51
|
Xie P, Kraus ZJ, Stunz LL, Liu Y, Bishop GA. TNF receptor-associated factor 3 is required for T cell-mediated immunity and TCR/CD28 signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:143-155. [PMID: 21084666 DOI: 10.4049/jimmunol.100029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We recently reported that TNFR-associated factor (TRAF)3, a ubiquitously expressed adaptor protein, promotes mature B cell apoptosis. However, the specific function of TRAF3 in T cells has remained unclear. In this article, we report the generation and characterization of T cell-specific TRAF3(-/-) mice, in which the traf3 gene was deleted from thymocytes and T cells. Ablation of TRAF3 in the T cell lineage did not affect CD4 or CD8 T cell populations in secondary lymphoid organs or the numbers or proportions of CD4(+),CD8(+) or double-positive or double-negative thymocytes, except that the T cell-specific TRAF3(-/-) mice had a 2-fold increase in FoxP3(+) T cells. In striking contrast to mice lacking TRAF3 in B cells, the T cell TRAF3-deficient mice exhibited defective IgG1 responses to a T-dependent Ag, as well as impaired T cell-mediated immunity to infection with Listeria monocytogenes. Surprisingly, we found that TRAF3 was recruited to the TCR/CD28 signaling complex upon costimulation and that TCR/CD28-mediated proximal and distal signaling events were compromised by TRAF3 deficiency. These findings provide insights into the roles played by TRAF3 in T cell activation and T cell-mediated immunity.
Collapse
Affiliation(s)
- Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
52
|
Abstract
The success of stem-cell-based regenerative therapeutics critically hinges on delivering relevant stem/progenitor cells to sites of tissue injury. To achieve adequate parenchymal infiltration following intravascular administration, it is first necessary that circulating cells bind to target tissue endothelium with sufficient strength to overcome the prevailing forces of hemodynamic shear. The principal mediators of these shear-resistant binding interactions consist of a family of C-type lectins known as "selectins" that bind discrete sialofucosylated glycans on their respective ligands. One member of this family, E-selectin, is an endothelial molecule that is inducibly expressed on postcapillary venules at all sites of tissue injury, but is also constitutively expressed on the luminal surface of bone marrow and dermal microvascular endothelium. Most stem/progenitor cells express high levels of CD44, and, in particular, human hematopoietic stem cells express a specialized sialofucosylated glycoform of CD44 known as "hematopoietic cell E-/L-selectin ligand" (HCELL) that functions as a potent E-selectin ligand. This chapter describes a method called "glycosyltransferase-programmed stereosubstitution" (GPS) for custom-modifying CD44 glycans to create HCELL on the surface of living cells that natively lack HCELL. Ex vivo glycan engineering of HCELL via GPS licenses trafficking of infused cells to endothelial beds that express E-selectin, thereby enabling efficient vascular delivery of stem/progenitor cells to sites where they are needed.
Collapse
Affiliation(s)
- Robert Sackstein
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
53
|
Xie P, Kraus ZJ, Stunz LL, Liu Y, Bishop GA. TNF receptor-associated factor 3 is required for T cell-mediated immunity and TCR/CD28 signaling. THE JOURNAL OF IMMUNOLOGY 2010; 186:143-55. [PMID: 21084666 DOI: 10.4049/jimmunol.1000290] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We recently reported that TNFR-associated factor (TRAF)3, a ubiquitously expressed adaptor protein, promotes mature B cell apoptosis. However, the specific function of TRAF3 in T cells has remained unclear. In this article, we report the generation and characterization of T cell-specific TRAF3(-/-) mice, in which the traf3 gene was deleted from thymocytes and T cells. Ablation of TRAF3 in the T cell lineage did not affect CD4 or CD8 T cell populations in secondary lymphoid organs or the numbers or proportions of CD4(+),CD8(+) or double-positive or double-negative thymocytes, except that the T cell-specific TRAF3(-/-) mice had a 2-fold increase in FoxP3(+) T cells. In striking contrast to mice lacking TRAF3 in B cells, the T cell TRAF3-deficient mice exhibited defective IgG1 responses to a T-dependent Ag, as well as impaired T cell-mediated immunity to infection with Listeria monocytogenes. Surprisingly, we found that TRAF3 was recruited to the TCR/CD28 signaling complex upon costimulation and that TCR/CD28-mediated proximal and distal signaling events were compromised by TRAF3 deficiency. These findings provide insights into the roles played by TRAF3 in T cell activation and T cell-mediated immunity.
Collapse
Affiliation(s)
- Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
54
|
Läubli H, Borsig L. Selectins promote tumor metastasis. Semin Cancer Biol 2010; 20:169-77. [PMID: 20452433 DOI: 10.1016/j.semcancer.2010.04.005] [Citation(s) in RCA: 318] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 04/29/2010] [Indexed: 11/17/2022]
Abstract
Cancer metastasis is facilitated by cell-cell interactions between cancer cells and endothelial cells in distant tissues. In addition, cancer cell interactions with platelets and leukocytes contribute to cancer cell adhesion, extravasation, and the establishment of metastatic lesions. Selectins are carbohydrate-binding molecules that bind to sialylated, fucosylated glycan structures, and are found on endothelial cells, platelets and leukocytes. There are three members of the selectin family: P-selectin expressed on activated platelets and endothelial cells, L-selectin present on leukocytes and E-selectin expressed on activated endothelial cells. Besides the accepted roles of selectins in physiological processes, such as inflammation, immune response and hemostasis, there is accumulating evidence for the potential of selectins to contribute to a number of pathophysiological processes, including cancer metastasis. Cancer cell interactions with selectins are possible due to a frequent presence of carbohydrate determinants--selectin ligands on the cell surface of tumor cells from various type of cancer. The degree of selectin ligand expression by cancer cells is well correlated with metastasis and poor prognosis for cancer patients. Initial adhesion events of cancer cells facilitated by selectins result in activation of integrins, release of chemokines and are possibly associated with the formation of permissive metastatic microenvironment. While E-selectin has been evaluated as one of the initiating adhesion events during metastasis, it is becoming apparent that P-selectin and L-selectin-mediated interactions significantly contribute to this process as well. In this review we discuss the current evidence for selectins as potential facilitators of metastasis.
Collapse
Affiliation(s)
- Heinz Läubli
- Institute of Physiology, University of Zürich, Zürich Center for Integrative Human Physiology, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
55
|
Core 1-derived O-glycans are essential E-selectin ligands on neutrophils. Proc Natl Acad Sci U S A 2010; 107:9204-9. [PMID: 20439727 DOI: 10.1073/pnas.1003110107] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neutrophils roll on E-selectin in inflamed venules through interactions with cell-surface glycoconjugates. The identification of physiologic E-selectin ligands on neutrophils has been elusive. Current evidence suggests that P-selectin glycoprotein ligand-1 (PSGL-1), E-selectin ligand-1 (ESL-1), and CD44 encompass all glycoprotein ligands for E-selectin; that ESL-1 and CD44 use N-glycans to bind to E-selectin; and that neutrophils lacking core 2 O-glycans have partially defective interactions with E-selectin. These data imply that N-glycans on ESL-1 and CD44 and O-glycans on PSGL-1 constitute all E-selectin ligands, with neither glycan subset having a dominant role. The enzyme T-synthase transfers Gal to GalNAcalpha1-Ser/Thr to form the core 1 structure Galbeta1-3GalNAcalpha1-Ser/Thr, a precursor for core 2 and extended core 1 O-glycans that might serve as selectin ligands. Here, using mice lacking T-synthase in endothelial and hematopoietic cells, we found that E-selectin bound to CD44 and ESL-1 in lysates of T-synthase-deficient neutrophils. However, the cells exhibited markedly impaired rolling on E-selectin in vitro and in vivo, failed to activate beta2 integrins while rolling, and did not emigrate into inflamed tissues. These defects were more severe than those of neutrophils lacking PSGL-1, CD44, and the mucin CD43. Our results demonstrate that core 1-derived O-glycans are essential E-selectin ligands; that some of these O-glycans are on protein(s) other than PSGL-1, CD44, and CD43; and that PSGL-1, CD44, and ESL-1 do not constitute all glycoprotein ligands for E-selectin.
Collapse
|
56
|
Yamanaka KI, Kakeda M, Kitagawa H, Tsuda K, Akeda T, Kurokawa I, Gabazza EC, Kupper TS, Mizutani H. 1,24-Dihydroxyvitamin D3
(tacalcitol) prevents skin T-cell infiltration. Br J Dermatol 2010; 162:1206-15. [PMID: 20163421 DOI: 10.1111/j.1365-2133.2010.09692.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- K-I Yamanaka
- Department of Dermatology Immunology, Mie University, Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Bi S, Baum LG. Sialic acids in T cell development and function. Biochim Biophys Acta Gen Subj 2009; 1790:1599-610. [DOI: 10.1016/j.bbagen.2009.07.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 11/16/2022]
|
58
|
Matsumoto M, Miyasaka M, Hirata T. P-selectin glycoprotein ligand-1 negatively regulates T-cell immune responses. THE JOURNAL OF IMMUNOLOGY 2009; 183:7204-11. [PMID: 19890058 DOI: 10.4049/jimmunol.0902173] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cell surface sialomucins often act as antiadhesive molecules by virtue of their extended structure and negative charge. CD43 is one such sialomucin, expressed on most leukocytes. P-selectin glycoprotein ligand-1 (PSGL-1) is another sialomucin expressed by leukocytes. It serves as a major selectin ligand, but no antiadhesive role for it has been described. In this study, we showed that PSGL-1-deficient T cells, like CD43-deficient T cells, exhibited increased adhesion and proliferation compared with wild-type cells. The loss of both PSGL-1 and CD43 led to a further increase in T cell adhesion and proliferation. The reexpression of full-length PSGL-1 or CD43 in double-deficient CD4(+) T cells reversed their increased adhesion and proliferation phenotype. Using chimeric constructs of human CD8 and either PSGL-1 or CD43, we demonstrated that the intracellular domain of PSGL-1 or CD43 is required for suppressing proliferation but not adhesion. Furthermore, in a mouse model of inflammatory bowel disease induced by the adoptive transfer of naive T cells into RAG-deficient hosts, a PSGL-1 deficiency exacerbated the development of inflammation. These results reveal a novel regulatory role for PSGL-1 in T cell adhesion and proliferation and suggest that PSGL-1 negatively regulates T cell immune responses in vivo.
Collapse
Affiliation(s)
- Masanori Matsumoto
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Graduate School of Medicine and World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | | | | |
Collapse
|
59
|
Abstract
Leukocyte recruitment encompasses cell adhesion and activation steps that enable circulating leukocytes to roll, arrest, and firmly adhere on the endothelial surface before they extravasate into distinct tissue locations. This complex sequence of events relies on adhesive interactions between surface structures on leukocytes and endothelial cells and also on signals generated during the cell-cell contacts. Cell surface glycans play a crucial role in leukocyte recruitment. Several glycosyltransferases such as alpha1,3 fucosyltransferases, alpha2,3 sialyltransferases, core 2 N-acetylglucosaminlytransferases, beta1,4 galactosyltransferases, and polypeptide N-acetylgalactosaminyltransferases have been implicated in the generation of functional selectin ligands that mediate leukocyte rolling via binding to selectins. Recent evidence also suggests a role of alpha2,3 sialylated carbohydrate determinants in triggering chemokine-mediated leukocyte arrest and influencing beta1 integrin function. The recent discovery of galectin- and siglec-dependent processes further emphasizes the significant role of glycans for the successful recruitment of leukocytes into tissues. Advancing the knowledge on glycan function into appropriate pathology models is likely to suggest interesting new therapeutic strategies in the treatment of immune- and inflammation-mediated diseases.
Collapse
Affiliation(s)
- Markus Sperandio
- Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany.
| | | | | |
Collapse
|
60
|
Sackstein R. Glycosyltransferase-programmed stereosubstitution (GPS) to create HCELL: engineering a roadmap for cell migration. Immunol Rev 2009; 230:51-74. [PMID: 19594629 DOI: 10.1111/j.1600-065x.2009.00792.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
During evolution of the vertebrate cardiovascular system, the vast endothelial surface area associated with branching vascular networks mandated the development of molecular processes to efficiently and specifically recruit circulating sentinel host defense cells and tissue repair cells at localized sites of inflammation/tissue injury. The forces engendered by high-velocity blood flow commensurately required the evolution of specialized cell surface molecules capable of mediating shear-resistant endothelial adhesive interactions, thus literally capturing relevant cells from the blood stream onto the target endothelial surface and permitting subsequent extravasation. The principal effectors of these shear-resistant binding interactions comprise a family of C-type lectins known as 'selectins' that bind discrete sialofucosylated glycans on their respective ligands. This review explains the 'intelligent design' of requisite reagents to convert native CD44 into the sialofucosylated glycoform known as hematopoietic cell E-/L-selectin ligand (HCELL), the most potent E-selectin counter-receptor expressed on human cells, and will describe how ex vivo glycan engineering of HCELL expression may open the 'avenues' for the efficient vascular delivery of cells for a variety of cell therapies.
Collapse
Affiliation(s)
- Robert Sackstein
- Department of Dermatology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
61
|
Molecular mechanisms of leukocyte trafficking in T-cell-mediated skin inflammation: insights from intravital imaging. Expert Rev Mol Med 2009; 11:e25. [DOI: 10.1017/s146239940900115x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infiltration of T cells is a key step in the pathogenesis of the inflammatory skin diseases atopic dermatitis, allergic contact dermatitis and psoriasis. Understanding the mechanisms of T cell recruitment to the skin is therefore of fundamental importance for the discovery and application of novel therapies for these conditions. Studies of both clinical samples and experimental models of skin inflammation have implicated specific adhesion molecules and chemokines in lymphocyte recruitment. In particular, recent studies using advanced in vivo imaging techniques have greatly increased our understanding of the kinetics and molecular basis of this process. In this review, we summarise the current understanding of the cellular immunology of antigen-driven dermal inflammation and the roles of adhesion molecules and chemokines. We focus on results obtained using intravital microscopy to examine the dermal microvasculature and interstitium to determine the mechanisms of T cell recruitment and migration in experimental models of T-cell-mediated skin inflammation.
Collapse
|
62
|
Mitrovic Z, Ilic I, Nola M, Aurer I, Sonicki Z, Basic-Kinda S, Radman I, Ajdukovic R, Labar B. CD43 expression is an adverse prognostic factor in diffuse large B-Cell lymphoma. ACTA ACUST UNITED AC 2009; 9:133-7. [PMID: 19406723 DOI: 10.3816/clm.2009.n.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND CD43 is a transmembrane glycoprotein expressed in different hematopoietic cells, including some subsets of B lymphocytes. About a quarter of diffuse large B-cell lymphomas (DLBCLs) express CD43, but its prognostic significance is unknown. PATIENTS AND METHODS We analyzed the prognostic effect of immunohistochemically determined CD43 expression in 119 patients with newly diagnosed DLBCL. All were treated with CHOP (cyclophosphamide/doxorubicin/vincristine/prednisone)-like chemotherapy, 57 without and 62 with rituximab. RESULTS A total of 31 DLBCL cases (26%) expressed CD43. Patients with CD43+ and CD43- lymphomas did not differ regarding sex, International Prognostic Index (IPI) factors and score, rituximab treatment, presence of bulky disease, or germinal center subtype. Median follow-up was 45 months. Patients with CD43+ DLBCL had significantly lower complete response rates (59% vs. 80%; P = .019), 2-year event-free survival (EFS) rates (34% vs. 64%; P = .003), and overall survival (OS) rates (45% vs. 76%; P = .002). The prognostic significance of CD43 expression was retained in multivariate analysis (relative risk [RR] 2.04; P = .013 for EFS; RR 2.17; P = .016 for OS). In subgroup analysis, the effect of CD43 expression was significant in patients treated with rituximab and those with low IPI, whereas it was not reached in patients treated without rituximab. The effect was not observed in patients with high IPI. CONCLUSION These results indicate that CD43 expression is an important independent adverse prognostic factor in DLBCL.
Collapse
Affiliation(s)
- Zdravko Mitrovic
- Division of Hematology, Department of Medicine, University Hospital Center and Medical School University of Zagreb, Croatia.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Sackstein R, Fuhlbrigge R. Western blot analysis of adhesive interactions under fluid shear conditions: the blot rolling assay. Methods Mol Biol 2009; 536:343-54. [PMID: 19378073 PMCID: PMC5571433 DOI: 10.1007/978-1-59745-542-8_36] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Western blotting has proven to be an important technique in analysis of receptor-ligand interactions (i.e., by ligand blotting) and for identifying molecules mediating cell attachment (i.e., by cell blotting). Conventional ligand blotting and cell blotting methods employ nondynamic (static) incubation conditions, whereby molecules or cells of interest are placed in suspension and overlaid on membranes. However, many cell-cell and cell-matrix adhesive interactions occur under fluid shear conditions, and shear stress itself mediates and/or facilitates the engagement of these physiologically appropriate receptors and ligands. Notably, shear forces critically influence the adhesion of circulating cells and platelets to vessel walls in physiologic cell migration and hemostasis, as well as in inflammatory and thrombotic disorders, cancer metastasis, and atherosclerosis. Use of nondynamic blotting conditions to analyze such interactions can introduce bias, overtly missing relevant effectors and/or exaggerating the relative role(s) of nonphysiologic adhesion molecules. To address this shortfall, we have developed a new technique for identifying binding interactions under fluid shear conditions, the "blot rolling assay." Using this method, molecules in a complex mixture are resolved by gel electrophoresis, transferred to a membrane that is rendered semi-transparent, and the membrane is then incorporated into a parallel-plate flow chamber apparatus. Under controlled flow conditions, cells or particles bearing adhesion proteins of interest are then introduced into the chamber and interactions with individual immobilized molecules (bands) can be visualized in real-time. The substrate molecule(s) supporting adhesion under fluid shear can then be identified by staining with specific antibodies or by excising the relevant band(s) and performing mass spectrometry or microsequencing of the isolated material. This method thus allows for the identification, within a complex mixture and without prior isolation or purification, of both known and previously uncharacterized adhesion molecules operational under dynamic conditions.
Collapse
Affiliation(s)
- Robert Sackstein
- Department of Dermatology and Medicine, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Mailstop: HIM, Room 671, Boston, MA, 02115, USA.
| | | |
Collapse
|
64
|
Rivera-Nieves J, Gorfu G, Ley K. Leukocyte adhesion molecules in animal models of inflammatory bowel disease. Inflamm Bowel Dis 2008; 14:1715-35. [PMID: 18523998 PMCID: PMC2733908 DOI: 10.1002/ibd.20501] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The dysregulated recruitment of leukocytes into the intestine is required for the initiation and maintenance of inflammatory bowel disease (IBD). Several families of molecules regulate the influx of these cells into sites of inflammation. Interference with some of these molecules has already shown efficacy in the clinics and antibodies that target the molecules involved have been approved by the FDA for use in Crohn's disease (CD), multiple sclerosis (i.e., natalizumab), and psoriasis (i.e., efalizumab). Here, we discuss basic aspects of the different families of relevant molecules and compile a large body of preclinical studies that supported the targeting of specific steps of the leukocyte adhesion cascade for therapeutic purposes in colitis and in novel models of CD-like ileitis.
Collapse
Affiliation(s)
- Jesus Rivera-Nieves
- Mucosal Inflammation Program, Division of Gastroenterology, Department of Internal Medicine, University of Colorado Health Sciences Center, Denver Colorado 80206,Address correspondence and reprint requests to: Dr. Jesus Rivera-Nieves, Mucosal Inflammation Program, Division of Gastroenterology, Department of Internal Medicine, University of Colorado Health Sciences Center, Biochemistry Research Building Room 742A, 4200 E. 9th Ave SE, B146, Denver, CO 80206, e-mail address:
| | - Gezahegn Gorfu
- La Jolla Institute for Allergy and Immunology, Division of Inflammation Biology, La Jolla, CA 92037, USA
| | - Klaus Ley
- La Jolla Institute for Allergy and Immunology, Division of Inflammation Biology, La Jolla, CA 92037, USA
| |
Collapse
|
65
|
CD15 expression in human myeloid cell differentiation is regulated by sialidase activity. Nat Chem Biol 2008; 4:751-7. [PMID: 18953356 DOI: 10.1038/nchembio.116] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 09/08/2008] [Indexed: 01/29/2023]
Abstract
The glycan determinant CD15 (also known as Lewis x, or Le(x)) is a distinguishing marker for human myeloid cells and mediates neutrophil adhesion to dendritic cells. Despite broad interest in this structure, the mechanisms underlying CD15 expression remain relatively uncharacterized. Accordingly, we investigated the molecular basis of increasing CD15 expression associated with human myeloid cell differentiation. Flow cytometric analysis of differentiating cells together with biochemical studies using inhibitors of glycan synthesis and of sialidases showed that increased CD15 expression is not due to de novo biosynthesis of CD15, but results predominantly from induction of alpha(2-3)-sialidase activity, which yields CD15 from cell-surface sialyl-CD15 (also known as sialyl-Lewis x, sLe(x) or CD15s). This differentiation-associated conversion of surface CD15s to CD15 occurs mainly on glycoproteins. Until now, modulation of post-translational glycan modifications has been attributed solely to dynamic variations in glycosyltransferase expression. Our results unveil a new paradigm by demonstrating a critical role for post-Golgi membrane glycosidase activity in the 'biosynthesis' of a key glycan determinant.
Collapse
|
66
|
Matsumoto M, Shigeta A, Miyasaka M, Hirata T. CD43 Plays Both Antiadhesive and Proadhesive Roles in Neutrophil Rolling in a Context-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2008; 181:3628-35. [DOI: 10.4049/jimmunol.181.5.3628] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
67
|
Kerr SC, Fieger CB, Snapp KR, Rosen SD. Endoglycan, a member of the CD34 family of sialomucins, is a ligand for the vascular selectins. THE JOURNAL OF IMMUNOLOGY 2008; 181:1480-90. [PMID: 18606703 DOI: 10.4049/jimmunol.181.2.1480] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interactions of the selectin family of adhesion molecules with their ligands are essential for the initial rolling stage of leukocyte trafficking. Under inflammatory conditions, the vascular selectins, E- and P-selectin, are expressed on activated vessels and interact with carbohydrate-based ligands on the leukocyte surface. While several ligands have been characterized on human T cells, monocytes and neutrophils, there is limited information concerning ligands on B cells. Endoglycan (EG) together with CD34 and podocalyxin comprise the CD34 family of sialomucins. We found that EG, previously implicated as an L-selectin ligand on endothelial cells, was present on human B cells, T cells and peripheral blood monocytes. Upon activation of B cells, EG increased with a concurrent decrease in PSGL-1. Expression of EG on T cells remained constant under the same conditions. We further found that native EG from several sources (a B cell line, a monocyte line and human tonsils) was reactive with HECA-452, a mAb that recognizes sialyl Lewis X and related structures. Moreover, immunopurified EG from these sources was able to bind to P-selectin and where tested E-selectin. This interaction was divalent cation-dependent and required sialylation of EG. Finally, an EG construct supported slow rolling of E- and P-selectin bearing cells in a sialic acid and fucose dependent manner, and the introduction of intact EG into a B cell line facilitated rolling interactions on a P-selectin substratum. These in vitro findings indicate that EG can function as a ligand for the vascular selectins.
Collapse
Affiliation(s)
- Sheena C Kerr
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
68
|
Mambole A, Baruch D, Nusbaum P, Bigot S, Suzuki M, Lesavre P, Fukuda M, Halbwachs-Mecarelli L. The cleavage of neutrophil leukosialin (CD43) by cathepsin G releases its extracellular domain and triggers its intramembrane proteolysis by presenilin/gamma-secretase. J Biol Chem 2008; 283:23627-35. [PMID: 18586676 DOI: 10.1074/jbc.m710286200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The highly negatively charged membrane sialoglycoprotein leukosialin, CD43, is shed during neutrophil activation. This is generally thought to enhance cell adhesion. We here describe two novel consequences of this shedding, during neutrophil activation by phorbol esters or by chemoattractants after TNF-alpha priming. CD43 proteolysis was investigated by Western blotting, using a polyclonal antibody to CD43 intracellular domain. Our data emphasize the importance of a juxtamembranous cleavage of about 50% of membrane CD43 molecules by cathepsin G. Indeed, it is inhibited by alpha1-antichymotrypsin and cathepsin G inhibitor I and is reproduced by exogenous purified cathepsin G. The resulting membrane-anchored C-terminal fragment, CD43-CTF, becomes susceptible to presenilin/gamma-secretase, which releases CD43 intracytoplasmic domain: preincubation with three different gamma-secretase inhibitors, before PMN treatment by agonists or by purified cathepsin G, results in the accumulation of CD43-CTF. Because CD43 binds E-selectin, we also investigated the effect of the soluble extracellular domain CD43s, released by cathepsin G juxtamembranous cleavage, on neutrophil adhesion to endothelial cells. A recombinant CD43s-Fc fusion protein inhibited neutrophil E selectindependent adhesion to endothelial cells under flow conditions, while it had no effect on neutrophil static adhesion. We thus propose that, in addition to its potential pro-adhesive role, CD43 proteolysis results in: (i) the release, by cathepsin G, of CD43 extracellular domain, able to inhibit the adhesion of flowing neutrophils on endothelial cells and thus to participate to the natural control of inflammation; (ii) the release and/or the clearance, by presenilin/gamma-secretase, of CD43 intracellular domain, thereby regulating CD43-mediated signaling.
Collapse
Affiliation(s)
- Agnès Mambole
- INSERM U845, the Université René Descartes, Hôpital Necker, 161 Rue de Sèvres, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Gainers ME, Descheny L, Barthel SR, Liu L, Wurbel MA, Dimitroff CJ. Skin-homing receptors on effector leukocytes are differentially sensitive to glyco-metabolic antagonism in allergic contact dermatitis. THE JOURNAL OF IMMUNOLOGY 2008; 179:8509-18. [PMID: 18056398 DOI: 10.4049/jimmunol.179.12.8509] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell recruitment into inflamed skin is dependent on skin-homing receptor binding to endothelial (E)- and platelet (P)-selectin. These T cell receptors, or E- and P-selectin ligands, can be targeted by the metabolic fluorosugar inhibitor, 4-F-GlcNAc, to blunt cutaneous inflammation. Compelling new data indicate that, in addition to T cells, NK cells are also recruited to inflamed skin in allergic contact hypersensitivity (CHS) contingent on E- and P-selectin-binding. Using a model of allergic CHS, we evaluated the identity and impact of NK cell E-selectin ligand(s) on inflammatory responses and examined the oral efficacy of 4-F-GlcNAc. We demonstrated that the predominant E-selectin ligands on NK cells are P-selectin glycoprotein ligand-1 and protease-resistant glycolipids. We showed that, unlike the induced E-selectin ligand expression on activated T cells upon exposure to Ag, ligand expression on NK cells was constitutive. CHS responses were significantly lowered by orally administered 4-F-GlcNAc treatment. Although E-selectin ligand on activated T cells was suppressed, ligand expression on NK cells was insensitive to 4-F-GlcNAc treatment. These findings indicate that downregulating effector T cell E- and P-selectin ligand expression directly correlates with anti-inflammatory efficacy and provides new insight on metabolic discrepancies of E-selectin ligand biosynthesis in effector leukocytes in vivo.
Collapse
Affiliation(s)
- Madeliene E Gainers
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
70
|
Abstract
It is well known that leukocyte recruitment is a multi-step cascade that requires an initial tethering to the endothelium of post-capillary venules followed by rolling along the vessel wall until appropriate activating molecules are encountered which cause firm adhesion and emigration out of the vasculature. Recruitment of leukocytes in the post-sinusoidal venules of the liver follows a similar paradigm. However, distinct from most other organs is the observation that many leukocytes can also be seen adhering in the sinusoids which are specialized hepatic capillaries. In this review, the lack of importance of rolling in sinusoids is discussed. The molecular mechanisms leading to adhesion in the liver sinusoids can occur via integrin-dependent as well as integrin-independent mechanisms. In addition to the "classical" beta(1)- and beta(2)-integrin adhesion, some of the "non-classical" (non-integrin dependent) pathways including CD44 and vascular adhesion protein-1, are discussed.
Collapse
Affiliation(s)
- Woo-Yong Lee
- Department of Physiology and Biophysics, Immunology Research Group, Institute of Infection, Immunity and Inflammation, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
71
|
Nonomura C, Kikuchi J, Kiyokawa N, Ozaki H, Mitsunaga K, Ando H, Kanamori A, Kannagi R, Fujimoto J, Muroi K, Furukawa Y, Nakamura M. CD43, but not P-selectin glycoprotein ligand-1, functions as an E-selectin counter-receptor in human pre-B-cell leukemia NALL-1. Cancer Res 2008; 68:790-9. [PMID: 18245480 DOI: 10.1158/0008-5472.can-07-1459] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL/B-precursor ALL) is characterized by a high rate of tissue infiltration. The mechanism of BCP-ALL cell extravasation is not fully understood. In the present study, we have investigated the major carrier of carbohydrate selectin ligands in the BCP-ALL cell line NALL-1 and its possible role in the extravascular infiltration of the leukemic cells. B-precursor ALL cell lines and clinical samples from patients with BCP-ALL essentially exhibited positive flow cytometric reactivity with E-selectin, and the reactivity was significantly diminished by O-sialoglycoprotein endopeptidase treatment in NALL-1 cells. B-precursor ALL cell lines adhered well to E-selectin but only very weakly to P-selectin with low-shear-force cell adhesion assay. Although BCP-ALL cell lines did not express the well-known core protein P-selectin glycoprotein ligand-1 (PSGL-1), a major proportion of the carbohydrate selectin ligand was carried by a sialomucin, CD43, in NALL-1 cells. Most clinical samples from patients with BCP-ALL exhibited a PSGL-1(neg/low)/CD43(high) phenotype. NALL-1 cells rolled well on E-selectin, but knockdown of CD43 on NALL-1 cells resulted in reduced rolling activity on E-selectin. In addition, the CD43 knockdown NALL-1 cells showed decreased tissue engraftment compared with the control cells when introduced into gamma-irradiated immunodeficient mice. These results strongly suggest that CD43 but not PSGL-1 plays an important role in the extravascular infiltration of NALL-1 cells and that the degree of tissue engraftment of B-precursor ALL cells may be controlled by manipulating CD43 expression.
Collapse
Affiliation(s)
- Chizu Nonomura
- Cell Regulation Analysis Team, Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Hidalgo A. Hematopoietic stem cell homing: The long, winding and adhesive road to the bone marow. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s0213-9626(08)70046-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
73
|
Barthel SR, Gavino JD, Descheny L, Dimitroff CJ. Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin Ther Targets 2007; 11:1473-91. [PMID: 18028011 DOI: 10.1517/14728222.11.11.1473] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation and cancer metastasis are associated with extravasation of leukocytes or tumor cells from blood into tissue. Such movement is believed to follow a coordinated and sequential molecular cascade initiated, in part, by the three members of the selectin family of carbohydrate-binding proteins: E-selectin (CD62E), L-selectin (CD62L) and P-selectin (CD62P). E-selectin is particularly noteworthy in disease by virtue of its expression on activated endothelium and on bone-skin microvascular linings and for its role in cell rolling, cell signaling and chemotaxis. E-selectin, along with L- or P-selectin, mediates cell tethering and rolling interactions through the recognition of sialo-fucosylated Lewis carbohydrates expressed on structurally diverse protein-lipid ligands on circulating leukocytes or tumor cells. Major advances in understanding the role of E-selectin in inflammation and cancer have been advanced by experiments assaying E-selectin-mediated rolling of leukocytes and tumor cells under hydrodynamic shear flow, by clinical models of E-selectin-dependent inflammation, by mice deficient in E-selectin and by mice deficient in glycosyltransferases that regulate the binding activity of E-selectin ligands. Here, the authors elaborate on how E-selectin and its ligands may facilitate leukocyte or tumor cell recruitment in inflammatory and metastatic settings. Antagonists that target cellular interactions with E-selectin and other members of the selectin family, including neutralizing monoclonal antibodies, competitive ligand inhibitors or metabolic carbohydrate mimetics, exemplify a growing arsenal of potentially effective therapeutics in controlling inflammation and the metastatic behavior of cancer.
Collapse
Affiliation(s)
- Steven R Barthel
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine, Room 669, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
74
|
|
75
|
Sabat R, Philipp S, Höflich C, Kreutzer S, Wallace E, Asadullah K, Volk HD, Sterry W, Wolk K. Immunopathogenesis of psoriasis. Exp Dermatol 2007; 16:779-98. [PMID: 17845210 DOI: 10.1111/j.1600-0625.2007.00629.x] [Citation(s) in RCA: 240] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Psoriasis is a chronic skin disease that affects about 1.5% of the Caucasian population and is characterized by typical macroscopic and microscopic skin alterations. Psoriatic lesions are sharply demarcated, red and slightly raised lesions with silver-whitish scales. The microscopic alterations of psoriatic plaques include an infiltration of immune cells in the dermis and epidermis, a dilatation and an increase in the number of blood vessels in the upper dermis, and a massively thickened epidermis with atypical keratinocyte differentiation. It is considered a fact that the immune system plays an important role in the pathogenesis of psoriasis. Since the early 1990s, it has been assumed that T1 cells play the dominant role in the initiation and maintenance of psoriasis. However, the profound success of anti-tumor necrosis factor-alpha therapy, when compared with T-cell depletion therapies, should provoke us to critically re-evaluate the current hypothesis for psoriasis pathogenesis. Recently made discoveries regarding other T-cell populations such as Th17 and regulatory T cells, dendritic cells, macrophages, the keratinocyte signal transduction and novel cytokines including interleukin (IL)-22, IL-23 and IL-20, let us postulate that the pathogenesis of psoriasis consists of distinct subsequent stages, in each of them different cell types playing a dominant role. Our model helps to explain the varied effectiveness of the currently tested immune modulating therapies and may enable the prediction of the success of future therapies.
Collapse
Affiliation(s)
- Robert Sabat
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, University Hospital Charité, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Yamanaka KI, Dimitroff CJ, Fuhlbrigge RC, Kakeda M, Kurokawa I, Mizutani H, Kupper TS. Vitamins A and D are potent inhibitors of cutaneous lymphocyte-associated antigen expression. J Allergy Clin Immunol 2007; 121:148-157.e3. [PMID: 17910894 PMCID: PMC2566300 DOI: 10.1016/j.jaci.2007.08.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 08/01/2007] [Accepted: 08/02/2007] [Indexed: 01/28/2023]
Abstract
BACKGROUND Cutaneous lymphocyte-associated antigen (CLA) is a surface glycoprotein expressed by skin-homing T cells. This carbohydrate moiety expressed on mucin-like surface glycoproteins, including P-selectin glycoprotein ligand 1 and CD43, confers binding activity to dermal endothelial E-selectin and is critical for T-cell recruitment to the skin. Vitamin A (retinoic acid [RA]) and the active form of vitamin D3 (1,25 dihydroxyvitamin D3 [1,25D(3)]) have been used to treat certain T cell-mediated inflammatory skin diseases, as well as cutaneous T-cell lymphomas; however, their effect on CLA expression has not been studied. OBJECTIVE We analyzed the effects of RA and 1,25D(3) on expression of CLA and other lymphocyte-homing receptors on human T cells. METHODS We cultured human T cells with 1,25D(3) and RA and analyzed the expression of CLA and other homing receptors. We also pretreated mice with either vitamin and then induced an antigen-dependent contact hypersensitivity response. RESULTS Both RA and 1,25D(3) downregulated expression of the CLA and, in parallel, functional E-selectin ligand. Whereas RA increased expression of the gut-homing receptor alpha4beta7 and reduced L-selectin expression, 1,25D(3) had no effect on other homing receptors. In an in vivo assay treatment with RA or 1,25D(3) downregulated the skin infiltration of effector CD4+ T cells. CONCLUSION These findings suggest that 1,25D(3) can selectively downregulate CLA expression without influencing lymphocyte migration patterns to other tissues.
Collapse
Affiliation(s)
- Kei-ichi Yamanaka
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Boston, Mass
- Department of Dermatology, Mie University, Graduate School of Medicine, Mie, Japan
| | - Charles J. Dimitroff
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Boston, Mass
| | - Robert C. Fuhlbrigge
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Boston, Mass
| | - Masato Kakeda
- Department of Dermatology, Mie University, Graduate School of Medicine, Mie, Japan
| | - Ichiro Kurokawa
- Department of Dermatology, Mie University, Graduate School of Medicine, Mie, Japan
| | - Hitoshi Mizutani
- Department of Dermatology, Mie University, Graduate School of Medicine, Mie, Japan
| | - Thomas S. Kupper
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Boston, Mass
| |
Collapse
|
77
|
Abstract
Skin serves a vital role, providing protection from the broad array of pathogens present in our environment. In addition to the passive barrier functions of the skin, mammals have evolved a robust and versatile surveillance and rapid response system for recognition and elimination of invading organisms. This immune surveillance network directs the movement of immune cells, regulating homeostatic populations of immune cells in the skin, as well as recruitment to sites of inflammation. In this review, we discuss current understanding of the regulation and function of adhesion molecules in cutaneous immune surveillance and their relevance to the immunopathology of inflammatory skin disease.
Collapse
Affiliation(s)
- Robert C Fuhlbrigge
- Department of Dermatology, Harvard Medical School, Brigham and Women's Hospital, Eugene Braunwald Research Center, Boston, MA 02115, USA.
| | | |
Collapse
|
78
|
Abstract
Numerous reports document the role of vascular adhesion molecules in the development and progression of atherosclerosis. Recent novel findings in the field of adhesion molecules require an updated summary of current research. In this review, we highlight the role of vascular adhesion molecules including selectins, vascular cell adhesion molecule (VCAM)-1, intercellular adhesion molecule1 (ICAM-1), PECAM-1, JAMs, and connexins in atherosclerosis. The immune system is important in atherosclerosis, and significant efforts are under way to understand the vascular adhesion molecule-dependent mechanisms of immune cell trafficking into healthy and atherosclerosis-prone arterial walls. This review focuses on the role of vascular adhesion molecules in the regulation of immune cell homing during atherosclerosis and discusses future directions that will lead to better understanding of this disease.
Collapse
Affiliation(s)
- Elena Galkina
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
79
|
Abnormal O-glycosylation of CD43 may account for some features of Wiskott-Aldrich syndrome. Med Hypotheses 2007; 70:269-72. [PMID: 17664047 DOI: 10.1016/j.mehy.2007.05.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 05/16/2007] [Indexed: 11/18/2022]
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency disorder characterized by eczema, recurrent infections, thrombocytopenia and small platelets. There is an increased incidence of autoimmune phenomena particularly autoimmune haemolytic anaemias and vasculitic disorders. Mutations in the WASP gene encoding the cytoskeleton regulatory protein WASp (Wiskott-Aldrich syndrome protein) result in abnormal protein activity with defective cytoplasmic signaling and actin polymerization. This accounts for abnormal T cell responses to proliferation and susceptibility to infections, but does not fully explain the autoimmune phenomena nor the progressive lymphopenia seen in these patients. Wiskott Aldrich patients also demonstrate abnormal O-glycosylation of a highly conserved transmembrane glycoprotein CD43 that is expressed on most haemopoeitic cells. The altered glycosylation pattern on WAS lymphocytes is due to increased beta1-->6 GlcNACtransferase activity which leads to branched core 2 glycans or lower molecular forms of CD43 glycoprotein. The clinical hypothesis put forward is that abnormal O-glycosylation of CD43 may underlie the development of the autoimmune disorders and the progressive lymphopenia observed in WAS patients. Regulation of glycosylation of CD43 is important in the selection process of T cells within the thymus and abnormalities of glycosylation may cause many immune perturbations, such as the escape of self-reactive T cells into the periphery and subsequent development of autoimmune disease in these patients.
Collapse
|
80
|
Mody PD, Cannon JL, Bandukwala HS, Blaine KM, Schilling AB, Swier K, Sperling AI. Signaling through CD43 regulates CD4 T-cell trafficking. Blood 2007; 110:2974-82. [PMID: 17638845 PMCID: PMC2018673 DOI: 10.1182/blood-2007-01-065276] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The mucin-like protein CD43 is excluded from the immune synapse, and regulates T-cell proliferation as well as T-cell migration. While the CD43 cytoplasmic domain is necessary for regulation of T-cell activation and proliferation, the mechanism via which CD43 regulates trafficking is not well defined. To investigate whether CD43 phosphorylation regulates its function in T cells, we used tandem mass spectrometry and identified Ser76 in murine CD43 as a previously unidentified site of basal phosphorylation. Interestingly, mutation of this single serine to alanine greatly diminishes T-cell trafficking to the lymph node, while CD43 exclusion and CD43-mediated regulation of T-cell proliferation remain intact. Furthermore, the CD43 extracellular domain was also required for T-cell trafficking, providing a hitherto unknown function for the extracellular domain, and suggesting that the extracellular domain may be required to transduce signals via the cytoplasmic domain. These data reveal a novel mechanism by which CD43 regulates T-cell function, and suggest that CD43 functions as a signaling molecule, sensing extracellular cues and transducing intracellular signals that modulate T-cell function.
Collapse
Affiliation(s)
- Purvi D Mody
- Committee on Immunology, University of Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Hidalgo A, Peired AJ, Wild M, Vestweber D, Frenette PS. Complete identification of E-selectin ligands on neutrophils reveals distinct functions of PSGL-1, ESL-1, and CD44. Immunity 2007; 26:477-489. [PMID: 17442598 PMCID: PMC4080624 DOI: 10.1016/j.immuni.2007.03.011] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 02/05/2007] [Accepted: 03/05/2007] [Indexed: 11/23/2022]
Abstract
The selectins and their ligands are required for leukocyte extravasation during inflammation. Several glycoproteins have been suggested to bind to E-selectin in vitro, but the complete identification of its physiological ligands has remained elusive. Here, we showed that E-selectin ligand-1 (ESL-1), P-selectin glycoprotein ligand-1 (PSGL-1), and CD44 encompassed all endothelial-selectin ligand activity on neutrophils by using gene- and RNA-targeted loss of function. PSGL-1 played a major role in the initial leukocyte capture, whereas ESL-1 was critical for converting initial tethers into steady slow rolling. CD44 controlled rolling velocity and mediated E-selectin-dependent redistribution of PSGL-1 and L-selectin to a major pole on slowly rolling leukocytes through p38 signaling. These results suggest distinct and dynamic contributions of these three glycoproteins in selectin-mediated neutrophil adhesion and signaling.
Collapse
Affiliation(s)
- Andrés Hidalgo
- Department of Medicine and Immunobiology Center, Mount Sinai School of Medicine, New York, NY 10029
- Address correspondence to Paul S. Frenette () or Andrés Hidalgo (), Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1079, New York, NY 10029. Tel: (212) 659-9693; Fax: (212) 849-2574
| | - Anna J. Peired
- Department of Medicine and Immunobiology Center, Mount Sinai School of Medicine, New York, NY 10029
| | - Martin Wild
- Department of Cell Biology, Max-Planck-Institute of Molecular Biomedicine, Muenster, Germany
| | - Dietmar Vestweber
- Department of Cell Biology, Max-Planck-Institute of Molecular Biomedicine, Muenster, Germany
| | - Paul S. Frenette
- Department of Medicine and Immunobiology Center, Mount Sinai School of Medicine, New York, NY 10029
- Address correspondence to Paul S. Frenette () or Andrés Hidalgo (), Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1079, New York, NY 10029. Tel: (212) 659-9693; Fax: (212) 849-2574
| |
Collapse
|
82
|
Kelly M, Hwang JM, Kubes P. Modulating leukocyte recruitment in inflammation. J Allergy Clin Immunol 2007; 120:3-10. [PMID: 17559914 DOI: 10.1016/j.jaci.2007.05.017] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/17/2007] [Accepted: 05/18/2007] [Indexed: 12/12/2022]
Abstract
Much information has been obtained regarding how white cells are recruited in the microcirculation to sites of inflammation. In this review we summarize the leukocyte recruitment cascade, highlighting the molecular mechanisms that underlie each of the major steps. Major emphasis is placed on the selectins and integrins and their role in rolling and adhesion. Intraluminal crawling and emigration are also briefly discussed. In addition, we summarize some of the data that implicate these molecules in eosinophil recruitment in animal models of asthma and in lymphocyte recruitment in skin contact sensitivity. There is a growing body of evidence to suggest that leukocyte recruitment could be used as an effective means for future therapeutics, and some of these issues are also raised.
Collapse
Affiliation(s)
- Margaret Kelly
- Department of Pathology, Institute of Infection, Immunity and Inflammation, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
83
|
Alcaide P, King SL, Dimitroff CJ, Lim YC, Fuhlbrigge RC, Luscinskas FW. The 130-kDa glycoform of CD43 functions as an E-selectin ligand for activated Th1 cells in vitro and in delayed-type hypersensitivity reactions in vivo. J Invest Dermatol 2007; 127:1964-72. [PMID: 17392823 DOI: 10.1038/sj.jid.5700805] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Selectins are carbohydrate-binding molecules involved in constitutive lymphocyte homing and chronic and acute inflammation processes. Th1 lymphocytes participate in cell-mediated inflammatory reactions, where the selectins play a role and predominate in delayed-type hypersensitivity (DTH) reactions of the skin. Of the many candidate ligands for selectins, only P-selectin glycoprotein ligand 1 (PSGL-1), which also acts as an E-selectin ligand, has been characterized extensively at molecular, cellular, and functional levels on T cells. Here, we report that the glycosylated form of CD43 expressed in Th1 cells is a functional E-selectin-specific ligand in vitro. Furthermore, we have generated PSGL-1(-/-)/CD43(-/-) double-deficient mice (double knockout (DKO)) to demonstrate the relevance of CD43 as an E-selectin ligand in vitro and in vivo. Under flow conditions, DKO Th1 cells exhibited impaired E-selectin binding as compared with wild-type, PSGL-1(-/-), or CD43(-/-) Th1 cells. DKO mice also showed diminished ear inflammation in response to dinitrofluorobenzene-induced DTH that correlated with a reduced number of T cells in infiltrates in the challenged ear. These results demonstrate that both PSGL-1 and CD43 are major E-selectin ligands and are likely to be important during leukocyte recruitment in the development of inflammatory reactions.
Collapse
Affiliation(s)
- Pilar Alcaide
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
84
|
Matsumoto M, Shigeta A, Furukawa Y, Tanaka T, Miyasaka M, Hirata T. CD43 collaborates with P-selectin glycoprotein ligand-1 to mediate E-selectin-dependent T cell migration into inflamed skin. THE JOURNAL OF IMMUNOLOGY 2007; 178:2499-506. [PMID: 17277158 DOI: 10.4049/jimmunol.178.4.2499] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Activated T cell migration into nonlymphoid tissues is initiated by the interactions of P- and E-selectin expressed on endothelial cells and their ligands on T cells. P-selectin glycoprotein ligand-1 (PSGL-1) has been the only E-selectin ligand demonstrated to function during the in vivo migration of activated T cells. We show in this study that CD43-deficient Th1 cells, like PSGL-1-deficient cells, exhibited reduced E-selectin-binding activity compared with wild-type cells. Th1 cells with a PSGL-1 and CD43 double deficiency showed even less E-selectin-binding activity. In migration assays in which adoptively transferred cells migrate to inflamed skin P- and E-selectin dependently, CD43 contributed significantly to PSGL-1-independent Th1 cell migration. In addition, in vivo activated T cells from the draining lymph nodes of sensitized mice deficient in PSGL-1 and/or CD43 showed significantly decreased E-selectin-binding activity and migration efficiency, with T cells from double-deficient mice showing the most profound decrease. Collectively, these results demonstrate that the CD43 expressed on activated T cells functions as an E-selectin ligand and thereby mediates T cell migration to inflamed sites, in collaboration with PSGL-1.
Collapse
Affiliation(s)
- Masanori Matsumoto
- The 21st Century Center of Excellence Program, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
85
|
Carlow DA, Ziltener HJ. CD43 deficiency has no impact in competitive in vivo assays of neutrophil or activated T cell recruitment efficiency. THE JOURNAL OF IMMUNOLOGY 2006; 177:6450-9. [PMID: 17056577 DOI: 10.4049/jimmunol.177.9.6450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using noncompetitive methodologies comparing CD43(+/+) and CD43(-/-) mice, it has been reported that CD43(-/-) leukocytes exhibit reduced recruitment efficiency to sites of inflammation. More recent analyses demonstrate that CD43 on activated T cells can function as an E-selectin ligand (E-SelL) in vitro, suggesting that CD43 might promote rolling interactions during recruitment of leukocytes and account for the reported recruitment deficits in CD43(-/-) T cells and neutrophils in vivo. Internally controlled competitive in vivo methods using fluorescent tracking dyes were applied to compare recruitment efficiency of CD43(+/+) vs CD43(-/-) activated T cells to inflamed skin and of peripheral blood neutrophils to inflamed peritoneum. A simple CFSE perfusion method was developed to distinguish arterial/venous vasculature and confirm appropriate extravasation through venules in a Con A-induced cutaneous inflammation model. In vivo recruitment of peripheral blood neutrophils to inflamed peritoneum was core 2 GlcNAcT-I dependent, but recruitment efficiency was not influenced by absence of CD43. There were also no significant differences in core 2 GlcNAcT-I-dependent, selectin-dependent, cutaneous recruitment of activated T cells from CD43(+/+) and congenic CD43(-/-) mice in either B6 or P-selectin(-/-) recipients despite biochemical confirmation that a CD43-specific E-SelL was present on activated T cells. We conclude that recruitment of neutrophils and activated T cells in these in vivo models is not influenced by CD43 expression and that if CD43 on activated T cells performs an E-SelL function in vivo, it contributes in a limited physiological context.
Collapse
Affiliation(s)
- Douglas A Carlow
- Biomedical Research Centre and Department of Pathology and Laboratory Medicine, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3.
| | | |
Collapse
|
86
|
Ni Z, Campbell JJ, Niehans G, Walcheck B. The monoclonal antibody CHO-131 identifies a subset of cutaneous lymphocyte-associated antigen T cells enriched in P-selectin-binding cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:4742-8. [PMID: 16982914 DOI: 10.4049/jimmunol.177.7.4742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cells use the vascular adhesion molecules E- and P-selectin to enter inflamed skin. Previous studies have indicated the possibility for diversity in the synthesis of E- and P-selectin glycan ligands by activated T cells due to their different requirements for the O-glycan branching enzyme core 2 beta1,6-N-acetylglucosaminyltransferase I and its independent regulation. It is known that T cell staining by the mAb HECA-452 (referred to as cutaneous lymphocyte-associated Ag (CLA) T cells) correlates with E-selectin binding, yet whether these cells uniformly bind P-selectin is less clear. The mAb CHO-131 and P-selectin binding require a glycan moiety consisting of a sialylated and fucosylated oligosaccharide properly positioned on a core-2 O-glycan. Interestingly, CHO-131 stains a subset of CLA(+) T cells. A direct comparison of the selectin binding capacity of CHO-131(+) and CHO-131(-) CLA(+) T cells revealed a significantly greater P-selectin, but not E-selectin, binding activity by the former subset. Based on the expression of homing and central and effector memory cell markers, CHO-131(+) and CHO-131(-) CLA(+) T cells have an overlapping skin-tropic and memory phenotype. CHO-131(+) T cells were considerably enriched in psoriatic skin, yet, unlike the peripheral blood of healthy individuals, HECA-452 and CHO-131 stained a similar proportion of T cells in the cutaneous lesions, indicating an accumulation advantage by CHO-131(+) T cells. We conclude that the CHO-131(+)CLA(+) T cell subset is enriched in P-selectin binding cells. These findings should provide new insights into the regulation and function of skin homing T cells.
Collapse
Affiliation(s)
- Zhenya Ni
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | | | | | | |
Collapse
|
87
|
Abstract
Psoriasis is a chronic immune-mediated inflammatory skin disease characterised by abnormal keratinocyte differentiation and proliferation. The immunopathogenesis is complex and novel evidence shows the involvement of both innate and adaptive immune response. Type 1 T cells and their effector cytokines play a pivotal role. Several drugs under preclinical and clinical development for psoriasis are directed against the immune response, targeting activation or proliferation of T cells, their trafficking and skin-homing, or effector cytokines. Among these, great attention has been given to TNF-alpha, following the demonstration of effectiveness of anti-TNF-alpha biologicals, and to IFN-gamma inducers. Another appealing approach concerns drugs capable of inducing immunological tolerance. Progress made in the recognition of intracellular events has prompted the development of small molecules and oligonucleotides that can inhibit specific molecular targets. There is, however, a plethora of other emerging drugs, clearly suggestive of the current interest for psoriasis, which are briefly described in this paper.
Collapse
Affiliation(s)
- Gino A Vena
- 2nd Dermatology Clinic, University of Bari, Bari, Italy.
| | | |
Collapse
|
88
|
Abstract
The localization of effector T cells to extralymphoid tissues is crucial for the generation of an effective immune response, but it also underlies many autoimmune and inflammatory disorders. Recent studies have highlighted a central role for draining lymph nodes and environmentally imprinted dendritic cells in the generation of tissue-tropic effector T cells. Here, I outline our current understanding of the mechanisms that regulate the generation and localization of tissue-tropic effector T cells, and the potential ways in which these pathways can be exploited for immunotherapeutic purposes.
Collapse
Affiliation(s)
- William W Agace
- Immunology Section, Lund University, BMC I13, 22184 Lund, Sweden.
| |
Collapse
|
89
|
Abstract
Leukocyte rolling is an important step for the successful recruitment of leukocytes into tissue and occurs predominantly in inflamed microvessels and in high endothelial venules of secondary lymphoid organs. Leukocyte rolling is mediated by a group of C-type lectins, termed selectins. Three different selectins have been identified - P-, E- and L-selectin - which recognize and bind to crucial carbohydrate determinants on selectin ligands. Among selectin ligands, P-selectin glycoprotein ligand-1 is the main inflammatory selectin ligand, showing binding to all three selectins under in vivo conditions. Functional relevant selectin ligands expressed on high endothelial venules of lymphoid tissue are less clearly defined at the protein level. However, high endothelial venule-expressed selectin ligands were instrumental in uncovering the crucial role of post-translational modifications for selectin ligand activity. Several glycosyltransferases, such as core 2 beta1,6-N-acetylglucosaminyltransferase-I, beta1,4-galactosyltransferases, alpha1,3-fucosyltransferases and alpha2,3-sialyltransferases have been described to participate in the synthesis of core 2 decorated O-glycan structures carrying the tetrasaccharide sialyl Lewis X, a carbohydrate determinant on selectin ligands with binding activity to all three selectins. In addition, modifications, such as carbohydrate or tyrosine sulfation, were also found to contribute to the synthesis of functional selectin ligands.
Collapse
Affiliation(s)
- Markus Sperandio
- University Children's Hospital Heidelberg, Division of Neonatal Medicine, University of Heidelberg, Germany.
| |
Collapse
|
90
|
Abbal C, Lambelet M, Bertaggia D, Gerbex C, Martinez M, Arcaro A, Schapira M, Spertini O. Lipid raft adhesion receptors and Syk regulate selectin-dependent rolling under flow conditions. Blood 2006; 108:3352-9. [PMID: 16849645 DOI: 10.1182/blood-2006-04-013912] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Selectins and their ligand P-selectin glycoprotein ligand-1 (PSGL-1) mediate leukocyte rolling along inflamed vessels. Cell rolling is modulated by selectin interactions with their ligands and by topographic requirements including L-selectin and PSGL-1 clustering on tips of leukocyte microvilli. Lipid rafts are cell membrane microdomains reported to function as signaling platforms. Here, we show that disruption of leukocyte lipid rafts with cholesterol chelating agents depleted raft-associated PSGL-1 and L-selectin and strongly reduced L-, P-, and E-selectin-dependent rolling. Cholesterol repletion reversed inhibition of cell rolling. Importantly, leukocyte rolling on P-selectin induced the recruitment of spleen tyrosine kinase (Syk), a tyrosine kinase associated to lipid raft PSGL-1. Furthermore, inhibition of Syk activity or expression, with pharmacologic inhibitors or by RNA interference, strongly reduced leukocyte rolling on P-selectin, but not on E-selectin or PSGL-1. These observations identify novel regulatory mechanisms of leukocyte rolling on selectins with a strong dependency on lipid raft integrity and Syk activity.
Collapse
Affiliation(s)
- Claire Abbal
- Service of Hematology, CHUV, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Vodyanik MA, Thomson JA, Slukvin II. Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures. Blood 2006; 108:2095-105. [PMID: 16757688 PMCID: PMC1895535 DOI: 10.1182/blood-2006-02-003327] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During hematopoietic differentiation of human embryonic stem cells (hESCs), early hematopoietic progenitors arise along with endothelial cells within the CD34(+) population. Although hESC-derived hematopoietic progenitors have been previously identified by functional assays, their phenotype has not been defined. Here, using hESC differentiation in coculture with OP9 stromal cells, we demonstrate that early progenitors committed to hematopoietic development could be identified by surface expression of leukosialin (CD43). CD43 was detected on all types of emerging clonogenic progenitors before expression of CD45, persisted on differentiating hematopoietic cells, and reliably separated the hematopoietic CD34(+) population from CD34(+)CD43(-)CD31(+)KDR(+) endothelial and CD34(+)CD43(-)CD31(-)KDR(-) mesenchymal cells. Furthermore, we demonstrated that the first-appearing CD34(+)CD43(+)CD235a(+)CD41a(+/-)CD45(-) cells represent precommitted erythro-megakaryocytic progenitors. Multipotent lymphohematopoietic progenitors were generated later as CD34(+)CD43(+)CD41a(-)CD235a(-)CD45(-) cells. These cells were negative for lineage-specific markers (Lin(-)), expressed KDR, VE-cadherin, and CD105 endothelial proteins, and expressed GATA-2, GATA-3, RUNX1, C-MYB transcription factors that typify initial stages of definitive hematopoiesis originating from endothelial-like precursors. Acquisition of CD45 expression by CD34(+)CD43(+)CD45(-)Lin(-) cells was associated with progressive myeloid commitment and a decrease of B-lymphoid potential. CD34(+)CD43(+)CD45(+)Lin(-) cells were largely devoid of VE-cadherin and KDR expression and had a distinct FLT3(high)GATA3(low)RUNX1(low)PU1(high)MPO(high)IL7RA(high) gene expression profile.
Collapse
Affiliation(s)
- Maxim A Vodyanik
- National Primate Research Center, University of Wisconsin Graduate School, Madison, WI 53715, USA
| | | | | |
Collapse
|
92
|
Descheny L, Gainers ME, Walcheck B, Dimitroff CJ. Ameliorating skin-homing receptors on malignant T cells with a fluorosugar analog of N-acetylglucosamine: P-selectin ligand is a more sensitive target than E-selectin ligand. J Invest Dermatol 2006; 126:2065-73. [PMID: 16691194 DOI: 10.1038/sj.jid.5700364] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Expression of E- and P-selectin ligands is required for T cell entry into skin. Sialyl Lewis X moieties are critical for ligand activity and are elevated on malignant skin-homing T cells. We hypothesize that these glycosylations are selectable targets for treating the dermal tropism associated with cutaneous lymphomas. In this study, we analyzed the efficacy of a novel 4-fluorinated analog of N-acetylglucosamine (GlcNAc) on E- and P-selectin ligands expressed by malignant skin-homing T cells. We also examined the specificity of 4-F-GlcNAc (2-acetamido-1,3,6-tri-O-acetyl-4-deoxy-4-fluoro-D-glucopyranose) action by contrasting the effects on sialyl Lewis X expression displayed by P-selectin glycoprotein ligand-1 (PSGL-1) with sialylated O-glycans expressed by CD43. Using parallel-plate flow analysis, we found that 4-F-GlcNAc elicited 5-fold more potent inhibition on P-selectin ligand activity than on E-selectin ligand activity. To determine whether glycosylations conferring E- and P-selectin ligand activities were inhibited, we analyzed the expression of sialyl Lewis X and sialyl-fucosylated core 2 O-glycan (CHO-131 antigen), respectively. We found that 4-F-GlcNAc treatment resulted in dose-dependent ablation of sialyl Lewis X and CHO-131 antigen expression on PSGL-1, whereas sialylated O-glycans on CD43 were minimally affected. These results indicate that 4-F-GlcNAc treatment can selectively downregulate the P-selectin ligand activity and potentially prevent dermal dissemination of cutaneous lymphomas.
Collapse
Affiliation(s)
- Leyla Descheny
- Department of Dermatology, Harvard Skin Disease Research Center, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
93
|
Mitoma J, Fukuda M. Expression of specific carbohydrates by transfection with carbohydrate modifying enzymes. Methods Enzymol 2006; 416:293-304. [PMID: 17113874 DOI: 10.1016/s0076-6879(06)16019-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The identification of cDNAs encoding glycosyltransferases and carbohydrate-modifying enzymes such as sulfotransferases has allowed expression of a given enzyme in cells that lack the enzyme or express it at very low levels. By comparing the function and/or structure of carbohydrates expressed in cells before and after transfection, we can determine the function of the ectopically expressed enzyme. This assay is less time consuming than assaying function by obtaining cells deficient in a given enzyme. Moreover, it is a more definitive method for establishing the function of the enzyme because the result is derived from an enzyme introduced by transfection. Using this method, an enormous amount of knowledge relevant to the structure and function of glycoenzymes has been derived from such studies. In this chapter, we describe methods used to obtain mammalian cells that have acquired new carbohydrate structures and function following transfection of mammalian expression vectors harboring glycoenzymes.
Collapse
Affiliation(s)
- Junya Mitoma
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
| | | |
Collapse
|