51
|
Mielke D, Wrede A, Schulz-Schaeffer W, Taghizadeh-Waghefi A, Nitsche MA, Rohde V, Liebetanz D. Cathodal transcranial direct current stimulation induces regional, long-lasting reductions of cortical blood flow in rats. Neurol Res 2013; 35:1029-37. [PMID: 23899548 DOI: 10.1179/1743132813y.0000000248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) induces polarity-specific changes of cerebral blood flow (CBF). To determine whether these changes are focally limited or if they incorporate large cortical regions and thus have the potential for a therapeutic application, we investigated the effects of cathodal tDCS on CBF in an established tDCS rat model with particular attention to the spatial extension in CBF changes using laser Doppler blood perfusion imaging (LDI). METHODS Twenty-one Sprague Dawley rats received a single 15-minute session of cathodal tDCS at current intensities of 200, 400, 600, or 700 μA applied over electrode contact areas (ECA) of 3·5, 7·0, 10·5, or 14·0 mm(2). One animal died prior to the stimulation. Cerebral blood flow was measured prior and after tDCS with LDI in three defined regions of interest (ROI) over the stimulated left hemisphere (region anterior to ECA - ROI 1, ECA - ROI 2, region posterior to ECA - ROI 3). RESULTS A regional decrease in CBF was measured after cathodal tDCS, the extent of the decrease depending on the current density applied. The most effective and spatially limited reduction in CBF (up to 50%, lasting as long as 90 minutes) was found after the application of 600 μA over an ECA of 10·5 mm(2). This significant reduction in CBF even lasted up to 90 minutes in distant cortical areas (ROI 1 and 3) that were not directly related to the ECA (ROI 2). DISCUSSION Cathodal tDCS induces a regional, long-lasting, reversible decrease in CBF that is not limited to the region to which tDCS is applied.
Collapse
|
52
|
Ren L, Zhang WA, Fang NY, Wang JX. The influence of electro-acupuncture on neural plasticity in acute cerebral infarction. Neurol Res 2013; 30:985-9. [DOI: 10.1179/174313208x325182] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
53
|
Rosenzweig S, Carmichael ST. Age-dependent exacerbation of white matter stroke outcomes: a role for oxidative damage and inflammatory mediators. Stroke 2013; 44:2579-86. [PMID: 23868277 DOI: 10.1161/strokeaha.113.001796] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE Subcortical white matter stroke (WMS) constitutes up to 30% of all stroke subtypes. Mechanisms of oligodendrocyte and axon injury and repair play a central role in the damage and recovery after this type of stroke, and a comprehensive study of these processes requires a specialized experimental model that is different from common large artery, gray matter stroke models. Diminished recovery from stroke in aged patients implies that damage and repair processes are affected by advanced age, but such effects have not been studied in WMS. METHODS WMS was produced with focal microinjection of the vasoconstrictor N5-(1-iminoethyl)-L-ornithine into the subcortical white matter ventral to the mouse forelimb motor cortex in young adult (2 months), middle-aged (15 months), and aged mice (24 months). RESULTS WMS produced localized oligodendrocyte cell death with higher numbers of apoptotic cells and greater oxidative damage in aged brains than in young-adult brains. Increased expression of monocyte chemotactic protein-1 and tumor necrosis factor-α in motor cortex neurons correlated with a more distributed microglial activation in aged brains 7 days after WMS. At 2 months, aged mice displayed increased white matter atrophy and greater loss of corticostriatal connections compared with young-adult mice. Behavioral testing revealed an age-dependent exacerbation of forelimb motor deficits caused by the stroke, with decreased long-term functional recovery in aged animals. CONCLUSIONS Age has a profound effect on the outcome of WMS, with more prolonged cell death and oxidative damage, increased inflammation, greater secondary white matter atrophy, and a worse behavioral effect in aged versus young-adult mice.
Collapse
Affiliation(s)
- Shira Rosenzweig
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
54
|
A behavioral method for identifying recovery and compensation: Hand use in a preclinical stroke model using the single pellet reaching task. Neurosci Biobehav Rev 2013; 37:950-67. [DOI: 10.1016/j.neubiorev.2013.03.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/23/2013] [Accepted: 03/27/2013] [Indexed: 12/12/2022]
|
55
|
Kirton A. Can noninvasive brain stimulation measure and modulate developmental plasticity to improve function in stroke-induced cerebral palsy? Semin Pediatr Neurol 2013; 20:116-26. [PMID: 23948686 DOI: 10.1016/j.spen.2013.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The permanent nature of motor deficits is a consistent cornerstone of cerebral palsy definitions. Such pessimism is disheartening to children, families, and researchers alike and may no longer be appropriate for it ignores the fantastic plastic potential of the developing brain. Perinatal stroke is presented as the ideal human model of developmental neuroplasticity following distinct, well-defined, focal perinatal brain injury. Elegant animal models are merging with human applied technology methods, including noninvasive brain stimulation for increasingly sophisticated models of plastic motor development following perinatal stroke. In this article, how potential central therapeutic targets are identified and potentially modulated to enhance motor function within these models is discussed. Also, future directions and emerging clinical trials are reviewed.
Collapse
Affiliation(s)
- Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital Research Institute, Section of Neurology, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
56
|
Zheng J, Liu L, Xue X, Li H, Wang S, Cao Y, Zhao J. Cortical electrical stimulation promotes neuronal plasticity in the peri-ischemic cortex and contralesional anterior horn of cervical spinal cord in a rat model of focal cerebral ischemia. Brain Res 2013; 1504:25-34. [DOI: 10.1016/j.brainres.2013.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/18/2012] [Accepted: 01/04/2013] [Indexed: 12/14/2022]
|
57
|
Transcranial direct current stimulation in stroke rehabilitation: a review of recent advancements. Stroke Res Treat 2013; 2013:170256. [PMID: 23533955 PMCID: PMC3600193 DOI: 10.1155/2013/170256] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/17/2012] [Accepted: 01/14/2013] [Indexed: 01/25/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a promising technique to treat a wide range of neurological conditions including stroke. The pathological processes following stroke may provide an exemplary system to investigate how tDCS promotes neuronal plasticity and functional recovery. Changes in synaptic function after stroke, such as reduced excitability, formation of aberrant connections, and deregulated plastic modifications, have been postulated to impede recovery from stroke. However, if tDCS could counteract these negative changes by influencing the system's neurophysiology, it would contribute to the formation of functionally meaningful connections and the maintenance of existing pathways. This paper is aimed at providing a review of underlying mechanisms of tDCS and its application to stroke. In addition, to maximize the effectiveness of tDCS in stroke rehabilitation, future research needs to determine the optimal stimulation protocols and parameters. We discuss how stimulation parameters could be optimized based on electrophysiological activity. In particular, we propose that cortical synchrony may represent a biomarker of tDCS efficacy to indicate communication between affected areas. Understanding the mechanisms by which tDCS affects the neural substrate after stroke and finding ways to optimize tDCS for each patient are key to effective rehabilitation approaches.
Collapse
|
58
|
Kirton A. Modeling developmental plasticity after perinatal stroke: defining central therapeutic targets in cerebral palsy. Pediatr Neurol 2013; 48:81-94. [PMID: 23337000 DOI: 10.1016/j.pediatrneurol.2012.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/02/2012] [Indexed: 01/18/2023]
Abstract
Perinatal stroke is presented as the ideal human model of developmental neuroplasticity. The precise timing, mechanisms, and locations of specific perinatal stroke diseases provide common examples of well defined, focal, perinatal brain injuries. Motor disability (hemiparetic cerebral palsy) constitutes the primary adverse outcome and the focus of models explaining how motor systems develop in health and after early injury. Combining basic science animal work with human applied technology (functional magnetic resonance imaging, diffusion tensor imaging, and transcranial magnetic stimulation), a model of plastic motor development after perinatal stroke is presented. Potential central therapeutic targets are revealed. The means to measure and modulate these targets, including evidence-based rehabilitation therapies and noninvasive brain stimulation, are suggested. Implications for clinical trials and future directions are discussed.
Collapse
Affiliation(s)
- Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital Research Institute, and Section of Neurology, Department of Pediatrics and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
59
|
Abstract
Transcranial magnetic stimulation (TMS) is a neurostimulation and neuromodulation technique that has provided over two decades of data in focal, non-invasive brain stimulation based on the principles of electromagnetic induction. Its minimal risk, excellent tolerability and increasingly sophisticated ability to interrogate neurophysiology and plasticity make it an enviable technology for use in pediatric research with future extension into therapeutic trials. While adult trials show promise in using TMS as a novel, non-invasive, non-pharmacologic diagnostic and therapeutic tool in a variety of nervous system disorders, its use in children is only just emerging. TMS represents an exciting advancement to better understand and improve outcomes from disorders of the developing brain.
Collapse
|
60
|
Abstract
Stroke is a leading cause of disability, and the number of stroke survivors continues to rise. Traditional neurorehabilitation strategies aimed at restoring function to weakened limbs provide only modest benefit. New brain stimulation techniques designed to augment traditional neurorehabilitation hold promise for reducing the burden of stroke-related disability. Investigators discovered that repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), and epidural cortical stimulation (ECS) can enhance neural plasticity in the motor cortex post-stroke. Improved outcomes may be obtained with activity-dependent stimulation, in which brain stimulation is contingent on neural or muscular activity during normal behavior. We review the evidence for improved motor function in stroke patients treated with rTMS, tDCS, and ECS and discuss the mediating physiological mechanisms. We compare these techniques to activity-dependent stimulation, discuss the advantages of this newer strategy for stroke rehabilitation, and suggest future applications for activity-dependent brain stimulation.
Collapse
|
61
|
Yoon YS, Yu KP, Kim H, Kim HI, Kwak SH, Kim BO. The effect of electric cortical stimulation after focal traumatic brain injury in rats. Ann Rehabil Med 2012. [PMID: 23185723 PMCID: PMC3503934 DOI: 10.5535/arm.2012.36.5.596] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Objective To evaluate the effects of electric cortical stimulation in the experimentally induced focal traumatic brain injury (TBI) rat model on motor recovery and plasticity of the injured brain. Method Twenty male Sprague-Dawley rats were pre-trained on a single pellet reaching task (SPRT) and on a Rotarod task (RRT) for 14 days. Then, the TBI model was induced by a weight drop device (40 g in weight, 25 cm in height) on the dominant motor cortex, and the electrode was implanted over the perilesional cortical surface. All rats were divided into two groups as follows: Electrical stimulation (ES) group with anodal continuous stimulation (50 Hz and 194 µs duration) or Sham-operated control (SOC) group with no electrical stimulation. The rats were trained SPRT and RRT for 14 days for rehabilitation and measured Garcia's neurologic examination. Histopathological and immunostaining evaluations were performed after the experiment. Results There were no differences in the slice number in the histological analysis. Garcia's neurologic scores & SPRT were significantly increased in the ES group (p<0.05), yet, there was no difference in RRT in both groups. The ES group showed more expression of c-Fos around the brain injured area than the SOC group. Conclusion Electric cortical stimulation with rehabilitation is considered to be one of the trial methods for motor recovery in TBI. However, more studies should be conducted for the TBI model in order to establish better stimulation methods.
Collapse
Affiliation(s)
- Yong-Soon Yoon
- Department of Rehabilitation Medicine, Presbyterian Medical Center, Jeonju 560-750, Korea
| | | | | | | | | | | |
Collapse
|
62
|
Klein A, Lane EL, Dunnett SB. Brain repair in a unilateral rat model of Huntington's disease: new insights into impairment and restoration of forelimb movement patterns. Cell Transplant 2012; 22:1735-51. [PMID: 23067670 DOI: 10.3727/096368912x657918] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) produces severe neurodegeneration in the striatum leading to disabling motor impairments, including the loss of control of skilled reaching movements. Fetal GABAergic transplants can physically replace the lost striatal cells but with only partial success in functional recovery. Here, we aimed to determine the extent and quality of the repair produced by fetal cell transplantation through an in-depth analysis of reaching behavior in the quinolinic acid-lesioned rat model of HD. Control, quinolinic acid-lesioned plus sham graft, and quinolinic acid-lesioned plus graft groups of rats were assessed in skilled reaching performance prior to and following lesion surgery and 3 months following injection of 400,000 fetal whole ganglionic eminence-derived cells into the striatum. This was compared to their performance in two more rudimentary tests of motor function (the adjusting step and vibrissae-evoked hand-placing tests). Grafted rats demonstrated a significant improvement in reaching success rate (graft +59%, shamTX +3%). Importantly, the quality of reaching behavior, including all components of the movement, was fully restored with no identifiable differences in the normal behavior shown by control rats. Postmortem immunohistochemical examination verified the survival of large intrastriatal grafts, and Fluoro-Gold tracing indicated appropriate outgrowth to the globus pallidus. Our study illustrates for the first time the detailed analysis of qualitative improvement of motor function following brain repair in a rat model of HD. The results demonstrate significant improvements not only in gross movements but also in the skilled motor patterns lost during HD. Fetal GABAergic cell transplantation showed a demonstrable ability to restore motor function to near normal levels, such that there were few differences from intact control animals, an effect not observed in standard tests of motor function.
Collapse
Affiliation(s)
- Alexander Klein
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | | | | |
Collapse
|
63
|
Cherney LR, Harvey RL, Babbitt EM, Hurwitz R, Kaye RC, Lee JB, Small SL. Epidural cortical stimulation and aphasia therapy. APHASIOLOGY 2012; 26:1192-1217. [PMID: 23667287 PMCID: PMC3647471 DOI: 10.1080/02687038.2011.603719] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND There are several methods of delivering cortical brain stimulation to modulate cortical excitability and interest in their application as an adjuvant strategy in aphasia rehabilitation after stroke is growing. Epidural cortical stimulation, although more invasive than other methods, permits high frequency stimulation of high spatial specificity to targeted neuronal populations. AIMS First, we review evidence supporting the use of epidural cortical stimulation for upper limb recovery after focal cortical injury in both animal models and human stroke survivors. These data provide the empirical and theoretical platform underlying the use of epidural cortical stimulation in aphasia. Second, we summarize evidence for the application of epidural cortical stimulation in aphasia. We describe the procedures and primary outcomes of a safety and feasibility study (Cherney, Erickson & Small, 2010), and provide previously unpublished data regarding secondary behavioral outcomes from that study. MAIN CONTRIBUTION In a controlled study comparing epidural cortical stimulation plus language treatment (CS/LT) to language treatment alone (LT), eight stroke survivors with nonfluent aphasia received intensive language therapy for 6 weeks. Four of these participants also underwent surgical implantation of an epidural stimulation device which was activated only during therapy sessions. Behavioral data were collected before treatment, immediately after treatment, and at 6 and 12 weeks following the end of treatment. The effect size for the primary outcome measure, the Western Aphasia Battery Aphasia Quotient, was benchmarked as moderate from baseline to immediately post-treatment, and large from baseline to the 12-week follow-up. Similarly, effect sizes obtained at the 12-week follow-up for the Boston Naming Test, the Communicative Effectiveness Index, and for correct information units on a picture description task were greater than those obtained immediately post treatment. When effect sizes were compared for individual subject pairs on discourse measures of content and rate, effects were typically larger for the investigational subjects receiving CS/LT than for the control subjects receiving LT alone. These analyses support previous findings regarding therapeutic efficacy of CS/LT compared to LT i.e. epidural stimulation of ipsilesional premotor cortex may augment behavioral speech-language therapy, with the largest effects after completion of therapy. CONCLUSIONS Continued investigation of epidural cortical stimulation in combination with language training in post-stroke aphasia should proceed cautiously. Carefully planned studies that customize procedures to individual profiles are warranted. Information from research on non-invasive methods of CS/LT may also inform future studies of epidural cortical stimulation.
Collapse
|
64
|
Faraji J, Kurio K, Metz GA. Concurrent silent strokes impair motor function by limiting behavioral compensation. Exp Neurol 2012; 236:241-8. [DOI: 10.1016/j.expneurol.2012.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 03/30/2012] [Accepted: 05/09/2012] [Indexed: 01/08/2023]
|
65
|
Plow EB, Obretenova SN, Fregni F, Pascual-Leone A, Merabet LB. Comparison of visual field training for hemianopia with active versus sham transcranial direct cortical stimulation. Neurorehabil Neural Repair 2012; 26:616-26. [PMID: 22291042 DOI: 10.1177/1545968311431963] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Vision Restoration Therapy (VRT) aims to improve visual field function by systematically training regions of residual vision associated with the activity of suboptimal firing neurons within the occipital cortex. Transcranial direct current stimulation (tDCS) has been shown to modulate cortical excitability. OBJECTIVE Assess the possible efficacy of tDCS combined with VRT. METHODS The authors conducted a randomized, double-blind, demonstration-of-concept pilot study where participants were assigned to either VRT and tDCS or VRT and sham. The anode was placed over the occipital pole to target both affected and unaffected lobes. One hour training sessions were carried out 3 times per week for 3 months in a laboratory. Outcome measures included objective and subjective changes in visual field, recording of visual fixation performance, and vision-related activities of daily living (ADLs) and quality of life (QOL). RESULTS Although 12 participants were enrolled, only 8 could be analyzed. The VRT and tDCS group demonstrated significantly greater expansion in visual field and improvement on ADLs compared with the VRT and sham group. Contrary to expectations, subjective perception of visual field change was greater in the VRT and sham group. QOL did not change for either group. The observed changes in visual field were unrelated to compensatory eye movements, as shown with fixation monitoring. CONCLUSIONS The combination of occipital cortical tDCS with visual field rehabilitation appears to enhance visual functional outcomes compared with visual rehabilitation alone. TDCS may enhance inherent mechanisms of plasticity associated with training.
Collapse
|
66
|
Wongsarnpigoon A, Grill WM. Computer-based model of epidural motor cortex stimulation: Effects of electrode position and geometry on activation of cortical neurons. Clin Neurophysiol 2012; 123:160-72. [PMID: 21775202 DOI: 10.1016/j.clinph.2011.06.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/02/2011] [Accepted: 06/14/2011] [Indexed: 11/28/2022]
Affiliation(s)
- Amorn Wongsarnpigoon
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0281, USA
| | | |
Collapse
|
67
|
Wongsarnpigoon A, Grill WM. Effects of stimulation parameters and electrode location on thresholds for epidural stimulation of cat motor cortex. J Neural Eng 2011; 8:066016. [DOI: 10.1088/1741-2560/8/6/066016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
68
|
Kleim JA. Neural plasticity and neurorehabilitation: teaching the new brain old tricks. JOURNAL OF COMMUNICATION DISORDERS 2011; 44:521-528. [PMID: 21600589 DOI: 10.1016/j.jcomdis.2011.04.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
UNLABELLED Following brain injury or disease there are widespread biochemical, anatomical and physiological changes that result in what might be considered a new, very different brain. This adapted brain is forced to reacquire behaviors lost as a result of the injury or disease and relies on neural plasticity within the residual neural circuits. The same fundamental neural and behavioral signals driving plasticity during learning in the intact brain are engaged during relearning in the damaged/diseased brain. The field of neurorehabilitation is now beginning to capitalize on this body of work to develop neurobiologically informed therapies focused on key behavioral and neural signals driving neural plasticity. Further, how neural plasticity may act to drive different neural strategies underlying functional improvement after brain injury is being revealed. The understanding of the relationship between these different neural strategies, mechanisms of neural plasticity, and changes in behavior may facilitate the development of novel, more effective rehabilitation interventions for treating brain injury and disease. LEARNING OUTCOMES Readers will be able to: (a) define neural plasticity, (b) understand how learning in the intact and damaged brain can drive neural plasticity, (c) identify the three basic neural strategies mediating functional improvement, and (d) understand how adjuvant therapies have the potential to upregulate plasticity and enhance functional recovery.
Collapse
Affiliation(s)
- Jeffrey A Kleim
- School of Biological and Health Sciences Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
69
|
Kolb B, Muhammad A, Gibb R. Searching for factors underlying cerebral plasticity in the normal and injured brain. JOURNAL OF COMMUNICATION DISORDERS 2011; 44:503-514. [PMID: 21621219 DOI: 10.1016/j.jcomdis.2011.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
UNLABELLED Brain plasticity refers to the capacity of the nervous system to change its structure and ultimately its function over a lifetime. There have been major advances in our understanding of the principles of brain plasticity and behavior in laboratory animals and humans. Over the past decade there have been advances in the application of these principles to brain-injured laboratory animals. To date, there have been few major applications of this knowledge to establish postinjury interventions in humans. A significant challenge for the next 20 years will be the translation of this work to improve the outcome from brain injury and disease in humans. The goal of this review is to synthesize the multidisciplinary laboratory work on brain plasticity and behavior in the injured brain to inform the development of rehabilitation programs. LEARNING OUTCOMES Readers will be able to: (a) identify principles of brain plasticity, (b) review the application of these principles to the treatment of brain-injured laboratory animals, and (c) consider the translation of the new treatments to brain-injured humans.
Collapse
Affiliation(s)
- Bryan Kolb
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4.
| | | | | |
Collapse
|
70
|
Nouri S, Cramer SC. Anatomy and physiology predict response to motor cortex stimulation after stroke. Neurology 2011; 77:1076-83. [PMID: 21880996 DOI: 10.1212/wnl.0b013e31822e1482] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Preclinical studies found that epidural motor cortex stimulation improved motor deficits after stroke, but a phase III trial in humans did not corroborate these results. The current retrospective analysis examined subjects randomized to stimulation in order to identify features distinguishing responders from nonresponders. METHODS Anatomic (MRI measures of gray matter thickness and of white matter tract injury) and physiologic methods (motor evoked responses) were examined as predictors of treatment response. RESULTS Among 60 subjects randomized to cortical stimulation, both anatomic and physiologic measures at baseline predicted behavioral response to therapy. Anatomically, those achieving the primary efficacy endpoint had a smaller fraction of the corticospinal tract injured by stroke compared to those who did not (44% vs 72%, p < 0.04), and rarely had severe tract injury. Physiologically, the primary efficacy endpoint was reached more often (67%) by those with preserved motor evoked responses (MER) upon cortical stimulation compared to those lacking MER (27%, p < 0.05). Those with an elicitable MER also had a lower rate of precentral gyrus injury (0% vs 33%, p < 0.05) by stroke, as compared to those lacking MER, and had higher gray matter volume compared to those lacking MER in regions including ipsilesional precentral gyrus. CONCLUSIONS In this clinical stroke trial, the more that the physiologic integrity of the motor system was preserved, the more likely that a patient was to derive gains from subsequent therapy, consistent with preclinical models. Functional and structural preservation of key brain substrates are important to deriving gain from a restorative therapy.
Collapse
Affiliation(s)
- Sarvenaz Nouri
- Department of Neurology, University of California, Irvine, CA, USA
| | | |
Collapse
|
71
|
Yazdan-Shahmorad A, Lehmkuhle MJ, Gage GJ, Marzullo TC, Parikh H, Miriani RM, Kipke DR. Estimation of electrode location in a rat motor cortex by laminar analysis of electrophysiology and intracortical electrical stimulation. J Neural Eng 2011; 8:046018. [PMID: 21690656 DOI: 10.1088/1741-2560/8/4/046018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
While the development of microelectrode arrays has enabled access to disparate regions of a cortex for neurorehabilitation, neuroprosthetic and basic neuroscience research, accurate interpretation of the signals and manipulation of the cortical neurons depend upon the anatomical placement of the electrode arrays in a layered cortex. Toward this end, this report compares two in vivo methods for identifying the placement of electrodes in a linear array spaced 100 µm apart based on in situ laminar analysis of (1) ketamine-xylazine-induced field potential oscillations in a rat motor cortex and (2) an intracortical electrical stimulation-induced movement threshold. The first method is based on finding the polarity reversal in laminar oscillations which is reported to appear at the transition between layers IV and V in laminar 'high voltage spindles' of the rat cortical column. Analysis of histological images in our dataset indicates that polarity reversal is detected 150.1 ± 104.2 µm below the start of layer V. The second method compares the intracortical microstimulation currents that elicit a physical movement for anodic versus cathodic stimulation. It is based on the hypothesis that neural elements perpendicular to the electrode surface are preferentially excited by anodic stimulation while cathodic stimulation excites those with a direction component parallel to its surface. With this method, we expect to see a change in the stimulation currents that elicits a movement at the beginning of layer V when comparing anodic versus cathodic stimulation as the upper cortical layers contain neuronal structures that are primarily parallel to the cortical surface and lower layers contain structures that are primarily perpendicular. Using this method, there was a 78.7 ± 68 µm offset in the estimate of the depth of the start of layer V. The polarity reversal method estimates the beginning of layer V within ±90 µm with 95% confidence and the intracortical stimulation method estimates it within ±69.3 µm. We propose that these methods can be used to estimate the in situ location of laminar electrodes implanted in the rat motor cortex.
Collapse
Affiliation(s)
- A Yazdan-Shahmorad
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | | | |
Collapse
|
72
|
Motor-evoked potential confirmation of functional improvement by transplanted bone marrow mesenchymal stem cell in the ischemic rat brain. J Biomed Biotechnol 2011; 2011:238409. [PMID: 21772790 PMCID: PMC3134108 DOI: 10.1155/2011/238409] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/21/2011] [Accepted: 03/25/2011] [Indexed: 11/26/2022] Open
Abstract
This study investigated the effect of bone marrow mesenchymal stem cells (BMSCs) on the motor pathway in the transient ischemic rat brain that were transplanted through the carotid artery, measuring motor-evoked potential (MEP) in the four limbs muscle and the atlantooccipital membrane, which was elicited after monopolar and bipolar transcortical stimulation. After monopolar stimulation, the latency of MEP was significantly prolonged, and the amplitude was less reduced in the BMSC group in comparison with the control group (P < .05). MEPs induced by bipolar stimulation in the left forelimb could be measured in 40% of the BMSC group and the I wave that was not detected in the control group was also detected in 40% of the BMSC group. Our preliminary results imply that BMSCs transplanted to the ischemic rat brain mediate effects on the functional recovery of the cerebral motor cortex and the motor pathway.
Collapse
|
73
|
Warraich Z, Kleim JA. Neural plasticity: the biological substrate for neurorehabilitation. PM R 2011; 2:S208-19. [PMID: 21172683 DOI: 10.1016/j.pmrj.2010.10.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/20/2010] [Accepted: 10/20/2010] [Indexed: 11/26/2022]
Abstract
Decades of basic science have clearly demonstrated the capacity of the central nervous system (CNS) to structurally and functionally adapt in response to experience. The field of neurorehabilitation has begun to use this body of work to develop neurobiologically informed therapies that harness the key behavioral and neural signals that drive neural plasticity. The present review describes how neural plasticity supports both learning in the intact CNS and functional improvement in the damaged or diseased CNS. A pragmatic, interdisciplinary definition of neural plasticity is presented that may be used by both clinical and basic scientists studying neurorehabilitation. Furthermore, a description of how neural plasticity may act to drive different neural strategies underlying functional improvement after CNS injury or disease is provided. The understanding of the relationship between these different neural strategies, mechanisms of neural plasticity, and changes in behavior may facilitate the development of novel, more effective rehabilitation interventions.
Collapse
Affiliation(s)
- Zuha Warraich
- McKnight Brain Institute, Department of Neuroscience, University of Florida, PO Box 100244, Gainesville, FL 32610, USA
| | | |
Collapse
|
74
|
Abstract
The past decade of neuroscience research has provided considerable evidence that the adult brain can undergo substantial reorganization following injury. For example, following an ischemic lesion, such as occurs following a stroke, there is a cascade of molecular, genetic, physiological and anatomical events that allows the remaining structures in the brain to reorganize. Often, these events are associated with recovery, suggesting that they contribute to it. Indeed, the term plasticity in stroke research has had a positive connotation historically. But more recently, efforts have been made to differentiate beneficial from detrimental changes. These notions are timely now that neurorehabilitative research is developing novel treatments to modulate, increase, or inhibit plasticity in targeted brain regions. We will review basic principles of plasticity and some of the new and exciting approaches that are currently being investigated to shape plasticity following injury in the central nervous system.
Collapse
Affiliation(s)
- Numa Dancause
- Département de Physiologie, Université de Montréal, Montréal, Québec, Canada.
| | | |
Collapse
|
75
|
Yazdan-Shahmorad A, Kipke DR, Lehmkuhle MJ. Polarity of cortical electrical stimulation differentially affects neuronal activity of deep and superficial layers of rat motor cortex. Brain Stimul 2010; 4:228-41. [PMID: 22032738 DOI: 10.1016/j.brs.2010.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 11/23/2010] [Accepted: 11/30/2010] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Cortical electrical stimulation (CES) techniques are practical tools in neurorehabilitation that are currently being used to test models of functional recovery after neurologic injury. However, the mechanisms by which CES has therapeutic effects, are not fully understood. OBJECTIVE In this study, we investigated the effects of CES on unit activity of different neuronal elements in layers of rat primary motor cortex after the offset of stimulation. We evaluated the effects of monopolar CES pulse polarity (anodic-first versus cathodic-first) using various stimulation frequencies and amplitudes on unit activity after stimulation. METHODS A penetrating single shank silicon microelectrode array enabled us to span the entirety of six layer motor cortex allowing simultaneous electrophysiologic recordings from different depths after monopolar CES. Neural spiking activity before the onset and after the offset of CES was modeled using point processes fit to capture neural spiking dynamics as a function of extrinsic stimuli based on generalized linear model methods. RESULTS We found that neurons in lower layers have a higher probability of being excited after anodic CES. Conversely, neurons located in upper cortical layers have a higher probability of being excited after cathodic stimulation. The opposing effects observed following anodic versus cathodic stimulation in upper and lower layers were frequency- and amplitude-dependent. CONCLUSIONS The data demonstrates that the poststimulus changes in neural activity after manipulation of CES parameters changes according to the location (depth) of the recorded units in rat primary motor cortex. The most effective pulse polarity for eliciting action potentials after stimulation in lower layers was not as effective in upper layers. Likewise, lower amplitudes and frequencies of CES were more effective than higher amplitudes and frequencies for eliciting action potentials. These results have important implications in the context of maximizing efficacy of CES for neurorehabilitation and neuroprosthetic applications.
Collapse
Affiliation(s)
- Azadeh Yazdan-Shahmorad
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
76
|
Cortical Stimulation as an Adjuvant to Upper Limb Rehabilitation After Stroke. PM R 2010; 2:S269-78. [DOI: 10.1016/j.pmrj.2010.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/15/2010] [Accepted: 09/24/2010] [Indexed: 11/23/2022]
|
77
|
Whishaw IQ, Sacrey LAR, Travis SG, Gholamrezaei G, Karl JM. The functional origins of speech-related hand gestures. Behav Brain Res 2010; 214:206-15. [PMID: 20573589 DOI: 10.1016/j.bbr.2010.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 05/11/2010] [Accepted: 05/18/2010] [Indexed: 11/25/2022]
|
78
|
Kolb B, Teskey GC. Age, experience, injury, and the changing brain. Dev Psychobiol 2010; 54:311-25. [DOI: 10.1002/dev.20515] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 10/04/2010] [Indexed: 01/27/2023]
|
79
|
Morimoto T, Yasuhara T, Kameda M, Baba T, Kuramoto S, Kondo A, Takahashi K, Tajiri N, Wang F, Meng J, Ji YW, Kadota T, Maruo T, Kinugasa K, Miyoshi Y, Shingo T, Borlongan CV, Date I. Striatal stimulation nurtures endogenous neurogenesis and angiogenesis in chronic-phase ischemic stroke rats. Cell Transplant 2010; 20:1049-64. [PMID: 21092409 DOI: 10.3727/096368910x544915] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Deep brain stimulation (DBS) is used to treat a variety of neurological disorders including Parkinson's disease. In this study, we explored the effects of striatal stimulation (SS) in a rat model of chronic-phase ischemic stroke. The stimulation electrode was implanted into the ischemic penumbra at 1 month after middle cerebral artery occlusion (MCAO) and thereafter continuously delivered SS over a period of 1 week. Rats were evaluated behaviorally coupled with neuroradiological assessment of the infarct volumes using magnetic resonance imaging (MRI) at pre- and post-SS. The rats with SS showed significant behavioral recovery in the spontaneous activity and limb placement test compared to those without SS. MRI visualized that SS also significantly reduced the infarct volumes compared to that at pre-SS or without SS. Immunohistochemical analyses revealed a robust neurogenic response in rats that received SS characterized by a stream of proliferating cells from the subventricular zone migrating to and subsequently differentiating into neurons in the ischemic penumbra, which exhibited a significant GDNF upregulation. In tandem with this SS-mediated neurogenesis, enhanced angiogenesis was also recognized as revealed by a significant increase in VEGF levels in the penumbra. These results provide evidence that SS affords neurorestoration at the chronic phase of stroke by stimulating endogenous neurogenesis and angiogenesis.
Collapse
Affiliation(s)
- Takamasa Morimoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry,and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Boychuk JA, Adkins DL, Kleim JA. Distributed versus focal cortical stimulation to enhance motor function and motor map plasticity in a rodent model of ischemia. Neurorehabil Neural Repair 2010; 25:88-97. [PMID: 21062949 DOI: 10.1177/1545968310385126] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Motor rehabilitation after cerebral ischemia can enhance motor performance and induce motor map reorganization. Electrical stimulation of the cortex (CS) during rehabilitative training (CS/RT) augments motor map plasticity and confers gains in motor function beyond those observed with motor rehabilitation alone. However, it is unclear how the distribution of electrical stimulation across the cortex accomplishes these changes. This study examined the behavioral and neurophysiological effects of delivering CS/RT through a distributed versus focal arrangement of electrical contacts. METHODS Adult male rats were given rehabilitative training on a skilled forelimb reaching task following induction of focal ischemic damage within motor cortex. Intracortical microstimulation was used to derive high-resolution maps of forelimb movement representations within motor cortex contralateral to the trained/impaired paw before and after rehabilitation. RESULTS All animals that received rehabilitation showed greater increases in motor map area and reaching accuracy than animals that received no training. Animals with the distributed configuration performed significantly greater reaching accuracy than animals in both the CS/RT with focused contact arrangement and rehabilitative training alone (RT) conditions on days 3 to 4 and on day 6 through the remainder of the study (P < .05). However, both CS/RT groups exhibited larger motor maps than the RT condition (E1-CS/RT, 4.71 ± 0.66 mm(2); E2-CS/RT, 4.64 ± 0.46 mm(2); RT, 2.99 ± 0.28 mm(2)). CONCLUSION The results indicate that although both focal and distributed forms of CS/RT promote motor map reorganization only the distributed form of CS/RT enhances motor performance with rehabilitation.
Collapse
|
81
|
Polanía R, Nitsche MA, Paulus W. Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum Brain Mapp 2010; 32:1236-49. [PMID: 20607750 DOI: 10.1002/hbm.21104] [Citation(s) in RCA: 308] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 04/27/2010] [Accepted: 05/07/2010] [Indexed: 11/05/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that alters cortical excitability and activity in a polarity-dependent way. Stimulation for few minutes has been shown to induce plastic alterations of cortical excitability and to improve cognitive performance. These effects might be caused by stimulation-induced alterations of functional cortical network connectivity. We aimed to investigate the impact of tDCS on cortical network function through functional connectivity and graph theoretical analysis. Single recordings in healthy volunteers with 62 electroencephalography channels were acquired before and after 10 min of facilitatory anodal tDCS over the primary motor cortex (M1), combined with inhibitory cathodal tDCS of the contralateral frontopolar cortex, in resting state and during voluntary hand movements. Correlation matrices containing all 62 pairwise electrode combinations were calculated with the synchronization likelihood (SL) method and thresholded to construct undirected graphs for the θ, α, β, low-γ and high-γ frequency bands. SL matrices and undirected graphs were compared before and after tDCS. Functional connectivity patterns significantly increased within premotor, motor, and sensorimotor areas of the stimulated hemisphere during motor activity in the 60-90 Hz frequency range. Additionally, tDCS-induced significant intrahemispheric and interhemispheric connectivity changes in all the studied frequency bands. In summary, we show for the first time evidence for tDCS-induced changes in brain synchronization and topological functional organization.
Collapse
Affiliation(s)
- Rafael Polanía
- Department of Clinical Neurophysiology, Georg-August University of Göttingen, Robert Koch Strasse 40, Göttingen, Germany.
| | | | | |
Collapse
|
82
|
Plowman EK, Kleim JA. Motor cortex reorganization across the lifespan. JOURNAL OF COMMUNICATION DISORDERS 2010; 43:286-294. [PMID: 20478572 DOI: 10.1016/j.jcomdis.2010.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 12/03/2009] [Accepted: 12/03/2009] [Indexed: 05/29/2023]
Abstract
UNLABELLED The brain is a highly dynamic structure with the capacity for profound structural and functional change. Such neural plasticity has been well characterized within motor cortex and is believed to represent one of the neural mechanisms for acquiring and modifying motor behaviors. A number of behavioral and neural signals have been identified that modulate motor cortex plasticity throughout the lifespan in both the intact and damaged brain. Specific signals discussed in this review include: motor learning in the intact brain, motor relearning in the damaged brain, cortical stimulation, stage of development and genotype. Clinicians are encouraged to harness these signals in the development and implementation of treatment so as to maximally drive neural plasticity and functional improvements in speech, language and swallowing. LEARNING OUTCOMES Readers will be able to: (1) describe a set of behavioral and neural signals that modulate motor cortex plasticity in the intact and damaged brain; (2) describe the influence of stage of development on plasticity and functional outcomes; and (3) identify a known genotype that alters the capacity for motor learning and brain plasticity.
Collapse
Affiliation(s)
- Emily K Plowman
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
83
|
Sacrey LAR, Alaverdashvili M, Whishaw IQ. Similar hand shaping in reaching-for-food (skilled reaching) in rats and humans provides evidence of homology in release, collection, and manipulation movements. Behav Brain Res 2009; 204:153-61. [DOI: 10.1016/j.bbr.2009.05.035] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 11/16/2022]
|
84
|
Zhou Q, Zhang Q, Zhao X, Duan YY, Lu Y, Li C, Li T. Cortical electrical stimulation alone enhances functional recovery and dendritic structures after focal cerebral ischemia in rats. Brain Res 2009; 1311:148-57. [PMID: 19941838 DOI: 10.1016/j.brainres.2009.11.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 11/08/2009] [Accepted: 11/11/2009] [Indexed: 11/20/2022]
Abstract
Using a fully implanted cortical electrical stimulation (CES) device with low-frequency burst impulse train, we investigated the effects of CES alone on behavioral recovery and surface density of dendritic structure in a rat model of middle cerebral artery occlusion (MCAO). After MCAO in rats, magnetic resonance imaging (MRI) was used to confirm cortex infarction and to identify a location for implantation of stimulating electrode over the peri-infarct cortex. The device was implanted on the 6th day after MCAO with CES then lasting for 16 days. The stimulation program consisted of two sessions lasting half an hour in the morning (0.65 mA, 0.13 microC/phase) and in the afternoon (0.5 mA, 0.1 microC/phase). The stimulator delivered biphasic charge balanced pulses (pulse width=200 micros) with various frequencies of 50 Hz, 20 Hz and 5 Hz in repeated 10-s blocks. Rats in the CES group (n=12) spend a much shorter time to regain preoperative levels of body weight (BW) than those in the no stimulation (NS) group (n=9). In behavioral tests, the rats in the CES group showed greater functional recovery compared to the NS group. Moreover, the functional improvement coincided with an increase in surface density of dendritic processes immunoreactive to microtubule-associated protein 2 (MAP2) in peri-infarct cortex. These results suggest the feasibility of the fully implanted CES device and the efficacy of the new stimulation protocol alone to improve functional outcome and cortical neuronal structural plasticity following focal cerebral ischemia in rats.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
85
|
Dormer GN, Teskey GC, MacIntosh BR. Force-frequency and force-length properties in skeletal muscle following unilateral focal ischaemic insult in a rat model. Acta Physiol (Oxf) 2009; 197:227-39. [PMID: 19432588 DOI: 10.1111/j.1748-1716.2009.02001.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Our purpose was to quantify skeletal muscle properties following unilateral focal ischaemic insult (stroke) in a rat model. METHODS Male rats were divided into two groups: stroke and 2 weeks recovery (n = 8) and control group (n = 7). Stroke was induced in the area of the motor neocortex containing hind limb corticospinal neurones. Contractile properties of the medial gastrocnemius muscle were measured in situ in both limbs. Force-length and force-frequency properties were measured before and 35 min after 5 min fatiguing stimulation. RESULTS Stroke resulted in bilateral tetanic fade during 200 Hz stimulation. When normalized to 100 Hz contractions, force at 200 Hz was 95.4 +/- 0.9% for the paretic muscles, 96.7 +/- 1.7% for non-paretic muscles and 102.2 +/- 1.0% for muscles of control rats (P = 0.006). Prior to fatiguing contractions, there was no difference in the length dependence of force. During repetitive contractions, active force fell significantly to 19 +/- 4 and 25 +/- 5% of initial force in paretic and non-paretic muscles of animals with a stroke respectively. In control animals active force fell to 37 +/- 5%. During repetitive contractions, fusion index increased in muscles of stroke animals to 1.0 +/- 0 but in control animals it was 0.95 +/- 0.02. There was selective force depression at short lengths for fatigued paretic muscle (significant difference at muscle lengths less than reference length -2 mm). CONCLUSION The tetanic fade at high stimulation frequencies indicates that there may be activation failure following focal ischaemic insult. The greater magnitude of fatigue and selective depression at short lengths following repetitive contractions should be investigated further.
Collapse
Affiliation(s)
- G N Dormer
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | | | | |
Collapse
|
86
|
Baba T, Kameda M, Yasuhara T, Morimoto T, Kondo A, Shingo T, Tajiri N, Wang F, Miyoshi Y, Borlongan CV, Matsumae M, Date I. Electrical stimulation of the cerebral cortex exerts antiapoptotic, angiogenic, and anti-inflammatory effects in ischemic stroke rats through phosphoinositide 3-kinase/Akt signaling pathway. Stroke 2009; 40:e598-605. [PMID: 19762690 DOI: 10.1161/strokeaha.109.563627] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Neuroprotective effects of electric stimulation have been recently shown in ischemic stroke, but the underlying mechanisms remain poorly understood. METHODS Adult Wistar rats weighing 200 to 250 g received occlusion of the right middle cerebral artery for 90 minutes. At 1 hour after reperfusion, electrodes were implanted to rats on the right frontal epidural space. Electric stimulation, at preset current (0 to 200 microA) and frequency (0 to 50 Hz), was performed for 1 week. Stroke animals were subjected to behavioral tests at 3 days and 1 week postmiddle cerebral artery and then immediately euthanized for protein and immunohistochemical assays. After demonstration of behavioral and histological benefits, subsequent experiments pursued the mechanistic hypothesis that electric stimulation exerted antiapoptotic effects through the phosphoinositide 3-kinase-dependent pathway; thus, cortical stimulation was performed in the presence or absence of specific inhibitors of phosphoinositide 3-kinase (LY294002) in stroke rats. RESULTS Cortical stimulation abrogated the ischemia-associated increase in apoptotic cells in the injured cortex by activating antiapoptotic cascades, which was reversed by the phosphoinositide 3-kinase inhibitor LY294002 as reflected behaviorally and immunohistochemically. Furthermore, brain levels of neurotrophic factors (glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, vascular endothelial growth factor) were upregulated, which coincided with enhanced angiogenesis and suppressed proliferation of inflammatory cells in the ischemic cortex. CONCLUSIONS These results suggest that electric stimulation prevents apoptosis through the phosphoinositide 3-kinase pathway. Consequently, the ischemic brain might have been rendered as a nurturing microenvironment characterized by robust angiogenesis and diminished microglial/astrocytic proliferation, resulting in the reduction of infarct volumes and behavioral recovery. Electric stimulation is a novel and potent therapeutic tool for cerebral ischemia.
Collapse
Affiliation(s)
- Tanefumi Baba
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Moon SK, Shin YI, Kim HI, Kim H, Lee JO, Lee MC. Effect of prolonged cortical stimulation differs with size of infarct after sensorimotor cortical lesions in rats. Neurosci Lett 2009; 460:152-5. [PMID: 19450662 DOI: 10.1016/j.neulet.2009.05.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 05/02/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
Abstract
Motor deficit improvement is limited in rats with a large sensorimotor cortex infarct, even with cortical stimulation during rehabilitation. However, we find prolonged stimulation that differs with the size of cortical lesion to be effective. Two weeks of prolonged epidural electrical stimulation and rehabilitative training were delivered to rats whose cortex had been subjected to photothrombotic infarct after training in a single-pellet reaching task. Continuous stimulation greatly improved recovery in animals with large infarcts (6 mm diameter), while intermittent stimulation was more effective in animals with small (4 mm) lesions. Thus, prolonged cortical stimulation is a strategy to enhance motor recovery in photothrombotic infarct model rats. However, pattern and duration of stimulation requires modification depending on the extent of infarct.
Collapse
Affiliation(s)
- Seong-Keun Moon
- Department of Neurosurgery, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | | | | | | | | | | |
Collapse
|
88
|
Tennant KA, Jones TA. Sensorimotor behavioral effects of endothelin-1 induced small cortical infarcts in C57BL/6 mice. J Neurosci Methods 2009; 181:18-26. [PMID: 19383512 DOI: 10.1016/j.jneumeth.2009.04.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Revised: 04/10/2009] [Accepted: 04/10/2009] [Indexed: 11/28/2022]
Abstract
Mouse models have not paralleled rat models of stroke in advances in sensitive, species appropriate measures of neurological and behavioral recovery. Most available tests of mouse sensorimotor function are adaptations of those originally developed in rats and may not be as sensitive in detecting behavioral deficits after small cortical lesions in mice. Our purpose was to test the use of a vasoconstricting peptide, endothelin-1 (ET-1), to produce focal infarcts of the mouse sensorimotor cortex and to establish a behavioral test battery sensitive to resulting sensorimotor deficits. Young adult (3-5-month-old) male C57BL/6 mice received intracortical infusions of ET-1 that produced unilateral lesions of the forelimb region of the sensorimotor cortex, intracortical infusions of sterile saline, or sham surgeries. Pre-operatively and at various time points over 3 weeks post-surgery, they were administered a test battery that included measures of sensorimotor asymmetry (Corner and Bilateral Tactile Stimulation Tests), coordinated forepaw use (Cylinder and Ladder Rung Tests), and dexterous forepaw function (Pasta Matrix Reaching Test). ET-1 infusions resulted in consistently placed, focal cortical infarcts and forelimb impairments as measured with the Ladder Rung, Bilateral Tactile Stimulation, and Pasta Matrix Reaching Tests. On the Bilateral Tactile Stimulation and Pasta Matrix Reaching Tests, impairments persisted throughout the time span of observation (26 days). These results support ET-1 as a viable option for creating small, reproducible lesions of anatomical subregions in the mouse neocortex that result in lasting functional impairments in the forelimb, as observed with sufficiently sensitive measures.
Collapse
Affiliation(s)
- Kelly A Tennant
- Institute for Neuroscience, University of Texas at Austin, TX 78712, USA
| | | |
Collapse
|
89
|
Plow EB, Carey JR, Nudo RJ, Pascual-Leone A. Invasive cortical stimulation to promote recovery of function after stroke: a critical appraisal. Stroke 2009; 40:1926-31. [PMID: 19359643 DOI: 10.1161/strokeaha.108.540823] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Residual motor deficits frequently linger after stroke. Search for newer effective strategies to promote functional recovery is ongoing. Brain stimulation, as a means of directing adaptive plasticity, is appealing. Animal studies and Phase I and II trials in humans have indicated safety, feasibility, and efficacy of combining rehabilitation and concurrent invasive cortical stimulation. However, a recent Phase III trial showed no advantage of the combination. We critically review results of various trials and discuss the factors that contributed to the distinctive result. SUMMARY OF REVIEW Regarding cortical stimulation, it is important to determine the (1) location of peri-infarct representations by integrating multiple neuroanatomical and physiological techniques; (2) role of other mechanisms of stroke recovery; (3) viability of peri-infarct tissue and descending pathways; (4) lesion geometry to ensure no alteration/displacement of current density; and (5) applicability of lessons generated from noninvasive brain stimulation studies in humans. In terms of combining stimulation with rehabilitation, we should understand (1) the principle of homeostatic plasticity; (2) the effect of ongoing cortical activity and phases of learning; and (3) that subject-specific intervention may be necessary. CONCLUSIONS Future cortical stimulation trials should consider the factors that may have contributed to the peculiar results of the Phase III trial and address those in future study designs.
Collapse
Affiliation(s)
- Ela B Plow
- Berenson-Allen Center for Noninvasive Brain Stimulation, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
90
|
Schlaug G, Renga V, Nair D. Transcranial direct current stimulation in stroke recovery. ACTA ACUST UNITED AC 2009; 65:1571-6. [PMID: 19064743 DOI: 10.1001/archneur.65.12.1571] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transcranial direct current stimulation (TDCS) is an emerging technique of noninvasive brain stimulation that has been found useful in examining cortical function in healthy subjects and in facilitating treatments of various neurologic disorders. A better understanding of adaptive and maladaptive poststroke neuroplasticity and its modulation through noninvasive brain stimulation has opened up experimental treatment options using TDCS for patients recovering from stroke. We review the role of TDCS as a facilitator of stroke recovery, the different modes of TDCS, and the potential mechanisms underlying the neural effects of TDCS.
Collapse
Affiliation(s)
- Gottfried Schlaug
- Neuroimaging and Stroke Recovery Laboratories, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA.
| | | | | |
Collapse
|
91
|
Mahnken JD, Mayo MS, Nudo RJ. A decision algorithm for translating preclinical trial results to enhance recovery after stroke. J Biopharm Stat 2009; 19:204-16. [PMID: 19127476 DOI: 10.1080/10543400802536271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A decision algorithm was required to evaluate the first half of a cooperative agreement for preclinical trials to optimize medical device parameters to enhance stroke recovery. Continued funding was contingent upon the midpoint evaluation, called the milestone decision. We developed an algorithm, which summarized our rodent and primate model results. Primary outcomes weighed more heavily than secondary outcomes, and the primate model more heavily than rodent models. By controlling the type I error for this milestone decision, the probability of correctly discontinuing the study if treatment was not beneficial was high (>0.84). Similar algorithms may be adapted for other milestone-driven projects.
Collapse
Affiliation(s)
- Jonathan D Mahnken
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | |
Collapse
|
92
|
Cheeran B, Cohen L, Dobkin B, Ford G, Greenwood R, Howard D, Husain M, Macleod M, Nudo R, Rothwell J, Rudd A, Teo J, Ward N, Wolf S. The future of restorative neurosciences in stroke: driving the translational research pipeline from basic science to rehabilitation of people after stroke. Neurorehabil Neural Repair 2009; 23:97-107. [PMID: 19189939 PMCID: PMC3230220 DOI: 10.1177/1545968308326636] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Major advances during the past 50 years highlight the immense potential for restoration of function after neural injury, even in the damaged adult human brain. Yet, the translation of these advances into clinically useful treatments is painstakingly slow. OBJECTIVE Here, we consider why the traditional model of a "translational research pipeline" that transforms basic science into novel clinical practice has failed to improve rehabilitation practice for people after stroke. RESULTS We find that (1) most treatments trialed in vitro and in animal models have not yet resulted in obviously useful functional gains in patients; (2) most clinical trials of restorative treatments after stroke have been limited to small-scale studies; (3) patient recruitment for larger clinical trials is difficult; (4) the determinants of patient outcomes and what patients want remain complex and ill-defined, so that basic scientists have no clear view of the clinical importance of the problems that they are addressing; (5) research in academic neuroscience centers is poorly integrated with practice in front-line hospitals and the community, where the majority of patients are treated; and (6) partnership with both industry stakeholders and patient pressure groups is poorly developed, at least in the United Kingdom where research in the translational restorative neurosciences in stroke depends on public sector research funds and private charities. CONCLUSIONS We argue that interaction between patients, front-line clinicians, and clinical and basic scientists is essential so that they can explore their different priorities, skills, and concerns. These interactions can be facilitated by funding research consortia that include basic and clinical scientists, clinicians and patient/carer representatives with funds targeted at those impairments that are major determinants of patient and carer outcomes. Consortia would be instrumental in developing a lexicon of common methods, standardized outcome measures, data sharing and long-term goals. Interactions of this sort would create a research-friendly, rather than only target-led, culture in front-line stroke rehabilitation services.
Collapse
|
93
|
Schlaug G, Renga V. Transcranial direct current stimulation: a noninvasive tool to facilitate stroke recovery. Expert Rev Med Devices 2009; 5:759-68. [PMID: 19025351 DOI: 10.1586/17434440.5.6.759] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Electrical brain stimulation, a technique developed many decades ago and then largely forgotten, has re-emerged recently as a promising tool for experimental neuroscientists, clinical neurologists and psychiatrists in their quest to causally probe cortical representations of sensorimotor and cognitive functions and to facilitate the treatment of various neuropsychiatric disorders. In this regard, a better understanding of adaptive and maladaptive plasticity in natural stroke recovery over the last decade and the idea that brain polarization may modulate neuroplasticity has led to the use of transcranial direct current stimulation (tDCS) as a potential enhancer of natural stroke recovery. We will review tDCS's successful utilization in pilot and proof-of-principle stroke recovery studies, the different modes of tDCS currently in use, and the potential mechanisms underlying the neural effects of tDCS.
Collapse
Affiliation(s)
- Gottfried Schlaug
- Department of Neurology, Neuroimaging and Stroke Recovery Laboratories, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | | |
Collapse
|
94
|
Christensen JR, Pidcock FS. Introduction: acquired central nervous system injuries. DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2009; 15:91-93. [PMID: 19489089 DOI: 10.1002/ddrr.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
95
|
Silverstein J, Levy RM. Cortical Stimulation for the Treatment of Motor Deficits following Ischemic Stroke. Neuromodulation 2009. [DOI: 10.1016/b978-0-12-374248-3.00062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
96
|
Schlaug G, Renga V, Nair D. Transcranial direct current stimulation in stroke recovery. ARCHIVES OF NEUROLOGY 2008. [PMID: 19064743 DOI: 10.1001/archneur.65.12.1571.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Transcranial direct current stimulation (TDCS) is an emerging technique of noninvasive brain stimulation that has been found useful in examining cortical function in healthy subjects and in facilitating treatments of various neurologic disorders. A better understanding of adaptive and maladaptive poststroke neuroplasticity and its modulation through noninvasive brain stimulation has opened up experimental treatment options using TDCS for patients recovering from stroke. We review the role of TDCS as a facilitator of stroke recovery, the different modes of TDCS, and the potential mechanisms underlying the neural effects of TDCS.
Collapse
Affiliation(s)
- Gottfried Schlaug
- Neuroimaging and Stroke Recovery Laboratories, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA.
| | | | | |
Collapse
|
97
|
Jones TA, Allred RP, Adkins DL, Hsu JE, O'Bryant A, Maldonado MA. Remodeling the brain with behavioral experience after stroke. Stroke 2008; 40:S136-8. [PMID: 19064784 DOI: 10.1161/strokeaha.108.533653] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Behavioral experience can drive brain plasticity, but we lack sufficient knowledge to optimize its therapeutic use after stroke. METHODS We outline recent findings from rodent models of cortical stroke of how experiences interact with postinjury events to influence synaptic connectivity and functional outcome. We focus on upper extremity function. RESULTS After unilateral cortical infarcts, behavioral experiences shape neuronal structure and activity in both hemispheres. Experiences that matter include interventions such as skill training and constraint-like therapy as well as unguided behaviors such as learned nonuse and behavioral compensation. Lateralized behaviors have bihemispheric influences. Ischemic injury can alter the sensitivity of remaining neocortical neurons to behavioral change and this can have positive and negative functional effects. CONCLUSIONS Because experience is ongoing in stroke survivors, a better understanding of its interaction with brain reorganization is needed so that it can be manipulated to improve function and prevent its worsening.
Collapse
Affiliation(s)
- Theresa A Jones
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | | | |
Collapse
|
98
|
Alaverdashvili M, Whishaw IQ. Motor cortex stroke impairs individual digit movement in skilled reaching by the rat. Eur J Neurosci 2008; 28:311-22. [PMID: 18702702 DOI: 10.1111/j.1460-9568.2008.06315.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over 30 years ago, Castro [(1972) Brain Res., 37, 173-185] proposed that motor cortex (MtCx) ablation produced deficits in digital usage that contributed to the rat's impairments in a reach-to-eat task, but the impairment was not directly documented. The present study examined digit use in control rats and rats with MtCx lesions using high-speed (1000 f/s) video recording. Temporal and spatial characteristics of individual digits were evaluated by digitizing the tip of the digits and digital joints using the motion measurement system Peak Motus. Control rats displayed differential digital use during grasping actions and MtCx damage reduced individual digit movement, both as the paw was pre-shaped for grasping and in the grasping action itself. The findings show that although grasping is retained following MtCx damage, MtCx is essential for dexterous movement. The results are discussed in relation to the idea that rodent MtCx is not only necessary for rotatory movements of the limb, but also for digital control and in relation to the similarities of rodent digit use to that described for primates.
Collapse
Affiliation(s)
- Mariam Alaverdashvili
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| | | |
Collapse
|
99
|
Hummel FC, Celnik P, Pascual-Leone A, Fregni F, Byblow WD, Buetefisch CM, Rothwell J, Cohen LG, Gerloff C. Controversy: Noninvasive and invasive cortical stimulation show efficacy in treating stroke patients. Brain Stimul 2008; 1:370-82. [DOI: 10.1016/j.brs.2008.09.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 09/03/2008] [Accepted: 09/05/2008] [Indexed: 11/17/2022] Open
|
100
|
Harvey RL, Winstein CJ. Design for the Everest Randomized Trial of Cortical Stimulation and Rehabilitation for Arm Function Following Stroke. Neurorehabil Neural Repair 2008; 23:32-44. [DOI: 10.1177/1545968308317532] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. Cortical stimulation (CS) combined with rehabilitation may improve upper limb motor function after stroke. Objective. Describe the study design for the Everest Clinical Trial, a randomized single-blinded pivotal device trial, testing safety and efficacy of epidural CS delivered during rehabilitation for upper limb motor function in patients with ischemic stroke. Method . A total of 174 participants from 21 centers with hemiplegia at least 4 months after acute ischemic stroke are randomized in a 2:1 ratio to investigational or control groups. Investigational patients undergo implantation of cortical electrode and pulse generator and receive 6 weeks of upper limb rehabilitation with subthreshold CS delivered only during therapy. Control group patients receive the same therapy without device implantation or stimulation. Primary outcome measures include the upper extremity Fugl-Meyer (UEFM) score and the arm motor ability test (AMAT) measured at baseline and 1, 4, 12, and 24 weeks following rehabilitation treatment with primary endpoint at 4 weeks following treatment. A successful outcome is defined as an improvement in UEFM of at least 4.5 points and in AMAT of at least 0.21 points from baseline to primary endpoint. A 20% better success rate between investigational and control groups will be considered clinically meaningful. Adverse events occurring during the study will be identified. Results. Not applicable. Conclusions . The Everest Clinical Trial is the first randomized pivotal trial on the safety and efficacy of direct CS delivered during rehabilitation for recovery of upper limb motor function in patients with ischemic stroke.
Collapse
Affiliation(s)
- Richard L. Harvey
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, and the Rehabilitation Institute of Chicago, Chicago, Illinois,
| | - Carolee J. Winstein
- Division of Biokinesiology and Physical Therapy, School of Dentistry, Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | |
Collapse
|