada
| | - Adrian Fuente
- École d’orthophonie et d’audiologie, Faculté de médecine, Université de Montréal and Centre de recherche de l’Institut universitaire de gériatrie de Montréal, Montreal, QC, Canada
| |
Collapse
|
75
|
Heeringa AN, Zhang L, Ashida G, Beutelmann R, Steenken F, Köppl C. Temporal Coding of Single Auditory Nerve Fibers Is Not Degraded in Aging Gerbils. J Neurosci 2020. [PMID: 31719164 DOI: 10.1101/2020.02.10.942011] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
People suffering from age-related hearing loss typically present with deficits in temporal processing tasks. Temporal processing deficits have also been shown in single-unit studies at the level of the auditory brainstem, midbrain, and cortex of aged animals. In this study, we explored whether temporal coding is already affected at the level of the input to the central auditory system. Single-unit auditory nerve fiber recordings were obtained from 41 Mongolian gerbils of either sex, divided between young, middle-aged, and old gerbils. Temporal coding quality was evaluated as vector strength in response to tones at best frequency, and by constructing shuffled and cross-stimulus autocorrelograms, and reverse correlations, from responses to 1 s noise bursts at 10-30 dB sensation level (dB above threshold). At comparable sensation levels, all measures showed that temporal coding was not altered in auditory nerve fibers of aging gerbils. Furthermore, both temporal fine structure and envelope coding remained unaffected. However, spontaneous rates were decreased in aging gerbils. Importantly, despite elevated pure tone thresholds, the frequency tuning of auditory nerve fibers was not affected. These results suggest that age-related temporal coding deficits arise more centrally, possibly due to a loss of auditory nerve fibers (or their peripheral synapses) but not due to qualitative changes in the responses of remaining auditory nerve fibers. The reduced spontaneous rate and elevated thresholds, but normal frequency tuning, of aged auditory nerve fibers can be explained by the well known reduction of endocochlear potential due to strial dysfunction in aged gerbils.SIGNIFICANCE STATEMENT As our society ages, age-related hearing deficits become ever more prevalent. Apart from decreased hearing sensitivity, elderly people often suffer from a reduced ability to communicate in daily settings, which is thought to be caused by known age-related deficits in auditory temporal processing. The current study demonstrated, using several different stimuli and analysis techniques, that these putative temporal processing deficits are not apparent in responses of single-unit auditory nerve fibers of quiet-aged gerbils. This suggests that age-related temporal processing deficits may develop more central to the auditory nerve, possibly due to a reduced population of active auditory nerve fibers, which will be of importance for the development of treatments for age-related hearing disorders.
Collapse
Affiliation(s)
- Amarins N Heeringa
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Lichun Zhang
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Go Ashida
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Rainer Beutelmann
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Friederike Steenken
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Christine Köppl
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
76
|
C Kohrman D, Wan G, Cassinotti L, Corfas G. Hidden Hearing Loss: A Disorder with Multiple Etiologies and Mechanisms. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a035493. [PMID: 30617057 DOI: 10.1101/cshperspect.a035493] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hidden hearing loss (HHL), a recently described auditory disorder, has been proposed to affect auditory neural processing and hearing acuity in subjects with normal audiometric thresholds, particularly in noisy environments. In contrast to central auditory processing disorders, HHL is caused by defects in the cochlea, the peripheral auditory organ. Noise exposure, aging, ototoxic drugs, and peripheral neuropathies are some of the known risk factors for HHL. Our knowledge of the causes and mechanisms of HHL are based primarily on animal models. However, recent clinical studies have also shed light on the etiology and prevalence of this cochlear disorder and how it may affect auditory perception in humans. Here, we review the current knowledge regarding the causes and cellular mechanisms of HHL, summarize information on available noninvasive tests for differential diagnosis, and discuss potential therapeutic approaches for treatment of HHL.
Collapse
Affiliation(s)
- David C Kohrman
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, Jiangsu Province, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210061, Jiangsu Province, China
| | - Luis Cassinotti
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Gabriel Corfas
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
77
|
Vajsakovic D, Maslin M, Searchfield GD. Principles and Methods for Psychoacoustic Evaluation of Tinnitus. Curr Top Behav Neurosci 2020; 51:419-459. [PMID: 33550568 DOI: 10.1007/7854_2020_211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tinnitus, the perception of sound in the absence of a physical sound in the environment, is highly heterogeneous. It varies in its etiology, characteristics, and impact on an individual's life. The sound is commonly described as "ringing," "buzzing," "crickets," "hissing," "humming." Tinnitus can be acute or chronic, mild or disabling. It can be perceived unilaterally or, more commonly, bilaterally. The sound and its location differ from person to person and fluctuate in the same individual over a certain period of time. This heterogeneity in characterization has important implications for research and clinical practice. Identifying patterns in how tinnitus sounds and its relationship to hearing may aid in identifying different forms of tinnitus and revealing their underlying mechanisms. However, the subjective nature of characterizing tinnitus makes it difficult to reliably define and measure. This chapter will focus on reviewing the psychoacoustic assessment of tinnitus, its relationship to cognitive and behavioral aspects of tinnitus, and its neuropathophysiology. In particular, it will describe the heterogeneity of tinnitus and tinnitus matching, and how individual variability in measures may be used to guide treatment and as a prognostic factor.
Collapse
Affiliation(s)
- Dunja Vajsakovic
- Section of Audiology, The University of Auckland, Auckland, New Zealand.,Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, New Zealand.,Brain Research New Zealand, A Centre of Research Excellence, Auckland, New Zealand
| | - Michael Maslin
- Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand.,School of Psychology, Speech and Hearing, The University of Canterbury, Canterbury, New Zealand
| | - Grant D Searchfield
- Section of Audiology, The University of Auckland, Auckland, New Zealand. .,Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand. .,Centre for Brain Research, The University of Auckland, Auckland, New Zealand. .,Brain Research New Zealand, A Centre of Research Excellence, Auckland, New Zealand.
| |
Collapse
|
78
|
Schädler MR, Hülsmeier D, Warzybok A, Kollmeier B. Individual Aided Speech-Recognition Performance and Predictions of Benefit for Listeners With Impaired Hearing Employing FADE. Trends Hear 2020; 24:2331216520938929. [PMID: 32924797 PMCID: PMC7493243 DOI: 10.1177/2331216520938929] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 12/02/2022] Open
Abstract
The benefit in speech-recognition performance due to the compensation of a hearing loss can vary between listeners, even if unaided performance and hearing thresholds are similar. To accurately predict the individual performance benefit due to a specific hearing device, a prediction model is proposed which takes into account hearing thresholds and a frequency-dependent suprathreshold component of impaired hearing. To test the model, the German matrix sentence test was performed in unaided and individually aided conditions in quiet and in noise by 18 listeners with different degrees of hearing loss. The outcomes were predicted by an individualized automatic speech-recognition system where the individualization parameter for the suprathreshold component of hearing loss was inferred from tone-in-noise detection thresholds. The suprathreshold component was implemented as a frequency-dependent multiplicative noise (mimicking level uncertainty) in the feature-extraction stage of the automatic speech-recognition system. Its inclusion improved the root-mean-square prediction error of individual speech-recognition thresholds (SRTs) from 6.3 dB to 4.2 dB and of individual benefits in SRT due to common compensation strategies from 5.1 dB to 3.4 dB. The outcome predictions are highly correlated with both the corresponding observed SRTs (R2 = .94) and the benefits in SRT (R2 = .89) and hence might help to better understand-and eventually mitigate-the perceptual consequences of as yet unexplained hearing problems, also discussed in the context of hidden hearing loss.
Collapse
Affiliation(s)
- Marc R. Schädler
- Medizinische Physik and Cluster of Excellence Hearing4all, Universität Oldenburg
| | - David Hülsmeier
- Medizinische Physik and Cluster of Excellence Hearing4all, Universität Oldenburg
| | - Anna Warzybok
- Medizinische Physik and Cluster of Excellence Hearing4all, Universität Oldenburg
| | - Birger Kollmeier
- Medizinische Physik and Cluster of Excellence Hearing4all, Universität Oldenburg
| |
Collapse
|
79
|
Matas CG, Padilha FYOMM, Angrisani RMG, Samelli AG. Oxidative Stress as a Risk Factor for Hearing Changes in HIV-positive Normal Listeners. Clinics (Sao Paulo) 2020; 75:e1845. [PMID: 33263619 PMCID: PMC7654961 DOI: 10.6061/clinics/2020/e1845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/24/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Human immunodeficiency virus-positive (HIV+) individuals can experience a decrease in antioxidants. Such deficiency can make inner ear cells and synapses more vulnerable to oxidative stress, resulting in auditory alterations, even in the presence of normal thresholds. This study aims to compare the audiological findings of HIV+ patients (with and without exposure to anti-retroviral treatment) to those of healthy individuals. METHODS This was a cross-sectional observational study, comprising 42 normal-hearing adults divided into the Control Group (CG), without HIV; Group I (GI), HIV+, without exposure to the highly active anti-retroviral therapy (HAART); Group II (GII), HIV+, with exposure to HAART. All participants underwent conventional audiometry (0.25-8 kHz), high-frequency audiometry (9-20 kHz), transient evoked otoacoustic emissions (TEOAEs), efferent auditory pathway's inhibitory effect assessment, brainstem auditory evoked potentials (BAEPs), and cognitive potential (P300). RESULTS In the comparison of the hearing thresholds between the groups, there was a statistically significant difference for most of the frequencies assessed (GII presented hearing thresholds significantly poor when compared with other groups). The presence of TEOAE and the inhibitory effect was also verified in a significantly higher number of individuals in the CG than in the other groups. As for the BAEP, there was a statistically significant difference for the interpeak intervals I-V (GII showed higher values when compared with CG). For P300, there were no statistically significant differences. CONCLUSION Normal-hearing HIV+ individuals (with and without exposure to HAART) presented with poor performance in the audiological procedures, suggesting the presence of auditory alterations even in the presence of normal-hearing thresholds.
Collapse
Affiliation(s)
- Carla G. Matas
- Curso de Fonoaudiologia, Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding Author. E-mail:
| | | | - Rosanna MG Angrisani
- Curso de Fonoaudiologia, Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Alessandra G. Samelli
- Curso de Fonoaudiologia, Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
80
|
Temporal Coding of Single Auditory Nerve Fibers Is Not Degraded in Aging Gerbils. J Neurosci 2019; 40:343-354. [PMID: 31719164 DOI: 10.1523/jneurosci.2784-18.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 02/03/2023] Open
Abstract
People suffering from age-related hearing loss typically present with deficits in temporal processing tasks. Temporal processing deficits have also been shown in single-unit studies at the level of the auditory brainstem, midbrain, and cortex of aged animals. In this study, we explored whether temporal coding is already affected at the level of the input to the central auditory system. Single-unit auditory nerve fiber recordings were obtained from 41 Mongolian gerbils of either sex, divided between young, middle-aged, and old gerbils. Temporal coding quality was evaluated as vector strength in response to tones at best frequency, and by constructing shuffled and cross-stimulus autocorrelograms, and reverse correlations, from responses to 1 s noise bursts at 10-30 dB sensation level (dB above threshold). At comparable sensation levels, all measures showed that temporal coding was not altered in auditory nerve fibers of aging gerbils. Furthermore, both temporal fine structure and envelope coding remained unaffected. However, spontaneous rates were decreased in aging gerbils. Importantly, despite elevated pure tone thresholds, the frequency tuning of auditory nerve fibers was not affected. These results suggest that age-related temporal coding deficits arise more centrally, possibly due to a loss of auditory nerve fibers (or their peripheral synapses) but not due to qualitative changes in the responses of remaining auditory nerve fibers. The reduced spontaneous rate and elevated thresholds, but normal frequency tuning, of aged auditory nerve fibers can be explained by the well known reduction of endocochlear potential due to strial dysfunction in aged gerbils.SIGNIFICANCE STATEMENT As our society ages, age-related hearing deficits become ever more prevalent. Apart from decreased hearing sensitivity, elderly people often suffer from a reduced ability to communicate in daily settings, which is thought to be caused by known age-related deficits in auditory temporal processing. The current study demonstrated, using several different stimuli and analysis techniques, that these putative temporal processing deficits are not apparent in responses of single-unit auditory nerve fibers of quiet-aged gerbils. This suggests that age-related temporal processing deficits may develop more central to the auditory nerve, possibly due to a reduced population of active auditory nerve fibers, which will be of importance for the development of treatments for age-related hearing disorders.
Collapse
|
81
|
Bastianelli M, Mark AE, McAfee A, Schramm D, Lefrançois R, Bromwich M. Adult validation of a self-administered tablet audiometer. J Otolaryngol Head Neck Surg 2019; 48:59. [PMID: 31699157 PMCID: PMC6839098 DOI: 10.1186/s40463-019-0385-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/22/2019] [Indexed: 11/26/2022] Open
Abstract
Background There is evidence to suggest that rates of hearing loss are increasing more rapidly than the capacity of traditional audiometry resources for screening. A novel innovation in tablet, self-administered portable audiometry has been proposed as a solution to this discordance. The primary objective of this study was to validate a tablet audiometer with adult patients in a clinical setting. Secondarily, word recognition with a tablet audiometer was compared against conventional audiometry. Methods Three distinct prospective adult cohorts underwent testing. In group 1 and group 2 testing with the automated tablet audiometer was compared to standard sound booth audiometry. In Group 1, participants’ pure tone thresholds were measured with an automated tablet audiometer in a quiet clinic exam room. In Group 2, participants completed monosyllabic word recognition testing using the NU-6 word lists. In Group 3, internal reliability was tested by having participants perform two automated tablet audiometric evaluation in sequence. Results Group 1 included 40 patients mean age was 54.7 ± 18.4 years old and 60% female; Group 2 included 44 participants mean age was 55.2 ± 14.8 years old and 68.2% female; Group 3 included 40 participants with mean age of 39.4 + 15.9 years old and 60.5% female. In Group 1, compared to standard audiometry, 95.7% (95% CI: 92.6–98.9%) of thresholds were within 10 dB. In Group 2, comparing word recognition results, 96.2% (95% CI: 89.5–98.7%) were clinically equivalent and within a critical difference range. In Group 3, One-way Intraclass Correlation for agreement for the both left- and right-ear pure tone average was 0.98. The mean difference between repeat assessments was 0 (SD = 2.1) in the left ear, and 0.1 (SD = 1.1) in the right ear. Conclusion Puretone audiometry and word recognition testing appears valid when performed by non-healthcare experts using a tablet audiometer outside a sound booth in a quiet environment. Trial registration ClinicalTrials.gov Identifier: NCT02761798. Registered April, 2016 < https://clinicaltrials.gov/ct2/show/NCT02761798>
Collapse
Affiliation(s)
- Mark Bastianelli
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada. .,Department of Otolaryngology - Head and Neck Surgery, The Ottawa Hospital, Ottawa, Ontario, Canada. .,Department of Otolaryngology - Head and Neck Surgery, University of Ottawa, Ottawa, Ontario, Canada. .,Division of Pediatric Otolaryngology - Head and Neck Surgery, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.
| | - Amy E Mark
- Children's Hospital of Easter Ontario Research Institute, Ottawa, Canada.,SHOEBOX Inc, Ottawa, Ontario, Canada
| | - Arran McAfee
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Otolaryngology - Head and Neck Surgery, The Ottawa Hospital, Ottawa, Ontario, Canada.,Department of Otolaryngology - Head and Neck Surgery, University of Ottawa, Ottawa, Ontario, Canada
| | - David Schramm
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Otolaryngology - Head and Neck Surgery, The Ottawa Hospital, Ottawa, Ontario, Canada.,Department of Otolaryngology - Head and Neck Surgery, University of Ottawa, Ottawa, Ontario, Canada.,Division of Pediatric Otolaryngology - Head and Neck Surgery, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.,Children's Hospital of Easter Ontario Research Institute, Ottawa, Canada.,Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Matthew Bromwich
- Department of Otolaryngology - Head and Neck Surgery, The Ottawa Hospital, Ottawa, Ontario, Canada.,Department of Otolaryngology - Head and Neck Surgery, University of Ottawa, Ottawa, Ontario, Canada.,Division of Pediatric Otolaryngology - Head and Neck Surgery, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.,Children's Hospital of Easter Ontario Research Institute, Ottawa, Canada.,SHOEBOX Inc, Ottawa, Ontario, Canada
| |
Collapse
|
82
|
Ohlemiller KK. Mouse methods and models for studies in hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3668. [PMID: 31795658 DOI: 10.1121/1.5132550] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Laboratory mice have become the dominant animal model for hearing research. The mouse cochlea operates according to standard "mammalian" principles, uses the same cochlear cell types, and exhibits the same types of injury as found in other mammals. The typical mouse lifespan is less than 3 years, yet the age-associated pathologies that may be found are quite similar to longer-lived mammals. All Schuknecht's types of presbycusis have been identified in existing mouse lines, some favoring hair cell loss while others favor strial degeneration. Although noise exposure generally affects the mouse cochlea in a manner similar to other mammals, mice appear more prone to permanent alterations to hair cells or the organ of Corti than to hair cell loss. Therapeutic compounds may be applied systemically or locally through the tympanic membrane or onto (or through) the round window membrane. The thinness of the mouse cochlear capsule and annular ligament may promote drug entry from the middle ear, although an extremely active middle ear lining may quickly remove most drugs. Preclinical testing of any therapeutic will always require tests in multiple animal models. Mice constitute one model providing supporting evidence for any therapeutic, while genetically engineered mice can test hypotheses about mechanisms.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, Saint Louis, Missouri 63110, USA
| |
Collapse
|
83
|
Lin X, Li G, Zhang Y, Zhao J, Lu J, Gao Y, Liu H, Li GL, Yang T, Song L, Wu H. Hearing consequences in Gjb2 knock-in mice: implications for human p.V37I mutation. Aging (Albany NY) 2019; 11:7416-7441. [PMID: 31562289 PMCID: PMC6782001 DOI: 10.18632/aging.102246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/22/2019] [Indexed: 01/09/2023]
Abstract
Human p.V37I mutation of GJB2 gene was strongly correlated with late-onset progressive hearing loss, especially among East Asia populations. We generated a knock-in mouse model based on human p.V37I variant (c.109G>A) that recapitulated the human phenotype. Cochlear pathology revealed no significant hair cell loss, stria vascularis atrophy or spiral ganglion neuron loss, but a significant change in the length of gap junction plaques, which may have contributed to the observed mild endocochlear potential (EP) drop in homozygous mice lasting lifetime. The cochlear amplification in homozygous mice was compromised, but outer hair cells' function remained unchanged, indicating that the reduced amplification was EP- rather than prestin-generated. In addition to ABR threshold elevation, ABR wave I latencies were also prolonged in aged homozygous animals. We found in homozygous IHCs a significant increase in ICa but no change in Ca2+ efficiency in triggering exocytosis. Environmental insults such as noise exposure, middle ear injection of KCl solution and systemic application of furosemide all exacerbated the pathological phenotype in homozygous mice. We conclude that this Gjb2 mutation-induced hearing loss results from 1) reduced cochlear amplifier caused by lowered EP, 2) IHCs excitotoxicity associated with potassium accumulation around hair cells, and 3) progression induced by environmental insults.
Collapse
Affiliation(s)
- Xin Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Gen Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Yu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Jingjing Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Jiawen Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Yunge Gao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Huihui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Geng-Lin Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Tao Yang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| |
Collapse
|
84
|
Kraaijenga VJC, van Munster JJCM, van Zanten GA. Association of Behavior With Noise-Induced Hearing Loss Among Attendees of an Outdoor Music Festival: A Secondary Analysis of a Randomized Clinical Trial. JAMA Otolaryngol Head Neck Surg 2019; 144:490-497. [PMID: 29710132 DOI: 10.1001/jamaoto.2018.0272] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance To date, factors associated with noise-induced hearing loss at music festivals have not yet been analyzed in a single comprehensive data set. In addition, little is known about the hearing loss-associated behavior of music festival attendees. Objectives To assess which factors are associated with the occurrence of a temporary threshold shift (TTS) after music exposure and to investigate the behavior of music festival attendees. Design, Setting, and Participants This prospective post hoc analysis gathered data from a randomized, single-blind clinical trial conducted on September 5, 2015, at an outdoor music festival in Amsterdam, the Netherlands. Adult volunteers with normal hearing were recruited via social media from August 26 through September 3, 2015. Intention to use earplugs was an exclusion criterion. Of 86 volunteers assessed, 51 were included. This post hoc analysis was performed from October 3, 2016, through February 27, 2017. Interventions Music festival visit for 4.5 hours. Main Outcomes and Measures The primary outcome was a TTS on a standard audiogram for the frequencies 3.0- and 4.0-kHz. Multivariable linear regression was performed to determine which factors are associated with a TTS. A questionnaire on behavior, hearing, and tinnitus was distributed to the participants before and after the festival visit. Results A total of 51 participants were included (18 men [35%] and 33 women [65%]) with a mean (SD) age of 27 (6) years. Mean (SD) threshold change across 3.0 and 4.0 kHz was 5.4 (5.7) dB for the right ear and 4.0 (6.1) dB for the left ear. Earplug use (absolute difference in the left ear, -6.0 dB [95% CI, -8.7 to -3.2 dB]; in the right ear, -6.4 dB [95% CI, -8.8 to -4.1 dB]), quantity of alcohol use (absolute difference per unit in the left ear, 1.1 dB [95% CI, 0.5 to 1.7 dB]; in the right ear, 0.7 dB [95% CI, 0.1 to 1.4 dB]), drug use (absolute difference in the right ear, 6.0 dB [95% CI, 0.9 to 11.1 dB]), and male sex (absolute difference in the right ear, 4.1 dB [95% CI, 0.3 to 5.9 dB]) were independently associated with hearing loss, with earplug use being the most important factor. Unprotected participants reported significantly worse subjective hearing performance and tinnitus after the festival visit than did participants using earplugs (Cramer V, 0.62 [95% CI, 0.47-0.79] and 0.39 [95% CI, 0.16-0.62], respectively). In the earplug group, the perceived loudness (r = -0.72; 95% CI, -1.00 to -0.43) and appreciation (r = 0.53; 95% CI, 0.29 to 0.78) of music and speech perception (r = 0.21; 95% CI, 0.09 to 0.35) were correlated with the duration of earplug use. Conclusions and Relevance The present study identified nonuse of earplugs, use of alcohol and drugs, and male sex as associated with a TTS at an outdoor music festival. Physicians should consider these factors to raise awareness about the combined risk of attending music festivals without using earplugs while consuming alcohol and/or drugs. The intention to use earplugs was correlated with the loudness and appreciation of music with earplugs, which may advocate for the use of personalized earplugs. Trial Registration trialregister.nl Identifier: NTR5401.
Collapse
Affiliation(s)
- Véronique J C Kraaijenga
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.,Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J J C M van Munster
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - G A van Zanten
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.,Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
85
|
Lin S, Lin X, Ye S, Lin Y, Shu B, Hu J, Lin D. Is there "hidden hearing loss" in patients with chronic rhinosinusitis? Int J Audiol 2019; 59:124-131. [PMID: 31522578 DOI: 10.1080/14992027.2019.1658906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: This study was to investigate whether there is impairment of auditory function in chronic rhinosinusitis (CRS).Study sample: A total of 85 patients were allocated into either the CRS group (n = 65) or a simple deviated nasal septum group (n = 20). Both groups without other risk factors for sensorineural hearing loss exhibited normal thresholds at standard audiometric frequencies. Another group (n = 30) of healthy subjects without CRS or a deviated nasal septum were gender and age matched.Design: Analyse the results of audiology test including pure tone audiometry, an acoustic impedance test, distortion product otoacoustic emissions (DPOAE) and the auditory brainstem response (ABR) for each subject analyse the test results of for each object.Results: The group differences were statistically significant for each high-frequency pure tone (p < 0.05). The ABR showed a difference between groups in amplitude. The DPOAE pass rate of the CRS group was lower than that of the control group.Conclusions: This study showed a significant correlation between CRS and auditory impairment. CRS might impair cochlear functions by damaging inner ear hair cells and/or, outer hair cells (OHCs), consequently altering the activity of the entire auditory pathway originating in the ventral cochlear nucleus (VCN) to the inferior colliculus.
Collapse
Affiliation(s)
- Shaolian Lin
- Department of Otolaryngology, First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Xi Lin
- Department of Otolaryngology, First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Shengnan Ye
- Department of Otolaryngology, First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Youhui Lin
- Department of Otolaryngology, First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Bo Shu
- Department of Otolaryngology, First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Jie Hu
- Department of Otolaryngology, First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Dingding Lin
- Department of Otolaryngology, First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| |
Collapse
|
86
|
Bhatt IS, Wang J. Evaluation of dichotic listening performance in normal-hearing, noise-exposed young females. Hear Res 2019; 380:10-21. [PMID: 31167151 DOI: 10.1016/j.heares.2019.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/07/2019] [Accepted: 05/26/2019] [Indexed: 10/26/2022]
Abstract
Recent animal studies have shown that intense noise exposures that produce robust temporary threshold shift (TTS) can inflict irreversible damage to the synaptic connections between the inner hair cells and auditory neurons. It was hypothesized that noise-induced cochlear synaptopathy may cause impaired acoustic encoding in the central auditory nervous system leading to impaired speech perception, particularly in challenging listening situations. The aim of the study was to evaluate the influence of high noise exposure background (NEB) on dichotic listening performance, speech-in-noise performance, and auditory brainstem responses (ABR) measured in young females with normal audiograms. The central hypothesis was that individuals with high NEB would exhibit reduced ABR wave I amplitude and subsequently would exhibit poorer performance on speech-in-noise and dichotic listening. In a sample of 32 females (14 with high NEB and 18 with low NEB) aged 18-35 years, the study compared behavioral hearing thresholds (from 250 to 16000 Hz), distortion-product otoacoustic emissions (DPOAEs, 1000-16000 Hz), click-evoked ABR, QuickSIN signal-to-noise ratio (SNR) loss and dichotic digit test (DDT). The results showed no clear association between NEB, and hearing thresholds, DPOAEs, click-evoked ABR measures, and QuickSIN SNR loss. Individuals with high NEB revealed significantly lower DDT scores and evidence of reduced right ear advantage compared to individuals with low NEB. The poorer performance in DDT and the ear asymmetry in DDT scores with normal ABR findings suggest that high NEB might alter the hemispheric organization of speech-sound processing and cognitive control. The clinical significance of the present findings is discussed.
Collapse
Affiliation(s)
- Ishan Sunilkumar Bhatt
- Department of Communication Sciences & Disorders, Northern Arizona University, Flagstaff, AZ, 86011, USA.
| | - Jin Wang
- Department of Mathematics & Statistics, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
87
|
Otsuka S, Nakagawa S, Furukawa S. Relationship between cochlear mechanics and speech-in-noise reception performance. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:EL265. [PMID: 31590549 DOI: 10.1121/1.5125008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Some normal-hearing listeners report difficulties in speech perception in noisy environments, and the cause is not well understood. The present study explores the correlation between speech-in-noise reception performance and cochlear mechanical characteristics, which were evaluated using a principal component analysis of the otoacoustic emission (OAE) spectra. A principal component, specifically a characteristic dip at around 2-2.5 kHz in OAE spectra, correlated with speech reception thresholds in noise but not in quiet. The results suggest that subclinical cochlear dysfunction specifically contributes to difficulties in speech perception in noisy environments, which is possibly a new form of "hidden hearing deficits."
Collapse
Affiliation(s)
- Sho Otsuka
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inageku, Chiba-shi, Chiba Pref., 263-8522 Japan
| | - Seiji Nakagawa
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inageku, Chiba-shi, Chiba Pref., 263-8522 Japan
| | - Shigeto Furukawa
- NTT Communication Science Laboratories, NTT Corporation, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa Pref., 243-0198, , ,
| |
Collapse
|
88
|
Encina-Llamas G, Harte JM, Dau T, Shinn-Cunningham B, Epp B. Investigating the Effect of Cochlear Synaptopathy on Envelope Following Responses Using a Model of the Auditory Nerve. J Assoc Res Otolaryngol 2019; 20:363-382. [PMID: 31102010 PMCID: PMC6646444 DOI: 10.1007/s10162-019-00721-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
The healthy auditory system enables communication in challenging situations with high levels of background noise. Yet, despite normal sensitivity to pure tones, many listeners complain about having difficulties in such situations. Recent animal studies demonstrated that noise overexposure that produces temporary threshold shifts can cause the loss of auditory nerve (AN) fiber synapses (i.e., cochlear synaptopathy, CS), which appears to predominantly affect medium- and low-spontaneous rate (SR) fibers. In the present study, envelope following response (EFR) magnitude-level functions were recorded in normal hearing (NH) threshold and mildly hearing-impaired (HI) listeners with thresholds elevated above 2 kHz. EFRs were elicited by sinusoidally amplitude modulated (SAM) tones presented in quiet with a carrier frequency of 2 kHz, modulated at 93 Hz, and modulation depths of 0.85 (deep) and 0.25 (shallow). While EFR magnitude-level functions for deeply modulated tones were similar for all listeners, EFR magnitudes for shallowly modulated tones were reduced at medium stimulation levels in some NH threshold listeners and saturated in all HI listeners for the whole level range. A phenomenological model of the AN was used to investigate the extent to which hair-cell dysfunction and/or CS could explain the trends observed in the EFR data. Hair-cell dysfunction alone, including postulated elevated hearing thresholds at extended high frequencies (EHF) beyond 8 kHz, could not account for the recorded EFR data. Postulated CS led to simulations generally consistent with the recorded data, but a loss of all types of AN fibers was required within the model framework. The effects of off-frequency contributions (i.e., away from the characteristic place of the stimulus) and the differential loss of different AN fiber types on EFR magnitude-level functions were analyzed. When using SAM tones in quiet as the stimulus, model simulations suggested that (1) EFRs are dominated by the activity of high-SR fibers at all stimulus intensities, and (2) EFRs at medium-to-high stimulus levels are dominated by off-frequency contributions.
Collapse
Affiliation(s)
- Gerard Encina-Llamas
- Hearing Systems section, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark.
| | - James M Harte
- Interacoustics Research Unit, Kongens Lyngby, Denmark
| | - Torsten Dau
- Hearing Systems section, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Barbara Shinn-Cunningham
- Carnegie Mellon Neuroscience Institute, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Bastian Epp
- Hearing Systems section, Department of Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| |
Collapse
|
89
|
Camera S, Tufts J, Skoe E. Noise Exposure and Background Noise Tolerance in Listeners With Normal Audiograms. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:2564-2570. [PMID: 31260373 DOI: 10.1044/2018_jslhr-h-18-0245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Purpose Tolerance for background noise when listening to speech has been found to vary greatly between individuals, despite clinically similar audiograms. Recent work suggests that listeners at risk for noise-induced hearing loss (NIHL) self-report greater annoyance of background sounds compared with listeners at lower risk for NIHL. To date, the relationship between noise exposure levels and background noise tolerance has not been studied using objective noise exposure level measurements and quantitative (i.e., not questionnaire-based) background noise tolerance measures. Method Acceptable Noise Level (ANL; Nabelek, Tucker, & Letowski, 1991) scores and week-long noise dosimetry measurements were obtained for 56 normal-hearing college students, 22 of whom were routinely exposed to levels of noise that exceed recommended exposure limits (higher risk). The remaining 34 participants did not exceed recommended exposure limits (lower risk). Results The lower risk group's average daily noise dose was 26%, whereas the higher risk group accrued an average daily noise dose of 461%. The lower risk group was found to be more tolerant of background noise than the higher risk group, with mean ANL scores of 3.1 dB and 5.4 dB signal-to-noise ratio, respectively. A small but statistically significant relationship between ANL and noise dose was found, indicating that higher levels of noise exposure were associated with lower background noise tolerance. Conclusions Results suggest that young adults at higher risk for NIHL based on objective noise exposure data have a slightly lower tolerance for background noise when listening to speech. These findings open avenues for future work on background noise tolerance in more diverse noise-exposed populations.
Collapse
Affiliation(s)
- Sarah Camera
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs
- The Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs
| | - Jennifer Tufts
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs
| | - Erika Skoe
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs
- The Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs
| |
Collapse
|
90
|
Bharadwaj HM, Mai AR, Simpson JM, Choi I, Heinz MG, Shinn-Cunningham BG. Non-Invasive Assays of Cochlear Synaptopathy - Candidates and Considerations. Neuroscience 2019; 407:53-66. [PMID: 30853540 DOI: 10.1016/j.neuroscience.2019.02.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/31/2022]
Abstract
Studies in multiple species, including in post-mortem human tissue, have shown that normal aging and/or acoustic overexposure can lead to a significant loss of afferent synapses innervating the cochlea. Hypothetically, this cochlear synaptopathy can lead to perceptual deficits in challenging environments and can contribute to central neural effects such as tinnitus. However, because cochlear synaptopathy can occur without any measurable changes in audiometric thresholds, synaptopathy can remain hidden from standard clinical diagnostics. To understand the perceptual sequelae of synaptopathy and to evaluate the efficacy of emerging therapies, sensitive and specific non-invasive measures at the individual patient level need to be established. Pioneering experiments in specific mice strains have helped identify many candidate assays. These include auditory brainstem responses, the middle-ear muscle reflex, envelope-following responses, and extended high-frequency audiograms. Unfortunately, because these non-invasive measures can be also affected by extraneous factors other than synaptopathy, their application and interpretation in humans is not straightforward. Here, we systematically examine six extraneous factors through a series of interrelated human experiments aimed at understanding their effects. Using strategies that may help mitigate the effects of such extraneous factors, we then show that these suprathreshold physiological assays exhibit across-individual correlations with each other indicative of contributions from a common physiological source consistent with cochlear synaptopathy. Finally, we discuss the application of these assays to two key outstanding questions, and discuss some barriers that still remain. This article is part of a Special Issue entitled: Hearing Loss, Tinnitus, Hyperacusis, Central Gain.
Collapse
Affiliation(s)
- Hari M Bharadwaj
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN.
| | - Alexandra R Mai
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN
| | - Jennifer M Simpson
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN
| | - Inyong Choi
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA
| | - Michael G Heinz
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | | |
Collapse
|
91
|
Ishikawa M, García-Mateo N, Čusak A, López-Hernández I, Fernández-Martínez M, Müller M, Rüttiger L, Singer W, Löwenheim H, Kosec G, Fujs Š, Martínez-Martínez L, Schimmang T, Petković H, Knipper M, Durán-Alonso MB. Lower ototoxicity and absence of hidden hearing loss point to gentamicin C1a and apramycin as promising antibiotics for clinical use. Sci Rep 2019; 9:2410. [PMID: 30787404 PMCID: PMC6382871 DOI: 10.1038/s41598-019-38634-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/29/2018] [Indexed: 11/08/2022] Open
Abstract
Spread of antimicrobial resistance and shortage of novel antibiotics have led to an urgent need for new antibacterials. Although aminoglycoside antibiotics (AGs) are very potent anti-infectives, their use is largely restricted due to serious side-effects, mainly nephrotoxicity and ototoxicity. We evaluated the ototoxicity of various AGs selected from a larger set of AGs on the basis of their strong antibacterial activities against multidrug-resistant clinical isolates of the ESKAPE panel: gentamicin, gentamicin C1a, apramycin, paromomycin and neomycin. Following local round window application, dose-dependent effects of AGs on outer hair cell survival and compound action potentials showed gentamicin C1a and apramycin as the least toxic. Strikingly, although no changes were observed in compound action potential thresholds and outer hair cell survival following treatment with low concentrations of neomycin, gentamicin and paromomycin, the number of inner hair cell synaptic ribbons and the compound action potential amplitudes were reduced. This indication of hidden hearing loss was not observed with gentamicin C1a or apramycin at such concentrations. These findings identify the inner hair cells as the most vulnerable element to AG treatment, indicating that gentamicin C1a and apramycin are promising bases for the development of clinically useful antibiotics.
Collapse
Affiliation(s)
- Masaaki Ishikawa
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), University of Tübingen, Tübingen, Germany
- Graduate School of Medicine, Department of Otolaryngology, Kyoto University, Kyoto, Japan
| | - Nadia García-Mateo
- Institute of Biology and Molecular Genetics (IBGM), University of Valladolid-CSIC, Valladolid, Spain
| | | | - Iris López-Hernández
- Institute of Biology and Molecular Genetics (IBGM), University of Valladolid-CSIC, Valladolid, Spain
| | - Marta Fernández-Martínez
- University Hospital Marqués de Valdecilla IDIVAL, Santander, Spain
- Universidad de Cantabria, Santander, Spain
| | - Marcus Müller
- Department of Otorhinolaryngology, Tübingen Hearing Research Centre (THRC), Regenerative Medicine, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), University of Tübingen, Tübingen, Germany
| | - Hubert Löwenheim
- Department of Otorhinolaryngology, Tübingen Hearing Research Centre (THRC), Regenerative Medicine, University of Tübingen, Tübingen, Germany
| | | | | | - Luis Martínez-Martínez
- Unit of Microbiology, University Hospital Reina Sofía, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Microbiology, University of Córdoba, Córdoba, Spain
| | - Thomas Schimmang
- Institute of Biology and Molecular Genetics (IBGM), University of Valladolid-CSIC, Valladolid, Spain
| | - Hrvoje Petković
- Acies Bio d.o.o., Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Marlies Knipper
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), University of Tübingen, Tübingen, Germany.
| | - M Beatriz Durán-Alonso
- Institute of Biology and Molecular Genetics (IBGM), University of Valladolid-CSIC, Valladolid, Spain.
| |
Collapse
|
92
|
Guest H, Munro KJ, Prendergast G, Plack CJ. Reliability and interrelations of seven proxy measures of cochlear synaptopathy. Hear Res 2019; 375:34-43. [PMID: 30765219 PMCID: PMC6423440 DOI: 10.1016/j.heares.2019.01.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 12/25/2022]
Abstract
Investigations of cochlear synaptopathy in living humans rely on proxy measures of auditory nerve function. Numerous procedures have been developed, typically based on the auditory brainstem response (ABR), envelope-following response (EFR), or middle-ear-muscle reflex (MEMR). Validation is challenging, due to the absence of a gold-standard measure in humans. Some metrics correlate with synaptic survival in animal models, but translation between species is not straightforward; measurements in humans are likely to reflect greater error and greater variability from non-synaptopathic sources. The present study assessed the reliability of seven measures, as well as testing for correlations between them. Thirty-one young women with normal audiograms underwent repeated measurements of ABR wave I amplitude, ABR wave I growth, ABR wave V latency shift in noise, EFR amplitude, EFR growth with stimulus modulation depth, MEMR threshold, and an MEMR across-frequency difference measure. Intraclass correlation coefficients for ABR wave I amplitude, EFR amplitude, and MEMR threshold ranged from 0.85 to 0.93, suggesting that such tests can yield highly reliable results, given careful measurement techniques. The ABR and EFR difference measures exhibited only poor-to-moderate reliability. No significant correlations, nor any consistent trends, were observed between the various measures, providing no indication that these metrics reflect the same underlying physiological processes. Findings suggest that many proxy measures of cochlear synaptopathy should be regarded with caution, at least when employed in young adults with normal audiograms. Given careful measurement techniques, ABR and EFR amplitudes can be highly reliable. The same is true of MEMR thresholds and MEMR across-frequency threshold difference. Differential ABR and EFR measures exhibit only poor-to-moderate reliability. Correlations between measures are not evident in young people with normal audiograms. Proxy measures of synaptopathy in this population should be regarded with caution.
Collapse
Affiliation(s)
- Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK.
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK; Manchester University NHS Foundation Trust, UK
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK; Department of Psychology, Lancaster University, UK
| |
Collapse
|
93
|
Wang J, Yin S, Chen H, Shi L. Noise-Induced Cochlear Synaptopathy and Ribbon Synapse Regeneration: Repair Process and Therapeutic Target. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1130:37-57. [PMID: 30915700 DOI: 10.1007/978-981-13-6123-4_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The synapse between the inner hair cells (IHCs) and the spiral ganglion neurons (SGNs) in mammalian cochleae is characterized as having presynaptic ribbons and therefore is called ribbon synapse. The special molecular organization is reviewed in this chapter in association with the functional feature of this synapse in signal processing. This is followed by the review on noise-induced damage to this synapse with a focus on recent reports in animal models in which the effect of brief noise exposures is observed without causing significant permanent threshold shift (PTS). In this regard, the potential mechanism of the synaptic damage by noise and the impact of this damage on hearing are summarized to clarify the concept of noise-induced hidden hearing loss, which is defined as the functional deficits in hearing without threshold elevation. A controversial issue is addressed in this review as whether the disrupted synapses can be regenerated. Moreover, the review summarizes the work of therapeutic research to protect the synapses or to promote the regeneration of the synapse after initial disruption. Lastly, several unresolved issues are raised for investigation in the future.
Collapse
Affiliation(s)
- Jian Wang
- School of Communication Science and Disorders, Dalhousie University, Halifax, NS, Canada.
| | - Shankai Yin
- Otolaryngology Research Institute, 6th Affiliated Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | - Hengchao Chen
- Otolaryngology Research Institute, 6th Affiliated Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | - Lijuan Shi
- Department of Physiology, Medical College of Southeast University, Nanjing, China
| |
Collapse
|
94
|
Abstract
Pure tone audiometry is a routine clinical examination used to identify hearing loss. A normal pure tone audiogram is usually taken as evidence of normal hearing. Auditory deficits detected in subjects with normal audiograms, such as poor sound discrimination and auditory perceptual disorders, are generally attributed to central problems. Does the pure tone audiogram truly reflect cochlear status? Recent evidence suggests that individuals with normal audiogram may still have reduced peripheral auditory responses but normal central responses, indicating that the pure tone audiometry may not detect some types of cochlear injuries. In the cochlea, the outer hair cells (OHCs), inner hair cells (IHCs), and the spiral ganglion neurons that synapse with IHCs are the 3 key cochlear components in transducing acoustical vibrations into the neural signals. This report reviews three types of cochlear damage identified in laboratory animals that may not lead to overt hearing loss. The first type of cochlear impairment, such as missing a certain proportion of IHCs without damage to OHCs, may reduce the cochlear output and elevate response threshold; however, the reduced peripheral auditory sensitivity may be restored along the auditory pathway via central gain enhancement. The second type of cochlear impairment, such as selective damage to the synapses of the high-threshold thin auditory nerve fibers (ANFs), reduces cochlear output at high stimulation levels with no effect on response threshold. In this case the reduced cochlear output may be compensated along the auditory pathway as well. The third type of cochlear impairment, such as missing a certain number of OHCs without damage to others, may not even affect cochlear function at all. These “hidden” cochlear impairments do not result in overt hearing loss, but they may increase the vulnerability of the cochlea to traumatic exposure and lead to disrupted central auditory processing.
Collapse
|
95
|
Le Prell CG. Effects of noise exposure on auditory brainstem response and speech-in-noise tasks: a review of the literature. Int J Audiol 2018; 58:S3-S32. [DOI: 10.1080/14992027.2018.1534010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Colleen G. Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
96
|
|
97
|
Investigating peripheral sources of speech-in-noise variability in listeners with normal audiograms. Hear Res 2018; 371:66-74. [PMID: 30504092 DOI: 10.1016/j.heares.2018.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/25/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022]
Abstract
A current initiative in auditory neuroscience research is to better understand why some listeners struggle to perceive speech-in-noise (SIN) despite having normal hearing sensitivity. Various hypotheses regarding the physiologic bases of this disorder have been proposed. Notably, recent work has suggested that the site of lesion underlying SIN deficits in normal hearing listeners may be either in "sub-clinical" outer hair cell damage or synaptopathic degeneration at the inner hair cell-auditory nerve fiber synapse. In this study, we present a retrospective investigation of these peripheral sources and their relationship with SIN performance variability in one of the largest datasets of young normal-hearing listeners presented to date. 194 participants completed detailed case history questionnaires assessing noise exposure, SIN complaints, tinnitus, and hyperacusis. Standard and extended high frequency audiograms, distortion product otoacoustic emissions, click-evoked auditory brainstem responses, and SIN performance measures were also collected. We found that: 1) the prevalence of SIN deficits in normal hearing listeners was 42% when based on subjective report and 8% when based on SIN performance, 2) hearing complaints and hyperacusis were more common in listeners with self-reported noise exposure histories than controls, 3) neither extended high frequency thresholds nor compound action potential amplitudes differed between noise-exposed and control groups, 4) extended high frequency hearing thresholds and compound action potential amplitudes were not predictive of SIN performance. These results suggest an association between noise exposure and hearing complaints in young, normal hearing listeners; however, SIN performance variability is not explained by peripheral auditory function to the extent that these measures capture subtle physiologic differences between participants.
Collapse
|
98
|
Panza F, Lozupone M, Sardone R, Battista P, Piccininni M, Dibello V, La Montagna M, Stallone R, Venezia P, Liguori A, Giannelli G, Bellomo A, Greco A, Daniele A, Seripa D, Quaranta N, Logroscino G. Sensorial frailty: age-related hearing loss and the risk of cognitive impairment and dementia in later life. Ther Adv Chronic Dis 2018; 10:2040622318811000. [PMID: 31452865 PMCID: PMC6700845 DOI: 10.1177/2040622318811000] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/12/2018] [Indexed: 01/12/2023] Open
Abstract
The peripheral hearing alterations and central auditory processing disorder (CAPD) associated with age-related hearing loss (ARHL), may impact cognitive disorders in older age. In older age, ARHL is also a significant marker for frailty, another age-related multidimensional clinical condition with a nonspecific state of vulnerability, reduced multisystem physiological reserve, and decreased resistance to different stressors (i.e. sensorial impairments, psychosocial stress, diseases, injuries). The multidimensional nature of frailty required an approach based on different pathogeneses because this clinical condition may include sensorial, physical, social, nutritional, cognitive, and psychological phenotypes. In the present narrative review, the cumulative epidemiological evidence coming from several longitudinal population-based studies, suggested convincing links between peripheral ARHL and incident cognitive decline and dementia. Moreover, a few longitudinal case-control and population-based studies also suggested that age-related CAPD in ARHL, may be central in determining an increased risk of incident cognitive decline, dementia, and Alzheimer's disease (AD). Cumulative meta-analytic evidence confirmed cross-sectional and longitudinal association of both peripheral ARHL and age-related CAPD with different domains of cognitive functions, mild cognitive impairment, and dementia, while the association with dementia subtypes such as AD and vascular dementia remained unclear. However, ARHL may represent a modifiable condition and a possible target for secondary prevention of cognitive impairment in older age, social isolation, late-life depression, and frailty. Further research is required to determine whether broader hearing rehabilitative interventions including coordinated counseling and environmental accommodations could delay or halt cognitive and global decline in the oldest old with both ARHL and dementia.
Collapse
Affiliation(s)
- Francesco Panza
- Department of Basic Medical Sciences,
Neurosciences, and Sense Organs, Neurodegenerative Disease Unit, University
of Bari ‘Aldo Moro’, Piazza Giulio Cesare 11, 70100, Bari, Italy
| | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of
Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo
Moro, Bari, Italy
| | - Rodolfo Sardone
- National Institute of Gastroenterology ‘Saverio
de Bellis’, Research Hospital, Castellana Grotte Bari, Italy
| | - Petronilla Battista
- Neurodegenerative Disease Unit, Department of
Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo
Moro, Bari, Italy
- Istituti Clinici Scientifici Maugeri SPA SB,
IRCCS, Institute of Cassano Murge, Bari, Italy
| | - Marco Piccininni
- Neurodegenerative Disease Unit, Department of
Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo
Moro, Bari, Italy
| | - Vittorio Dibello
- National Institute of Gastroenterology ‘Saverio
de Bellis’, Research Hospital, Castellana Grotte Bari, Italy
- Interdisciplinary Department of Medicine (DIM),
Section of Dentistry, University of Bari Aldo Moro, Bari, Italy
| | - Maddalena La Montagna
- Psychiatric Unit, Department of Clinical and
Experimental Medicine, University of Foggia, Foggia, Italy
| | - Roberta Stallone
- Neurodegenerative Disease Unit, Department of
Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo
Moro, Bari, Italy
- National Institute of Gastroenterology ‘Saverio
de Bellis’, Research Hospital, Castellana Grotte Bari, Italy
| | - Pietro Venezia
- Department of Prosthodontics, Section of
Dentistry, University of Catania, Catania, Italy
| | - Angelo Liguori
- Neurodegenerative Disease Unit, Department of
Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo
Moro, Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology ‘Saverio
de Bellis’, Research Hospital, Castellana Grotte Bari, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical and
Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Greco
- Geriatric Unit, Fondazione IRCCS ‘Casa Sollievo
della Sofferenza’, San Giovanni Rotondo, Foggia, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of
Sacred Heart, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli
IRCCS, Rome, Italy
| | - Davide Seripa
- Geriatric Unit, Fondazione IRCCS ‘Casa Sollievo
della Sofferenza’, San Giovanni Rotondo, Foggia, Italy
| | - Nicola Quaranta
- Otolaryngology Unit, University of Bari Aldo
Moro, Bari, Italy
| | - Giancarlo Logroscino
- Neurodegenerative Disease Unit, Department of
Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo
Moro, Bari, Italy
- Neurodegenerative Disease Unit, Department of
Clinical Research in Neurology, University of Bari Aldo Moro, ‘Pia
Fondazione Cardinale G. Panico’, Tricase, Lecce, Italy
| |
Collapse
|
99
|
Chen H, Shi L, Liu L, Yin S, Aiken S, Wang J. Noise-induced Cochlear Synaptopathy and Signal Processing Disorders. Neuroscience 2018; 407:41-52. [PMID: 30267832 DOI: 10.1016/j.neuroscience.2018.09.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/18/2023]
Abstract
Noise-induced hidden hearing loss (NIHHL) has attracted great attention in hearing research and clinical audiology since the discovery of significant noise-induced synaptic damage in the absence of permanent threshold shifts (PTS) in animal models. Although the extant evidence for this damage is based on animal models, NIHHL likely occurs in humans as well. This review focuses on three issues concerning NIHHL that are somewhat controversial: (1) whether disrupted synapses can be re-established; (2) whether synaptic damage and repair are responsible for the initial temporal threshold shifts (TTS) and subsequent recovery; and (3) the relationship between the synaptic damage and repair processes and neural coding deficits. We conclude that, after a single, brief noise exposure, (1) the damaged and the totally destroyed synapses can be partially repaired, but the repaired synapses are functionally abnormal; (2) While deficits are observed in some aspects of neural responses related to temporal and intensity coding in the auditory nerve, we did not find strong evidence for hypothesized coding-in-noise deficits; (3) the sensitivity and the usefulness of the envelope following responses to amplitude modulation signals in detecting cochlear synaptopathy is questionable.
Collapse
Affiliation(s)
- Hengchao Chen
- Otolaryngology Research Institute, 6th Affiliated Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lijuan Shi
- Department of Physiology, Medical College of Southeast University, Nanjing, China
| | - Lijie Liu
- Department of Physiology, Medical College of Southeast University, Nanjing, China
| | - Shankai Yin
- Otolaryngology Research Institute, 6th Affiliated Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Steven Aiken
- School of Communication Sciences and Disorders, Dalhousie University, Halfiax, Canada
| | - Jian Wang
- Otolaryngology Research Institute, 6th Affiliated Hospital, Shanghai Jiao Tong University, Shanghai, China; School of Communication Sciences and Disorders, Dalhousie University, Halfiax, Canada.
| |
Collapse
|
100
|
Bonnard D, Schwalje A, Gantz B, Choi I. Electric and acoustic harmonic integration predicts speech-in-noise performance in hybrid cochlear implant users. Hear Res 2018; 367:223-230. [PMID: 29980380 PMCID: PMC6205699 DOI: 10.1016/j.heares.2018.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 11/15/2022]
Abstract
BACKGROUND Pitch perception of complex tones relies on place or temporal fine structure-based mechanisms from resolved harmonics and the temporal envelope of unresolved harmonics. Combining this information is essential for speech-in-noise performance, as it allows segregation of a target speaker from background noise. In hybrid cochlear implant (H-CI) users, low frequency acoustic hearing should provide pitch from resolved harmonics while high frequency electric hearing should provide temporal envelope pitch from unresolved harmonics. How the acoustic and electric auditory inputs interact for H-CI users is largely unknown. Harmonicity and inharmonicity are emergent features of sound in which overtones are concordant or discordant with the fundamental frequency. We hypothesized that some H-CI users would be able to integrate acoustic and electric information for complex tone pitch perception, and that this ability would be correlated with speech-in-noise performance. In this study, we used perception of inharmonicity to demonstrate this integration. METHODS Fifteen H-CI users with only acoustic hearing below 500 Hz, only electric hearing above 2 kHz, and more than 6 months CI experience, along with eighteen normal hearing (NH) controls, were presented with harmonic and inharmonic sounds. The stimulus was created with a low frequency component, corresponding with the H-CI user's acoustic hearing (fundamental frequency between 125 and 174 Hz), and a high frequency component, corresponding with electric hearing. Subjects were asked to identify the more inharmonic sound, which requires the perceptual integration of the low and high components. Speech-in-noise performance was tested in both groups using the California Consonant Test (CCT), and perception of Consonant-Nucleus-Consonant (CNC) words in quiet and AzBio sentences in noise were tested for the H-CI users. RESULTS Eight of the H-CI subjects (53%), and all of the NH subjects, scored significantly above chance level for at least one subset of the inharmonicity detection task. Inharmonicity detection ability, but not age or pure tone average, predicted speech scores in a linear model. These results were significantly correlated with speech scores in both quiet and noise for H-CI users, but not with speech in noise performance for NH listeners. Musical experience predicted inharmonicity detection ability, but did not predict speech performance. CONCLUSIONS We demonstrate integration of acoustic and electric information in H-CI users for complex pitch sensation. The correlation with speech scores in H-CI users might be associated with the ability to segregate a target speaker from background noise using the speaker's fundamental frequency.
Collapse
Affiliation(s)
- Damien Bonnard
- Department of Otolaryngology - Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Adam Schwalje
- Department of Otolaryngology - Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Bruce Gantz
- Department of Otolaryngology - Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Inyong Choi
- Department of Otolaryngology - Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA; Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|