51
|
Eberhardt N, Sanmarco LM, Bergero G, Theumer MG, García MC, Ponce NE, Cano RC, Aoki MP. Deficiency of CD73 activity promotes protective cardiac immunity against Trypanosoma cruzi infection but permissive environment in visceral adipose tissue. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165592. [PMID: 31678157 DOI: 10.1016/j.bbadis.2019.165592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Damaged cells release the pro-inflammatory signal ATP, which is degraded by the ectonucleotidases CD39 and CD73 to the anti-inflammatory mediator adenosine (ADO). The balance between ATP/ADO is known to determine the outcome of inflammation/infection. However, modulation of the local immune response in different tissues due to changes in the balance of purinergic metabolites has yet to be investigated. Here, we explored the contribution of CD73-derived ADO on the acute immune response against Trypanosoma cruzi parasite, which invades and proliferates within different target tissues. Deficiency of CD73 activity led to an enhanced cardiac microbicidal immune response with an augmented frequency of macrophages with inflammatory phenotype and increased CD8+ T cell effector functions. The increment of local inducible nitric oxide (NO) synthase (iNOS)+ macrophages and the consequent rise of myocardial NO production in association with reduced ADO levels induced protection against T. cruzi infection as observed by the diminished cardiac parasite burden compared to their wild-type (WT) counterpart. Unexpectedly, parasitemia was substantially raised in CD73KO mice in comparison with WT mice, suggesting the existence of tissue reservoir/s outside myocardium. Indeed, CD73KO liver and visceral adipose tissue (VAT) showed increased parasite burden associated with a reduced ATP/ADO ratio and the lack of substantial microbicidal immune response. These data reveal that the purinergic system has a tissue-dependent impact on the host immune response against T. cruzi infection.
Collapse
Affiliation(s)
- Natalia Eberhardt
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Liliana Maria Sanmarco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Gastón Bergero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Martín Gustavo Theumer
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Mónica Cristina García
- Unidad de Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Nicolas Eric Ponce
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina.
| | - Roxana Carolina Cano
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Unidad Asociada Área Ciencias Agrarias, Ingeniería, Ciencias Biológicas y de la Salud, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina.
| | - Maria Pilar Aoki
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
52
|
Al-Attraqchi OH, Attimarad M, Venugopala KN, Nair A, Al-Attraqchi NH. Adenosine A2A Receptor as a Potential Drug Target - Current Status and Future Perspectives. Curr Pharm Des 2019; 25:2716-2740. [DOI: 10.2174/1381612825666190716113444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022]
Abstract
Adenosine receptors (ARs) are a class of G-protein coupled receptors (GPCRs) that are activated by
the endogenous substance adenosine. ARs are classified into 4 subtype receptors, namely, the A1, A2A, A2B and A3
receptors. The wide distribution and expression of the ARs in various body tissues as well as the roles they have
in controlling different functions in the body make them potential drug targets for the treatment of various pathological
conditions, such as cardiac diseases, cancer, Parkinson’s disease, inflammation and glaucoma. Therefore,
in the past decades, there have been extensive investigations of ARs with a high number of agonists and antagonists
identified that can interact with these receptors. This review shall discuss the A2A receptor (A2AAR) subtype
of the ARs. The structure, properties and the recent advances in the therapeutic potential of the receptor are discussed
with an overview of the recent advances in the methods of studying the receptor. Also, molecular modeling
approaches utilized in the design of A2AAR ligands are highlighted with various recent examples.
Collapse
Affiliation(s)
- Omar H.A. Al-Attraqchi
- Faculty of Pharmacy, Philadelphia University-Jordan, P.O BOX (1), Philadelphia University-19392, Amman, Jordan
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anroop Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | | |
Collapse
|
53
|
Vigano S, Alatzoglou D, Irving M, Ménétrier-Caux C, Caux C, Romero P, Coukos G. Targeting Adenosine in Cancer Immunotherapy to Enhance T-Cell Function. Front Immunol 2019; 10:925. [PMID: 31244820 PMCID: PMC6562565 DOI: 10.3389/fimmu.2019.00925] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022] Open
Abstract
T cells play a critical role in cancer control, but a range of potent immunosuppressive mechanisms can be upregulated in the tumor microenvironment (TME) to abrogate their activity. While various immunotherapies (IMTs) aiming at re-invigorating the T-cell-mediated anti-tumor response, such as immune checkpoint blockade (ICB), and the adoptive cell transfer (ACT) of natural or gene-engineered ex vivo expanded tumor-specific T cells, have led to unprecedented clinical responses, only a small proportion of cancer patients benefit from these treatments. Important research efforts are thus underway to identify biomarkers of response, as well as to develop personalized combinatorial approaches that can target other inhibitory mechanisms at play in the TME. In recent years, adenosinergic signaling has emerged as a powerful immuno-metabolic checkpoint in tumors. Like several other barriers in the TME, such as the PD-1/PDL-1 axis, CTLA-4, and indoleamine 2,3-dioxygenase (IDO-1), adenosine plays important physiologic roles, but has been co-opted by tumors to promote their growth and impair immunity. Several agents counteracting the adenosine axis have been developed, and pre-clinical studies have demonstrated important anti-tumor activity, alone and in combination with other IMTs including ICB and ACT. Here we review the regulation of adenosine levels and mechanisms by which it promotes tumor growth and broadly suppresses protective immunity, with extra focus on the attenuation of T cell function. Finally, we present an overview of promising pre-clinical and clinical approaches being explored for blocking the adenosine axis for enhanced control of solid tumors.
Collapse
Affiliation(s)
- Selena Vigano
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dimitrios Alatzoglou
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christine Ménétrier-Caux
- Department of Immunology Virology and Inflammation, INSERM 1052, CNRS 5286, Léon Bérard Cancer Center, Cancer Research Center of Lyon, University of Lyon, University Claude Bernard Lyon 1, Lyon, France
| | - Christophe Caux
- Department of Immunology Virology and Inflammation, INSERM 1052, CNRS 5286, Léon Bérard Cancer Center, Cancer Research Center of Lyon, University of Lyon, University Claude Bernard Lyon 1, Lyon, France
| | - Pedro Romero
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
54
|
Altered foetoplacental vascular endothelial signalling to insulin in diabesity. Mol Aspects Med 2019; 66:40-48. [DOI: 10.1016/j.mam.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 12/26/2022]
|
55
|
Involvement of A2B adenosine receptors as anti-inflammatory in gestational diabesity. Mol Aspects Med 2019; 66:31-39. [DOI: 10.1016/j.mam.2019.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/23/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023]
|
56
|
Morandi F, Horenstein AL, Quarona V, Faini AC, Castella B, Srinivasan RC, Strom SC, Malavasi F, Gramignoli R. Ectonucleotidase Expression on Human Amnion Epithelial Cells: Adenosinergic Pathways and Dichotomic Effects on Immune Effector Cell Populations. THE JOURNAL OF IMMUNOLOGY 2018; 202:724-735. [PMID: 30587530 DOI: 10.4049/jimmunol.1800432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
This study investigates the mechanism(s) underlying the immunoregulatory activities of placenta-derived human amnion epithelial cells (hAEC). The working hypothesis is that NAD+ and ATP, along with ectoenzymes involved in their metabolism, play a significant role in hAEC-mediated immune regulation. Proof of principle of the hypothesis was obtained by analyzing the interactions between hAEC and the main human leukocyte populations. The results obtained indicate that hAEC constitutively express a unique combination of functional ectoenzymes, driving the production of adenosine (ADO) via canonical (CD39, CD73) and alternative (CD38, CD203a/PC-1, CD73) pathways. Further, the picture is completed by the observation that hAEC express A1, A2a, and A2b ADO receptors as well as ADO deaminase, the enzyme involved in ADO catabolism. The contribution of the purinergic mediator to immunomodulation was confirmed by exposing in vitro different immune effector cells to the action of primary hAECs. B cells showed an enhanced proliferation and diminished spontaneous apoptosis when in contact with hAEC. T cell proliferation was partially inhibited by hAEC through ADO production, as confirmed by using specific ectoenzyme inhibitors. Further, hAEC induced an expansion of both T and B regulatory cells. Last, hAEC inhibited NK cell proliferation. However, the involvement of ADO-producing ectoenzymes is less apparent in this context. In conclusion, hAEC exert different in vitro immunoregulatory effects, per se, as a result of interactions with different populations of immune effector cells. These results support the view that hAEC are instrumental for regenerative medicine as well as in therapeutic applications for immune-related diseases.
Collapse
Affiliation(s)
- Fabio Morandi
- UOC Laboratorio Cellule Staminali post natali e Terapie Cellulari, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Alberto L Horenstein
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy.,Immunologia dei Trapianti, Città della Salute e della Scienza, 10126 Torino, Italy.,Centro di Ricerca in Medicina Sperimentale, Università di Torino, 10126 Torino, Italy; and
| | - Valeria Quarona
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Angelo Corso Faini
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Barbara Castella
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Raghuraman C Srinivasan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Stephen C Strom
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Fabio Malavasi
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy.,Centro di Ricerca in Medicina Sperimentale, Università di Torino, 10126 Torino, Italy; and
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| |
Collapse
|
57
|
Guindi C, Cloutier A, Gaudreau S, Zerif E, McDonald PP, Tatsiy O, Asselin C, Dupuis G, Gris D, Amrani AA. Role of the p38 MAPK/C/EBPβ Pathway in the Regulation of Phenotype and IL-10 and IL-12 Production by Tolerogenic Bone Marrow-Derived Dendritic Cells. Cells 2018; 7:cells7120256. [PMID: 30544623 PMCID: PMC6316502 DOI: 10.3390/cells7120256] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 01/06/2023] Open
Abstract
Dendritic cells (DCs) play a major role in innate and adaptive immunity and self-immune tolerance. Immunogenic versus tolerogenic DC functions are dictated by their levels of costimulatory molecules and their cytokine expression profile. The transcription factor C/EBPβ regulates the expression of several inflammatory genes in many cell types including macrophages. However, little is known regarding the role of C/EBPβ in tolerogenic versus immunogenic DCs functions. We have previously reported that bone marrow-derived DCs generated with GM-CSF (GM/DCs) acquire the signature of semi-mature tolerogenic IL-10-producing DCs as opposed to immunogenic DCs generated with GM-CSF and IL-4 (IL-4/DCs). Here, we show that tolerogenic GM/DCs exhibit higher levels of phosphorylation and enhanced DNA binding activity of C/EBPβ and CREB than immunogenic IL-4/DCs. We also show that the p38 MAPK/CREB axis and GSK3 play an important role in regulating C/EBPβ phosphorylation and DNA binding activity. Inhibition of p38 MAPK in GM/DCs resulted in a drastic decrease of C/EBPβ and CREB DNA binding activities, a reduction of their IL-10 production and an increase of their IL-12p70 production, a characteristic of immunogenic IL-4/DCs. We also present evidence that GSK3 inhibition in GM/DCs reduced C/EBPβ DNA binding activity and increased expression of costimulatory molecules in GM/DCs and their production of IL-10. Analysis of GM/DCs of C/EBPβ-/- mice showed that C/EBPβ was essential to maintain the semimature phenotype and the production of IL-10 as well as low CD4⁺ T cell proliferation. Our results highlight the importance of the p38MAPK-C/EBPβ pathway in regulating phenotype and function of tolerogenic GM/DCs.
Collapse
Affiliation(s)
- Chantal Guindi
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Alexandre Cloutier
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Simon Gaudreau
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Echarki Zerif
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Patrick P McDonald
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Olga Tatsiy
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Claude Asselin
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Gilles Dupuis
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Denis Gris
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - And Abdelaziz Amrani
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
58
|
Sek K, Mølck C, Stewart GD, Kats L, Darcy PK, Beavis PA. Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. Int J Mol Sci 2018; 19:ijms19123837. [PMID: 30513816 PMCID: PMC6321150 DOI: 10.3390/ijms19123837] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
The immune system plays a major role in the surveillance and control of malignant cells, with the presence of tumor infiltrating lymphocytes (TILs) correlating with better patient prognosis in multiple tumor types. The development of ‘checkpoint blockade’ and adoptive cellular therapy has revolutionized the landscape of cancer treatment and highlights the potential of utilizing the patient’s own immune system to eradicate cancer. One mechanism of tumor-mediated immunosuppression that has gained attention as a potential therapeutic target is the purinergic signaling axis, whereby the production of the purine nucleoside adenosine in the tumor microenvironment can potently suppress T and NK cell function. The production of extracellular adenosine is mediated by the cell surface ectoenzymes CD73, CD39, and CD38 and therapeutic agents have been developed to target these as well as the downstream adenosine receptors (A1R, A2AR, A2BR, A3R) to enhance anti-tumor immune responses. This review will discuss the role of adenosine and adenosine receptor signaling in tumor and immune cells with a focus on their cell-specific function and their potential as targets in cancer immunotherapy.
Collapse
Affiliation(s)
- Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| | - Christina Mølck
- Department of Pathology, University of Melbourne, Parkville 3010, Australia.
| | - Gregory D Stewart
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Australia.
| | - Lev Kats
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
- Department of Pathology, University of Melbourne, Parkville 3010, Australia.
- Department of Immunology, Monash University, Clayton 3052, Australia.
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| |
Collapse
|
59
|
Kwon HK, Song MJ, Lee HJ, Park TS, Kim MI, Park HJ. Pediococcus pentosaceus-Fermented Cordyceps militaris Inhibits Inflammatory Reactions and Alleviates Contact Dermatitis. Int J Mol Sci 2018; 19:ijms19113504. [PMID: 30405049 PMCID: PMC6274829 DOI: 10.3390/ijms19113504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/03/2018] [Accepted: 11/05/2018] [Indexed: 01/13/2023] Open
Abstract
Cordyceps militaris is a medicinal mushroom used to treat immune-related diseases in East Asia. We investigated the anti-inflammatory effect of the extract of C. militaris grown on germinated Rhynchosia nulubilis (GRC) fermented with Pediococcus pentosaceus ON89A isolated from onion (GRC-ON89A) in vivo as well as in vitro. The anti-inflammatory effect of GRC-ON89A was investigated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The total polyphenol content (TPC) and total flavonoid content (TFC) in the GRC-ON89A ethanol extract were significantly increased compared to that in GRC. GRC-ON89A hexane fraction (GRC-ON89A-Hex) inhibited the release of nitric oxide (NO) compared to that of the LPS-treated control without cytotoxicity in LPS-stimulated RAW 264.7 macrophages. GRC-ON89A-Hex decreased the inducible NO synthase (iNOS), cyclooxygenase 2 (COX2), and tumor necrosis factor (TNF)-α mRNA expression in LPS-stimulated RAW 264.7 macrophages. In addition, pre-treatment with GRC-ON89A-Hex significantly inhibited LPS-stimulated phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-κB. To induce allergic contact dermatitis (ACD), 1-fluoro-2, 4-dinitrofluorobenzene (DNFB) was applied to the surface of the right ears of C57BL/6N mice. GRC-ON89A reduced the ear swelling and thickness in DNFB-induced ACD mice. This study demonstrates the potential usefulness of GRC-ON89A as an anti-inflammatory dietary supplement or drug.
Collapse
Affiliation(s)
- Ha-Kyoung Kwon
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea.
| | - Min-Jung Song
- Department of, College of Food Biotechnology, Division of Bioindustry, Silla University, Busan 46958, Korea.
| | - Hye-Ji Lee
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea.
| | - Tae-Sik Park
- Department of Life Science, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea.
| | - Moon Il Kim
- Department of BioNano Technology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea.
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea.
| |
Collapse
|
60
|
Jin B, Gong Y, Li H, Jiao L, Xin D, Gong Y, He Z, Zhou L, Jin Y, Wang X, Zhang Z. C/EBPβ promotes the viability of human bladder cancer cell by contributing to the transcription of bladder cancer specific lncRNA UCA1. Biochem Biophys Res Commun 2018; 506:674-679. [PMID: 30376994 DOI: 10.1016/j.bbrc.2018.10.152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/23/2018] [Indexed: 01/01/2023]
Abstract
Urothelial Carcinoma Antigen 1 (UCA1) is a cell and tissue specific long non-coding RNA (lncRNA) associated with the tumorigenesis and invasion of bladder cancer. However, the mechanism driving the over-transcription of UCA1 in bladder cancer cells remains unclear. It has been reported that C/EBPβ has a significant role of regulation in tumorigenesis. Here we report that the expression of UCA1 was dramatically inhibited in 5637 cells with C/EBPβ down-regulation. Additionally, the function tests indicated that C/EBPβ could promote 5637 cells growth and colony formation by inducing the expression level of UCA1. These data suggest that C/EBPβ was involved in transcriptional regulation of UCA1 and contributed substantially to its high expression and proliferation promoting in bladder cancer cells.
Collapse
Affiliation(s)
- Bo Jin
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, 100034, China
| | - Yanbing Gong
- Department of Central Laboratory, Peking University Shougang Hospital, Beijing, 100144, China
| | - Haixia Li
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, 100034, China
| | - Lili Jiao
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, 100034, China
| | - Dianqi Xin
- Department of Urology, Peking University First Hospital & Institute of Urology, Peking University, Beijing, 100034, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital & Institute of Urology, Peking University, Beijing, 100034, China
| | - Zhisong He
- Department of Urology, Peking University First Hospital & Institute of Urology, Peking University, Beijing, 100034, China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital & Institute of Urology, Peking University, Beijing, 100034, China
| | - Yaqiong Jin
- Biobank for Clinical Data and Samples in Pediatric, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiujuan Wang
- Department of Clinical Laboratory, Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, 250117, Shandong, China
| | - Zheng Zhang
- Department of Urology, Peking University First Hospital & Institute of Urology, Peking University, Beijing, 100034, China.
| |
Collapse
|
61
|
Csóka B, Németh ZH, Szabó I, Davies DL, Varga ZV, Pálóczi J, Falzoni S, Di Virgilio F, Muramatsu R, Yamashita T, Pacher P, Haskó G. Macrophage P2X4 receptors augment bacterial killing and protect against sepsis. JCI Insight 2018; 3:99431. [PMID: 29875325 PMCID: PMC5997389 DOI: 10.1172/jci.insight.99431] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/01/2018] [Indexed: 01/08/2023] Open
Abstract
The macrophage is a major phagocytic cell type, and its impaired function is a primary cause of immune paralysis, organ injury, and death in sepsis. An incomplete understanding of the endogenous molecules that regulate macrophage bactericidal activity is a major barrier for developing effective therapies for sepsis. Using an in vitro killing assay, we report here that the endogenous purine ATP augments the killing of sepsis-causing bacteria by macrophages through P2X4 receptors (P2X4Rs). Using newly developed transgenic mice expressing a bioluminescent ATP probe on the cell surface, we found that extracellular ATP levels increase during sepsis, indicating that ATP may contribute to bacterial killing in vivo. Studies with P2X4R-deficient mice subjected to sepsis confirm the role of extracellular ATP acting on P2X4Rs in killing bacteria and protecting against organ injury and death. Results with adoptive transfer of macrophages, myeloid-specific P2X4R-deficient mice, and P2rx4 tdTomato reporter mice indicate that macrophages are essential for the antibacterial, antiinflammatory, and organ protective effects of P2X4Rs in sepsis. Pharmacological targeting of P2X4Rs with the allosteric activator ivermectin protects against bacterial dissemination and mortality in sepsis. We propose that P2X4Rs represent a promising target for drug development to control bacterial growth in sepsis and other infections.
Collapse
Affiliation(s)
- Balázs Csóka
- Department of Anesthesiology, Columbia University, New York, New York, USA
| | - Zoltán H. Németh
- Department of Anesthesiology, Columbia University, New York, New York, USA
- Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA
| | - Ildikó Szabó
- Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Daryl L. Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, USC, Los Angeles, California, USA
| | - Zoltán V. Varga
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - János Pálóczi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Simonetta Falzoni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Rieko Muramatsu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Pál Pacher
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, New York, USA
| |
Collapse
|
62
|
Xu S, Zhu W, Shao M, Zhang F, Guo J, Xu H, Jiang J, Ma X, Xia X, Zhi X, Zhou P, Lu F. Ecto-5'-nucleotidase (CD73) attenuates inflammation after spinal cord injury by promoting macrophages/microglia M2 polarization in mice. J Neuroinflammation 2018; 15:155. [PMID: 29788960 PMCID: PMC5964922 DOI: 10.1186/s12974-018-1183-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/29/2018] [Indexed: 12/15/2022] Open
Abstract
Background Immune activation, specifically activation of macrophages and resident microglia, leading to inflammation is a key component in the progression of spinal cord injury (SCI). Macrophages/microglia exist in two states—the classically activated M1 phenotype that confers pro-inflammatory effects or the alternatively activated M2 phenotype that confers anti-inflammatory effects. Ecto-5′-nucleotidase (CD73) is an immunosuppressive molecule intricately involved in adaptive and innate immune responses and is able to dephosphorylate AMP to adenosine. However, it is not known if CD73 is able to modulate the macrophages/microglia transformation between the M1 and M2 phenotypes. Methods We used gene-deficient mice to determine the role of CD73 in macrophages/microglia polarization post-SCI in vivo. We used small interference RNA (siRNA) or pcDNA3.1 to inhibit or overexpress CD73 in BV2 cells to verify anterior discovery in vitro. A combination of molecular and histological methods was used to detect the macrophages/microglia polarization and explore the mechanism both in vivo and in vitro. Results We found that SCI induced the upregulation of CD73 expression. CD73 deficient mice were noted to demonstrate overwhelming immune responses, few anti-inflammatory phenotype macrophages/microglia, and had a poorer locomotor recovery in comparison to wild-type mice that were also inflicted with SCI. In vitro studies found that CD73 suppression inhibited the expression of characteristic microglial anti-inflammatory polarization markers in BV2 cells, while the converse was noted in CD73 overexpression. Subsequent experiments confirmed that CD73 promoted microglia alternative activation by stimulating p38 MAPK. Conclusion We were able to conclude that CD73 imparts neuroprotective effects by mediating macrophages/microglia polarization. These findings allow for better understanding of the modulatory factors involved in triggering the change in macrophages/microglia phenotypes, therefore uncovering additional molecules and pathways that may be targeted in the innovation of novel SCI therapies. Electronic supplementary material The online version of this article (10.1186/s12974-018-1183-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shun Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, No.12, Wulumuqi middle Road, Jingan District, Shanghai, 200040, China
| | - Wei Zhu
- Department of Orthopedics, Huashan Hospital, Fudan University, No.12, Wulumuqi middle Road, Jingan District, Shanghai, 200040, China
| | - Minghao Shao
- Department of Orthopedics, Huashan Hospital, Fudan University, No.12, Wulumuqi middle Road, Jingan District, Shanghai, 200040, China
| | - Fan Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, No.12, Wulumuqi middle Road, Jingan District, Shanghai, 200040, China
| | - Ji Guo
- Department of Orthopedics, Huashan Hospital, Fudan University, No.12, Wulumuqi middle Road, Jingan District, Shanghai, 200040, China
| | - Haocheng Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, No.12, Wulumuqi middle Road, Jingan District, Shanghai, 200040, China
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, No.12, Wulumuqi middle Road, Jingan District, Shanghai, 200040, China
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, No.12, Wulumuqi middle Road, Jingan District, Shanghai, 200040, China
| | - Xinlei Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, No.12, Wulumuqi middle Road, Jingan District, Shanghai, 200040, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No.138, Yixueyuan Road, Shanghai, 200032, China
| | - Ping Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No.138, Yixueyuan Road, Shanghai, 200032, China.
| | - Feizhou Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, No.12, Wulumuqi middle Road, Jingan District, Shanghai, 200040, China. .,The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.
| |
Collapse
|
63
|
Lv J, Shao Y, Gao Y. Activation of A 1 and A 2a adenosine receptors promotes neural progenitor cell proliferation. Brain Res 2018; 1686:65-71. [DOI: 10.1016/j.brainres.2018.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/18/2018] [Accepted: 02/18/2018] [Indexed: 01/08/2023]
|
64
|
Speziale P, Rindi S, Pietrocola G. Antibody-Based Agents in the Management of Antibiotic-Resistant Staphylococcus aureus Diseases. Microorganisms 2018. [PMID: 29533985 PMCID: PMC5874639 DOI: 10.3390/microorganisms6010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a human pathogen that can cause a wide spectrum of diseases, including sepsis, pneumonia, arthritis, and endocarditis. Ineffective treatment of a number of staphylococcal infections with antibiotics is due to the development and spread of antibiotic-resistant strains following decades of antibiotic usage. This has generated renewed interest within the scientific community in alternative therapeutic agents, such as anti-S. aureus antibodies. Although the role of antibodies in the management of S. aureus diseases is controversial, the success of this pathogen in neutralizing humoral immunity clearly indicates that antibodies offer the host extensive protection. In this review, we report an update on efforts to develop antibody-based agents, particularly monoclonal antibodies, and their therapeutic potential in the passive immunization approach to the treatment and prevention of S. aureus infections.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
- Department of Industrial and Information Engineering, University of Pavia, 27100 Pavia, Italy.
| | - Simonetta Rindi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | | |
Collapse
|
65
|
Rol del receptor de adenosina A 2A , óxido nítrico y factor de crecimiento de endotelio vascular en la sepsis: una revisión no sistemática. ANGIOLOGIA 2018. [DOI: 10.1016/j.angio.2017.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
66
|
Bowser JL, Phan LH, Eltzschig HK. The Hypoxia-Adenosine Link during Intestinal Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:897-907. [PMID: 29358413 PMCID: PMC5784778 DOI: 10.4049/jimmunol.1701414] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022]
Abstract
Intestinal inflammation is a key element in inflammatory bowel disease and is related to a combination of factors, including genetics, mucosal barrier dysfunction, bacteria translocation, deleterious host-microbe interactions, and dysregulated immune responses. Over the past decade, it has been appreciated that these inflammatory lesions are associated with profound tissue hypoxia. Interestingly, an endogenous adaptive response under the control of hypoxia signaling is enhancement in adenosine signaling, which impacts these different endpoints, including promoting barrier function and encouraging anti-inflammatory activity. In this review, we discuss the hypoxia-adenosine link in inflammatory bowel disease, intestinal ischemia/reperfusion injury, and colon cancer. In addition, we provide a summary of clinical implications of hypoxia and adenosine signaling in intestinal inflammation and disease.
Collapse
Affiliation(s)
- Jessica L Bowser
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Luan H Phan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
67
|
Franco A, Kumar J, Lin G, Behnamfar N, Hsieh LE, Shimizu C, Tremoulet AH, Burns JC, Linden J. Pediatric tolerogenic DCs expressing CD4 and immunoglobulin-like transcript receptor (ILT)-4 secrete IL-10 in response to Fc and adenosine. Eur J Immunol 2018; 48:482-491. [PMID: 29244203 DOI: 10.1002/eji.201747139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/05/2017] [Accepted: 12/11/2017] [Indexed: 11/08/2022]
Abstract
We characterized a novel population of tolerogenic myeloid dendritic cells (tmDCs) defined as CD11c+ CD11b+ CD14+ CD4+ and immunoglobulin-like transcript receptor (ILT)-4+ that are significantly more abundant in the circulation of infants and young children than in adults. TmDCs secrete the immunosuppressive lymphokine interleukin (IL)-10 when stimulated with the heavy constant region of immunoglobulins (Fc) and express high levels of the adenosine A2A receptor (A2A R), which, when activated by adenosine, inhibits the release of pro-inflammatory cytokines from most immune cells. Here we show that stimulation of the A2A R on tmDCs by regadenoson or N-ethylcarboxamidoadenosine (NECA) rapidly increases cyclic AMP accumulation and enhances IL-10 production under Fc stimulatory conditions. In co-culture experiments, tmDCs inhibit the differentiation of naïve T cells to a pro-inflammatory phenotype. In conclusion, although DCs are classically viewed as antigen presenting cells that activate T cells, we show an independent role of tmDCs in pediatric immune regulation that may be important for suppressing T cell responses to neoantigens in infants and young children.
Collapse
Affiliation(s)
- Alessandra Franco
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, University of California San Diego, School of Medicine and Rady Children's Hospital, La Jolla, CA, USA
| | - Jeetendra Kumar
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, University of California San Diego, School of Medicine and Rady Children's Hospital, La Jolla, CA, USA
| | - Gene Lin
- La Jolla Institute for Allergy and Immunology, Division of Developmental Immunology, Athena Circle, La Jolla, CA, USA
| | - Negar Behnamfar
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, University of California San Diego, School of Medicine and Rady Children's Hospital, La Jolla, CA, USA
| | - Li-En Hsieh
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, University of California San Diego, School of Medicine and Rady Children's Hospital, La Jolla, CA, USA
| | - Chisato Shimizu
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, University of California San Diego, School of Medicine and Rady Children's Hospital, La Jolla, CA, USA
| | - Adriana H Tremoulet
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, University of California San Diego, School of Medicine and Rady Children's Hospital, La Jolla, CA, USA
| | - Jane C Burns
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, University of California San Diego, School of Medicine and Rady Children's Hospital, La Jolla, CA, USA
| | - Joel Linden
- La Jolla Institute for Allergy and Immunology, Division of Developmental Immunology, Athena Circle, La Jolla, CA, USA.,Department of Pharmacology, University of California San Diego, School of Medicine, University of California, San Diego, USA
| |
Collapse
|
68
|
Antonioli L, El-Tayeb A, Pellegrini C, Fornai M, Awwad O, Giustarini G, Natale G, Ryskalin L, Németh ZH, Müller CE, Blandizzi C, Colucci R. Anti-inflammatory effect of a novel locally acting A 2A receptor agonist in a rat model of oxazolone-induced colitis. Purinergic Signal 2017; 14:27-36. [PMID: 29116551 DOI: 10.1007/s11302-017-9591-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/23/2017] [Indexed: 10/18/2022] Open
Abstract
Adenosine represents a powerful modulating factor, which has been shown to orchestrate the scope, duration, and remission of the inflammatory response through the activation of four specific receptors, classified as A1, A2A, A2B, and A3, all being widely expressed in a variety of immune cells. Several selective A2A receptor agonists have displayed anti-inflammatory effects, through the suppression of IL-12, TNF, and IFN-γ production by monocytes and lymphocytes, in the setting of chronic intestinal inflammation. However, the therapeutic application of A2A receptor agonists remains hindered by the risk of serious cardiovascular adverse effects arising from the wide systemic distribution of A2A receptors. The present study focused on evaluating the anti-inflammatory effects of the novel poorly absorbed A2A receptor agonist PSB-0777 in a rat model of oxazolone-induced colitis as well as to evaluate its cardiovascular adverse effects, paying particular attention to the onset of hypotension, one of the main adverse effects associated with the systemic pharmacological activation of A2A receptors. Colitis was associated with decreased body weight, an enhanced microscopic damage score and increased levels of colonic myeloperoxidase (MPO). PSB-0777, but not dexamethasone, improved body weight. PSB-0777 and dexamethasone ameliorated microscopic indexes of inflammation and reduced MPO levels. The beneficial effects of PSB-0777 on inflammatory parameters were prevented by the pharmacological blockade of A2A receptors. No adverse cardiovascular events were observed upon PSB-0777 administration. The novel A2A receptor agonist PSB-0777 could represent the base for the development of innovative pharmacological entities able to act in an event-specific and site-specific manner.
Collapse
Affiliation(s)
- L Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - A El-Tayeb
- PharmaCenter Bonn, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - C Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - M Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| | - O Awwad
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - G Giustarini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - G Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - L Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Z H Németh
- Department of Surgery, Morristown Medical Center, Morristown, NJ, USA
| | - C E Müller
- PharmaCenter Bonn, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - C Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - R Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
69
|
Wang Y, Fu L, Sun A, Tang D, Xu Y, Li Z, Chen M, Zhang G. C/EBPβ contributes to transcriptional activation of long non-coding RNA NEAT1 during APL cell differentiation. Biochem Biophys Res Commun 2017; 499:99-104. [PMID: 29111326 DOI: 10.1016/j.bbrc.2017.10.137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 10/26/2017] [Indexed: 01/30/2023]
Abstract
Emerging evidences have shown that long non-coding RNAs (lncRNAs) play critical roles in cancer development and cancer therapy. LncRNA Nuclear Enriched Abundant Transcript 1 (NEAT1) is indispensable during acute promyelocytic leukemia (APL) cell differentiation induced by all-trans retinoic acid (ATRA). However, the precise mechanism of NEAT1 upregulation has not been fully understood. In this study, we performed chromatin immunoprecipitation and luciferase reporter assays to demonstrate that C/EBP family transcription factor C/EBPβ bind to and transactivate the promoter of lncRNA NEAT1 through the C/EBPβ binding sites both around -54 bp and -1453 bp upstream of the transcription start site. Moreover, the expression of C/EBPβ was increased after ATRA treatment, and the binding of C/EBPβ in the NEAT1 promoter was also dramatically increased. Finally, knockdown of C/EBPβ significantly reduced the ATRA-induced upregulation of NEAT1. In conclusion, C/EBPβ directly activates the expression of NEAT1 through binding to the promoter of NEAT1. Knockdown of C/EBPβ impairs ATRA-induced transcriptional activation of NEAT1. Our data indicate that C/EBPβ contributes to ATRA-induced activation of NEAT1 during APL cell differentiation. Our results enrich our knowledge on the regulation of lncRNAs and the regulatory role of C/EBPβ in APL cell differentiation.
Collapse
Affiliation(s)
- Yewei Wang
- Department of Hematology/Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, China.
| | - Lei Fu
- Department of Hematology/Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, China.
| | - Ailian Sun
- Department of Hematology/Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, China.
| | - Doudou Tang
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, China.
| | - Yunxiao Xu
- Department of Hematology/Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, China.
| | - Zheyuan Li
- Department of Hematology/Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, China; Xiangya School of Medicine, Central South University, No.172 Tongzipo Road, Changsha, Hunan 410013, China.
| | - Mingjie Chen
- Cloud-seq Bio-tech Inc., Building 71, No.1066 North Qinzhou Road, Shanghai 200233, China.
| | - Guangsen Zhang
- Department of Hematology/Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, China.
| |
Collapse
|
70
|
Csóka B, Törő G, Vindeirinho J, Varga ZV, Koscsó B, Németh ZH, Kókai E, Antonioli L, Suleiman M, Marchetti P, Cseri K, Deák Á, Virág L, Pacher P, Bai P, Haskó G. A 2A adenosine receptors control pancreatic dysfunction in high-fat-diet-induced obesity. FASEB J 2017; 31:4985-4997. [PMID: 28765173 DOI: 10.1096/fj.201700398r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/10/2017] [Indexed: 12/16/2022]
Abstract
Adenosine, a key extracellular signaling mediator, regulates several aspects of metabolism by activating 4 G-protein-coupled receptors, the A1, A2A, A2B, and A3 adenosine receptors (ARs). The role of A2AARs in regulating high-fat-diet (HFD)-induced metabolic derangements is unknown. To evaluate the role of A2AARs in regulating glucose and insulin homeostasis in obesity, we fed A2AAR-knockout (KO) and control mice an HFD for 16 wk to initiate HFD-induced metabolic disorder. We found that genetic deletion of A2AARs caused impaired glucose tolerance in mice fed an HFD. This impaired glucose tolerance was caused by a decrease in insulin secretion but not in insulin sensitivity. Islet size and insulin content in pancreata of A2AAR-deficient mice were decreased compared with control mice after consuming an HFD. A2AAR-KO mice had decreased expression of the β-cell-specific markers pdx1, glut2, mafA, and nkx6.1 and increased expression of the dedifferentiation markers sox2 and hes1. Ex vivo islet experiments confirmed the role of A2AARs in protecting against decreased insulin content and release caused by HFD. Other experiments with bone marrow chimeras revealed that inflammation was not the primary cause of decreased insulin secretion in A2AAR-KO mice. Altogether, our data showed that A2AARs control pancreatic dysfunction in HFD-induced obesity.-Csóka, B., Törő, G., Vindeirinho, J., Varga, Z. V., Koscsó, B., Németh, Z. H., Kókai, E., Antonioli, L., Suleiman, M., Marchetti, P., Cseri, K., Deák, Á., Virág, L., Pacher, P., Bai, P., Haskó, G. A2A adenosine receptors control pancreatic dysfunction in high-fat-diet-induced obesity.
Collapse
Affiliation(s)
- Balázs Csóka
- Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA; .,Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Gábor Törő
- Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA.,Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Joana Vindeirinho
- Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Zoltán V Varga
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Balázs Koscsó
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Zoltán H Németh
- Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA.,Department of Surgery, Morristown Memorial Medical Center, Morristown, New Jersey, USA
| | - Endre Kókai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Karolina Cseri
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ádám Deák
- Department of Operative Techniques and Surgical Research of the Institute of Surgery, University of Debrecen, Debrecen, Hungary; and
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Cell Biology and Signalling Research Group of the Hungarian Academy of Sciences, Debrecen, Hungary
| | - Pál Pacher
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Cell Biology and Signalling Research Group of the Hungarian Academy of Sciences, Debrecen, Hungary
| | - György Haskó
- Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA; .,Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA.,Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
71
|
Lima MHF, Sacramento LA, Quirino GFS, Ferreira MD, Benevides L, Santana AKM, Cunha FQ, Almeida RP, Silva JS, Carregaro V. Leishmania infantum Parasites Subvert the Host Inflammatory Response through the Adenosine A2 A Receptor to Promote the Establishment of Infection. Front Immunol 2017; 8:815. [PMID: 28775724 PMCID: PMC5517451 DOI: 10.3389/fimmu.2017.00815] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/27/2017] [Indexed: 01/08/2023] Open
Abstract
Adenosine is an endogenously released purine nucleoside that signals through four widely expressed G protein-coupled receptors: A1, A2A, A2B, and A3. Of these, A2AR is recognized as mediating major adenosine anti-inflammatory activity. During cutaneous leishmaniasis, adenosine induces immunosuppression, which promotes the establishment of infection. Herein, we demonstrated that A2AR signaling is exploited by Leishmania infantum parasites, the etiologic agent that causes Visceral Leishmaniasis, to successfully colonize the vertebrate host. A2AR gene-deleted mice exhibited a well-developed cellular reaction with a strong Th1 immune response in the parasitized organs. An intense infiltration of activated neutrophils into the disease-target organs was observed in A2AR−/− mice. These cells were characterized by high expression of CXCR2 and CD69 on their cell surfaces and increased cxcl1 expression. Interestingly, this phenotype was mediated by IFN-γ on the basis that a neutralizing antibody specific to this cytokine prevented neutrophilic influx into parasitized organs. In evaluating the immunosuppressive effects, we identified a decreased number of CD4+ FOXP3+ T cells and reduced il10 expression in A2AR−/− infected mice. During ex vivo cell culture, A2AR−/− splenocytes produced smaller amounts of IL-10. In conclusion, we demonstrated that the A2AR signaling pathway is detrimental to development of Th1-type adaptive immunity and that this pathway could be associated with the regulatory process. In particular, it promotes parasite surveillance.
Collapse
Affiliation(s)
- Mikhael H F Lima
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lais A Sacramento
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gustavo F S Quirino
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcela D Ferreira
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luciana Benevides
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alynne K M Santana
- Laboratory of Molecular Biology, Center for Biology and Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Fernando Q Cunha
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Laboratory of Inflammation and Pain, Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Roque P Almeida
- Laboratory of Molecular Biology, Center for Biology and Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - João S Silva
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Carregaro
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
72
|
Interaction between saliva's adenosine and tick parasitism: effects on feeding and reproduction. Parasit Vectors 2017; 10:326. [PMID: 28693553 PMCID: PMC5502490 DOI: 10.1186/s13071-017-2248-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 06/15/2017] [Indexed: 02/02/2023] Open
Abstract
Background It has recently been demonstrated that saliva from Rhipicephalus sanguineus ticks contains adenosine (ADO) and prostaglandin E2 (PGE2), two non-protein molecules that have significant immunomodulatory properties. These molecules can inhibit cytokine production by dendritic cells (DCs), while also reducing the expression of CD40 in these cells. However, more studies are needed for a better understanding of their participation in the feeding of ticks in vivo. This work, therefore, evaluated the importance of ADO during tick infestations. Mice were infested with adult ticks (3 couples/mouse), and their skin was collected at the tick-infested site (3rd and 7th day), and mRNA for receptors of ADO was quantified by real-time PCR. Results Tick infestation increased by four and two times the expression of the A2b and A3v1 receptors on day 3, respectively, while expression of other ADO receptors was unaltered. In addition, we treated mice (n = 10/group) daily with 8-(p-Sulfophenyl)theophylline, 8-pSPT, 20 mg/kg, i.p.), a non-selective antagonist of ADO receptors, and evaluated the performance of ticks during infestations. Female ticks fed on 8-pSPT-treated mice presented a reduction in their engorgement, weight and hatching rates of egg masses, and survival times of larvae compared to the same parameters presented by ticks in the control group. To investigate if these 8-pSPT-treated mice presented altered immune responses, we performed three tick infestations and collected their lymph node cells to determine the percentages and activation state of DCs and cytokine production by lymphocytes by flow cytometry (Cytometric Bead Array technique, CBA). Our data showed that 8-pSPT-treated mice presented an increase in the percentage of DCs as well as of their stimulatory and co-stimulatory molecules (CD40, CD80 and MHCII). Regarding production of T cell cytokines, we observed a significant increase in the levels of IL-2 and a significant decrease in IL-10, IL-17, TNF-α and IFN-γ cytokines. Conclusions These results suggest that ADO produced by ticks helps them feed and reproduce and that this effect may be due to modulation of host DCs and T cells.
Collapse
|
73
|
Bala S, Csak T, Kodys K, Catalano D, Ambade A, Furi I, Lowe P, Cho Y, Iracheta-Vellve A, Szabo G. Alcohol-induced miR-155 and HDAC11 inhibit negative regulators of the TLR4 pathway and lead to increased LPS responsiveness of Kupffer cells in alcoholic liver disease. J Leukoc Biol 2017; 102:487-498. [PMID: 28584078 PMCID: PMC6608073 DOI: 10.1189/jlb.3a0716-310r] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 04/11/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022] Open
Abstract
Inflammation promotes the progression of alcoholic liver disease. Alcohol sensitizes KCs to gut-derived endotoxin (LPS); however, signaling pathways that perpetuate inflammation in alcoholic liver disease are only partially understood. We found that chronic alcohol feeding in mice induced miR-155, an inflammatory miRNA in isolated KCs. We hypothesized that miR-155 might increase the responsiveness of KCs to LPS via targeting the negative regulators of LPS signaling. Our results revealed that KCs that were isolated from alcohol-fed mice showed a decrease in IRAK-M, SHIP1, and PU.1, and an increase in TNF-α levels. This was specific to KCs, as no significant differences were observed in these genes in hepatocytes. We found a causal effect of miR-155 deficiency on LPS responsiveness, as KCs that were isolated from miR-155 KO mice showed a greater induction of IRAK-M, SHIP1, and suppressor of cytokine signaling 1 after LPS treatment. C/EBPβ, a validated miR-155 target, stimulates IL-10 transcription. We found a higher induction of C/EBPβ and IL-10 in KCs that were isolated from miR-155 KO mice after LPS treatment. Gain- and loss-of-function studies affirmed that alcohol-induced miR-155 directly regulates IRAK-M, SHIP1, suppressor of cytokine signaling 1, and C/EBPβ, as miR-155 inhibition increased and miR-155 overexpression decreased these genes in LPS or alcohol-pretreated wild-type KCs. HDAC11, a regulator of IL-10, was significantly increased and IL-10 was decreased in KCs that were isolated from alcohol-fed mice. Functionally, knockdown of HDAC11 with small interfering RNA resulted in an IL-10 increase in LPS or alcohol-pretreated Mϕ. We found that acetaldehyde and NF-κB pathways regulate HDAC11 levels. Collectively, our results indicate that the alcohol-induced responsiveness of KCs to LPS, in part, is governed by miR-155 and HDAC11.
Collapse
Affiliation(s)
- Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Timea Csak
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Karen Kodys
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Aditya Ambade
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Istvan Furi
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Patrick Lowe
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Yeonhee Cho
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Arvin Iracheta-Vellve
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
74
|
Peleli M, Carlstrom M. Adenosine signaling in diabetes mellitus and associated cardiovascular and renal complications. Mol Aspects Med 2017; 55:62-74. [DOI: 10.1016/j.mam.2016.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
|
75
|
Role of adenosine receptors in the adipocyte-macrophage interaction during obesity. ACTA ACUST UNITED AC 2017; 64:317-327. [PMID: 28604342 DOI: 10.1016/j.endinu.2017.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/14/2017] [Accepted: 03/29/2017] [Indexed: 02/04/2023]
Abstract
Lipoinflamation is the inflammation generated in the adipose tissue. It can contribute to the development of insulin resistance. The lipoinflammation-associated mechanisms are related to the function of adipocytes and macrophages present in the adipose tissue. In this regard, the level of nucleoside adenosine is increased in individuals with obesity. Causes or consequences of this increase are unknown. Although, adenosine activating its receptors (A1, A2A, A2B and A3) is able to differentially modulate the function of adipocytes and macrophages, in order to avoid the reduction of insulin sensitivity and generate an anti-inflammatory state in subject with obesity. In this review we propose that adenosine could be a key element in the development of new strategies for limit lipoinflammation and regulate metabolic homeostasis through modulation of adipocyte-macrophage dialogue.
Collapse
|
76
|
Shukla S, Elson G, Blackshear PJ, Lutz CS, Leibovich SJ. 3'UTR AU-Rich Elements (AREs) and the RNA-Binding Protein Tristetraprolin (TTP) Are Not Required for the LPS-Mediated Destabilization of Phospholipase-Cβ-2 mRNA in Murine Macrophages. Inflammation 2017; 40:645-656. [PMID: 28124257 DOI: 10.1007/s10753-017-0511-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have shown previously that bacterial lipopolysaccharide (LPS)-mediated suppression of phospholipase-Cβ-2 (PLCβ-2) expression is involved in M1 (inflammatory) to M2-like (wound healing) phenotypic switching of macrophages triggered by adenosine. This suppression is mediated post-transcriptionally by destabilization of PLCβ-2 mRNA (messenger ribonucleic acid). To investigate the mechanism of this LPS-mediated destabilization, we examined the roles of RNA-binding agents including microRNAs and RNA-binding proteins that are involved in regulating stability of mRNAs encoding growth factors, inflammatory mediators, and proto-oncogenes. Adenylate and uridylate (AU)-rich elements (AREs) in 3'UTRs are specific recognition sites for RNA-binding proteins including tristetraprolin (TTP), HuR, and AUF1 and for microRNAs that are involved in regulating mRNA stability. In this study, we investigated the role of TTP and AREs in regulating PLCβ-2 mRNA stability. The 3'UTR of the PLCβ-2 gene was inserted into the pLightswitch luciferase reporter plasmid and transfected into RAW264.7 cells. LPS suppressed luciferase expression from this reporter. Luciferase expression from mutant 3'UTR constructs lacking AREs was similarly downregulated, suggesting that these regions are not required for LPS-mediated suppression of PLCβ-2. TTP was rapidly upregulated in both primary murine macrophages and RAW264.7 cells in response to LPS. Suppression of PLCβ-2 by LPS was examined using macrophages from mice lacking TTP (TTP-/-). LPS suppressed PLCβ-2 expression to the same extent in wild type (WT) and TTP-/- macrophages. Also, the rate of decay of PLCβ-2 mRNA in LPS-treated macrophages following transcriptional blockade was similar in WT and TTP-/- macrophages, clearly indicating that TTP is not involved in LPS-mediated destabilization of PLCβ-2 mRNA in macrophages.
Collapse
Affiliation(s)
- Smita Shukla
- Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers University School of Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ, 07103, USA.,The Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers University School of Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Genie Elson
- Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers University School of Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Perry J Blackshear
- The Post-Transcriptional Gene Expression Group, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Carol S Lutz
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University School of Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - S Joseph Leibovich
- Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers University School of Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ, 07103, USA.
| |
Collapse
|
77
|
Zinc Modulates Endotoxin-Induced Human Macrophage Inflammation through ZIP8 Induction and C/EBPβ Inhibition. PLoS One 2017; 12:e0169531. [PMID: 28056086 PMCID: PMC5215883 DOI: 10.1371/journal.pone.0169531] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
Two vital functions of the innate immune system are to initiate inflammation and redistribute micronutrients in favor of the host. Zinc is an essential micronutrient used in host defense. The zinc importer ZIP8 is uniquely induced through stimulation of the NF-κB pathway by LPS in monocytes and functions to regulate inflammation in a zinc-dependent manner. Herein we determined the impact of zinc metabolism following LPS-induced inflammation in human macrophages. We observed that ZIP8 is constitutively expressed in resting macrophages and strikingly elevated following LPS exposure, a response that is unique compared to the 13 other known zinc import proteins. During LPS exposure, extracellular zinc concentrations within the physiological range markedly reduced IL-10 mRNA expression and protein release but increased mRNA expression of TNFα, IL-8, and IL-6. ZIP8 knockdown inhibited LPS-driven cellular accumulation of zinc and prevented zinc-dependent reduction of IL-10 release. Further, zinc supplementation reduced nuclear localization and activity of C/EBPβ, a transcription factor known to drive IL-10 expression. These studies demonstrate for the first time that zinc regulates LPS-mediated immune activation of human macrophages in a ZIP8-dependent manner, reducing IL-10. Based on these findings we predict that macrophage zinc metabolism is important in host defense against pathogens.
Collapse
|
78
|
Sepúlveda C, Palomo I, Fuentes E. Role of adenosine A2b receptor overexpression in tumor progression. Life Sci 2016; 166:92-99. [DOI: 10.1016/j.lfs.2016.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/01/2016] [Accepted: 10/07/2016] [Indexed: 02/07/2023]
|
79
|
Cronstein BN, Sitkovsky M. Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat Rev Rheumatol 2016; 13:41-51. [PMID: 27829671 DOI: 10.1038/nrrheum.2016.178] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Adenosine, a nucleoside derived primarily from the extracellular hydrolysis of adenine nucleotides, is a potent regulator of inflammation. Adenosine mediates its effects on inflammatory cells by engaging one or more cell-surface receptors. The expression and function of adenosine receptors on different cell types change during the course of rheumatic diseases, such as rheumatoid arthritis (RA). Targeting adenosine receptors directly for the treatment of rheumatic diseases is currently under study; however, indirect targeting of adenosine receptors by enhancing adenosine levels at inflamed sites accounts for most of the anti-inflammatory effects of methotrexate, the anchor drug for the treatment of RA. In this Review, we discuss the regulation of extracellular adenosine levels and the role of adenosine in regulating the inflammatory and immune responses in rheumatic diseases such as RA, psoriasis and other types of inflammatory arthritis. In addition, adenosine and its receptors are involved in promoting fibrous matrix production in the skin and other organs, and the role of adenosine in fibrosis and fibrosing diseases is also discussed.
Collapse
Affiliation(s)
- Bruce N Cronstein
- NYU-HHC Clinical and Translational Science Institute, NYU School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | - Michail Sitkovsky
- New England Inflammation and Tissue Protection Institute, Northeastern University, 360 Huntington Avenue, 312 MU, Boston, Massachusetts 02115, USA
| |
Collapse
|
80
|
Chavez-Valdez R, Ahlawat R, Wills-Karp M, Gauda EB. Mechanisms of modulation of cytokine release by human cord blood monocytes exposed to high concentrations of caffeine. Pediatr Res 2016; 80:101-9. [PMID: 26982450 PMCID: PMC4929021 DOI: 10.1038/pr.2016.50] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/23/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Serum caffeine concentrations >20 μg/ml (100 μmol/l) in infants treated for apnea of prematurity increases TNF-α and decreases IL-10, changes that perhaps are linked to comorbidities. We hypothesize that this proinflammatory cytokine profile may be linked to differential binding of caffeine to adenosine receptor subtypes (AR), inhibition of phosphodiesterases (PDEs), and modulation of toll-like receptors (TLR). METHODS Lipopolysaccharide-activated cord blood monocytes (CBM) from 19 infants were exposed to caffeine (0-200 μmol/l) with or without previous exposure to A1R, A3R, or PDE IV antagonists to determine changes in dose-response curves. Cytokines levels (enzyme-linked immunosorbent assay (ELISA)), intracellular cyclic adenosine monophosphate (cAMP) accumulation (enzyme immunoassay (EIA)), and TLR gene expression (real time qRT PCR) were measured. RESULTS Caffeine at ≤100 μmol/l decreased TNF-α levels (~25%, P = 0.01) and cAMP. All caffeine concentrations decreased IL-10 levels (17-35%, P < 0.01). A1R, A3R, and PDE blockades decreased TNF-α (31, 21, and 88%, P ≤ 0.01), but not IL-10. Caffeine further decreased TNF-α following A3R and PDE blockades. Caffeine concentrations directly correlated to TLR4 gene expression (r = 0.84; P < 0.001). CONCLUSION Neither A3R, nor PDE blockades are involved in caffeine's modulation of cytokine release by CBM at any concentration. Besides A1R blockade, caffeine's upregulation of TLR4 may promote inflammation at high concentrations.
Collapse
Affiliation(s)
- Raul Chavez-Valdez
- Department of Pediatrics, Division of Neonatology. Johns Hopkins Hospital. Johns Hopkins University - School of Medicine. Baltimore, Maryland 21287, United States,CORRESPONDING AUTHOR: Dr. Raul Chavez-Valdez, Department of Pediatrics - Division of Neonatology, Johns Hopkins Hospital, 600 N. Wolfe Street, CMSC 6-104, Baltimore, MD 21287-3200, United States. Telephone: +1 410-955 5259; Fax: +1 410 614 8388;
| | - Rajni Ahlawat
- Department of Pediatrics, Division of Pediatric Gastroenterology. North Shore LIJ Health System. Lake Success, NY 11042, United States
| | - Marsha Wills-Karp
- Department of Environmental Health Sciences. Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Estelle B. Gauda
- Department of Pediatrics, Division of Neonatology. Johns Hopkins Hospital. Johns Hopkins University - School of Medicine. Baltimore, Maryland 21287, United States
| |
Collapse
|
81
|
Sándor K, Pallai A, Duró E, Legendre P, Couillin I, Sághy T, Szondy Z. Adenosine produced from adenine nucleotides through an interaction between apoptotic cells and engulfing macrophages contributes to the appearance of transglutaminase 2 in dying thymocytes. Amino Acids 2016; 49:671-681. [PMID: 27236567 DOI: 10.1007/s00726-016-2257-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/06/2016] [Indexed: 12/23/2022]
Abstract
Transglutaminase 2 (TG2) has been known for a long time to be associated with the in vivo apoptosis program of various cell types, including T cells. Though the expression of the enzyme is strongly induced in mouse thymocytes following apoptosis induction in vivo, no significant induction of TG2 can be detected, when thymocytes are induced to die by the same stimuli in vitro indicating that signals arriving from the tissue environment are required for the proper in vivo induction of the enzyme. Previous studies from our laboratory have demonstrated that two of these signals, transforming growth factor-β (TGF-β) and retinoids, are produced by macrophages engulfing apoptotic cells. However, in addition to TGF-β and retinoids, engulfing macrophages produce adenosine as well. Here, we show that in vitro adenosine, adenosine, and retinoic acid or adenosine, TGF-β and retinoic acids together can significantly enhance the TG2 mRNA expression in dying thymocytes. The effect of adenosine is mediated via adenosine A2A receptors (A2ARs) and the A2AR-triggered adenylate cyclase signaling pathway. In accordance, loss of A2ARs in A2AR null mice significantly attenuates the in vivo induction of TG2 following apoptosis induction in the thymus indicating that adenosine indeed contributes in vivo to the apoptosis-related appearance of the enzyme. We also demonstrate that adenosine is produced extracellularly during engulfment of apoptotic thymocytes, partly from adenine nucleotides released via thymocyte pannexin-1 channels. Our data reveal a novel crosstalk between macrophages and apoptotic cells, in which apoptotic cell uptake-related adenosine production contributes to the appearance of TG2 in the dying thymocytes.
Collapse
Affiliation(s)
- Katalin Sándor
- Division of Dental Biochemistry, Department of Biochemistry and Molecular Biology Research Center of Molecular Medicine, University of Debrecen, Nagyerdei krt.98., Debrecen, 4032, Hungary
| | - Anna Pallai
- Division of Dental Biochemistry, Department of Biochemistry and Molecular Biology Research Center of Molecular Medicine, University of Debrecen, Nagyerdei krt.98., Debrecen, 4032, Hungary
| | - Edina Duró
- Division of Dental Biochemistry, Department of Biochemistry and Molecular Biology Research Center of Molecular Medicine, University of Debrecen, Nagyerdei krt.98., Debrecen, 4032, Hungary
| | - Pascal Legendre
- Institut National de la Santé et de la Recherche Médicale (INSERM) U952, Université Pierre et Marie Curie, Paris, France.,Center National de la Recherche Scientifique (CNRS), UMR 7224, Université Pierre et Marie Curie, Paris, France.,UPMC Université Paris 06, 9 quai Saint Bernard, Paris, Ile de France, France
| | - Isabelle Couillin
- UMR-IEM 6218 Molecular Immunology and Embryology, Transgenose Institute, CNRS, 45071, Orléans, France
| | - Tibor Sághy
- Division of Dental Biochemistry, Department of Biochemistry and Molecular Biology Research Center of Molecular Medicine, University of Debrecen, Nagyerdei krt.98., Debrecen, 4032, Hungary
| | - Zsuzsa Szondy
- Division of Dental Biochemistry, Department of Biochemistry and Molecular Biology Research Center of Molecular Medicine, University of Debrecen, Nagyerdei krt.98., Debrecen, 4032, Hungary. .,Department of Biochemistry and Molecular Biology, University of Debrecen, Nagyerdei krt.98., Debrecen, 4012, Hungary.
| |
Collapse
|
82
|
C/EBPβ-Thr217 Phosphorylation Stimulates Macrophage Inflammasome Activation and Liver Injury. Sci Rep 2016; 6:24268. [PMID: 27067260 PMCID: PMC4828658 DOI: 10.1038/srep24268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/23/2016] [Indexed: 12/20/2022] Open
Abstract
Amplification of liver injury is mediated by macrophages but the signaling by which the macrophage inflammasome enhances liver injury is not completely understood. The CCAAT/Enhancer Binding Protein-β (C/EBPβ) is a critical signaling molecule for macrophages because expression of a dominant inhibitor of C/EBPβ DNA-binding sites or a targeted deletion of C/EBPβ results in impaired macrophage differentiation. We reported that expression of the phosphorylation-mutant C/EBPβ-Glu217, which mimics phosphorylated C/EBPβ-Thr217, was sufficient to confer macrophage survival to Anthrax lethal toxin. Here, using primary hepatocytes, primary liver macrophages, dominant positive and negative transgenic mice of the C/EBPβ-Thr217 phosphoacceptor, macrophage ablation, and an inhibitory peptide of C/EBPβ-Thr217 phosphorylation, we determined that this phosphorylation is essential for the activation of the inflammasome in liver macrophages and for the hepatocyte apoptosis induced by hepatotoxins that results in liver injury. Similar findings were observed in the livers of patients with acute injury induced by Toxic Oil Syndrome.
Collapse
|
83
|
The role of adenosine and adenosine receptors in the immunopathogenesis of multiple sclerosis. Inflamm Res 2016; 65:511-20. [PMID: 26960979 DOI: 10.1007/s00011-016-0936-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/10/2016] [Accepted: 02/25/2016] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is a heterogeneous neurological disorder with multifactorial etiologies characterized by demyelination, axonal degeneration, and oligodendroglial death. It is believed that both genetics and environmental risk factors such as infection are involved in disease etiology. Accumulating evidence indicates that alteration in purinergic system signaling is involved in immunity and inflammation. Adenosine, a key purine nucleoside, has been shown to be produced during metabolic stress, including ischemia, inflammatory condition, and tissue injury. METHODS Extracellular adenosine directly affects various physiological and pathological processes of MS by stimulating G protein-coupled adenosine receptors A1, A2A, A2B, and A3 on the surface of immune cells. It has been suggested that promotion of adenosinergic system may be an important factor in MS pathophysiology and considered as promising therapeutic target for this disease. CONCLUSION In this review, we will discuss about the immunopathologic effects of adenosine on MS and its animal model, experimental autoimmune encephalomyelitis.
Collapse
|
84
|
Exosomes and Other Extracellular Vesicles: The New Communicators in Parasite Infections. Trends Parasitol 2015; 31:477-489. [PMID: 26433251 PMCID: PMC4685040 DOI: 10.1016/j.pt.2015.06.009] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) have emerged as a ubiquitous mechanism for transferring information between cells and organisms across all three kingdoms of life. In addition to their roles in normal physiology, vesicles also transport molecules from pathogens to hosts and can spread antigens as well as infectious agents. Although initially described in the host-pathogen context for their functions in immune surveillance, vesicles enable multiple modes of communication by, and between, parasites. Here we review the literature demonstrating that EVs are secreted by intracellular and extracellular eukaryotic parasites, as well as their hosts, and detail the functional properties of these vesicles in maturation, pathogenicity and survival. We further describe the prospects for targeting or exploiting these complexes in therapeutic and vaccine strategies.
Collapse
|
85
|
Bergamin LS, Braganhol E, Figueiró F, Casali EA, Zanin RF, Sévigny J, Battastini AMO. Involvement of purinergic system in the release of cytokines by macrophages exposed to glioma-conditioned medium. J Cell Biochem 2015; 116:721-9. [PMID: 25546398 DOI: 10.1002/jcb.25018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022]
Abstract
Macrophages are involved in cancer progression. M1 macrophages have an antitumor effect, whereas M2 phenotype are associated with tumor growth. The progression of gliomas involves the participation of an inflammatory microenvironment. Adenosine triphosphate (ATP) can act as pro-inflammatory signal, whereas adenosine has opposite properties. The biological effects of extracellular nucleotides/nucleosides mediated by purinergic receptors are controlled by ectonucleotidases. In the present work, we evaluated whether glioma-conditioned medium (GL-CM) modulates macrophage differentiation and the participation of ATP and adenosine in the release of pro-and anti-inflammatory cytokines by these cells. The results show that macrophages exposed to GL-CM were modulated to an M2-like phenotype. HPLC analysis of GL-CM demonstrated the presence of significant amounts of ATP and its metabolites. Macrophages exposed to GL-CM presented decreased ATP and AMP hydrolysis and increased IL-10 and MCP-1 secretion, effects that were diminished by P1 or P2 antagonists. GL-CM did not alter the release of IL-6 by macrophages, although treatment with ATP promoted an increase in the release of IL-6, which was prevented by a P2X7 antagonist. In summary, we found that A2A and P2X7 activation is necessary for IL-10, MCP-1, and IL-6 release by macrophages exposed to GL-CM, which, in turn, modulates the macrophages to M2-phenotype. The present study establishes a relationship between M2-like polarization, cytokine release and purinergic receptor activation in macrophages exposed to GL-CM. Therefore, the data presented herein contributes to advancing in the field of cancer-related inflammation and point specific purinergic receptors as targets for modulation of the phenotype of glioma-associated macrophages.
Collapse
Affiliation(s)
- Letícia Scussel Bergamin
- Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, UFRGS, Porto Alegre, RS, Brasil
| | | | | | | | | | | | | |
Collapse
|
86
|
Morello S, Pinto A, Blandizzi C, Antonioli L. Myeloid cells in the tumor microenvironment: Role of adenosine. Oncoimmunology 2015; 5:e1108515. [PMID: 27141365 DOI: 10.1080/2162402x.2015.1108515] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/08/2015] [Accepted: 10/10/2015] [Indexed: 10/22/2022] Open
Abstract
Adenosine, deriving from ATP released by dying cancer cells and then degradated in the tumor environment by CD39/CD73 enzyme axis, is linked to the generation of an immunosuppressed niche favoring the onset of neoplasia. The effects of adenosine are mediated by four adenosine receptors, named A1, A2A, A2B and A3 that are widely expressed on several immune cell populations. A critical role of this nucleoside is emerging in the modulation of myeloid cell subsets accumulation and functions into tumor microenvironment, providing new insights that might be useful for the development of novel therapeutic approaches aimed to undermine the immune privileged sites where cancer cells grow and proliferate.
Collapse
Affiliation(s)
- Silvana Morello
- Department of Pharmacy, University of Salerno , Salerno, Italy
| | - Aldo Pinto
- Department of Pharmacy, University of Salerno , Salerno, Italy
| | - Corrado Blandizzi
- Division of Pharmacology and Chemotherapy, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Luca Antonioli
- Division of Pharmacology and Chemotherapy, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| |
Collapse
|
87
|
Thammavongsa V, Kim HK, Missiakas D, Schneewind O. Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 2015; 13:529-43. [PMID: 26272408 DOI: 10.1038/nrmicro3521] [Citation(s) in RCA: 381] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus, a bacterial commensal of the human nares and skin, is a frequent cause of soft tissue and bloodstream infections. A hallmark of staphylococcal infections is their frequent recurrence, even when treated with antibiotics and surgical intervention, which demonstrates the bacterium's ability to manipulate innate and adaptive immune responses. In this Review, we highlight how S. aureus virulence factors inhibit complement activation, block and destroy phagocytic cells and modify host B cell and T cell responses, and we discuss how these insights might be useful for the development of novel therapies against infections with antibiotic resistant strains such as methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Vilasack Thammavongsa
- 1] Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA. [2] Regeneron Pharmaceuticals, 755 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Hwan Keun Kim
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
88
|
Veras FP, Peres RS, Saraiva ALL, Pinto LG, Louzada-Junior P, Cunha TM, Paschoal JAR, Cunha FQ, Alves-Filho JC. Fructose 1,6-bisphosphate, a high-energy intermediate of glycolysis, attenuates experimental arthritis by activating anti-inflammatory adenosinergic pathway. Sci Rep 2015; 5:15171. [PMID: 26478088 PMCID: PMC4609967 DOI: 10.1038/srep15171] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/09/2015] [Indexed: 12/29/2022] Open
Abstract
Fructose 1,6-bisphosphate (FBP) is an endogenous intermediate of the glycolytic pathway. Exogenous administration of FBP has been shown to exert protective effects in a variety of ischemic injury models, which are attributed to its ability to sustain glycolysis and increase ATP production. Here, we demonstrated that a single treatment with FBP markedly attenuated arthritis, assessed by reduction of articular hyperalgesia, joint swelling, neutrophil infiltration and production of inflammatory cytokines, TNF and IL-6, while enhancing IL-10 production in two mouse models of arthritis. Our mechanistic studies showed that FBP reduces joint inflammation through the systemic generation of extracellular adenosine and subsequent activation of adenosine receptor A2a (A2aR). Moreover, we showed that FBP-induced adenosine generation requires hydrolysis of extracellular ATP through the activity of the ectonucleosides triphosphate diphosphohydrolase-1 (ENTPD1, also known as CD39) and ecto-5'-nucleotidase (E5NT, also known as CD73). In accordance, inhibition of CD39 and CD73 abolished anti-arthritic effects of FBP. Taken together, our findings provide a new insight into the molecular mechanism underlying the anti-inflammatory effect of FBP, showing that it effectively attenuates experimental arthritis by activating the anti-inflammatory adenosinergic pathway. Therefore, FBP may represent a new therapeutic strategy for treatment of rheumatoid arthritis (RA).
Collapse
Affiliation(s)
- Flávio P Veras
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Raphael S Peres
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - André L L Saraiva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Larissa G Pinto
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Paulo Louzada-Junior
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jonas A R Paschoal
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
89
|
Modulatory effects of inosine, guanosine and uridine on lipopolysaccharide-evoked increase in spike-wave discharge activity in Wistar Albino Glaxo/Rijswijk rats. Brain Res Bull 2015; 118:46-57. [DOI: 10.1016/j.brainresbull.2015.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/05/2015] [Accepted: 09/07/2015] [Indexed: 12/20/2022]
|
90
|
Abstract
Activation of macrophages and dendritic cells (DCs) by pro-inflammatory stimuli causes them to undergo a metabolic switch towards glycolysis and away from oxidative phosphorylation (OXPHOS), similar to the Warburg effect in tumors. However, it is only recently that the mechanisms responsible for this metabolic reprogramming have been elucidated in more detail. The transcription factor hypoxia-inducible factor-1α (HIF-1α) plays an important role under conditions of both hypoxia and normoxia. The withdrawal of citrate from the tricarboxylic acid (TCA) cycle has been shown to be critical for lipid biosynthesis in both macrophages and DCs. Interference with this process actually abolishes the ability of DCs to activate T cells. Another TCA cycle intermediate, succinate, activates HIF-1α and promotes inflammatory gene expression. These new insights are providing us with a deeper understanding of the role of metabolic reprogramming in innate immunity.
Collapse
Affiliation(s)
- Beth Kelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Luke AJ O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| |
Collapse
|
91
|
Csóka B, Németh ZH, Törő G, Idzko M, Zech A, Koscsó B, Spolarics Z, Antonioli L, Cseri K, Erdélyi K, Pacher P, Haskó G. Extracellular ATP protects against sepsis through macrophage P2X7 purinergic receptors by enhancing intracellular bacterial killing. FASEB J 2015; 29:3626-37. [PMID: 26060214 DOI: 10.1096/fj.15-272450] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022]
Abstract
Extracellular ATP binds to and signals through P2X7 receptors (P2X7Rs) to modulate immune function in both inflammasome-dependent and -independent manners. In this study, P2X7(-/-) mice, the pharmacological agonists ATP-magnesium salt (Mg-ATP; 100 mg/kg, EC50 ≈ 1.32 mM) and benzoylbenzoyl-ATP (Bz-ATP; 10 mg/kg, EC50 ≈ 285 μM), and antagonist oxidized ATP (oxi-ATP; 40 mg/kg, IC50 ≈ 100 μM) were used to show that P2X7R activation is crucial for the control of mortality, bacterial dissemination, and inflammation in cecal ligation and puncture-induced polymicrobial sepsis in mice. Our results with P2X7(-/-) bone marrow chimeric mice, adoptive transfer of peritoneal macrophages, and myeloid-specific P2X7(-/-) mice indicate that P2X7R signaling on macrophages is essential for the protective effect of P2X7Rs. P2X7R signaling protects through enhancing bacterial killing by macrophages, which is independent of the inflammasome. By using the connexin (Cx) channel inhibitor Gap27 (0.1 mg/kg, IC50 ≈ 0.25 μM) and pannexin channel inhibitor probenecid (10 mg/kg, IC50 ≈ 11.7 μM), we showed that ATP release through Cx is important for inhibiting inflammation and bacterial burden. In summary, targeting P2X7Rs provides a new opportunity for harnessing an endogenous protective immune mechanism in the treatment of sepsis.
Collapse
Affiliation(s)
- Balázs Csóka
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Zoltán H Németh
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Gábor Törő
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Marco Idzko
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Andreas Zech
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Balázs Koscsó
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Zoltán Spolarics
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Luca Antonioli
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Karolina Cseri
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Katalin Erdélyi
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Pál Pacher
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - György Haskó
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
92
|
Yang S, Gao L, Lu F, Wang B, Gao F, Zhu G, Cai Z, Lai J, Yang Q. Transcription factor myocyte enhancer factor 2D regulates interleukin-10 production in microglia to protect neuronal cells from inflammation-induced death. J Neuroinflammation 2015; 12:33. [PMID: 25890150 PMCID: PMC4339472 DOI: 10.1186/s12974-015-0258-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroinflammatory responses have been recognized as an important aspect in the pathogenesis of Parkinson's disease (PD). Transcriptional regulation plays a critical role in the process of inflammation. Transcription factor myocyte enhancer factor 2D (MEF2D) is identified as a central factor in transmission of extracellular signals and activation of the genetic programs in response to a wide range of stimuli in several cell types, including neurons. But its presence and function in microglia have not been reported. We therefore investigated the effect of MEF2D in activated microglia on the progress of neuroinflammation and the survival of neurons. METHODS BV2 cells and primary cultured glial cells were stimulated with lipopolysaccharide (LPS). Samples from cells were examined for MEF2D expression, interleukin-10 (IL-10), and tumor necrosis factor alpha (TNF-α) by immunoblotting, quantitative real-time PCR (qPCR) or enzyme-linked immunosorbent assay (ELISA). The activity of MEF2D was examined by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP). Recombinant lentivirus expressing shRNA specific to MEF2D was used to silence MEF2D expression in BV2 cells. The role of IL-10 transcriptionally induced by MEF2D on neuronal survival was assessed by anti-IL-10 neutralizing antibody. The survival of neurons was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Male C57bl/6 mice were used to establish an acute PD model. Brain sections and cell slides were tested by immunofluorescence. RESULTS We demonstrated that MEF2D was present in microglia. Activation of microglia was associated with an increase in MEF2D level and activity in response to different stimuli in vivo and in vitro. MEF2D bound to a MEF2 consensus site in the promoter region of IL-10 gene and stimulated IL-10 transcription. Silencing MEF2D decreased the level of IL-10, increased the TNF-α mRNA, and promoted inflammation-induced cytotoxicity, consistent with the result of inhibiting IL-10 activity with an anti-IL-10 neutralizing antibody. CONCLUSIONS Our study identifies MEF2D as a critical regulator of IL-10 gene expression that negatively controls microglia inflammation response and prevents inflammation-mediated cytotoxicity.
Collapse
Affiliation(s)
- Shaosong Yang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Fangfang Lu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Fei Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Gang Zhu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Zhibiao Cai
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Juan Lai
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Qian Yang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
93
|
Hernandez-Encinas E, Aguilar-Morante D, Cortes-Canteli M, Morales-Garcia JA, Gine E, Santos A, Perez-Castillo A. CCAAT/enhancer binding protein β directly regulates the expression of the complement component 3 gene in neural cells: implications for the pro-inflammatory effects of this transcription factor. J Neuroinflammation 2015; 12:14. [PMID: 25617152 PMCID: PMC4348118 DOI: 10.1186/s12974-014-0223-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/16/2014] [Indexed: 11/10/2022] Open
Abstract
Background The CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor, which was first identified as a regulator of differentiation and inflammatory processes mainly in adipose tissue and liver; however, its function in the brain was largely unknown for many years. Previous studies from our laboratory indicated that C/EBPβ is implicated in inflammatory process and brain injury, since mice lacking this gene were less susceptible to kainic acid-induced injury. Methods We first performed cDNA microarrays analysis using hippocampal RNA isolated from C/EBPβ+/+ and C/EBPβ−/− mice. Immunocytochemical and immunohistochemical studies were done to evaluate C/EBPβ and C3 levels. Transient transfection experiments were made to analyze transcriptional regulation of C3 by C/EBPβ. To knockdown C/EBPβ and C3 expression, mouse astrocytes were infected with lentiviral particles expressing an shRNA specific for C/EBPβ or an siRNA specific for C3. Results Among the genes displaying significant changes in expression was complement component 3 (C3), which showed a dramatic decrease in mRNA content in the hippocampus of C/EBPβ−/− mice. C3 is the central component of the complement and is implicated in different brain disorders. In this work we have found that C/EBPβ regulates C3 levels in rodents glial in vitro and in the rat Substantia nigra pars compacta (SNpc) in vivo following an inflammatory insult. Analysis of the mouse C3 promoter showed that it is directly regulated by C/EBPβ through a C/EBPβ consensus site located at position −616/-599 of the gene. In addition, we show that depletion of C/EBPβ by a specific shRNA results in a significant decrease in the levels of C3 together with a reduction in the increased levels of pro-inflammatory agents elicited by lipopolysaccharide treatment. Conclusions Altogether, these results indicate that C3 is a downstream target of C/EBPβ, and it could be a mediator of the pro-inflammatory effects of this transcription factor in neural cells.
Collapse
Affiliation(s)
- Elena Hernandez-Encinas
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| | - Diana Aguilar-Morante
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| | - Marta Cortes-Canteli
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Present address: Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | - Jose A Morales-Garcia
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| | - Elena Gine
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain. .,Departamento de Bioquímica y Biologia Molecular, Facultad de Medicina, UCM, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Angel Santos
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain. .,Departamento de Bioquímica y Biologia Molecular, Facultad de Medicina, UCM, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| |
Collapse
|
94
|
Desai BN, Leitinger N. Purinergic and calcium signaling in macrophage function and plasticity. Front Immunol 2014; 5:580. [PMID: 25505897 PMCID: PMC4245916 DOI: 10.3389/fimmu.2014.00580] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/29/2014] [Indexed: 12/30/2022] Open
Abstract
In addition to a fundamental role in cellular bioenergetics, the purine nucleotide adenosine triphosphate (ATP) plays a crucial role in the extracellular space as a signaling molecule. ATP and its metabolites serve as ligands for a family of receptors that are collectively referred to as purinergic receptors. These receptors were first described and characterized in the nervous system but it soon became evident that they are expressed ubiquitously. In the immune system, purinergic signals regulate the migration and activation of immune cells and they may also orchestrate the resolution of inflammation (1, 2). The intracellular signal transduction initiated by purinergic receptors is strongly coupled to Ca(2+)-signaling, and co-ordination of these pathways plays a critical role in innate immunity. In this review, we provide an overview of purinergic and Ca(2+)-signaling in the context of macrophage phenotypic polarization and discuss the implications on macrophage function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Bimal N Desai
- Department of Pharmacology, University of Virginia , Charlottesville, VA , USA
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia , Charlottesville, VA , USA
| |
Collapse
|
95
|
Burnstock G, Boeynaems JM. Purinergic signalling and immune cells. Purinergic Signal 2014; 10:529-64. [PMID: 25352330 PMCID: PMC4272370 DOI: 10.1007/s11302-014-9427-2] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 11/28/2022] Open
Abstract
This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
96
|
Chu CH, Chen SH, Wang Q, Langenbach R, Li H, Zeldin D, Chen SL, Wang S, Gao H, Lu RB, Hong JS. PGE2 Inhibits IL-10 Production via EP2-Mediated β-Arrestin Signaling in Neuroinflammatory Condition. Mol Neurobiol 2014; 52:587-600. [PMID: 25218510 DOI: 10.1007/s12035-014-8889-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/01/2014] [Indexed: 12/19/2022]
Abstract
Regulatory mechanisms of the expression of interleukin-10 (IL-10) in brain inflammatory conditions remain elusive. To address this issue, we used multiple primary brain cell cultures to study the expression of IL-10 in lipopolysaccharide (LPS)-elicited inflammatory conditions. In neuron-glia cultures, LPS triggered well-orchestrated expression of various immune factors in the following order: tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and lastly IL-10, and these inflammatory mediators were mainly produced from microglia. While exogenous application of individual earlier-released pro-inflammatory factors (e.g., TNF-α, IL-1β, or PGE2) failed to induce IL-10 expression, removal of LPS from the cultures showed the requirement of continuing presence of LPS for IL-10 expression. Interestingly, genetic disruption of tnf-α, its receptors tnf-r1/r2, and cox-2 and pharmacological inhibition of COX-2 activity enhanced LPS-induced IL-10 production in microglia, which suggests negative regulation of IL-10 induction by the earlier-released TNF-α and PGE2. Further studies showed that negative regulation of IL-10 production by TNF-α is mediated by PGE2. Mechanistic studies indicated that PGE2-elicited suppression of IL-10 induction was eliminated by genetic disruption of the PGE2 receptor EP2 and was mimicked by the specific agonist for the EP2, butaprost, but not agonists for the other three EP receptors. Inhibition of cAMP-dependent signal transduction failed to affect PGE2-mediated inhibition of IL-10 production, suggesting that a G protein-independent pathway was involved. Indeed, deficiency in β-arrestin-1 or β-arrestin-2 abolished PGE2-elicited suppression of IL-10 production. In conclusion, we have demonstrated that COX-2-derived PGE2 inhibits IL-10 expression in brain microglia through a novel EP2- and β-arrestin-dependent signaling pathway.
Collapse
Affiliation(s)
- Chun-Hsien Chu
- Neuropharmacology Section, National Institutes of Health/National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Hsu K, Chung YM, Endoh Y, Geczy CL. TLR9 ligands induce S100A8 in macrophages via a STAT3-dependent pathway which requires IL-10 and PGE2. PLoS One 2014; 9:e103629. [PMID: 25098409 PMCID: PMC4123874 DOI: 10.1371/journal.pone.0103629] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/04/2014] [Indexed: 12/28/2022] Open
Abstract
S100A8 and S100A9 are highly-expressed calcium-binding proteins in neutrophils and monocytes, and in subsets of macrophages in inflammatory lesions. Unmethylated CpG motifs found in bacterial and viral DNA are potent activators of innate immunity via Toll-like receptor 9 (TLR9). S100A8, but not S100A9, mRNA and protein was directly induced by CpG-DNA in murine and human macrophages. Induction in murine macrophages peaked at 16 h. CpG-DNA-induced S100A8 required de novo protein synthesis; IL-10 and Prostaglandin E2 (PGE2) synergistically enhanced expression and promoted earlier gene induction. Inhibitors of endogenous IL-10, PGE2, and the E prostanoid (EP) 4 receptor strongly suppressed S100A8 expression, particularly when combined. Thus, S100A8 induction by E. coli DNA required both IL-10 and PGE2/EP4 signaling. The MAPKs, PI3K and JAK pathways were essential, whereas ERK1/2 appeared to play a direct role. S100A8 induction by CpG-DNA was controlled at the transcriptional level. The promoter region responsible for activation, either directly, or indirectly via IL-10 and PGE2, was located within a -178 to -34-bp region and required STAT3 binding. Because of the robust links connecting IL-10 and PGE2 with an anti-inflammatory macrophage phenotype, the induction profile of S100A8 strongly indicates a role for this protein in resolution of inflammation.
Collapse
Affiliation(s)
- Kenneth Hsu
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| | - Yuen Ming Chung
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Yasumi Endoh
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Carolyn L. Geczy
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
98
|
Antonioli L, Csóka B, Fornai M, Colucci R, Kókai E, Blandizzi C, Haskó G. Adenosine and inflammation: what's new on the horizon? Drug Discov Today 2014; 19:1051-68. [DOI: 10.1016/j.drudis.2014.02.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/06/2014] [Accepted: 02/25/2014] [Indexed: 12/18/2022]
|
99
|
Ochoa-Cortes F, Liñán-Rico A, Jacobson KA, Christofi FL. Potential for developing purinergic drugs for gastrointestinal diseases. Inflamm Bowel Dis 2014; 20:1259-87. [PMID: 24859298 PMCID: PMC4340257 DOI: 10.1097/mib.0000000000000047] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Treatments for inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), functional dyspepsia, or motility disorders are not adequate, and purinergic drugs offer exciting new possibilities. Gastrointestinal symptoms that could be targeted for therapy include visceral pain, inflammatory pain, dysmotility, constipation, and diarrhea. The focus of this review is on the potential for developing purinergic drugs for clinical trials to treat gastrointestinal symptoms. Purinergic receptors are divided into adenosine P1 (A(1), A(2A), A(2B), A(3)), ionotropic ATP-gated P2X ion channel (P2X(1-7)), or metabotropic P2Y(1,2,4,6,11-14) receptors. There is good experimental evidence for targeting A(2A), A(2B), A(3), P2X(7), and P2X(3) receptors or increasing endogenous adenosine levels to treat IBD, inflammatory pain, IBS/visceral pain, inflammatory diarrhea, and motility disorders. Purine genes are also potential biomarkers of disease. Advances in medicinal chemistry have an accelerated pace toward clinical trials: Methotrexate and sulfasalazine, used to treat IBD, act by stimulating CD73-dependent adenosine production. ATP protects against NSAID-induced enteropathy and has pain-relieving properties in humans. A P2X(7)R antagonist AZD9056 is in clinical trials for Crohn's disease. A(3) adenosine receptor drugs target inflammatory diseases (e.g., CF101, CF102). Dipyridamole, a nucleoside uptake inhibitor, is in trials for endotoxemia. Drugs for pain in clinical trials include P2X(3)/P2X(2/3) (AF-219) and P2X(7) (GSK1482160) antagonists and A(1) (GW493838) or A(2A) (BVT.115959) agonists. Iberogast is a phytopharmacon targeting purine mechanisms with efficacy in IBS and functional dyspepsia. Purinergic drugs have excellent safety/efficacy profile for prospective clinical trials in IBD, IBS, functional dyspepsia, and inflammatory diarrhea. Genetic polymorphisms and caffeine consumption may affect susceptibility to treatment. Further studies in animals can clarify mechanisms and test new generation drugs. Finally, there is still a huge gap in our knowledge of human pathophysiology of purinergic signaling.
Collapse
Affiliation(s)
- Fernando Ochoa-Cortes
- Department of Anesthesiology, The Wexner Medical Center at The Ohio State University, Columbus, Ohio
| | - Andromeda Liñán-Rico
- Department of Anesthesiology, The Wexner Medical Center at The Ohio State University, Columbus, Ohio
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry & Molecular Recognition Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health
| | - Fievos L. Christofi
- Department of Anesthesiology, The Wexner Medical Center at The Ohio State University, Columbus, Ohio
| |
Collapse
|
100
|
The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Rα) signaling. Inflammation 2014; 36:921-31. [PMID: 23504259 DOI: 10.1007/s10753-013-9621-3] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Murine macrophages are activated by interferon-γ (IFN-γ) and/or Toll-like receptor (TLR) agonists such as bacterial endotoxin (lipopolysaccharide [LPS]) to express an inflammatory (M1) phenotype characterized by the expression of nitric oxide synthase-2 (iNOS) and inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-12. In contrast, Th2 cytokines IL-4 and IL-13 activate macrophages by inducing the expression of arginase-1 and the anti-inflammatory cytokine IL-10 in an IL-4 receptor-α (IL-4Rα)-dependent manner. Macrophages activated in this way are designated as "alternatively activated" (M2a) macrophages. We have shown previously that adenosine A2A receptor (A(2A)R) agonists act synergistically with TLR2, TLR4, TLR7, and TLR9 agonists to switch macrophages into an "M2-like" phenotype that we have termed "M2d." Adenosine signaling suppresses the TLR-dependent expression of TNF-α, IL-12, IFN-γ, and several other inflammatory cytokines by macrophages and induces the expression of vascular endothelial growth factor (VEGF) and IL-10. We show here using mice lacking a functional IL-4Rα gene (IL-4Rα(-/-) mice) that this adenosine-mediated switch does not require IL-4Rα-dependent signaling. M2d macrophages express high levels of VEGF, IL-10, and iNOS, low levels of TNF-α and IL-12, and mildly elevated levels of arginase-1. In contrast, M2d macrophages do not express Ym1, Fizz1 (RELM-α), or CD206 at levels greater than those induced by LPS, and dectin-1 expression is suppressed. The use of these markers in vivo to identify "M2" macrophages thus provides an incomplete picture of macrophage functional status and should be viewed with caution.
Collapse
|