51
|
Qin JJ, Nag S, Wang W, Zhou J, Zhang WD, Wang H, Zhang R. NFAT as cancer target: mission possible? Biochim Biophys Acta Rev Cancer 2014; 1846:297-311. [PMID: 25072963 DOI: 10.1016/j.bbcan.2014.07.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 12/30/2022]
Abstract
The NFAT signaling pathway regulates various aspects of cellular functions; NFAT acts as a calcium sensor, integrating calcium signaling with other pathways involved in development and growth, immune response, and inflammatory response. The NFAT family of transcription factors regulates diverse cellular functions such as cell survival, proliferation, migration, invasion, and angiogenesis. The NFAT isoforms are constitutively activated and overexpressed in several cancer types wherein they transactivate downstream targets that play important roles in cancer development and progression. Though the NFAT family has been conclusively proved to be pivotal in cancer progression, the different isoforms play distinct roles in different cellular contexts. In this review, our discussion is focused on the mechanisms that drive the activation of various NFAT isoforms in cancer. Additionally, we analyze the potential of NFAT as a valid target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Wei-Dong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, PR China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
52
|
Zhong Y, Byrd JC, Dubovsky JA. The B-cell receptor pathway: a critical component of healthy and malignant immune biology. Semin Hematol 2014; 51:206-18. [PMID: 25048784 DOI: 10.1053/j.seminhematol.2014.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The pathogenesis and progression of normal B-cell development to malignant transformation of chronic lymphocytic leukemia (CLL) is still poorly understood and has hampered attempts to develop targeted therapeutics for this disease. The dependence of CLL cells on B-cell receptor signaling has fostered a new area of basic and therapeutic research interest. In particular, identification of the dependence of CLL cells on both phosphatidylinositol 3-kinase delta and Bruton's tyrosine kinase signaling for survival and proliferation has come forth through well-performed preclinical studies and subsequent trials demonstrating dramatic efficacy. This review outlines essential components of B-cell receptor signaling and briefly addresses therapeutics that are emerging to target these in patients with CLL and related lymphoid malignancies.
Collapse
Affiliation(s)
- Yiming Zhong
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH; Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Jason A Dubovsky
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH.
| |
Collapse
|
53
|
Pham LV, Vang MT, Tamayo AT, Lu G, Challagundla P, Jorgensen JL, Rollo AA, Ou Z, Zhang L, Wang M, Ford RJ. Involvement of tumor-associated macrophage activation in vitro during development of a novel mantle cell lymphoma cell line, PF-1, derived from a typical patient with relapsed disease. Leuk Lymphoma 2014; 56:186-93. [PMID: 24611650 DOI: 10.3109/10428194.2014.901511] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human mantle cell lymphoma (MCL) cell lines are scarce and have been only sporadically described and validated, and only a few have been thoroughly molecularly or genetically characterized. We describe here the successful establishment of a new MCL line, PF-1, with typical MCL characteristics. Culturing primary MCL cells in vitro initially gave rise to an essential generative microenvironment "niche" involving macrophages required for MCL growth, and eventually produced the PF-1 MCL cell line. Our analysis revealed that PF-1 is morphologically and genotypically nearly identical to the original tumor cells. The PF-1 MCL cell line that we have developed will be useful for in vitro and in vivo studies of MCL pathogenesis and therapeutics.
Collapse
Affiliation(s)
- Lan V Pham
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center , Houston, TX , USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Zhang T, Park KA, Li Y, Byun HS, Jeon J, Lee Y, Hong JH, Kim JM, Huang SM, Choi SW, Kim SH, Sohn KC, Ro H, Lee JH, Lu T, Stark GR, Shen HM, Liu ZG, Park J, Hur GM. PHF20 regulates NF-κB signalling by disrupting recruitment of PP2A to p65. Nat Commun 2013; 4:2062. [PMID: 23797602 DOI: 10.1038/ncomms3062] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/28/2013] [Indexed: 01/01/2023] Open
Abstract
Constitutive NF-κB activation in cancer cells is caused by defects in the signalling network responsible for terminating the NF-κB response. Here we report that plant homeodomain finger protein 20 (PHF20) maintains NF-κB in an active state in the nucleus by inhibiting the interaction between PP2A and p65. We show that PHF20 induces canonical NF-κB signalling by increasing the DNA-binding activity of NF-κB subunit p65. In PHF20 overexpressing cells, the termination of tumour necrosis factor-induced p65 phosphorylation is impaired whereas upstream signalling events triggered by tumour necrosis factor are unaffected. This effect strictly depends on the interaction between PHF20 and methylated lysine residues of p65, which hinders recruitment of PP2A to p65, thereby maintaining p65 in a phosphorylated state. We further show that PHF20 levels correlate with p65 phosphorylation levels in human glioma specimens. Our work identifies PHF20 as a novel regulator of NF-κB activation and suggests that elevated expression of PHF20 may drive constitutive NF-κB activation in some cancers.
Collapse
Affiliation(s)
- Tiejun Zhang
- Department of Pharmacology, Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon 301 747, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Pan MG, Xiong Y, Chen F. NFAT gene family in inflammation and cancer. Curr Mol Med 2013; 13:543-54. [PMID: 22950383 DOI: 10.2174/1566524011313040007] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 08/04/2012] [Accepted: 08/10/2012] [Indexed: 01/28/2023]
Abstract
Calcineurin-NFAT signaling is critical for numerous aspects of vertebrate function during and after embryonic development. Initially discovered in T cells, the NFAT gene family, consisting of five members, regulates immune system, inflammatory response, angiogenesis, cardiac valve formation, myocardial development, axonal guidance, skeletal muscle development, bone homeostasis, development and metastasis of cancer, and many other biological processes. In this review we will focus on the NFAT literature relevant to the two closely related pathological systems: inflammation and cancer.
Collapse
Affiliation(s)
- M-G Pan
- Division of Oncology and Hematology, Kaiser Permanente Medical Center, Santa Clara, CA 95051, USA.
| | | | | |
Collapse
|
56
|
Shin J, Lee JC, Baek KH. A single extra copy of Dscr1 improves survival of mice developing spontaneous lung tumors through suppression of tumor angiogenesis. Cancer Lett 2013; 342:70-81. [PMID: 24051307 DOI: 10.1016/j.canlet.2013.08.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 01/01/2023]
Abstract
The incidence of most solid tumors is remarkably reduced in individuals with Down syndrome. Using mouse models of Down syndrome, we have previously shown that this decrease in tumor incidence is due, in part, to suppression of tumor angiogenesis as a consequence of attenuated calcineurin signaling in endothelial cells. Our prior studies utilized xenografted tumors in a transgenic mouse model with three copies of the Down syndrome critical region-1 (Dscr1) gene, a chromosome 21-encoded endogenous calcineurin inhibitor. These data indicate that upregulated Dscr1 contributes to broad cancer protection by suppressing tumor angiogenesis through inhibiting the calcineurin pathway in the vascular endothelium. However, it still remains to be confirmed whether a single extra copy of Dscr1 is also sufficient to suppress tumor angiogenesis in slow growing spontaneous tumors that more accurately recapitulate molecular features of human malignancies. In this study, utilizing LSL-Kras(G12D) mice, an inducible and autochthonous model of human lung adenocarcinoma, on a Dscr1 transgenic mouse background, we show that a single extra transgenic copy of Dscr1 provides a survival advantage in these mice developing spontaneous lung tumors driven by oncogenic Kras(G12D) without affecting either initiation or progression of spontaneous lung tumors. Furthermore, we show that Dscr1 trisomy significantly reduces microvessel density in lung tumors and thus limits the growth of lung tumors through decreased proliferation and increased apoptosis of lung tumor cells. These data provide evidence that a single extra copy of Dscr1 is sufficient to suppress tumor angiogenesis during spontaneous lung tumorigenesis and further support our hypothesis that suppression of tumor angiogenesis by an additional copy of Dscr1 contributes to the reduced cancer incidence in individuals with Down syndrome and the calcineurin pathway in the tumor vasculature is a potential target for cancer treatment.
Collapse
Affiliation(s)
- Jimin Shin
- Department of Molecular and Cellular Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 440-746, Republic of Korea
| | | | | |
Collapse
|
57
|
CluGene: A Bioinformatics Framework for the Identification of Co-Localized, Co-Expressed and Co-Regulated Genes Aimed at the Investigation of Transcriptional Regulatory Networks from High-Throughput Expression Data. PLoS One 2013; 8:e66196. [PMID: 23823315 PMCID: PMC3688840 DOI: 10.1371/journal.pone.0066196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 05/05/2013] [Indexed: 01/03/2023] Open
Abstract
The full understanding of the mechanisms underlying transcriptional regulatory networks requires unravelling of complex causal relationships. Genome high-throughput technologies produce a huge amount of information pertaining gene expression and regulation; however, the complexity of the available data is often overwhelming and tools are needed to extract and organize the relevant information. This work starts from the assumption that the observation of co-occurrent events (in particular co-localization, co-expression and co-regulation) may provide a powerful starting point to begin unravelling transcriptional regulatory networks. Co-expressed genes often imply shared functional pathways; co-expressed and functionally related genes are often co-localized, too; moreover, co-expressed and co-localized genes are also potential targets for co-regulation; finally, co-regulation seems more frequent for genes mapped to proximal chromosome regions. Despite the recognized importance of analysing co-occurrent events, no bioinformatics solution allowing the simultaneous analysis of co-expression, co-localization and co-regulation is currently available. Our work resulted in developing and valuating CluGene, a software providing tools to analyze multiple types of co-occurrences within a single interactive environment allowing the interactive investigation of combined co-expression, co-localization and co-regulation of genes. The use of CluGene will enhance the power of testing hypothesis and experimental approaches aimed at unravelling transcriptional regulatory networks. The software is freely available at http://bioinfolab.unipg.it/.
Collapse
|
58
|
Gachet S, Genescà E, Passaro D, Irigoyen M, Alcalde H, Clémenson C, Poglio S, Pflumio F, Janin A, Lasgi C, Dodier S, Soyer M, Duménil G, Ghysdael J. Leukemia-initiating cell activity requires calcineurin in T-cell acute lymphoblastic leukemia. Leukemia 2013; 27:2289-300. [DOI: 10.1038/leu.2013.156] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/03/2013] [Accepted: 05/08/2013] [Indexed: 11/10/2022]
|
59
|
Activation of NFAT signaling establishes a tumorigenic microenvironment through cell autonomous and non-cell autonomous mechanisms. Oncogene 2013; 33:1840-9. [PMID: 23624921 DOI: 10.1038/onc.2013.132] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/27/2013] [Accepted: 03/11/2013] [Indexed: 11/09/2022]
Abstract
NFAT (the nuclear factor of activated T cells) upregulation has been linked to cellular transformation intrinsically, but it is unclear whether and how tissue cells with NFAT activation change the local environment for tumor initiation and progression. Direct evidence showing NFAT activation initiates primary tumor formation in vivo is also lacking. Using inducible transgenic mouse systems, we show that tumors form in a subset of, but not all, tissues with NFATc1 activation, indicating that NFAT oncogenic effects depend on cell types and tissue contexts. In NFATc1-induced skin and ovarian tumors, both cells with NFATc1 activation and neighboring cells without NFATc1 activation have significant upregulation of c-Myc and activation of Stat3. Besides known and suspected NFATc1 targets, such as Spp1 and Osm, we have revealed the early upregulation of a number of cytokines and cytokine receptors, as key molecular components of an inflammatory microenvironment that promotes both NFATc1(+) and NFATc1(-) cells to participate in tumor formation. Cultured cells derived from NFATc1-induced tumors were able to establish a tumorigenic microenvironment, similar to that of the primary tumors, in an NFATc1-dependent manner in nude mice with T-cell deficiency, revealing an addiction of these tumors to NFATc1 activation and downplaying a role for T cells in the NFATc1-induced tumorigenic microenvironment. These findings collectively suggest that beyond the cell autonomous effects on the upregulation of oncogenic proteins, NFATc1 activation has non-cell autonomous effects through the establishment of a promitogenic microenvironment for tumor growth. This study provides direct evidence for the ability of NFATc1 in inducing primary tumor formation in vivo and supports targeting NFAT signaling in anti-tumor therapy.
Collapse
|
60
|
Agarwal NK, Qu C, Kunkalla K, Kunkulla K, Liu Y, Vega F. Transcriptional regulation of serine/threonine protein kinase (AKT) genes by glioma-associated oncogene homolog 1. J Biol Chem 2013; 288:15390-401. [PMID: 23580656 DOI: 10.1074/jbc.m112.425249] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aberrant activation of Hedgehog signaling has been described in a growing number of cancers, including malignant lymphomas. Here, we report that canonical Hedgehog signaling modulates the transcriptional expression of AKT genes and that AKT1 is a direct transcriptional target of GLI1. We identified two putative binding sites for GLI1 in the AKT1 promoter region and confirmed their functionality using chromatin immunoprecipitation, luciferase reporter, and site-directed mutagenesis assays. Moreover, we provide evidence that GLI1 contributes to the survival of diffuse large B-cell lymphoma (DLBCL) cells and that this effect occurs in part through promotion of the transcription of AKT genes. This finding is of interest as constitutive activation of AKT has been described in DLBCL, but causative factors that explain AKT expression in this lymphoma type are not completely known. In summary, we demonstrated the existence of a novel cross-talk at the transcriptional level between Hedgehog signaling and AKT with biological significance in DLBCL.
Collapse
Affiliation(s)
- Nitin K Agarwal
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
61
|
Koni PA, Bolduc A, Takezaki M, Ametani Y, Huang L, Lee JR, Nutt SL, Kamanaka M, Flavell RA, Mellor AL, Tsubata T, Shimoda M. Constitutively CD40-activated B cells regulate CD8 T cell inflammatory response by IL-10 induction. THE JOURNAL OF IMMUNOLOGY 2013; 190:3189-96. [PMID: 23440421 DOI: 10.4049/jimmunol.1203364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
B cells are exposed to high levels of CD40 ligand (CD40L, CD154) in chronic inflammatory diseases. In addition, B cells expressing both CD40 and CD40L have been identified in human diseases such as autoimmune diseases and lymphoma. However, how such constitutively CD40-activated B cells under inflammation may impact on T cell response remains unknown. Using a mouse model in which B cells express a CD40L transgene (CD40LTg) and receive autocrine CD40/CD40L signaling, we show that CD40LTg B cells stimulated memory-like CD4 and CD8 T cells to express IL-10. This IL-10 expression by CD8 T cells was dependent on IFN-I and programmed cell death protein 1, and was critical for CD8 T cells to counterregulate their overactivation. Furthermore, adoptive transfer of naive CD8 T cells in RAG-1(-/-) mice normally induces colitis in association with IL-17 and IFN-γ cytokine production. Using this model, we show that adoptive cotransfer of CD40LTg B cells, but not wild-type B cells, significantly reduced IL-17 response and regulated colitis in association with IL-10 induction in CD8 T cells. Thus, B cells expressing CD40L can be a therapeutic goal to regulate inflammatory CD8 T cell response by IL-10 induction.
Collapse
Affiliation(s)
- Pandelakis A Koni
- Department of Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Over-expression of Thioredoxin-1 mediates growth, survival, and chemoresistance and is a druggable target in diffuse large B-cell lymphoma. Oncotarget 2012; 3:314-26. [PMID: 22447839 PMCID: PMC3359887 DOI: 10.18632/oncotarget.463] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Diffuse Large B cell lymphomas (DLBCL) are the most prevalent of the non-Hodgkin lymphomas and are currently initially treated fairly successfully, but frequently relapse as refractory disease, resulting in poor salvage therapy options and short survival. The greatest challenge in improving survival of DLBCL patients is overcoming chemo-resistance, whose basis is poorly understood. Among the potential mediators of DLBCL chemo-resistance is the thioredxoin (Trx) family, primarily because Trx family members play critical roles in the regulation of cellular redox homeostasis, and recent studies have indicated that dysregulated redox homeostasis also plays a key role in chemoresistance. In this study, we showed that most of the DLBCL-derived cell lines and primary DLBCL cells express higher basal levels of Trx-1 than normal B cells and that Trx-1 expression level is associated with decreased patients survival. Our functional studies showed that inhibition of Trx-1 by small interfering RNA or a Trx-1 inhibitor (PX-12) inhibited DLBCL cell growth, clonogenicity, and also sensitized DLBCL cells to doxorubicin-induced cell growth inhibition in vitro. These results indicate that Trx-1 plays a key role in cell growth and survival, as well as chemoresistance, and is a potential target to overcome drug resistance in relapsed/refractory DLBCL.
Collapse
|
63
|
Gilmore TD, Gerondakis S. The c-Rel Transcription Factor in Development and Disease. Genes Cancer 2012; 2:695-711. [PMID: 22207895 DOI: 10.1177/1947601911421925] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/08/2011] [Indexed: 12/21/2022] Open
Abstract
c-Rel is a member of the nuclear factor κB (NF-κB) transcription factor family. Unlike other NF-κB proteins that are expressed in a variety of cell types, high levels of c-Rel expression are found primarily in B and T cells, with many c-Rel target genes involved in lymphoid cell growth and survival. In addition to c-Rel playing a major role in mammalian B and T cell function, the human c-rel gene (REL) is a susceptibility locus for certain autoimmune diseases such as arthritis, psoriasis, and celiac disease. The REL locus is also frequently altered (amplified, mutated, rearranged), and expression of REL is increased in a variety of B and T cell malignancies and, to a lesser extent, in other cancer types. Thus, agents that modulate REL activity may have therapeutic benefits for certain human cancers and chronic inflammatory diseases.
Collapse
|
64
|
Liao J, Liang G, Xie S, Zhao H, Zuo X, Li F, Chen J, Zhao M, Chan TM, Lu Q. CD40L demethylation in CD4(+) T cells from women with rheumatoid arthritis. Clin Immunol 2012; 145:13-8. [PMID: 22889643 DOI: 10.1016/j.clim.2012.07.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/09/2012] [Accepted: 07/11/2012] [Indexed: 01/14/2023]
Abstract
We have previously demonstrated that DNA demethylation of CD40L on the X chromosome is responsible for female susceptibility to systemic lupus erythematosus (SLE). It is unknown whether aberrant methylation of the CD40L gene also contributes to the higher incidence of rheumatoid arthritis (RA) in females. In this study, we used real-time RT-PCR and flow cytometry to compare CD40L expression levels, and bisulfite sequencing to assess the methylation status of the CD40L promoter region. The results show that CD40L is upregrulated in CD4(+) T cells of female patients with RA. In addition, the CD40L promoter region in CD4(+) T cells from female RA patients was found to be demethylated, which corresponded with increased CD40L mRNA expression. These findings suggest that DNA demethylation contributes to CD40L expression in RA CD4(+) T cells and may in part explain the female preponderance of this disease.
Collapse
Affiliation(s)
- J Liao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Pei L, Choi JH, Liu J, Lee EJ, McCarthy B, Wilson JM, Speir E, Awan F, Tae H, Arthur G, Schnabel JL, Taylor KH, Wang X, Xu D, Ding HF, Munn DH, Caldwell C, Shi H. Genome-wide DNA methylation analysis reveals novel epigenetic changes in chronic lymphocytic leukemia. Epigenetics 2012; 7:567-78. [PMID: 22534504 DOI: 10.4161/epi.20237] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We conducted a genome-wide DNA methylation analysis in CD19 (+) B-cells from chronic lymphocytic leukemia (CLL) patients and normal control samples using reduced representation bisulfite sequencing (RRBS). The methylation status of 1.8-2.3 million CpGs in the CLL genome was determined; about 45% of these CpGs were located in more than 23,000 CpG islands (CGIs). While global CpG methylation was similar between CLL and normal B-cells, 1764 gene promoters were identified as being differentially methylated in at least one CLL sample when compared with normal B-cell samples. Nineteen percent of the differentially methylated genes were involved in transcriptional regulation. Aberrant hypermethylation was found in all HOX gene clusters and a significant number of WNT signaling pathway genes. Hypomethylation occurred more frequently in the gene body including introns, exons, and 3'-UTRs in CLL. The NFATc1 P2 promoter and first intron was found to be hypomethylated and correlated with upregulation of both NFATc1 RNA and protein expression levels in CLL suggesting that an epigenetic mechanism is involved in the constitutive activation of NFAT activity in CLL cells. This comprehensive DNA methylation analysis will further our understanding of the epigenetic contribution to cellular dysfunction in CLL.
Collapse
Affiliation(s)
- Lirong Pei
- GHSU Cancer Center; Georgia Health Sciences University; Augusta, GA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Kundumani-Sridharan V, Van Quyen D, Subramani J, Singh NK, Chin YE, Rao GN. Novel interactions between NFATc1 (Nuclear Factor of Activated T cells c1) and STAT-3 (Signal Transducer and Activator of Transcription-3) mediate G protein-coupled receptor agonist, thrombin-induced biphasic expression of cyclin D1, with first phase influencing cell migration and second phase directing cell proliferation. J Biol Chem 2012; 287:22463-82. [PMID: 22566696 DOI: 10.1074/jbc.m112.362996] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombin, a G protein-coupled receptor agonist, induced a biphasic expression of cyclin D1 in primary vascular smooth muscle cells. Although both phases of cyclin D1 expression require binding of the newly identified cooperative complex, NFATc1·STAT-3, to its promoter, the second phase, which is more robust, depends on NFATc1-mediated recruitment of p300 onto the complex and the subsequent acetylation of STAT-3. In addition, STAT-3 is tyrosine-phosphorylated in a biphasic manner, and the late phase requires NFATc1-mediated p300-dependent acetylation. Furthermore, interference with acetylation of STAT-3 by overexpression of acetylation null STAT-3 mutant led to the loss of the late phase of cyclin D1 expression. EMSA analysis and reporter gene assays revealed that NFATc1·STAT-3 complex binding to the cyclin D1 promoter led to an enhanceosome formation and facilitated cyclin D1 expression. In the early phase of its expression, cyclin D1 is localized mostly in the cytoplasm and influenced cell migration. However, during the late and robust phase of its expression, cyclin D1 is translocated to the nucleus and directed cell proliferation. Together, these results demonstrate for the first time that the dual function of cyclin D1 in cell migration and proliferation is temperospatially separated by its biphasic expression, which is mediated by cooperative interactions between NFATc1 and STAT-3.
Collapse
|
67
|
Abstract
LMO2 regulates gene expression by facilitating the formation of multipartite DNA-binding complexes. In B cells, LMO2 is specifically up-regulated in the germinal center (GC) and is expressed in GC-derived non-Hodgkin lymphomas. LMO2 is one of the most powerful prognostic indicators in diffuse large B-cell (DLBCL) patients. However, its function in GC B cells and DLBCL is currently unknown. In this study, we characterized the LMO2 transcriptome and transcriptional complex in DLBCL cells. LMO2 regulates genes implicated in kinetochore function, chromosome assembly, and mitosis. Overexpression of LMO2 in DLBCL cell lines results in centrosome amplification. In DLBCL, the LMO2 complex contains some of the traditional partners, such as LDB1, E2A, HEB, Lyl1, ETO2, and SP1, but not TAL1 or GATA proteins. Furthermore, we identified novel LMO2 interacting partners: ELK1, nuclear factor of activated T-cells (NFATc1), and lymphoid enhancer-binding factor1 (LEF1) proteins. Reporter assays revealed that LMO2 increases transcriptional activity of NFATc1 and decreases transcriptional activity of LEF1 proteins. Overall, our studies identified a novel LMO2 transcriptome and interactome in DLBCL and provides a platform for future elucidation of LMO2 function in GC B cells and DLBCL pathogenesis.
Collapse
|
68
|
Donhauser N, Pritschet K, Helm M, Harrer T, Schuster P, Ries M, Bischof G, Vollmer J, Smola S, Schmidt B. Chronic immune activation in HIV-1 infection contributes to reduced interferon alpha production via enhanced CD40:CD40 ligand interaction. PLoS One 2012; 7:e33925. [PMID: 22470494 PMCID: PMC3309969 DOI: 10.1371/journal.pone.0033925] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 02/20/2012] [Indexed: 12/31/2022] Open
Abstract
Although a signature of increased interferon (IFN-)alpha production is observed in HIV-1 infection, the response of circulating plasmacytoid dendritic cells (PDC) to Toll-like receptor ligand stimulation is substantially impaired. This functional PDC deficit, which we specifically observed in HIV-1 infected individuals with less than 500 CD4+ T cells/µl, is not well understood. We provide evidence that the peripheral IFN-alpha production in HIV-1 infection is actively suppressed by the enhanced interaction of CD40 ligand (CD40L), a member of the tumor necrosis factor family, and its receptor CD40, which are both upregulated upon immune activation. Plasma levels of soluble CD40L were significantly higher in untreated HIV-1 infected individuals (n = 52) than in subjects on long-term antiretroviral therapy (n = 62, p<0.03) and in uninfected control donors (n = 16, p<0.001). Concomitantly, cell-associated CD40L and the expression of the receptor CD40 on the PDC were significantly upregulated in HIV-1 infection (p<0.05). Soluble and cell-associated CD40L inhibited the PDC-derived IFN-alpha production by CpG oligodeoxynucleotides dose-dependently. This suppressive effect was observed at much lower, physiological CD40L concentrations in peripheral blood mononuclear cells (PBMC) of HIV-1 infected individuals compared to controls (p<0.05). The CpG-induced IFN-alpha production in PBMC of HIV-1 infected donors was directly correlated with PDC and CD4+ T cell counts, and inversely correlated with the viral loads (p<0.001). In HIV-1 infected donors with less than 500 CD4+ T cells/µl, the CpG-induced IFN-alpha production was significantly correlated with the percentage of CD40-expressing PDC and the level of CD40 expression on these cells (p<0.05), whereas CD40L plasma levels played a minor role. In addition, low-dose CD40L contributed to the enhanced production of interleukin 6 and 8 in PBMC of HIV-1 infected donors compared to controls. Our data support the conclusion that the chronic immune activation in HIV-1 infection impairs peripheral PDC innate immune responses at least in part via enhanced CD40:CD40L interactions.
Collapse
Affiliation(s)
- Norbert Donhauser
- Institute of Clinical and Molecular Virology, German National Reference Centre for Retroviruses, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kathrin Pritschet
- Institute of Clinical and Molecular Virology, German National Reference Centre for Retroviruses, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Helm
- Praxis Dr. G. Abelein/Dr. M. Helm, Nürnberg, Germany
| | - Thomas Harrer
- Department for Internal Medicine III, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Schuster
- Institute of Clinical and Molecular Virology, German National Reference Centre for Retroviruses, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Moritz Ries
- Institute of Clinical and Molecular Virology, German National Reference Centre for Retroviruses, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Georg Bischof
- Institute of Clinical and Molecular Virology, German National Reference Centre for Retroviruses, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg Vollmer
- Pfizer Oligonucleotide Therapeutics Unit, Coley Pharmaceutical GmbH, Düsseldorf, Germany
| | - Sigrun Smola
- Institute of Virology, Saarland University, Homburg/Saar, Germany
| | - Barbara Schmidt
- Institute of Clinical and Molecular Virology, German National Reference Centre for Retroviruses, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| | | |
Collapse
|
69
|
Liu Q, Chen Y, Auger-Messier M, Molkentin JD. Interaction between NFκB and NFAT coordinates cardiac hypertrophy and pathological remodeling. Circ Res 2012; 110:1077-86. [PMID: 22403241 DOI: 10.1161/circresaha.111.260729] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Both nuclear factors of activated T cells (NFAT) and nuclear factor-κB (NFκB) are Rel homology domain (RHD)-containing transcription factors whose independent activities are critically involved in regulating cardiac hypertrophy and failure. OBJECTIVE To determine the potential functional interaction between NFAT and NFκB signaling pathways in cardiomyocytes and its role in cardiac hypertrophy and remodeling. METHODS AND RESULTS We identified a novel transcriptional regulatory mechanism whereby NFκB and NFAT directly interact and synergistically promote transcriptional activation in cardiomyocytes. We show that the p65 subunit of NFκB coimmunoprecipitates with NFAT in cardiomyocytes, and this interaction maps to the RHD within p65. Overexpression of the p65-RHD disrupts the association between endogenous p65 and NFATc1, leading to reduced transcriptional activity. Overexpression of IκB kinase β (IKKβ) or p65-RHD causes nuclear translocation of NFATc1, and expression of a constitutively nuclear NFATc1-SA mutant similarly facilitated p65 nuclear translocation. Combined overexpression of p65 and NFATc1 promotes synergistic activation of NFAT transcriptional activity in cardiomyocytes, whereas inhibition of NFκB with IκBαM or dominant negative IKKβ reduces NFAT activity. Importantly, agonist-induced NFAT activation is reduced in p65 null mouse embryonic fibroblasts (MEFs) compared with wild-type MEFs. In vivo, cardiac-specific deletion of p65 using a Cre-loxP system causes a ≈50% reduction in NFAT activity in luciferase reporter mice. Moreover, ablation of p65 in the mouse heart decreases the hypertrophic response after pressure overload stimulation, reduces the degree of pathological remodeling, and preserves contractile function. CONCLUSIONS Our results suggest a direct interaction between NFAT and NFκB that effectively integrates 2 disparate signaling pathways in promoting cardiac hypertrophy and ventricular remodeling.
Collapse
Affiliation(s)
- Qinghang Liu
- Department of Physiology and Biophysics, University of Washington, Seattle, USA
| | | | | | | |
Collapse
|
70
|
Tieri P, Termanini A, Bellavista E, Salvioli S, Capri M, Franceschi C. Charting the NF-κB pathway interactome map. PLoS One 2012; 7:e32678. [PMID: 22403694 PMCID: PMC3293857 DOI: 10.1371/journal.pone.0032678] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/28/2012] [Indexed: 01/05/2023] Open
Abstract
Inflammation is part of a complex physiological response to harmful stimuli and pathogenic stress. The five components of the Nuclear Factor κB (NF-κB) family are prominent mediators of inflammation, acting as key transcriptional regulators of hundreds of genes. Several signaling pathways activated by diverse stimuli converge on NF-κB activation, resulting in a regulatory system characterized by high complexity. It is increasingly recognized that the number of components that impinges upon phenotypic outcomes of signal transduction pathways may be higher than those taken into consideration from canonical pathway representations. Scope of the present analysis is to provide a wider, systemic picture of the NF-κB signaling system. Data from different sources such as literature, functional enrichment web resources, protein-protein interaction and pathway databases have been gathered, curated, integrated and analyzed in order to reconstruct a single, comprehensive picture of the proteins that interact with, and participate to the NF-κB activation system. Such a reconstruction shows that the NF-κB interactome is substantially different in quantity and quality of components with respect to canonical representations. The analysis highlights that several neglected but topologically central proteins may play a role in the activation of NF-κB mediated responses. Moreover the interactome structure fits with the characteristics of a bow tie architecture. This interactome is intended as an open network resource available for further development, refinement and analysis.
Collapse
Affiliation(s)
- Paolo Tieri
- CIG Luigi Galvani Interdept Center, University of Bologna, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
71
|
Skórka K, Giannopoulos K. Budowa i funkcje jądrowego czynnika transkrypcyjnego NF kappa B (NF-κB) oraz jego znaczenie w przewlekłej białaczce limfocytowej. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/s0001-5814(12)31005-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
72
|
Maguire O, Collins C, O'Loughlin K, Miecznikowski J, Minderman H. Quantifying nuclear p65 as a parameter for NF-κB activation: Correlation between ImageStream cytometry, microscopy, and Western blot. Cytometry A 2011; 79:461-9. [PMID: 21520400 DOI: 10.1002/cyto.a.21068] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/22/2011] [Accepted: 03/24/2011] [Indexed: 12/11/2022]
Abstract
The nuclear factor kappa B (NF-κB) pathway, which regulates many cellular processes including proliferation, apoptosis, and survival, has emerged as an important therapeutic target in cancer. Activation of the NF-κB transcription factor is associated with nuclear translocation of the p65 component of the complex. Conventional methods employed to determine nuclear translocation of NF-κB either lack statistical robustness (microscopy) or the ability to discern heterogeneity within the sampled populations (Western blotting and Gel Shift assays). The ImageStream platform combines the high image content information of microscopy with the high throughput and multiparameter analysis of flow cytometry which overcomes the aforementioned limitations of conventional assays. It is demonstrated that ImageStream assessment of receptor-mediated (TNFα) and drug (Daunorubicin, DNR)-induced NF-κB translocation in leukemic cell lines correlates well with microscopy analysis and Western blot analysis. It is further demonstrated that ImageStream cytometry enables quantitative assessment of p65 translocation in immunophenotypically defined subpopulations; and that this assessment is highly reproducible. It is also demonstrated that, quantitatively, the DNR-induced nuclear translocation of NF-κB correlates well with a biological response (apoptosis). We conclude that the ImageStream has the potential to be a powerful tool to evaluate NF-κB /p65 activity as a determinant of response to therapies designed to target aberrant NF-κB signaling activities.
Collapse
Affiliation(s)
- Orla Maguire
- Department of Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, New York, USA.
| | | | | | | | | |
Collapse
|
73
|
Werneck MBF, Vieira-de-Abreu A, Chammas R, Viola JPB. NFAT1 transcription factor is central in the regulation of tissue microenvironment for tumor metastasis. Cancer Immunol Immunother 2011; 60:537-46. [PMID: 21225259 PMCID: PMC11028796 DOI: 10.1007/s00262-010-0964-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 12/21/2010] [Indexed: 12/23/2022]
Abstract
Members of the nuclear factor of activated T cell (NFAT) family of transcription factors were originally described in T lymphocytes but later shown to be expressed in several immune and non-immune cell types. NFAT proteins can modulate cellular transformation intrinsically, and NFAT-deficient (NFAT1-/-) mice are indeed more susceptible to transformation than wild-type counterparts. However, the contribution of an NFAT1-/- microenvironment to tumor progression has not been studied. We have addressed this question by inoculating NFAT1-/- mice with B16F10 melanoma cells intravenously, an established model of tumor homing and growth. Surprisingly, NFAT1-/- animals sustained less tumor growth in the lungs after melanoma inoculation than wild-type counterparts. Even though melanoma cells equally colonize NFAT1-/- and wild-type lungs, tumors do not progress in the absence of NFAT1 expression. A massive mononuclear perivascular infiltrate and reduced expression of TGF-β in the absence of NFAT1 suggested a role for tumor-infiltrating immune cells and the cytokine milieu. However, these processes are independent of an IL-4-induced regulatory tumor microenvironment, since lack of this cytokine does not alter the phenotype in NFAT1-/- animals. Bone marrow chimera experiments meant to differentiate the contributions of stromal and infiltrating cells to tumor progression demonstrated that NFAT1-induced susceptibility to pulmonary tumor growth depends on NFAT1-expressing parenchyma rather than on bone marrow-derived cells. These results suggest an important role for NFAT1 in radio-resistant tumor-associated parenchyma, which is independent of the anti-tumor immune response and Th1 versus Th2 cytokine milieu established by the cancer cells, but able to promote site-specific tumor growth.
Collapse
Affiliation(s)
- Miriam B. F. Werneck
- Division of Cellular Biology, Brazilian National Institute of Cancer (INCA), Rua André Cavalcanti, 37, Centro, Rio de Janeiro, RJ 20231-050 Brazil
| | - Adriana Vieira-de-Abreu
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ Brazil
| | - Roger Chammas
- Laboratory of Experimental Oncology, Faculty of Medicine, University of São Paulo, São Paulo, SP Brazil
| | - João P. B. Viola
- Division of Cellular Biology, Brazilian National Institute of Cancer (INCA), Rua André Cavalcanti, 37, Centro, Rio de Janeiro, RJ 20231-050 Brazil
| |
Collapse
|
74
|
Pham LV, Fu L, Tamayo AT, Bueso-Ramos C, Drakos E, Vega F, Medeiros LJ, Ford RJ. Constitutive BR3 receptor signaling in diffuse, large B-cell lymphomas stabilizes nuclear factor-κB-inducing kinase while activating both canonical and alternative nuclear factor-κB pathways. Blood 2011; 117:200-10. [PMID: 20889926 PMCID: PMC3037744 DOI: 10.1182/blood-2010-06-290437] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 09/26/2010] [Indexed: 02/06/2023] Open
Abstract
Aberrant nuclear factor κB (NF-κB) signaling has been found to be of particular importance in diffuse, large B-cell lymphoma (DLBCL) cell survival and proliferation. Although the canonical NF-κB signaling pathway has been studied in some detail, activation of the alternative NF-κB pathway in DLBCL is not well characterized. Important insights into the regulation of the alternative NF-κB pathway in B lymphocytes has recently revealed the regulatory importance of the survival kinase NIK (NF-κB-inducing kinase) in genetically engineered murine models. Our studies demonstrate that both the canonical and alternative NF-κB pathways are constitutively activated in DLBCL. We also demonstrate that NIK kinase aberrantly accumulates in DLBCL cells due to constitutive activation of B-cell activation factor (BAFF)-R (BR3) through interaction with autochthonous B-lymphocyte stimulator (BLyS) ligand in DLBCL cells. Activation of BR3 in DLBCL induces recruitment and degradation of tumor necrosis factor receptor-associated factor 3, which results in NIK kinase accumulation, IκBα phosphorylation, and NF-κB p100 processing, thereby resulting in continuous activation of both NF-κB pathways in DLBCL cells, leading to autonomous lymphoma cell growth and survival. These results further elucidate mechanisms involved in abnormal NF-κB activation in DLBCL, and should contribute to better future therapeutic approaches for patients with DLBCL.
Collapse
Affiliation(s)
- Lan V Pham
- Department of Hematopathology, The University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Higuchi T, Nakanishi T, Takada K, Matsumoto M, Okada M, Horikoshi H, Suzuki K. A case of multicentric Castleman's disease having lung lesion successfully treated with humanized anti-interleukin-6 receptor antibody, tocilizumab. J Korean Med Sci 2010; 25:1364-7. [PMID: 20808682 PMCID: PMC2923787 DOI: 10.3346/jkms.2010.25.9.1364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 11/02/2009] [Indexed: 12/04/2022] Open
Abstract
This report presents the case of a patient demonstrating multicentric Castleman's disease (MCD) with a lung lesion that was successfully treated with an anti-interleukin-6 receptor antibody, tocilizumab in combination with corticosteroid and tacrolimus. A 43-yr-old female with abnormal shadows on a chest X-ray was referred to the hospital for further examination. She was diagnosed as having MCD based on the characteristic pathology of inguinal lymph node, lung lesions, laboratory data, and undifferentiated arthritis. Corticosteroid and rituximab therapy did not fully ameliorate the symptoms; thus, the therapeutic regimen was changed to include tocilizumab, oral corticosteroid and tacrolimus. This regimen resulted in clinical remission and the dose of tocilizumab and corticosteroid could be tapered. Tocilizumab in combination with corticosteroid and tacrolimus may therefore be a beneficial treatment regimen for lung lesions associated with MCD.
Collapse
Affiliation(s)
- Tomoaki Higuchi
- Department of Internal Medicine, Division of Rheumatology, National Defense Medical College, Saitama, Japan.
| | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
Nuclear factor of activated T cells (NFAT) was first identified more than two decades ago as a major stimulation-responsive DNA-binding factor and transcriptional regulator in T cells. It is now clear that NFAT proteins have important functions in other cells of the immune system and regulate numerous developmental programmes in vertebrates. Dysregulation of these programmes can lead to malignant growth and cancer. This Review focuses on recent advances in our understanding of the transcriptional functions of NFAT proteins in the immune system and provides new insights into their potential roles in cancer development.
Collapse
|
77
|
An epigenetic chromatin remodeling role for NFATc1 in transcriptional regulation of growth and survival genes in diffuse large B-cell lymphomas. Blood 2010; 116:3899-906. [PMID: 20664054 DOI: 10.1182/blood-2009-12-257378] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The nuclear factor of activated T cells (NFAT) family of transcription factors functions as integrators of multiple signaling pathways by binding to chromatin in combination with other transcription factors and coactivators to regulate genes central for cell growth and survival in hematopoietic cells. Recent experimental evidence has implicated the calcineurin/NFAT signaling pathway in the pathogenesis of various malignancies, including diffuse large B-cell lymphoma (DLBCL). However, the molecular mechanism(s) underlying NFATc1 regulation of genes controlling lymphoma cell growth and survival is still unclear. In this study, we demonstrate that the transcription factor NFATc1 regulates gene expression in DLBCL cells through a chromatin remodeling mechanism that involves recruitment of the SWItch/Sucrose NonFermentable chromatin remodeling complex ATPase enzyme SMARCA4 (also known as Brahma-related gene 1) to NFATc1 targeted gene promoters. The NFATc1/Brahma-related gene 1 complex induces promoter DNase I hypersensitive sites and recruits other transcription factors to the active chromatin site to regulate gene transcription. Targeting NFATc1 with specific small hairpin RNA inhibits DNase I hypersensitive site formation and down-regulates target gene expression. Our data support a novel epigenetic control mechanism for the transcriptional regulation of growth and survival genes by NFATc1 in the pathophysiology of DLBCL and suggests that targeting NFATc1 could potentially have therapeutic value.
Collapse
|
78
|
|
79
|
Lagunas L, Clipstone NA. Deregulated NFATc1 activity transforms murine fibroblasts via an autocrine growth factor-mediated Stat3-dependent pathway. J Cell Biochem 2010; 108:237-48. [PMID: 19565565 DOI: 10.1002/jcb.22245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The nuclear factor of activated T cells (NFAT) family of transcription factors has recently been implicated with a role in tumorigenesis. Forced expression of a constitutively active NFATc1 mutant (caNFATc1) has been shown to transform immortalized murine fibroblasts in vitro, while constitutive activation of the NFAT-signaling pathway has been found in a number of human cancers, where it has been shown to contribute towards various aspects of the tumor phenotype. Here we have investigated the molecular mechanisms underlying the oncogenic potential of deregulated NFAT activity. We now show that ectopic expression of caNFATc1 in murine 3T3-L1 fibroblasts induces the secretion of an autocrine factor(s) that is sufficient to promote the transformed phenotype. We further demonstrate that this NFATc1-induced autocrine factor(s) specifically induces the tyrosine phosphorylation of the Stat3 transcription factor via a JAK kinase-dependent pathway. Interestingly, this effect of sustained NFAT signaling on the autocrine growth factor-mediated activation of Stat3 is not restricted to murine fibroblasts, but is also observed in the PANC-1 and MCF10A human cell lines. Most importantly, we find that the shRNA-mediated depletion of endogenous Stat3 significantly attenuates the ability of caNFATc1 to transform 3T3-L1 fibroblasts. Taken together, our results afford significant new insights into the molecular mechanisms underlying the oncogenic potential of deregulated NFATc1 activity by demonstrating that constitutive NFATc1 activity transforms cells via an autocrine factor-mediated pathway that is critically dependent upon the activity of the Stat3 transcription factor.
Collapse
Affiliation(s)
- Lucio Lagunas
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | |
Collapse
|
80
|
Proliferation centers in chronic lymphocytic leukemia: the niche where NF-kappaB activation takes place. Leukemia 2010; 24:872-6. [PMID: 20072150 DOI: 10.1038/leu.2009.285] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
81
|
Lenalidomide treatment promotes CD154 expression on CLL cells and enhances production of antibodies by normal B cells through a PI3-kinase-dependent pathway. Blood 2009; 115:2619-29. [PMID: 19965642 DOI: 10.1182/blood-2009-09-242438] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) involves a profound humoral immune defect and tumor-specific humoral tolerance that directly contribute to disease morbidity and mortality. CD154 gene therapy can reverse this immune defect, but attempts to do this pharmacologically have been unsuccessful. The immune-modulatory agent lenalidomide shows clinical activity in CLL, but its mechanism is poorly understood. Here, we demonstrate that lenalidomide induces expression of functional CD154 antigen on CLL cells both in vitro and in vivo. This occurs via enhanced CD154 transcription mediated by a Nuclear Factor of Activated T cells c1 (NFATc1)/Nuclear Factor-kappaB (NF-kappaB) complex and also through phosphoinositide-3 (PI3)-kinase pathway-dependent stabilization of CD154 mRNA. Importantly, CD154-positive CLL cells up-regulate BID, DR5, and p73, become sensitized to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis, and promote costimulatory activation of normal B cells to produce antibodies. In CLL patients receiving lenalidomide, similar evidence of CD154 activation is observed including BID, DR5, and p73 induction and also development of anti-ROR1 tumor-directed antibodies. Our data demonstrate that lenalidomide promotes CD154 expression on CLL cells with subsequent activation phenotype, and may therefore reverse the humoral immune defect observed in this disease. This study is registered at http://clinicaltrials.gov as NCT00466895.
Collapse
|
82
|
Abstract
The roles of nuclear factor of activated T cells (NFAT) transcription factors have been extensively studied in the immune system. However, ubiquitous expression of NFAT isoforms in mammalian tissues has recently been observed, and a role for these transcription factors in human cancer is emerging. Various NFAT isoforms are functional in tumour cells and multiple compartments in the tumour microenvironment, including fibroblasts, endothelial cells and infiltrating immune cells. How do NFAT isoforms regulate the complex interplay between these compartments during carcinoma progression? The answers lie with the multiple functions attributed to NFATs, including cell growth, survival, invasion and angiogenesis. In addition to elucidating the complex role of NFATs in cancer, we face the challenge of targeting this pathway therapeutically.
Collapse
Affiliation(s)
- Maria Mancini
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
83
|
Kusam S, Munugalavadla V, Sawant D, Dent A. BCL6 cooperates with CD40 stimulation and loss of p53 function to rapidly transform primary B cells. Int J Cancer 2009; 125:977-81. [PMID: 19405121 DOI: 10.1002/ijc.24450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The BCL6 transcriptional repressor protein has been shown to promote B-cell lymphoma in transgenic mouse models. The mechanism by which BCL6 transforms primary B cells is unclear, although repression of the p53 tumor suppressor is thought to play a role. Here, we showed that BCL6 has critical oncogene functions that are independent of p53 repression. We found that BCL6 cooperates with constitutive CD40 signaling to rapidly transform p53-deficient primary mouse B cells in vitro. Constitutive CD40 signaling alone does not transform p53-deficient B cells, indicating that BCL6 acts specifically as an immortalizing oncogene in this system. The BCL6 transformed B cells are polyclonal and form polyclonal tumors. At the initiation of the cultures, BCL6 does not significantly alter cell cycle progression, but it does promote increased cell survival. Early cultures of BCL6-expressing B cells exhibited marked repression of ATR and p27kip1 but not other BCL6 target genes, suggesting that the ATR and p27kip1 genes have key early roles in mediating BCL6 transformation function. BCL6-transformed cell lines exhibited further decreases of ATR and p27kip1 expression plus strong decreases in Blimp1 and PDCD2 expression. Our study provides important clues about the critical target genes used by BCL6 to transform primary B cells and indicates that the CD40 signaling pathway can collaborate with BCL6 in the transformation of primary B cells. Thus, our study demonstrates a rapid in vitro system to analyze the transformation function of BCL6.
Collapse
Affiliation(s)
- Saritha Kusam
- Department of Microbiology and Immunology and the Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
84
|
BAFF-R promotes cell proliferation and survival through interaction with IKKbeta and NF-kappaB/c-Rel in the nucleus of normal and neoplastic B-lymphoid cells. Blood 2009; 113:4627-36. [PMID: 19258594 DOI: 10.1182/blood-2008-10-183467] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BLyS and its major receptor BAFF-R have been shown to be critical for development and homeostasis of normal B lymphocytes, and for cell growth and survival of neoplastic B lymphocytes, but the biologic mechanisms of this ligand/receptor-derived intracellular signaling pathway(s) have not been completely defined. We have discovered that the BAFF-R protein was present in the cell nucleus, in addition to its integral presence in the plasma membrane and cytoplasm, in both normal and neoplastic B cells. BAFF-R interacted with histone H3 and IKKbeta in the cell nucleus, enhancing histone H3 phosphorylation through IKKbeta. Nuclear BAFF-R was also associated with NF-kappaB/c-Rel and bound to NF-kappaB targeted promoters including BLyS, CD154, Bcl-xL, IL-8, and Bfl-1/A1, promoting the transcription of these genes. These observations suggested that in addition to activating NF-kappaB pathways in the plasma membrane, BAFF-R also promotes normal B-cell and B-cell non-Hodgkin lymphoma (NHL-B) survival and proliferation by functioning as a transcriptional regulator through a chromatin remodeling mechanism(s) and NF-kappaB association. Our studies provide an expanded conceptual view of the BAFF-R signaling, which should contribute a better understanding of the physiologic mechanisms involved in normal B-cell survival and growth, as well as in the pathophysiology of aggressive B-cell malignancies and autoimmune diseases.
Collapse
|
85
|
Dual roles for NFAT transcription factor genes as oncogenes and tumor suppressors. Mol Cell Biol 2008; 28:7168-81. [PMID: 18809576 DOI: 10.1128/mcb.00256-08] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear factor of activated T cells (NFAT) was first described as an activation and differentiation transcription factor in lymphocytes. Several in vitro studies suggest that NFAT family members are redundant proteins. However, analysis of mice deficient for NFAT proteins suggested different roles for the NFAT family of transcription factors in the regulation of cell proliferation and apoptosis. NFAT may also regulate several cell cycle and survival factors influencing tumor growth and survival. Here, we demonstrate that two constitutively active forms of NFAT proteins (CA-NFAT1 and CA-NFAT2 short isoform) induce distinct phenotypes in NIH 3T3 cells. Whereas CA-NFAT1 expression induces cell cycle arrest and apoptosis in NIH 3T3 fibroblasts, CA-NFAT2 short isoform leads to increased proliferation capacity and induction of cell transformation. Furthermore, NFAT1-deficient mice showed an increased propensity for chemical carcinogen-induced tumor formation, and CA-NFAT1 expression subverted the transformation of NIH 3T3 cells induced by the H-rasV12 oncogene. The differential roles for NFAT1 are at least partially due to the protein C-terminal domain. These results suggest that the NFAT1 gene acts as a tumor suppressor gene and the NFAT2 short isoform acts gene as an oncogene, supporting different roles for the two transcription factors in tumor development.
Collapse
|
86
|
Akimzhanov A, Krenacs L, Schlegel T, Klein-Hessling S, Bagdi E, Stelkovics E, Kondo E, Chuvpilo S, Wilke P, Avots A, Gattenlöhner S, Müller-Hermelink HK, Palmetshofer A, Serfling E. Epigenetic changes and suppression of the nuclear factor of activated T cell 1 (NFATC1) promoter in human lymphomas with defects in immunoreceptor signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 172:215-24. [PMID: 18156209 DOI: 10.2353/ajpath.2008.070294] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nuclear factor of activated T cell 1 (Nfatc1) locus is a common insertion site for murine tumorigenic retroviruses, suggesting a role of transcription factor NFATc1 in lymphomagenesis. Although NFATc1 is expressed in most human primary lymphocytes and mature human T- and B-cell neoplasms, we show by histochemical stainings that NFATc1 expression is suppressed in anaplastic large cell lymphomas and classical Hodgkin's lymphomas (HLs). In HL cell lines, NFATc1 silencing correlated with a decrease in histone H3 acetylation, H3-K4 trimethylation, and Sp1 factor binding but with an increase in HP1 binding to the NFATC1 P1 promoter. Together with DNA hypermethylation of the NFATC1 P1 promoter, which we detected in all anaplastic large cell lymphoma and many HL lines, these observations reflect typical signs of transcriptional silencing. In several lymphoma lines, methylation of NFATC1 promoter DNA resulted in a "window of hypomethylation," which is flanked by Sp1-binding sites. Together with the under-representation of Sp1 at the NFATC1 P1 promoter in HL cells, this suggests that Sp1 factors can protect P1 DNA methylation in a directional manner. Blocking immunoreceptor signaling led to NFATC1 P1 promoter silencing and to a decrease in H3 acetylation and H3-K4 methylation but not DNA methylation. This shows that histone modifications precede the DNA methylation in NFATC1 promoter silencing.
Collapse
Affiliation(s)
- Askar Akimzhanov
- Institute of Pathology, University of Wuerzburg, Josef-Schneider-Strasse 2, D-97080 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Stewart R, Wei W, Challa A, Armitage RJ, Arrand JR, Rowe M, Young LS, Eliopoulos A, Gordon J. CD154 tone sets the signaling pathways and transcriptome generated in model CD40-pluricompetent L3055 Burkitt's lymphoma cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:2705-12. [PMID: 17709483 DOI: 10.4049/jimmunol.179.5.2705] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activated B cells reacting to small amounts of CD40L (CD154) maintain homeostasis by suppressing default apoptosis. Additional outcomes, particularly differentiation, demand higher CD40 occupancy. Here, focusing on survival, we compared changes in the transcriptome of pleiotropically competent, early passage L3055 Burkitt's lymphoma cells confronted with low (picomolar) and high (nanomolar) concentrations of CD154 to gain insight into how a single receptor sets these distinct phenotypes. Of 267 genes altering transcriptional activity in response to strong CD154 tone, only 25 changed coordinately on low receptor occupancy. Seven of the top nine common up-regulated genes were targets of NF-kappaB. Direct measurement and functional inhibition of the NF-kappaB pathway revealed it to be central to a CD40-dependent survival signature. Although the canonical NF-kappaB axis was engaged by both signaling strengths equally, robust alternative pathway activation was a feature selective to a strong CD40 signal. Discriminatory exploitation of the two separate arms of NF-kappaB activation may indicate a principle whereby a cell senses and reacts differentially to shifting ligand availability. Identifying components selectively coupling CD40 to each axis could indicate targets for disruption in B cell pathologies underpinned by ectopic and/or hyper-CD154 activity such as neoplasia and some autoimmunities.
Collapse
Affiliation(s)
- Ross Stewart
- MRC Centre for Immune Regulation, University of Birmingham Medical School, Birmingham, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Kusam S, Dent A. Common mechanisms for the regulation of B cell differentiation and transformation by the transcriptional repressor protein BCL-6. Immunol Res 2007; 37:177-86. [PMID: 17873402 DOI: 10.1007/bf02697368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/22/2022]
Abstract
The BCL-6 transcriptional repressor protein is a critical regulator of normal B cell differentiation and BCL-6 has recently been shown to act as an oncogene in several mouse model systems. The molecular pathways by which BCL-6 regulates B cell differentiation and also promotes the transformation of primary B cells are undoubtedly related; however, these pathways are poorly understood. The commonly accepted model for BCL-6 function in B cells is that BCL-6 inhibits the terminal differentiation of activated B cells into plasma cells and that deregulation of BCL-6 expression leads to an inhibition of terminal differentiation and continued proliferation. BCL-6 induces a germinal-center phenotype in primary B cells by unknown mechanisms, and can reverse the terminal differentiation of plasma cell tumor lines. BCL-6 can promote the immortalization of primary B cells and can augment telomerase activity. The role of the vast majority of BCL-6 target genes and interacting proteins in normal B cell differentiation and B cell transformation is essentially unresolved and is an important area for future investigation.
Collapse
Affiliation(s)
- Saritha Kusam
- Department of Microbiology and Immunology and The Walther Oncology Center, Indiana University School of Medicine, 950 W. Walnut St. R2 302, Indianapolis, IN 46202, USA
| | | |
Collapse
|
89
|
Koon HB, Ippolito GC, Banham AH, Tucker PW. FOXP1: a potential therapeutic target in cancer. Expert Opin Ther Targets 2007; 11:955-65. [PMID: 17614763 PMCID: PMC4282158 DOI: 10.1517/14728222.11.7.955] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Forkhead Box P1 (FOXP1) is a member of the FOX family of transcription factors which have a broad range of functions. Foxp1 is widely expressed and has been shown to have a role in cardiac, lung and lymphocyte development. FOXP1 is targeted by recurrent chromosome translocations and its overexpression confers a poor prognosis in a number of types of lymphomas, suggesting it may function as an oncogene. In contrast, FOXP1 localises to a tumour suppressor locus at 3p14.1 and loss of FOXP1 expression in breast cancer is associated with a worse outcome, suggesting FOXP1 may function as a tumour suppressor in other tissue types. These data suggest that FOXP1 may not only be useful in prognosis but also may be used to develop FOXP1-directed therapeutic strategies.
Collapse
Affiliation(s)
- Henry B Koon
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA, USA
| | - Gregory C Ippolito
- University of Texas, Department of Molecular Genetics and Microbiology, Institute of Cellular and Molecular Biology, 1 University Station A5000, Austin, Texas 78712-0162, USA
| | - Alison H Banham
- University of Oxford, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Headington, Oxfordshire, OX3 9DU, UK
| | - Philip W Tucker
- University of Texas, Department of Molecular Genetics and Microbiology, Institute of Cellular and Molecular Biology, 1 University Station A5000, Austin, Texas 78712-0162, USA
- Author for correspondence Tel: +1 512 475 7705; Fax: +1 512 475 7707;
| |
Collapse
|
90
|
Koon HB, Ippolito GC, Banham AH, Tucker PW. FOXP1: a potential therapeutic target in cancer. Expert Opin Ther Targets 2007. [PMID: 17614763 DOI: 10.1517/14728222.11.7.95] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Forkhead Box P1 (FOXP1) is a member of the FOX family of transcription factors which have a broad range of functions. Foxp1 is widely expressed and has been shown to have a role in cardiac, lung and lymphocyte development. FOXP1 is targeted by recurrent chromosome translocations and its overexpression confers a poor prognosis in a number of types of lymphomas, suggesting it may function as an oncogene. In contrast, FOXP1 localises to a tumour suppressor locus at 3p14.1 and loss of FOXP1 expression in breast cancer is associated with a worse outcome, suggesting FOXP1 may function as a tumour suppressor in other tissue types. These data suggest that FOXP1 may not only be useful in prognosis but also may be used to develop FOXP1-directed therapeutic strategies.
Collapse
Affiliation(s)
- Henry B Koon
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA, USA
| | | | | | | |
Collapse
|
91
|
Zhou HJ, Pham LV, Tamayo AT, Lin-Lee YC, Fu L, Yoshimura LC, Ford RJ. Nuclear CD40 interacts with c-Rel and enhances proliferation in aggressive B-cell lymphoma. Blood 2007; 110:2121-7. [PMID: 17567982 PMCID: PMC1976364 DOI: 10.1182/blood-2007-02-073080] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CD40 is an integral plasma membrane-associated member of the TNF receptor family that has recently been shown to also reside in the nucleus of both normal B cells and large B-cell lymphoma (LBCL) cells. However, the physiological function of CD40 in the B-cell nucleus has not been examined. In this study, we demonstrate that nuclear CD40 interacts with the NF-kappaB protein c-Rel, but not p65, in LBCL cells. Nuclear CD40 forms complexes with c-Rel on the promoters of NF-kappaB target genes, CD154, BLyS/BAFF, and Bfl-1/A1, in various LBCL cell lines. Wild-type CD40, but not NLS-mutated CD40, further enhances c-Rel-mediated Blys promoter activation as well as proliferation in LBCL cells. Studies in normal B cells and LBCL patient cells further support a nuclear transcriptional function for CD40 and c-Rel. Cooperation between nuclear CD40 and c-Rel appears to be important in regulating cell growth and survival genes involved in lymphoma cell proliferation and survival mechanisms. Modulating the nuclear function of CD40 and c-Rel could reveal new mechanisms in LBCL pathophysiology and provide potential new targets for lymphoma therapy.
Collapse
MESH Headings
- B-Cell Activating Factor/genetics
- B-Cell Activating Factor/metabolism
- B-Lymphocytes/metabolism
- CD40 Antigens/genetics
- CD40 Antigens/metabolism
- Cell Nucleus/metabolism
- Cell Proliferation
- Chromatin Immunoprecipitation
- Electrophoretic Mobility Shift Assay
- Genes, rel/physiology
- Humans
- Immunoprecipitation
- Luciferases/metabolism
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Promoter Regions, Genetic
- Thymidine/metabolism
- Transfection
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Hai-Jun Zhou
- Department of Hematopathology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Medyouf H, Alcalde H, Berthier C, Guillemin MC, dos Santos NR, Janin A, Decaudin D, de Thé H, Ghysdael J. Targeting calcineurin activation as a therapeutic strategy for T-cell acute lymphoblastic leukemia. Nat Med 2007; 13:736-41. [PMID: 17515895 DOI: 10.1038/nm1588] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 04/19/2007] [Indexed: 01/22/2023]
Abstract
Calcineurin is a calcium-activated serine/threonine phosphatase critical to a number of developmental processes in the cardiovascular, nervous and immune systems. In the T-cell lineage, calcineurin activation is important for pre-T-cell receptor (TCR) signaling, TCR-mediated positive selection of thymocytes into mature T cells, and many aspects of the immune response. The critical role of calcineurin in the immune response is underscored by the fact that calcineurin inhibitors, such as cyclosporin A (CsA) and FK506, are powerful immunosuppressants in wide clinical use. We observed sustained calcineurin activation in human B- and T-cell lymphomas and in all mouse models of lymphoid malignancies analyzed. In intracellular NOTCH1 (ICN1)- and TEL-JAK2-induced T-cell lymphoblastic leukemia, two mouse models relevant to human malignancies, in vivo inhibition of calcineurin activity by CsA or FK506 induced apoptosis of leukemic cells and rapid tumor clearance, and substantially prolonged mouse survival. In contrast, ectopic expression of a constitutively activated mutant of calcineurin favored leukemia progression. Moreover, CsA treatment induced apoptosis in human lymphoma and leukemia cell lines. Thus, calcineurin activation is critical for the maintenance of the leukemic phenotype in vivo, identifying this pathway as a relevant therapeutic target in lymphoid malignancies.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Calcineurin/metabolism
- Calcineurin Inhibitors
- Cell Line, Tumor
- Cyclosporine/pharmacology
- Disease Models, Animal
- Enzyme Activation/drug effects
- Humans
- Leukemia-Lymphoma, Adult T-Cell/drug therapy
- Leukemia-Lymphoma, Adult T-Cell/enzymology
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/enzymology
- Lymphoma, B-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Oncogene Proteins, Fusion/deficiency
- Oncogene Proteins, Fusion/genetics
- Receptor, Notch1/physiology
- Tacrolimus/pharmacology
Collapse
Affiliation(s)
- Hind Medyouf
- Institut Curie, Batiment 110, Centre Universitaire, 91405 Orsay, France
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Loewe R, Valero T, Kremling S, Pratscher B, Kunstfeld R, Pehamberger H, Petzelbauer P. Dimethylfumarate impairs melanoma growth and metastasis. Cancer Res 2007; 66:11888-96. [PMID: 17178886 DOI: 10.1158/0008-5472.can-06-2397] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dimethylfumarate (DMF) inhibits signals transmitted by Rel proteins and is used for the treatment of inflammatory skin diseases such as psoriasis, but potential effects of DMF on tumor progression have yet not been analyzed. We show that DMF reduced melanoma growth and metastasis in severe combined immunodeficient mouse models. To identify targets of DMF action, we analyzed mRNA expression in DMF-treated melanomas by gene chip arrays. Using BiblioSphere software for data analysis, significantly regulated genes were mapped to Gene Ontology terms cell death, cell growth, and cell cycle. Indeed, we found that DMF inhibited proliferation of human melanoma cells A375 and M24met in vitro. The cell cycle was arrested at the G(2)-M boundary. Moreover, DMF was proapoptotic, as shown by cell cycle analysis and by Annexin V and Apo2.7 staining. These results were confirmed in vivo. DMF reduced proliferation rates of tumor cells as assessed by Ki-67 immunostaining and increased apoptosis as assessed by terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling staining. In conclusion, DMF is antiproliferative and proapoptotic and reduces melanoma growth and metastasis in animal models.
Collapse
Affiliation(s)
- Robert Loewe
- Department of Dermatology, Division of General Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
The nuclear factor-kappa B (NF-kappaB) signaling pathway is a multi-component pathway that regulates the expression of hundreds of genes that are involved in diverse and key cellular and organismal processes, including cell proliferation, cell survival, the cellular stress response, innate immunity and inflammation. Not surprisingly, mis-regulation of the NF-kappaB pathway, either by mutation or epigenetic mechanisms, is involved in many human and animal diseases, especially ones associated with chronic inflammation, immunodeficiency or cancer. This review describes human diseases in which mutations in the components of the core NF-kappaB signaling pathway have been implicated and discusses the molecular mechanisms by which these alterations in NF-kappaB signaling are likely to contribute to the disease pathology. These mutations can be germline or somatic and include gene amplification (e.g., REL), point mutations and deletions (REL, NFKB2, IKBA, CYLD, NEMO) and chromosomal translocations (BCL-3). In addition, human genetic diseases are briefly described wherein mutations affect protein modifiers or transducers of NF-kappaB signaling or disrupt NF-kappaB-binding sites in promoters/enhancers.
Collapse
Affiliation(s)
- G Courtois
- INSERM U697, Hôpital Saint-Louis, Paris, France
| | | |
Collapse
|
95
|
Fu L, Lin-Lee YC, Pham LV, Tamayo A, Yoshimura L, Ford RJ. Constitutive NF-kappaB and NFAT activation leads to stimulation of the BLyS survival pathway in aggressive B-cell lymphomas. Blood 2006; 107:4540-8. [PMID: 16497967 PMCID: PMC1895801 DOI: 10.1182/blood-2005-10-4042] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
B-lymphocyte stimulator (BLyS), a relatively recently recognized member of the tumor necrosis factor ligand family (TNF), is a potent cell-survival factor expressed in many hematopoietic cells. BLyS binds to 3 TNF-R receptors, TACI, BCMA, BAFF-R, to regulate B-cell survival, differentiation, and proliferation. The mechanisms involved in BLYS gene expression and regulation are still incompletely understood. In this study, we examined BLYS gene expression, function, and regulation in B-cell non-Hodgkin lymphoma (NHL-B) cells. Our studies indicate that BLyS is constitutively expressed in aggressive NHL-B cells, including large B-cell lymphoma (LBCL) and mantle cell lymphoma (MCL), playing an important role in the survival and proliferation of malignant B cells. We found that 2 important transcription factors, NF-kappaB and NFAT, are involved in regulating BLyS expression through at least one NF-kappaB and 2 NFAT binding sites in the BLYS promoter. We also provide evidence suggesting that the constitutive activation of NF-kappaB and BLyS in NHL-B cells forms a positive feedback loop associated with lymphoma cell survival and proliferation. Our findings indicate that constitutive NF-kappaB and NFAT activations are crucial transcriptional regulators of the BLyS survival pathway in malignant B cells that could be therapeutic targets in aggressive NHL-B.
Collapse
Affiliation(s)
- Lingchen Fu
- Department of Hematopathology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
96
|
Terui Y, Sakurai T, Mishima Y, Mishima Y, Sugimura N, Sasaoka C, Kojima K, Yokoyama M, Mizunuma N, Takahashi S, Ito Y, Hatake K. Blockade of bulky lymphoma-associated CD55 expression by RNA interference overcomes resistance to complement-dependent cytotoxicity with rituximab. Cancer Sci 2006; 97:72-9. [PMID: 16367924 PMCID: PMC11158893 DOI: 10.1111/j.1349-7006.2006.00139.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Recently, anti-CD20 (rituximab) and anti-Her2/neu (trastuzumab) antibodies have been developed and applied to the treatment of malignant lymphoma and breast cancer, respectively. However, bulky lymphoma is known to be resistant to rituximab therapy, and this needs to be overcome. Fresh lymphoma cells were collected from 30 patients with non-Hodgkin's lymphoma, the expression of CD20 and CD55 was examined by flow cytometry, and complement-dependent cytotoxicity (CDC) assays were carried out. Susceptibility to CDC with rituximab was decreased in a tumor size-dependent manner (r=-0.895, P<0.0001), but not in a CD20-dependent manner (r=-0.076, P=0.6807) using clinical samples. One complement-inhibitory protein, CD55, contributed to bulky lymphoma-related resistance to CDC with rituximab. A decrease in susceptibility to CDC with rituximab was statistically dependent on CD55 expression (r=-0.927, P<0.0001) and the relationship between tumor size and CD55 expression showed a significant positive correlation (r=0.921, P<0.0001) using clinical samples. To overcome the resistance to rituximab by high expression of CD55 in bulky lymphoma masses, small interfering RNA (siRNA) was designed from the DNA sequence corresponding to nucleic acids 1-380 of the CD55 cDNA. Introduction of this siRNA decreased CD55 expression in the breast cancer cell line SK-BR3 and in CD20-positive cells of patients with recurrent lymphoma; resistance to CDC was also inhibited. This observation gives us a novel strategy to suppress bulky disease-related resistance to monoclonal antibody treatment.
Collapse
Affiliation(s)
- Yasuhito Terui
- Division of Clinical Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|