51
|
Ookura M, Hosono N, Tasaki T, Oiwa K, Fujita K, Ito K, Lee S, Matsuda Y, Morita M, Tai K, Negoro E, Kishi S, Iwasaki H, Ueda T, Yamauchi T. Successful treatment of disseminated intravascular coagulation by recombinant human soluble thrombomodulin in patients with acute myeloid leukemia. Medicine (Baltimore) 2018; 97:e12981. [PMID: 30383650 PMCID: PMC6221668 DOI: 10.1097/md.0000000000012981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Disseminated intravascular coagulation (DIC) is a life-threatening condition that frequently occurs in patients with hematologic malignancies. Currently, recombinant human soluble thrombomodulin (rTM) is a therapeutic DIC drug that is manufactured and sold in Japan only. We evaluated the efficacy of rTM compared to that of gabexate mesilate (GM), which was previously used routinely for treating DIC in Japan, in patients with acute myeloid leukemia (AML). This retrospective study enrolled 43 AML patients, including 17 with acute promyelocytic leukemia (APL), that was complicated with DIC. DIC resolution rates in non-APL AML and rTM-treated APL patients were 68.4% and 81.8%, respectively. In non-APL AML patients, the duration of rTM administration was significantly shorter than that of GM (7 vs 11 days), suggesting that rTM could improve DIC earlier than GM, although rTM was used in patients with more severe DIC. Moreover, treatment with rTM significantly improved DIC score, fibrinogen, fibrin/fibrinogen degradation product (FDP), and prothrombin time (PT) ratio. Conversely, treatment with GM only improved the DIC score and FDP. In APL patients, the duration of rTM administration was also significantly shorter than that of GM. No severe side effects associated with the progression of bleeding were observed during rTM administration. These findings suggest that rTM is safe, and its anti-DIC effects are more prompt than GM for treating AML patients with DIC.
Collapse
Affiliation(s)
- Miyuki Ookura
- Department of Hematology and Oncology, Faculty of Medical Science, University of Fukui
| | - Naoko Hosono
- Department of Hematology and Oncology, Faculty of Medical Science, University of Fukui
| | - Toshiki Tasaki
- Department of Hematology and Oncology, Faculty of Medical Science, University of Fukui
| | - Kana Oiwa
- Department of Hematology and Oncology, Faculty of Medical Science, University of Fukui
| | - Kei Fujita
- Department of Hematology and Oncology, Faculty of Medical Science, University of Fukui
| | - Kazuhiro Ito
- Department of Hematology and Oncology, Faculty of Medical Science, University of Fukui
| | - Shin Lee
- Department of Hematology and Oncology, Faculty of Medical Science, University of Fukui
| | - Yasufumi Matsuda
- Department of Hematology and Oncology, Faculty of Medical Science, University of Fukui
| | - Mihoko Morita
- Department of Hematology and Oncology, Faculty of Medical Science, University of Fukui
| | - Katsunori Tai
- Department of Hematology and Oncology, Faculty of Medical Science, University of Fukui
| | - Eiju Negoro
- Department of Hematology and Oncology, Faculty of Medical Science, University of Fukui
| | - Shinji Kishi
- Department of Health and Nutrition, Jin-ai University
| | | | | | - Takahiro Yamauchi
- Department of Hematology and Oncology, Faculty of Medical Science, University of Fukui
| |
Collapse
|
52
|
Plasminogen/thrombomodulin signaling enhances VEGF expression to promote cutaneous wound healing. J Mol Med (Berl) 2018; 96:1333-1344. [PMID: 30341568 DOI: 10.1007/s00109-018-1702-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 12/26/2022]
Abstract
Plasminogen (Plg) and thrombomodulin (TM) are glycoproteins well known for fibrinolytic and anticoagulant functions, respectively. Both Plg and TM are essential for wound healing. However, their significance during the reparative process was separately demonstrated in previous studies. Here, we investigate the interaction between Plg and epithelial TM and its effect on wound healing. Characterization of the wound margin revealed that Plg and TM were simultaneously upregulated at the early stage of wound healing and the two molecules were bound together. In vitro, TM silencing or knockout in keratinocytes inhibited Plg activation. Plg treatment enhanced keratinocyte proliferation and migration, and these actions were abolished by TM antibody. Keratinocyte-expressed vascular endothelial growth factor (VEGF), which presented a dose-response relationship with Plg treatment, can be suppressed by TM silencing. Moreover, treatment with VEGF antibody inhibited Plg-enhanced keratinocyte proliferation and wound recovery. In vivo, TM antibody treatment and keratinocyte-specific TM knockout can impede Plg-enhanced wound healing in mice. In high-glucose environments, Plg-enhanced VEGF expression and wound healing were suppressed due at least in part to downregulation of keratinocyte-expressed TM. Taken together, our findings suggest that activation of Plg/TM signaling may hold therapeutic potential for chronic wounds in diabetic or non-diabetic individuals. KEY MESSAGES: Plg binds to TM in cutaneous wound healing. TM facilitates the activation of Plg to Plm in keratinocytes. Epithelial TM regulates Plg-enhanced wound healing through VEGF expression.
Collapse
|
53
|
Exploring traditional and nontraditional roles for thrombomodulin. Blood 2018; 132:148-158. [DOI: 10.1182/blood-2017-12-768994] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
AbstractThrombomodulin (TM) is an integral component of a multimolecular system, localized primarily to the vascular endothelium, that integrates crucial biological processes and biochemical pathways, including those related to coagulation, innate immunity, inflammation, and cell proliferation. These are designed to protect the host from injury and promote healing. The “traditional” role of TM in hemostasis was determined with its discovery in the 1980s as a ligand for thrombin and a critical cofactor for the major natural anticoagulant protein C system and subsequently for thrombin-mediated activation of the thrombin activatable fibrinolysis inhibitor (also known as procarboxypeptidase B2). Studies in the past 2 decades are redefining TM as a molecule with many properties, exhibited via its multiple domains, through its interacting partners, complex regulated expression, and synthesis by cells other than the endothelium. In this report, we review some of the recently reported diverse properties of TM and how these may impact on our understanding of the pathogenesis of several diseases.
Collapse
|
54
|
Uzawa A, Mori M, Masuda H, Ohtani R, Uchida T, Kuwabara S. Recombinant thrombomodulin ameliorates experimental autoimmune encephalomyelitis by suppressing high mobility group box 1 and inflammatory cytokines. Clin Exp Immunol 2018; 193:47-54. [PMID: 29509323 DOI: 10.1111/cei.13123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2018] [Indexed: 01/04/2023] Open
Abstract
Recombinant thrombomodulin (rTM) has pleiotrophic properties, including anti-coagulation and anti-inflammation; however, its effectiveness as a treatment for multiple sclerosis (MS) has not been evaluated fully. High mobility group box 1 (HMGB1) and proinflammatory cytokines, working as inflammatory mediators, are reportedly involved in the inflammatory pathogenesis of MS. The aim of this study was to determine whether rTM can be a potential therapeutic agent for experimental autoimmune encephalomyelitis (EAE). EAE mice received rTM treatment (1 mg or 0·1 mg/kg/day) from days 11 to 15 after immunization. The clinical variables, plasma levels of inflammatory cytokines and HMGB1 and pathological findings in EAE were evaluated. rTM administration ameliorated the clinical and pathological severity of EAE. An immunohistochemical study of the spinal cord showed weaker cytoplasmic HMGB1 staining in the rTM-treated EAE mice than in the untreated EAE mice. Plasma levels of inflammatory cytokines and HMGB1 were suppressed by rTM treatment. In conclusion, rTM down-regulated inflammatory mediators in the peripheral circulation and prevented HMGB1 release from nuclei in the central nervous system, suppressing EAE-related inflammation. rTM could have a novel therapeutic potential for patients with MS.
Collapse
Affiliation(s)
- A Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - M Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - H Masuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - R Ohtani
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - T Uchida
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - S Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
55
|
Biodiversity of CS–proteoglycan sulphation motifs: chemical messenger recognition modules with roles in information transfer, control of cellular behaviour and tissue morphogenesis. Biochem J 2018; 475:587-620. [DOI: 10.1042/bcj20170820] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/20/2017] [Accepted: 01/07/2018] [Indexed: 12/19/2022]
Abstract
Chondroitin sulphate (CS) glycosaminoglycan chains on cell and extracellular matrix proteoglycans (PGs) can no longer be regarded as merely hydrodynamic space fillers. Overwhelming evidence over recent years indicates that sulphation motif sequences within the CS chain structure are a source of significant biological information to cells and their surrounding environment. CS sulphation motifs have been shown to interact with a wide variety of bioactive molecules, e.g. cytokines, growth factors, chemokines, morphogenetic proteins, enzymes and enzyme inhibitors, as well as structural components within the extracellular milieu. They are therefore capable of modulating a panoply of signalling pathways, thus controlling diverse cellular behaviours including proliferation, differentiation, migration and matrix synthesis. Consequently, through these motifs, CS PGs play significant roles in the maintenance of tissue homeostasis, morphogenesis, development, growth and disease. Here, we review (i) the biodiversity of CS PGs and their sulphation motif sequences and (ii) the current understanding of the signalling roles they play in regulating cellular behaviour during tissue development, growth, disease and repair.
Collapse
|
56
|
de Vos A, Roelofs J, van der Loos C, de Boer O, van’t Veer C, Conway E, Poll TVD, Kager L. The thrombomodulin lectin-like domain does not change host responses to tuberculosis. Thromb Haemost 2017; 111:345-53. [DOI: 10.1160/th13-08-0719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/17/2013] [Indexed: 11/05/2022]
Abstract
SummaryTuberculosis (TB), caused by Mycobacterium (M.) tuberculosis, is a devastating infectious disease causing many deaths world-wide. Thrombomodulin (TM) is a multidomain glycoprotein expressed on all vascular endothelial cells. We here studied the role of the lectin-like domain of TM, responsible for a variety of anti-inflammatory properties of TM, during TB. We compared the extent of TM-expression in human lung tissue of TB and control patients. The, the role of the lectin-like domain of TM was investigated by comparing mice lacking this domain (TMLeD/LeD mice) with wild-type (WT) mice during experimental lung TB induced by infection with M. tuberculosis via the airways. Lungs were harvested for analyses at two, six and 29 weeks after infection. Lung TM-expression was downregulated in TB patients, which was not related to changes in the amount of endothelium in infected lungs. TMLeD/LeD mice showed unaltered mycobacterial loads in lungs, liver and spleen during experimental TB. Additionally, lung histopathology and cytokine concentrations were largely similar in TMLeD/LeD and WT mice, while total leukocyte counts were increased in lungs of TMLeD/LeD mice after 29 weeks of infection. Mortality did not occur in either group. The lectin-like domain of TM does not play an important role in the host response to M. tuberculosis infection in mice.
Collapse
|
57
|
Pan B, Wang X, Kojima S, Nishioka C, Yokoyama A, Honda G, Xu K, Ikezoe T. The fifth epidermal growth factor like region of thrombomodulin alleviates LPS-induced sepsis through interacting with GPR15. Thromb Haemost 2017; 117:570-579. [DOI: 10.1160/th16-10-0762] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/02/2016] [Indexed: 02/06/2023]
Abstract
SummaryThrombomodulin (TM) exerts cytoprotection via the fifth region of epidermal growth factor (EGF)-like domain of TM (TME5) by interacting with G-protein coupled receptor 15 (GPR15) expressed on cell surface of vascular endothelial cells. TM is also implied to mediate anti-inflammatory functions by unknown mechanism. By applying a lipopolysaccharide (LPS)-induced murine sepsis model, we assessed the role of TME5 in septic inflammation and coagulation. We found that TME5 treatment protected mice in association with ameliorating inflammation and coagulopathy in LPS-induced sepsis. Further study confirmed that TME5 bound GPR15 in vitro. Knock out of GPR15 abolished protective role of TME5 in sepsis model. GPR15 mediated anti-inflammatory function of TME5 through suppression of phosphorylation of IκBα, nuclear translocation of NF-κB and release of pro-inflammatory cytokines in macro-phages (Macs). Knock out of GPR15 resulted in dysregulated immune response of Macs, characterised by excessive expression of pro-inflammatory genes and failing to limit immune response. This study indicates that TME5 exerts anti-inflammatory function through inhibition of NF-κB in a GPR15-dependent manner. The use of TME5 may be a potential therapeutic option for treatment of sepsis.Supplementary Material to this article is available online at www.thrombosis-online.com.
Collapse
|
58
|
Agrawal S, Ganguly S, Tran A, Sundaram P, Agrawal A. Retinoic acid treated human dendritic cells induce T regulatory cells via the expression of CD141 and GARP which is impaired with age. Aging (Albany NY) 2017; 8:1223-35. [PMID: 27244900 PMCID: PMC4931828 DOI: 10.18632/aging.100973] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/16/2016] [Indexed: 12/24/2022]
Abstract
Aged subjects display increased susceptibility to mucosal diseases. Retinoic Acid (RA) plays a major role in inducing tolerance in the mucosa. RA acts on Dendritic cells (DCs) to induce mucosal tolerance. Here we compared the response of DCs from aged and young individuals to RA with a view to understand the role of DCs in age-associated increased susceptibility to mucosal diseases. Our investigations revealed that compared to young DCs, RA stimulated DCs from aged subjects are defective in inducing IL-10 and T regulatory cells. Examinations of the underlying mechanisms indicated that RA exposure led to the upregulation of CD141 and GARP on DCs which rendered the DCs tolerogenic. CD141hi, GARP+ DCs displayed enhanced capacity to induce T regulatory cells compared to CD141lo and GARP− DCs. Unlike RA stimulated DCs from young, DCs from aged subjects exhibited diminished upregulation of both CD141 and GARP. The percentage of DCs expressing CD141 and GARP on RA treatment was significantly reduced in DCs from aged individuals. Furthermore, the remaining CD141hi, GARP+ DCs from aged individuals were also deficient in inducing T regs. In summary, reduced response of aged DCs to RA enhances mucosal inflammation in the elderly, increasing their susceptibility to mucosal diseases.
Collapse
Affiliation(s)
- Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA
| | - Sreerupa Ganguly
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA
| | - Alexander Tran
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA
| | - Padmaja Sundaram
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
59
|
Ki KK, Johnson L, Faddy HM, Flower RL, Marks DC, Dean MM. Immunomodulatory effect of cryopreserved platelets: altered BDCA3 + dendritic cell maturation and activation in vitro. Transfusion 2017; 57:2878-2887. [PMID: 28921552 DOI: 10.1111/trf.14320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/19/2017] [Accepted: 07/31/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cryopreservation of platelets (PLTs) is useful in remote areas to overcome logistic problems associated with supply and can extend the shelf life to 2 years. During cryopreservation, properties of PLTs are modified. Whether changes in the cryopreserved PLT (CPP) product are associated with modulation of recipients' immune function is unknown. We aimed to characterize the immune profile of myeloid dendritic cells (mDCs) and the specialized blood DC antigen (BDCA)3+ subset after exposure to CPPs. STUDY DESIGN AND METHODS Using an in vitro whole blood model of transfusion, the effect of CPPs on mDC and BDCA3+ DC surface antigen expression and inflammatory mediator production was examined using flow cytometry. In parallel, polyinosinic:polycytidylic acid (poly(I:C)) or lipopolysaccharide (LPS) was utilized to model processes activated in viral or bacterial infection, respectively. RESULTS Cryopreserved PLTs had minimal impact on mDC responses but significantly modulated BDCA3+ DC responses in vitro. Exposure to CPPs alone up regulated BDCA3+ DC CD86 expression and suppressed interleukin (IL)-8, tumor necrosis factor (TNF)-α, and interferon-γ inducible protein (IP)-10 production. In both models of infection-related processes, exposure to CPPs down regulated BDCA3+ DC expression of CD40, CD80, and CD83 and suppressed BDCA3+ DC production of IL-8, IL-12, and TNF-α. CPPs suppressed CD86 expression in the presence of LPS and IP-10 and IL-6 production with poly(I:C). CONCLUSION Cryopreserved PLTs may be immunosuppressive, and this effect is more evident when processes associated with infection are concurrently activated, especially for BDCA3+ DCs. This suggests that transfusion of CPPs in patients with infection may result in impaired BDCA3+ DC responses.
Collapse
Affiliation(s)
- Katrina K Ki
- Research and Development, The Australian Red Cross Blood Service, Brisbane, QLD, Australia.,School of Medicine, The University of Queensland, Brisbane, Brisbane, QLD, Australia
| | - Lacey Johnson
- Research and Development, The Australian Red Cross Blood Service, Sydney, NSW, Australia
| | - Helen M Faddy
- Research and Development, The Australian Red Cross Blood Service, Brisbane, QLD, Australia.,School of Medicine, The University of Queensland, Brisbane, Brisbane, QLD, Australia
| | - Robert L Flower
- Research and Development, The Australian Red Cross Blood Service, Brisbane, QLD, Australia
| | - Denese C Marks
- Research and Development, The Australian Red Cross Blood Service, Sydney, NSW, Australia
| | - Melinda M Dean
- Research and Development, The Australian Red Cross Blood Service, Brisbane, QLD, Australia
| |
Collapse
|
60
|
Proximate Mediators of Microvascular Dysfunction at the Blood-Brain Barrier: Neuroinflammatory Pathways to Neurodegeneration. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1549194. [PMID: 28890893 PMCID: PMC5584365 DOI: 10.1155/2017/1549194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/09/2017] [Indexed: 12/14/2022]
Abstract
Current projections are that by 2050 the numbers of people aged 65 and older with Alzheimer's disease (AD) in the US may increase threefold while dementia is projected to double every 20 years reaching ~115 million by 2050. AD is clinically characterized by progressive dementia and neuropathologically by neuronal and synapse loss, accumulation of amyloid plaques, and neurofibrillary tangles (NFTs) in specific brain regions. The preclinical or presymptomatic stage of AD-related brain changes may begin over 20 years before symptoms occur, making development of noninvasive biomarkers essential. Distinct from neuroimaging and cerebrospinal fluid biomarkers, plasma or serum biomarkers can be analyzed to assess (i) the presence/absence of AD, (ii) the risk of developing AD, (iii) the progression of AD, or (iv) AD response to treatment. No unifying theory fully explains the neurodegenerative brain lesions but neuroinflammation (a lethal stressor for healthy neurons) is universally present. Current consensus is that the earlier the diagnosis, the better the chance to develop treatments that influence disease progression. In this article we provide a detailed review and analysis of the role of the blood-brain barrier (BBB) and damage-associated molecular patterns (DAMPs) as well as coagulation molecules in the onset and progression of these neurodegenerative disorders.
Collapse
|
61
|
Recombinant adeno-associated virus vector carrying the thrombomodulin lectin-like domain for the treatment of abdominal aortic aneurysm. Atherosclerosis 2017; 262:62-70. [DOI: 10.1016/j.atherosclerosis.2017.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 03/03/2017] [Accepted: 03/17/2017] [Indexed: 12/12/2022]
|
62
|
Bongoni AK, Klymiuk N, Wolf E, Ayares D, Rieben R, Cowan PJ. Transgenic Expression of Human Thrombomodulin Inhibits HMGB1-Induced Porcine Aortic Endothelial Cell Activation. Transplantation 2017; 100:1871-9. [PMID: 27077599 DOI: 10.1097/tp.0000000000001188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Transgenic expression of human thrombomodulin (hTBM), which has the potential to solve the problem of coagulation dysregulation in pig-to-primate xenotransplantation, may have additional benefits by neutralizing the proinflammatory cytokine high-mobility group box 1 (HMGB1). The aim of this study was to investigate HMGB1-mediated effects on porcine aortic endothelial cells (PAEC) from wild-type (WT) and hTBM transgenic pigs. METHODS Porcine aortic endothelial cells were treated with HMGB1, human (h)TNFα or lipopolysaccharide (LPS). Procoagulant and proinflammatory responses were assessed by measuring expression of cell surface markers (adhesion molecules, fibrinogen-like protein 2, plasminogen activator inhibitor (PAI)-1), secretion of porcine cytokines and chemokines (HMGB1, TNFα, IL-8, monocyte chemotactic protein-1), and formation of PAI-1/tissue plasminogen activator complexes. Thrombin-mediated degradation of HMGB1 in the presence of PAEC was examined by Western blot and functional assay. RESULTS High-mobility group box 1 potently activated WT PAEC, increasing the expression of E-selectin, vascular cell adhesion molecule-1, intercellular adhesion molecule-1, fibrinogen-like protein 2, and PAI-1, the secretion of TNFα, IL-8, and monocyte chemotactic protein-1 and the formation of PAI-1/tissue plasminogen activator complexes. Human TNFα- or LPS-induced activation of WT PAEC was inhibited by treatment with rabbit anti-HMGB1 antibody. Transgenic expression of hTBM significantly reduced the activation of PAEC by HMGB1 or hTNFα, and significantly enhanced thrombin-induced HMGB1 cleavage. Chemically induced shedding of the lectin-like domain of TBM resulted in significantly increased HMGB1-induced PAEC activation. CONCLUSIONS High-mobility group box 1 exerts powerful proinflammatory and procoagulant effects on WT PAEC, and appears to be an important downstream mediator for the actions of hTNFα and LPS. Human thrombomodulin transgenic PAECs are less sensitive to activation by either HMGB1 or hTNFα, an effect that appears to be dependent on the lectin-like domain of TBM.
Collapse
Affiliation(s)
- Anjan K Bongoni
- 1 Immunology Research Centre, St. Vincent's Hospital Melbourne, Victoria, Australia. 2 Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilian University, Munich, Germany. 3 Revivicor, Inc., Blacksburg, VA. 4 Department of Clinical Research, University of Bern, Bern, Switzerland. 5 Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
63
|
Ki KK, Faddy HM, Flower RL, Dean MM. Platelet concentrates modulate myeloid dendritic cell immune responses. Platelets 2017; 29:373-382. [DOI: 10.1080/09537104.2017.1306045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Katrina K. Ki
- Research and Development, The Australian Red Cross Blood Service, Brisbane, QLD, Australia
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Helen M. Faddy
- Research and Development, The Australian Red Cross Blood Service, Brisbane, QLD, Australia
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Robert L. Flower
- Research and Development, The Australian Red Cross Blood Service, Brisbane, QLD, Australia
| | - Melinda M. Dean
- Research and Development, The Australian Red Cross Blood Service, Brisbane, QLD, Australia
| |
Collapse
|
64
|
Ueda T, Higashiyama M, Narimatsu K, Yasutake Y, Kurihara C, Okada Y, Watanabe C, Yoshikawa K, Maruta K, Komoto S, Tomita K, Nagao S, Hokari R, Miura S. Recombinant Thrombomodulin Modulates Murine Colitis Possibly via High-Mobility Group Box 1 Protein Inhibition. Digestion 2017; 92:108-19. [PMID: 26302768 DOI: 10.1159/000438507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/10/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIM Thrombomodulin (TM) is an anticoagulant cofactor protein. We hypothesized that its recombinant soluble TM (rhTM) form, widely used to treat disseminated intravascular coagulation, might have anti-inflammatory action in inflammatory bowel disease (IBD), possibly through its inhibition of high-mobility group box 1 protein (HMGB1). METHODS We investigated inflammatory effects of HMGB1 and anti-inflammatory effect of rhTM in dextran sulfate sodium (DSS)-treated mice, some cell lines and ulcerative colitis (UC) patients, particularly focusing on changes of vascular endothelial adhesion molecules. RESULTS Treatments with rhTM significantly attenuated DSS-treated mice clinically and histologically. The mRNA levels of proinflammatory cytokines and adhesion molecules were decreased by rhTM. Increased inflammatory cells in the colonic mucosa strongly expressed HMGB1 in the cytoplasm in the DSS-treated mice and UC patients' colonic mucosa, which were significantly decreased by rhTM in mice. In in vitro experiments, rhTM significantly decreased the mRNA levels of tumor necrosis factor-alpha (TNF-α) and adhesion molecules increased by endotoxin exposures in RAW 264.7 (macrophage cell line) and bEND.3 cells (endothelial cell line), suggesting the proinflammatory role of HMGB1 in TNF-α production from macrophages. CONCLUSIONS These findings suggest that rhTM may be useful for the treatment of IBD by attenuating inflammatory cytokine production and adhesion molecule expression, partly because of its inhibition of HMGB1.
Collapse
Affiliation(s)
- Toshihide Ueda
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Shirai Y, Uwagawa T, Shiba H, Shimada Y, Horiuchi T, Saito N, Furukawa K, Ohashi T, Yanaga K. Recombinant thrombomodulin suppresses tumor growth of pancreatic cancer by blocking thrombin-induced PAR1 and NF-κB activation. Surgery 2017; 161:1675-1682. [PMID: 28094003 DOI: 10.1016/j.surg.2016.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND Thrombomodulin, an anticoagulant that inhibits thrombin-induced growth factor promotion, also has an anti-inflammatory effect. Furthermore, thrombomodulin inhibits nuclear factor-kappa B activation, which plays a crucial role in cancer progression. We assessed the antitumor activity of recombinant thrombomodulin for pancreatic cancer. METHODS A xenograft orthotopic model was established in mice by implantation of human pancreatic cancer cells. The animals were treated with intraperitoneal injection of recombinant thrombomodulin 5 times a week for 4 weeks. Nuclear factor-kappa B activation was evaluated by measuring nuclear localization of the p65. Efficacy of recombinant thrombomodulin on the signal transduction of nuclear factor-kappa B was measured in vitro under preconditioning with thrombin or epidermal growth factor. RESULTS Tumor growth was suppressed by recombinant thrombomodulin (P < .05). Recombinant thrombomodulin inhibited the expression of IκB kinase β (P < .05) and pIκBα (P < .01), as well as the activation of nuclear factor-kappa B NF-κB (P < .001). Furthermore, recombinant thrombomodulin inhibited thrombin-induced protease activate receptor 1 and nuclear factor-kappa B activation in vitro (P < .05). The number of Ki67-positive cells was decreased by recombinant thrombomodulin (P < .01). Recombinant thrombomodulin also suppressed body weight loss associated with pancreatic cancer (P < .05). No obvious adverse effects were observed. CONCLUSION Recombinant thrombomodulin significantly suppressed tumor growth against human pancreatic cancer by blocking thrombin-induced nuclear factor-kappa B activation without adverse effects.
Collapse
Affiliation(s)
- Yoshihiro Shirai
- Department of Surgery, The Jikei University, School of Medicine, Tokyo, Japan; Division of Gene Therapy, Research Center for Medical Science, The Jikei University, School of Medicine, Tokyo, Japan.
| | - Tadashi Uwagawa
- Department of Surgery, The Jikei University, School of Medicine, Tokyo, Japan; Division of Clinical Oncology and Hematology, and Department of Internal Medicine, The Jikei University, School of Medicine, Tokyo, Japan
| | - Hiroaki Shiba
- Department of Surgery, The Jikei University, School of Medicine, Tokyo, Japan
| | - Yohta Shimada
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University, School of Medicine, Tokyo, Japan
| | - Takashi Horiuchi
- Department of Surgery, The Jikei University, School of Medicine, Tokyo, Japan; Division of Gene Therapy, Research Center for Medical Science, The Jikei University, School of Medicine, Tokyo, Japan
| | - Nobuhiro Saito
- Department of Surgery, The Jikei University, School of Medicine, Tokyo, Japan; Division of Gene Therapy, Research Center for Medical Science, The Jikei University, School of Medicine, Tokyo, Japan
| | - Kenei Furukawa
- Department of Surgery, The Jikei University, School of Medicine, Tokyo, Japan
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University, School of Medicine, Tokyo, Japan
| | - Katsuhiko Yanaga
- Department of Surgery, The Jikei University, School of Medicine, Tokyo, Japan
| |
Collapse
|
66
|
Kadono K, Uchida Y, Hirao H, Miyauchi T, Watanabe T, Iida T, Ueda S, Kanazawa A, Mori A, Okajima H, Terajima H, Uemoto S. Thrombomodulin Attenuates Inflammatory Damage Due to Liver Ischemia and Reperfusion Injury in Mice in Toll-Like Receptor 4-Dependent Manner. Am J Transplant 2017; 17:69-80. [PMID: 27467205 DOI: 10.1111/ajt.13991] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 01/25/2023]
Abstract
Liver ischemia reperfusion injury (IRI) is an important problem in liver transplantation. Thrombomodulin (TM), an effective drug for disseminated intravascular coagulation, is also known to exhibit an anti-inflammatory effect through binding to the high-mobility group box 1 protein (HMGB-1) known as a proinflammatory mediator. We examined the effect of recombinant human TM (rTM) on a partial warm hepatic IRI model in wild-type (WT) and toll-like receptor 4 (TLR-4) KO mice focusing on the HMGB-1/TLR-4 axis. As in vitro experiments, peritoneal macrophages were stimulated with recombinant HMGB-1 protein. The rTM showed a protective effect on liver IRI. The rTM diminished the downstream signals of TLR-4 and also HMGB-1 expression in liver cells, as well as release of HMGB-1 from the liver. Interestingly, neither rTM treatment in vivo nor HMGB-1 treatment in vitro showed any effect on TLR-4 KO mice. Parallel in vitro studies have confirmed that rTM interfered with the interaction between HMGB-1 and TLR-4. Furthermore, the recombinant N-terminal lectin-like domain 1 (D1) subunit of TM (rTMD1) also ameliorated liver IRI to the same extent as whole rTM. Not only rTM but also rTMD1 might be a novel and useful medicine for liver transplantation. This is the first report clarifying that rTM ameliorates inflammation such as IRI in a TLR-4 pathway-dependent manner.
Collapse
Affiliation(s)
- K Kadono
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - Y Uchida
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - H Hirao
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - T Miyauchi
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - T Watanabe
- Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - T Iida
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - S Ueda
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - A Kanazawa
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - A Mori
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - H Okajima
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - H Terajima
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - S Uemoto
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
67
|
Lee S, Rho SS, Park H, Park JA, Kim J, Lee IK, Koh GY, Mochizuki N, Kim YM, Kwon YG. Carbohydrate-binding protein CLEC14A regulates VEGFR-2- and VEGFR-3-dependent signals during angiogenesis and lymphangiogenesis. J Clin Invest 2016; 127:457-471. [PMID: 27991863 DOI: 10.1172/jci85145] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/03/2016] [Indexed: 12/22/2022] Open
Abstract
Controlled angiogenesis and lymphangiogenesis are essential for tissue development, function, and repair. However, aberrant neovascularization is an essential pathogenic mechanism in many human diseases, including diseases involving tumor growth and survival. Here, we have demonstrated that mice deficient in C-type lectin family 14 member A (CLEC14A) display enhanced angiogenic sprouting and hemorrhage as well as enlarged jugular lymph sacs and lymphatic vessels. CLEC14A formed a complex with VEGFR-3 in endothelial cells (ECs), and CLEC14A KO resulted in a marked reduction in VEGFR-3 that was concomitant with increases in VEGFR-2 expression and downstream signaling. Implanted tumor growth was profoundly reduced in CLEC14A-KO mice compared with that seen in WT littermates, but tumor-bearing CLEC14A-KO mice died sooner. Tumors in CLEC14A-KO mice had increased numbers of nonfunctional blood vessels and severe hemorrhaging. Blockade of VEGFR-2 signaling suppressed these vascular abnormalities and enhanced the survival of tumor-bearing CLEC14A-KO mice. We conclude that CLEC14A acts in vascular homeostasis by fine-tuning VEGFR-2 and VEGFR-3 signaling in ECs, suggesting its relevance in the pathogenesis of angiogenesis-related human disorders.
Collapse
MESH Headings
- Animals
- Gene Expression Regulation, Neoplastic
- Human Umbilical Vein Endothelial Cells
- Humans
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lymphangiogenesis
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasms, Experimental/blood supply
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Signal Transduction
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Vascular Endothelial Growth Factor Receptor-2/metabolism
- Vascular Endothelial Growth Factor Receptor-3/genetics
- Vascular Endothelial Growth Factor Receptor-3/metabolism
Collapse
|
68
|
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St. Leonards, NSW, Australia
- Sydney Medical School, Royal North Shore Hospital, The University of Sydney, Camperdown, NSW, Australia
- School of Biomedical Engineering, The University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
69
|
Thrombomodulin regulates monocye differentiation via PKCδ and ERK1/2 pathway in vitro and in atherosclerotic artery. Sci Rep 2016; 6:38421. [PMID: 27910925 PMCID: PMC5133669 DOI: 10.1038/srep38421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/08/2016] [Indexed: 01/31/2023] Open
Abstract
Thrombomodulin (TM) modulates the activation of protein C and coagulation. Additionally, TM regulates monocyte migration and inflammation. However, its role on monocyte differentiation is still unknown. We investigated the effects of TM on monocyte differentiation. First, we found that TM was increased when THP-1 cells were treated with phorbol-12-myristate-13-acetate (PMA). Overexpression of TM enhanced the macrophage markers, CD14 and CD68 expression in PMA-induced THP-1. TM siRNA depressed the PMA-induced increase of p21Cip1/WAF1 via ERK1/2-NF-kB p65 signaling. TM regulated cytoskeletal reorganization via its interaction with paxillin, cofilin, LIMK1, and PYK2. In addition, PMA-induced p21Cip1/WAF1 expression, CD14-positive cell labeling intensity and ERK1/2 phosphorylation were markedly inhibited when protein kinase C-δ (PKCδ) was knocked down. We identified that TM directly interacts with PKCδ. PKCδ was highly expressed in human atherosclerotic arteries and colocalized with TM in CD68-positive infiltrated macrophages of plaques, indicating that the coordination between TM and PKCδ in macrophages participated in atherogenesis. TM may act as a scaffold for PKCδ docking, which keeps PKCδ in the region close to the monocyte membrane to promote the activation of ERK1/2. Taken together, our findings suggest that TM-PKCδ interaction may contribute to cardiovascular disorders by affecting monocye differentiation, which may develop future therapeutic applications.
Collapse
|
70
|
Monocytic thrombomodulin promotes cell adhesion through interacting with its ligand, Lewis y. Immunol Cell Biol 2016; 95:372-379. [PMID: 27808085 PMCID: PMC5415637 DOI: 10.1038/icb.2016.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 12/12/2022]
Abstract
The leukocyte adhesion cascade involves multiple events that efficiently localize circulating leukocytes into the injured sites to mediate inflammatory responses. From rolling to firm adhesion, the interactions between adhesion molecules have pivotal roles in increasing the avidity of leukocytes to endothelial cells. Thrombomodulin (TM), an essential anticoagulant protein in the vasculature, is also expressed on leukocytes. We previously demonstrated that Lewisy (Ley), a specific ligand of TM, is upregulated in inflamed endothelium and is involved in leukocyte adhesion. The current study aimed to investigate whether leukocyte-expressed TM promotes cell adhesion by interacting with Ley. Using human monocytic THP-1 cells as an in vitro cell model, we showed that TM increases THP-1 cell adhesion to inflamed endothelium as well as to Ley-immobilized surface. When THP-1 adhered to activated endothelium and Ley-immobilized surface, the TM distribution became polarized. Addition of soluble Ley to a suspension of THP-1 cells with TM expression triggered an increase in the level of phosphorylated p38 mitogen-activated protein kinase (MAPK), which enabled THP-1 to adhere firmly to intercellular adhesion molecule (ICAM)-1 by activating β2 integrins. In vivo, macrophage infiltration and neointima formation following arterial ligation-induced vascular injury were higher in wild-type TM (TMflox/flox) than in myeloid-specific TM-deficient (LysMcre/TMflox/flox) mice. Taken together, these results suggest a novel function for TM as an adhesion molecule in monocytes, where it enhances cell adhesion by binding Ley, leading to β2 integrin activation via p38 MAPK.
Collapse
|
71
|
Nativel B, Figuester A, Andries J, Planesse C, Couprie J, Gasque P, Viranaicken W, Iwema T. Soluble expression of disulfide-bonded C-type lectin like domain of human CD93 in the cytoplasm of Escherichia coli. J Immunol Methods 2016; 439:67-73. [PMID: 27742562 DOI: 10.1016/j.jim.2016.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
Abstract
CD93 belongs to the group XIV C-type lectin like domain (CTLD) and is closely related to thrombomodulin (CD141). Although CD93 is known to be involved in the regulation of cell adhesion and phagocytosis, its role in innate immunity remains to be fully investigated. Critically, published data about CD141 suggest that CD93 CTLD could be involved in the control of inflammation. In order to address further functional and structural analyses, we expressed human CD93 CTLD with several disulfide bonds in an E. coli expression system. As the E. coli cytoplasm is a reducing compartment, production of disulfide-bond proteins remains a challenge. Hence, we decided to over express CD93 CTLD in commercially available strains of E. coli and co-expressed a sulfhydryl oxidase (Erv1p) and a disulfide isomerase (DsbC). This strategy led to high yield expression of a native form of CD93 CTLD. NMR studies revealed that Ca2+ was not able to bind to CD93 CTLD. We also showed that the recombinant protein could alter LPS pro-inflammatory activity on THP1. This work provides new tool for further functional and structural studies to decipher the functions associated to the CTLD of CD93. This approach may also be used for others members of the group XIV C-type lectin like domain (CD141, CD248 and CLec14A).
Collapse
Affiliation(s)
- Brice Nativel
- Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Plateforme CYROI, Sainte-Clotilde, F-97490, France; GRI, EA4517, Université de la Réunion, Saint-Denis F-97400, France
| | - Audrey Figuester
- GRI, EA4517, Université de la Réunion, Saint-Denis F-97400, France; Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Plateforme CYROI, Sainte-Clotilde, F-97490, France
| | - Jessica Andries
- GRI, EA4517, Université de la Réunion, Saint-Denis F-97400, France
| | - Cynthia Planesse
- Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Plateforme CYROI, Sainte-Clotilde, F-97490, France
| | - Joël Couprie
- Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Plateforme CYROI, Sainte-Clotilde, F-97490, France
| | - Philippe Gasque
- GRI, EA4517, Université de la Réunion, Saint-Denis F-97400, France; UM134, Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, INSERM1187, CNRS 9192, IRD 249, Plateforme CYROI, Sainte-Clotilde F-97490, France; Laboratoire de Biologie, LICE-OI, CHU de la Réunion, 1 allée des Topazes, 97400, France
| | - Wildriss Viranaicken
- GRI, EA4517, Université de la Réunion, Saint-Denis F-97400, France; UM134, Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, INSERM1187, CNRS 9192, IRD 249, Plateforme CYROI, Sainte-Clotilde F-97490, France.
| | - Thomas Iwema
- GRI, EA4517, Université de la Réunion, Saint-Denis F-97400, France; CALIXAR, 60 Avenue Rockefeller, 69008 Lyon, France
| |
Collapse
|
72
|
Myeloid thrombomodulin lectin-like domain inhibits osteoclastogenesis and inflammatory bone loss. Sci Rep 2016; 6:28340. [PMID: 27311356 PMCID: PMC4911607 DOI: 10.1038/srep28340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/31/2016] [Indexed: 12/11/2022] Open
Abstract
Osteoclastogenesis is an essential process during bone metabolism which can also be promoted by inflammatory signals. Thrombomodulin (TM), a transmembrane glycoprotein, exerts anti-inflammatory activities such as neutralization of proinflammatory high-mobility group box 1 (HMGB1) through TM lectin-like domain. This study aimed to identify the role of myeloid TM (i.e., endogenous TM expression on the myeloid lineage) in osteoclastogenesis and inflammatory bone loss. Using human peripheral blood mononuclear cells and mouse bone marrow-derived macrophages, we observed that the protein levels of TM were dramatically reduced as these cells differentiated into osteoclasts. In addition, osteoclastogenesis and extracellular HMGB1 accumulation were enhanced in primary cultured monocytes from myeloid-specific TM-deficient mice (LysMcre/TMflox/flox) and from TM lectin-like domain deleted mice (TMLeD/LeD) compared with their respective controls. Micro-computerized tomography scans showed that ovariectomy-induced bone loss was more pronounced in TMLeD/LeD mice compared with controls. Finally, the inhibiting effects of recombinant TM lectin-like domain (rTMD1) on bone resorption in vitro, and bone loss in both the ovariectomized model and collagen antibody-induced arthritis model has been detected. These findings suggested that the myeloid TM lectin-like domain may inhibit osteoclastogenesis by reducing HMGB1 signaling, and rTMD1 may hold therapeutic potential for inflammatory bone loss.
Collapse
|
73
|
Cytokines profile and its correlation with endothelial damage and oxidative stress in patients with type 1 diabetes mellitus and nephropathy. Immunol Res 2016; 64:951-60. [DOI: 10.1007/s12026-016-8806-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
74
|
Recombinant human soluble thrombomodulin and short-term mortality of infection patients with DIC: a meta-analysis. Am J Emerg Med 2016; 34:1876-82. [PMID: 27452884 DOI: 10.1016/j.ajem.2016.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Several studies have demonstrated that recombinant human soluble thrombomodulin (rhTM) has potential advantages for the treatment for patients with infection complicated by disseminated intravascular coagulation (DIC). However, whether injection of rhTM can affect the mortality of those patients in clinical treatment remains controversial. Therefore, we conducted a meta-analysis to evaluate the clinical efficacy for patients with infection complicated by DIC. METHODS The PubMed, Web of Science, Embase, and Cochrane Library databases were searched for relevant articles that met the inclusion criteria through April 2016. Reference lists of the retrieved articles were also reviewed. The 28- or 30-day mortality and bleeding risk after using rhTM were evaluated. RESULTS Ten observational studies and 2 randomized controlled trials (RCTs) involving 18288 patients were included in this meta-analysis. The risk ratio for the 28- or 30-day mortality was 0.81 (95% confidence interval, 0.61-1.06) in RCT studies and 0.96 (95% confidence interval, 0.92-1.01) in observational studies. There were no significant differences in the bleeding risk between the rhTM group and the control group. CONCLUSION Based on the current studies, using rhTM for the treatment for infection patients complicated with DIC does not decrease the short-term mortality of those patients. More high-quality RCT studies need to be performed to confirm this finding.
Collapse
|
75
|
McClellan SA, Ekanayaka SA, Li C, Jiang X, Barrett RP, Hazlett LD. Thrombomodulin Protects Against Bacterial Keratitis, Is Anti-Inflammatory, but Not Angiogenic. Invest Ophthalmol Vis Sci 2016; 56:8091-100. [PMID: 26720461 DOI: 10.1167/iovs.15-18393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Thrombomodulin (TM) is a multidomain, transmembrane protein with anti-inflammatory properties. Thrombomodulin domain (D) 1 is lectin-like, interacting with Lewis Y antigen on lipopolysaccharide, and with HMGB1, while TMD23 is associated with angiogenic and anti-inflammatory functions. Thus, we tested if TM is protective against Pseudomonas aeruginosa keratitis and whether it enhanced corneal vascularity. METHODS Eyes of C57BL/6 (B6) mice were injected with recombinant TM (rTM), rTMD1, or PBS subconjunctivally before and intraperitoneally after infection with P. aeruginosa. Clinical scores, photography with a slit lamp, RT-PCR, ELISA, myeloperoxidase (MPO) assay, viable bacterial plate counts, and India ink perfusion were used to assess the disease response and corneal vascularity (rTM only). RESULTS Recombinant TM versus PBS treatment reduced clinical scores and corneal opacity. Corneal mRNA levels for HMGB1 were unchanged, but proinflammatory molecules IL-1β, CXCL2, NF-κB, TLR4, and RAGE were decreased; anti-inflammatory molecules SIGIRR and ST2 were increased. ELISA confirmed the mRNA data for HMGB1, IL-1β, and CXCL2 proteins. Both neutrophil influx and viable bacterial plate counts also were decreased after rTM treatment. Protein levels for angiogenic molecules VEGF, VEGFR-1, and VEGFR-2 were measured at 5 days post infection and were not different or reduced significantly after rTM treatment. Further, perfusion with India ink revealed similar vessel ingrowth between the two groups. Similar studies were performed with rTMD1, but disease severity, mRNA, proteins, MPO, and plate counts were not changed from controls. CONCLUSIONS These data provide evidence that rTM treatment is protective against bacterial keratitis, does not reduce HMGB1, and is not angiogenic.
Collapse
|
76
|
LFA-1 and Mac-1 integrins bind to the serine/threonine-rich domain of thrombomodulin. Biochem Biophys Res Commun 2016; 473:1005-1012. [PMID: 27055590 DOI: 10.1016/j.bbrc.2016.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/03/2016] [Indexed: 01/13/2023]
Abstract
LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins regulate leukocyte trafficking in health and disease by binding primarily to IgSF ligand ICAM-1 and ICAM-2 on endothelial cells. Here we have shown that the anti-coagulant molecule thrombomodulin (TM), found on the surface of endothelial cells, functions as a potentially new ligand for leukocyte integrins. We generated a recombinant extracellular domain of human TM and Fc fusion protein (TM-domains 123-Fc), and showed that pheripheral blood mononuclear cells (PBMCs) bind to TM-domains 123-Fc dependent upon integrin activation. We then demonstrated that αL integrin-blocking mAb, αM integrin-blocking mAb, and β2 integrin-blocking mAb inhibited the binding of PBMCs to TM-domains 123-Fc. Furthermore, we show that the serine/threonine-rich domain (domain 3) of TM is required for the interaction with the LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins to occur on PBMCs. These results demonstrate that the LFA-1 and Mac-1 integrins on leukocytes bind to TM, thereby establishing the molecular and structural basis underlying LFA-1 and Mac-1 integrin interaction with TM on endothelial cells. In fact, integrin-TM interactions might be involved in the dynamic regulation of leukocyte adhesion with endothelial cells.
Collapse
|
77
|
Pedraza-Alva G, Pérez-Martínez L, Valdez-Hernández L, Meza-Sosa KF, Ando-Kuri M. Negative regulation of the inflammasome: keeping inflammation under control. Immunol Rev 2016; 265:231-57. [PMID: 25879297 DOI: 10.1111/imr.12294] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In addition to its roles in controlling infection and tissue repair, inflammation plays a critical role in diverse and distinct chronic diseases, such as cancer, metabolic syndrome, and neurodegenerative disorders, underscoring the harmful effect of an uncontrolled inflammatory response. Regardless of the nature of the stimulus, initiation of the inflammatory response is mediated by assembly of a multimolecular protein complex called the inflammasome, which is responsible for the production of inflammatory cytokines, such as interleukin-1β (IL-1β) and IL-18. The different stimuli and mechanisms that control inflammasome activation are fairly well understood, but the mechanisms underlying the control of undesired inflammasome activation and its inactivation remain largely unknown. Here, we review recent advances in our understanding of the molecular mechanisms that negatively regulate inflammasome activation to prevent unwanted activation in the resting state, as well as those involved in terminating the inflammatory response after a specific insult to maintain homeostasis.
Collapse
Affiliation(s)
- Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | | | | | | | | |
Collapse
|
78
|
Heming N, Lamothe L, Ambrosi X, Annane D. Emerging drugs for the treatment of sepsis. Expert Opin Emerg Drugs 2016; 21:27-37. [DOI: 10.1517/14728214.2016.1132700] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
79
|
Ito T, Kakihana Y, Maruyama I. Thrombomodulin as an intravascular safeguard against inflammatory and thrombotic diseases. Expert Opin Ther Targets 2015; 20:151-8. [PMID: 26558419 DOI: 10.1517/14728222.2016.1086750] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Thrombomodulin is a transmembrane protein expressed on the surface of endothelial cells. It plays an important role in regulating inflammation as well as coagulation within blood vessels. Recently, a recombinant form of an extracellular fragment of thrombomodulin (rTM) has been developed and is expected to be useful for patients suffering from inflammatory and thrombotic diseases. AREAS COVERED We initially focus on the physiological and biochemical features of thrombomodulin, including its distribution, structure and function. We then discuss potential therapeutic applications of rTM. EXPERT OPINION Thrombomodulin exerts anticoagulant and anti-inflammatory effects, in part through activated protein C (APC)-dependent mechanisms. Although recombinant human APC (rhAPC) failed to improve the survival of patients with septic shock and has now been withdrawn from the market, rTM may have some advantages over rhAPC. First, rTM may have less risk of bleeding complications than rhAPC, because rTM needs thrombin to act as an anticoagulant and thus its anticoagulant power can be automatically adjusted by the amount of existing thrombin. Second, the APC-independent actions of rTM might confer benefits, including the suppression of complements, endotoxin (representative pathogen-associated molecular pattern) and high-mobility group box 1 protein (prototypical damage-associated molecular pattern) through the lectin-like domain of rTM.
Collapse
Affiliation(s)
- Takashi Ito
- a Kagoshima University , Graduate School of Medical and Dental Sciences, Department of Emergency and Critical Care Medicine , Kagoshima , Japan.,b Kagoshima University , Graduate School of Medical and Dental Sciences, Department of Systems Biology in Thromboregulation , Kagoshima , Japan
| | - Yasuyuki Kakihana
- a Kagoshima University , Graduate School of Medical and Dental Sciences, Department of Emergency and Critical Care Medicine , Kagoshima , Japan
| | - Ikuro Maruyama
- b Kagoshima University , Graduate School of Medical and Dental Sciences, Department of Systems Biology in Thromboregulation , Kagoshima , Japan
| |
Collapse
|
80
|
The lectin like domain of thrombomodulin is involved in the defence against pyelonephritis. Thromb Res 2015; 136:1325-31. [PMID: 26573396 DOI: 10.1016/j.thromres.2015.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/22/2015] [Accepted: 11/06/2015] [Indexed: 11/21/2022]
Abstract
Pyelonephritis, a common complication of urinary tract infections, is frequently associated with kidney scarring and may lead to end-stage renal disease. During bacterial infections inflammatory and coagulation pathways and their mutual interaction are playing pivotal roles in the host response. Given that thrombomodulin (TM) is crucially involved in the interplay between coagulation and inflammation, we aimed to investigate the roles of its EGF and lectin-like domains in inflammation during acute pyelonephritis. Indeed, the EGF-like and the lectin-like domains of TM, are especially known to orchestrate inflammation and coagulation in different ways. Acute pyelonephritis was induced by intravesical inoculation of 1 × 10(8) CFU of uropathogenic Escherichia coli in two strains of TM transgenic mice. TM(pro/pro) mice carry a mutation in the EGF-like domain making them unable to activate protein C, an anticoagulant and anti-inflammatory protein. TM(LeD/LeD) mice lack the lectin-like domain of TM, which is critical for its anti-inflammatory and cytoprotective properties. Mice were sacrificed 24 and 48 h after inoculation. Bacterial loads, the immune response and the activation of coagulation were evaluated in the kidney and the bladder. TM(LeD/LeD) mice showed elevated bacterial load in bladder and kidneys compared to WT mice, whereas TM(pro/pro) had similar bacterial load as WT mice. TM(LeD/LeD) mice displayed a reduced local production of pro-inflammatory cytokines and neutrophil renal infiltration. Activation of coagulation was comparable in TM(LeD/LeD) and WT mice. From these data, we conclude that the lectin-like domain of thrombomodulin is critically involved in host defence against E. coli induced acute pyelonephritis.
Collapse
|
81
|
Wang KC, Li YH, Shi GY, Tsai HW, Luo CY, Cheng MH, Ma CY, Hsu YY, Cheng TL, Chang BI, Lai CH, Wu HL. Membrane-Bound Thrombomodulin Regulates Macrophage Inflammation in Abdominal Aortic Aneurysm. Arterioscler Thromb Vasc Biol 2015; 35:2412-22. [DOI: 10.1161/atvbaha.115.305529] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/18/2015] [Indexed: 01/30/2023]
Abstract
Objective—
Thrombomodulin (TM), a glycoprotein constitutively expressed in the endothelium, is well known for its anticoagulant and anti-inflammatory properties. Paradoxically, we recently found that monocytic membrane-bound TM (ie, endogenous TM expression in monocytes) triggers lipopolysaccharide- and gram-negative bacteria–induced inflammatory responses. However, the significance of membrane-bound TM in chronic sterile vascular inflammation and the development of abdominal aortic aneurysm (AAA) remains undetermined.
Approach and Results—
Implicating a potential role for membrane-bound TM in AAA, we found that TM signals were predominantly localized to macrophages and vascular smooth muscle cells in human aneurysm specimens. Characterization of the CaCl
2
-induced AAA in mice revealed that during aneurysm development, TM expression was mainly localized in infiltrating macrophages and vascular smooth muscle cells. To investigate the function of membrane-bound TM in vivo, transgenic mice with myeloid- (LysMcre/TM
flox/flox
) and vascular smooth muscle cell–specific (SM22-cre
tg
/TM
flox/flox
) TM ablation and their respective wild-type controls (TM
flox/flox
and SM22-cre
tg
/TM
+/+
) were generated. In the mouse CaCl
2
-induced AAA model, deficiency of myeloid TM, but not vascular smooth muscle cell TM, inhibited macrophage accumulation, attenuated proinflammatory cytokine and matrix metalloproteinase-9 production, and finally mitigated elastin destruction and aortic dilatation. In vitro TM-deficient monocytes/macrophages, versus TM wild-type counterparts, exhibited attenuation of proinflammatory mediator expression, adhesion to endothelial cells, and generation of reactive oxygen species. Consistently, myeloid TM–deficient hyperlipidemic mice (ApoE
−/−
/LysMcre/TM
flox/flox
) were resistant to AAA formation induced by angiotensin II infusion, along with reduced macrophage infiltration, suppressed matrix metalloproteinase activities, and diminished oxidative stress.
Conclusions—
Membrane-bound TM in macrophages plays an essential role in the development of AAA by enhancing proinflammatory mediator elaboration, macrophage recruitment, and oxidative stress.
Collapse
Affiliation(s)
- Kuan-Chieh Wang
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| | - Yi-Heng Li
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| | - Guey-Yueh Shi
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| | - Hung-Wen Tsai
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| | - Chawn-Yau Luo
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| | - Min-Hua Cheng
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| | - Chih-Yuan Ma
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| | - Yun-Yan Hsu
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| | - Tsung-Lin Cheng
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| | - Bi-Ing Chang
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| | - Chao-Han Lai
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| | - Hua-Lin Wu
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| |
Collapse
|
82
|
[TREATMENT OUTCOME OF OBSTRUCTIVE PYELONEPHRITIS DUE TO URETERAL CALCULI WITH DISSEMINATED INTRAVASCULAR COAGULOPATHY]. Nihon Hinyokika Gakkai Zasshi 2015; 106:163-71. [PMID: 26419073 DOI: 10.5980/jpnjurol.106.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVES Because obstructive pyelonephritis secondary to ureteral stones can easily cause sepsis and concomitant disseminated intravascular coagulation (DIC), it is a potentially lethal disease. However, the optimal treatment for such severe patients has yet to be established. In this study, we aimed at clarifying the effectiveness of emergent drainage and DIC treatments for patients with septic DIC due to obstructive pyelonephritis. In additon, we also evaluated the impact of recombinant human thrombomodullin (rTM) for severe patients with DIC. MATERIALS AND METHODS From September 2006 to May 2013, 31 patients with obstructive pyelonephritis secondary to ureteral stones who met the acute DIC criteria from the Japanese Association of Acute Medicine were treated at our institution. All patients received emergent drainage of urinary tract and anti-DIC treatment, as well as administration of antibiotics and adequate volume infusion. To evaluate the impact of rTM, patients received rTM were compared with those managed by other DIC therapeutic agents. RESULTS The mean patients' age was 73 years old, and 27 patients (87.1%) were in a state of septic shock. All patients, except for one patient (3.2%) who died 6 days after drainage, could recover from sepsis and comcomitant DIC. Interestingly, thrombocyte count, creatinine, and SOFA Score in rTM group were recovered faster than those in no rTM group (p = 0.017, 0.0038, and 0.0006, respectively). CONCLUSIONS These results indicate that most patients with DIC caused by obstractive pyelonephritis can be successfully managed by emergency drainage and anti-DIC treatment. In addition, rTM may be effective for the treatment of such severe patients by improving organ failure associated with disordered coagulation.
Collapse
|
83
|
Kataoka K, Taniguchi H, Kondoh Y, Nishiyama O, Kimura T, Matsuda T, Yokoyama T, Sakamoto K, Ando M. Recombinant Human Thrombomodulin in Acute Exacerbation of Idiopathic Pulmonary Fibrosis. Chest 2015; 148:436-443. [DOI: 10.1378/chest.14-2746] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
84
|
Kurokohchi K, Imataki O, Kubo F. Anti-inflammatory effect of recombinant thrombomodulin for fulminant hepatic failure. World J Gastroenterol 2015; 21:8203-8207. [PMID: 26185395 PMCID: PMC4499366 DOI: 10.3748/wjg.v21.i26.8203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 03/01/2015] [Accepted: 03/19/2015] [Indexed: 02/06/2023] Open
Abstract
Fulminant hepatic failure (FHF) is a critical illness that can be comorbid to primary liver damage. FHF shows a high mortality rate, and patients with FHF require intensive therapy, including plasma apheresis. However, intensive care at the present is not enough to restore the severe liver damage or promote hepatocellular reproduction, and a standard therapy for the treatment of FHF has not been established. An 86-year-old female with FHF was admitted to our hospital. Her manifestation demonstrated a clinical situation of systemic inflammatory response syndrome (SIRS) and disseminated intravascular coagulation. A diagnosis of fulminant hepatitis was made according to the definition given in the position paper of the American Association for the Study of Liver Diseases. Her serum hepatocyte growth factor (HGF) level had increased to 11.84 ng/mL. The HGF level indicated massive liver damage as seen in FHF. Recombinant thrombomodulin (rTM) was administered daily from the admission day for 1 wk at 380 U/kg. The patient’s white blood cells and C-reactive protein responded to the rTM treatment within a few days. The HGF level and PT recovered to the normal range. The levels of proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β) were suppressed by the administration of rTM. The patient’s hepatic function (e.g., PT and albumin) completely recovered without plasma exchange. rTM may modulate the over-response of SIRS with the improvement of proinflammatory cytokines. The underlying mechanism is thought to be the inhibitory effect of rTM on high-mobility group box 1 (HMBG1). The pathogenesis of HMBG1 protein in fulminant hepatic failure has been already known. A novel favorable effect of rTM for SIRS would be promising for FHF, and the wide application of rTM for SIRS should be considered.
Collapse
|
85
|
Abstract
BACKGROUND For successful xenotransplantation, in addition to α1,3-galactosyltransferase gene-knockout and human complement regulatory protein (CD46, CD55, CD59) gene insertion, cloned pigs expressing human thrombomodulin (hTM) have been produced to solve the problem of molecular incompatibility in their coagulation system. Recombinant soluble hTM (S-hTM) which has been recently approved for treatment of disseminated intravascular coagulation might be potentially available. The purpose of this study is to examine the functional difference in endothelial cells between membrane-bound hTM (MB-hTM) and S-hTM and to elucidate effective strategy using both types of hTM. METHODS The following factors regarding coagulation and inflammation were compared between hTM-expressing pig aortic endothelial cells (PAEC) derived from cloned pig and nontransgenic PAEC in the presence of S-hTM under tumor necrosis factor-α-activated conditions; (i) clotting time (ii) pig tissue factor (TF), (iii) pig E-selectin, (iv) direct prothrombinase activity, (v) activated protein C (APC), and (vi) prothrombinase activity. RESULTS The MB-hTM significantly suppressed the expression of pig TF and E-selectin and direct prothrombinase activity in tumor necrosis factor-α-activated PAEC, suggesting strong anti-inflammatory effect, compared to S-hTM. In contrast, S-hTM had more potent capacity to inhibit thrombin generation and to produce APC than MB-hTM, although MB-hTM had the same level of capacity as human endothelial cells. CONCLUSIONS It was speculated that S-hTM treatment would be of assistance during high-risk periods for excessive thrombin formation (e.g., ischemia reperfusion injury or severe infection/rejection). Considering the properties of MB-hTM exhibiting anti-inflammatory function as well as APC production, hTM-expressing cloned pigs might be indispensible to long-term stabilization of graft endothelial cells.
Collapse
|
86
|
Coagulation abnormalities in sepsis. ACTA ACUST UNITED AC 2015; 53:16-22. [DOI: 10.1016/j.aat.2014.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 11/16/2014] [Accepted: 11/24/2014] [Indexed: 11/30/2022]
|
87
|
Suyama K, Kawasaki Y, Miyazaki K, Kanno S, Ono A, Ohara S, Sato M, Hosoya M. The efficacy of recombinant human soluble thrombomodulin for the treatment of shiga toxin-associated hemolytic uremic syndrome model mice. Nephrol Dial Transplant 2015; 30:969-77. [PMID: 25694534 DOI: 10.1093/ndt/gfv004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/24/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Recombinant human soluble thrombomodulin (rhTM) is a promising therapeutic natural anticoagulant that is comparable to antithrombin, tissue factor pathway inhibitor and activated protein C. In order to clarify the efficacy of rhTM for the treatment of typical hemolytic uremic syndrome (t-HUS), we examined changes in renal damage in t-HUS mice treated with rhTM or vehicle alone. METHODS We used severe and moderate t-HUS mice injected with shiga toxin (Stx) and lipopolysaccharide (LPS). The severe t-HUS mice were divided into two subgroups [an rhTM subgroup (Group A) and a saline subgroup (Group B)] along with the moderate t-HUS mice [an rhTM subgroup (Group C) and a saline subgroup (Group D)]. Groups E and F were healthy mice treated with rhTM or saline, respectively. RESULTS All mice in Group B died at 80-90 h post-administration of Stx2 and LPS whereas all mice in Group A remained alive. Loss of body weight, serum creatinine level, endothelial injury and mesangiolysis scores at 24 h after administration in the t-HUS mice treated with rhTM were lower than those in t-HUS mice treated with saline. The levels of hemoglobin at 6 h and platelet counts at 24 h after administration in Group A were higher than those in Group B. Serum interleukin (IL)-6, IL-1β and tumor necrotic factor (TNF)-α levels at 24 h after administration in Group A were lower than those in Group B. Serum C5b-9 levels at 24 h after the administration and serum fibrinogen degradation product (FDP) at 72 h after the administration of Stx2 and LPS were lower in Group A than in Group B. CONCLUSIONS These results indicate that rhTM might afford an efficacious treatment for t-HUS model mice via the inhibition of further thrombin formation and amelioration of hypercoagulant status.
Collapse
Affiliation(s)
- Kazuhide Suyama
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Yukihiko Kawasaki
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Kyohei Miyazaki
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Syuto Kanno
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Atsushi Ono
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Shinichiro Ohara
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Masatoki Sato
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| |
Collapse
|
88
|
Ma CY, Chang WE, Shi GY, Chang BY, Cheng SE, Shih YT, Wu HL. Recombinant Thrombomodulin Inhibits Lipopolysaccharide-Induced Inflammatory Response by Blocking the Functions of CD14. THE JOURNAL OF IMMUNOLOGY 2015; 194:1905-15. [DOI: 10.4049/jimmunol.1400923] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
89
|
Suetani K, Okuse C, Nakahara K, Michikawa Y, Noguchi Y, Suzuki M, Morita R, Sato N, Kato M, Itoh F. Thrombomodulin in the management of acute cholangitis-induced disseminated intravascular coagulation. World J Gastroenterol 2015; 21:533-540. [PMID: 25593469 PMCID: PMC4292285 DOI: 10.3748/wjg.v21.i2.533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 07/11/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the need for thrombomodulin (rTM) therapy for disseminated intravascular coagulation (DIC) in patients with acute cholangitis (AC)-induced DIC.
METHODS: Sixty-six patients who were diagnosed with AC-induced DIC and who were treated at our hospital were enrolled in this study. The diagnoses of AC and DIC were made based on the 2013 Tokyo Guidelines and the DIC diagnostic criteria as defined by the Japanese Association for Acute Medicine, respectively. Thirty consecutive patients who were treated with rTM between April 2010 and September 2013 (rTM group) were compared to 36 patients who were treated without rTM (before the introduction of rTM therapy at our hospital) between January 2005 and January 2010 (control group). The two groups were compared in terms of patient characteristics at the time of DIC diagnosis (including age, sex, primary disease, severity of cholangitis, DIC score, biliary drainage, and anti-DIC drugs), the DIC resolution rate, DIC score, the systemic inflammatory response syndrome (SIRS) score, hematological values, and outcomes. Using logistic regression analysis based on multivariate analyses, we also examined factors that contributed to persistent DIC.
RESULTS: There were no differences between the rTM group and the control group in terms of the patients’ backgrounds other than administration. DIC resolution rates on day 9 were higher in the rTM group than in the control group (83.3% vs 52.8%, P < 0.01). The mean DIC scores on day 7 were lower in the rTM group than in the control group (2.1 ± 2.1 vs 3.5 ± 2.3, P = 0.02). The mean SIRS scores on day 3 were significantly lower in the rTM group than in the control group (1.1 ± 1.1 vs 1.8 ± 1.1, P = 0.03). Mortality on day 28 was 13.3% in the rTM group and 27.8% in the control group; these rates were not significantly different (P = 0.26). Multivariate analysis identified only the absence of biliary drainage as significantly associated with persistent DIC (P < 0.01, OR = 12, 95%CI: 2.3-60). Although the difference did not reach statistical significance, primary diseases (malignancies) (P = 0.055, OR = 3.9, 95%CI: 0.97-16) and the non-use of rTM had a tendency to be associated with persistent DIC (P = 0.08, OR = 4.3, 95%CI: 0.84-22).
CONCLUSION: The add-on effects of rTM are anticipated in the treatment of AC-induced DIC, although biliary drainage for AC remains crucial.
Collapse
|
90
|
Ikezoe T. Thrombomodulin/activated protein C system in septic disseminated intravascular coagulation. J Intensive Care 2015; 3:1. [PMID: 25705426 PMCID: PMC4336127 DOI: 10.1186/s40560-014-0050-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 08/14/2014] [Indexed: 11/10/2022] Open
Abstract
The thrombomodulin (TM)/activated protein C (APC) system plays an important role in maintaining the homeostasis of thrombosis and hemostasis and maintaining vascular integrity in vivo. TM expressed on vascular endothelium binds to thrombin, forming a 1:1 complex and acts as an anticoagulant. In addition, the thrombin-TM complex activates protein C to produce APC, which inactivates factors VIIIa and Va in the presence of protein S, thereby inhibiting further thrombin formation. Intriguingly, APC possesses anti-inflammatory as well as cytoprotective activities. Moreover, the extracellular domain of TM also possesses APC-independent anti-inflammatory and cytoprotective activities. Of note, the TM/APC system is compromised in disseminated intravascular coagulation (DIC) caused by sepsis due to various mechanisms, including cleavage of cell-surface TM by exaggerated cytokines and proteases produced by activated inflammatory cells. Thus, it is reasonable to assume that reconstitution of the TM/APC system by recombinant proteins would alleviate sepsis and DIC. On the basis of the success of the Protein C Worldwide Evaluation in Severe Sepsis (PROWESS) trial, the FDA approved the use of recombinant human APC (rhAPC) for severe sepsis patients in 2002. However, subsequent clinical trials failed to show clinical benefits for rhAPC, and an increased incidence of hemorrhage-related adverse events was noted, which prompted the industry to withdraw rhAPC from the market. On the other hand, recombinant human soluble TM (rTM) has been used for treatment of individuals with DIC since 2008 in Japan, and a phase III clinical trial evaluating the efficacy of rTM in severe sepsis patients with coagulopathy is now ongoing in the USA, South America, Asia, Australia, European Union, and other countries. This review article discusses the molecular mechanisms by which the TM/APC system produces anticoagulant as well as anti-inflammatory and cytoprotective activities in septic DIC patients.
Collapse
Affiliation(s)
- Takayuki Ikezoe
- Department of Hematology and Respiratory Medicine, Kochi University, Nankoku, Kochi, 783-8505 Japan
| |
Collapse
|
91
|
Abstract
Thrombosis is generally considered harmful because it compromises the blood supply to organs. However, recent studies have suggested that thrombosis under certain circumstances plays a major physiological role in early immune defense against invading pathogens. This defensive role of thrombosis is now referred to as immunothrombosis. Activated monocytes and neutrophils are two major inducers of immunothrombosis. Monocytes and neutrophils are activated when they detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Detection of PAMPs and DAMPs triggers tissue factor expression on monocytes and neutrophil extracellular trap (NET) release by neutrophils, promoting immunothrombosis. Although tissue factor-mediated and NET-mediated immunothrombosis plays a role in early host defense against bacterial dissemination, uncontrolled immunothrombosis may lead to disseminated intravascular coagulation.
Collapse
Affiliation(s)
- Takashi Ito
- Department of Emergency and Critical Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan ; Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
92
|
Tsushima K, Yamaguchi K, Kono Y, Yokoyama T, Kubo K, Matsumura T, Ichimura Y, Abe M, Terada J, Tatsumi K. Thrombomodulin for acute exacerbations of idiopathic pulmonary fibrosis: A proof of concept study. Pulm Pharmacol Ther 2014; 29:233-40. [DOI: 10.1016/j.pupt.2014.04.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/24/2014] [Accepted: 04/27/2014] [Indexed: 01/08/2023]
|
93
|
Kuo CH, Sung MC, Chen PK, Chang BI, Lee FT, Cho CF, Hsieh TT, Huang YC, Li YH, Shi GY, Luo CY, Wu HL. FGFR1 mediates recombinant thrombomodulin domain-induced angiogenesis. Cardiovasc Res 2014; 105:107-17. [DOI: 10.1093/cvr/cvu239] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
94
|
Tanaka J, Seki Y, Ishikura H, Tsubota M, Sekiguchi F, Yamaguchi K, Murai A, Umemura T, Kawabata A. Recombinant human soluble thrombomodulin prevents peripheral HMGB1-dependent hyperalgesia in rats. Br J Pharmacol 2014; 170:1233-41. [PMID: 24004409 DOI: 10.1111/bph.12396] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE High-mobility group box 1 (HMGB1), a nuclear protein, is actively or passively released during inflammation. Recombinant human soluble thrombomodulin (rhsTM), a medicine for treatment of disseminated intravascular coagulation (DIC), sequesters HMGB1 and promotes its degradation. Given evidence for involvement of HMGB1 in pain signalling, we determined if peripheral HMGB1 causes hyperalgesia, and then asked if rhsTM modulates the HMGB1-dependent hyperalgesia. EXPERIMENTAL APPROACH Mechanical nociceptive threshold and swelling in rat hindpaw were determined by the paw pressure test and by measuring paw thickness, respectively, and HMGB1 levels in rat hindpaw plantar tissue, dorsal root ganglion (DRG) and serum were determined by Western blotting or elisa. KEY RESULTS Intraplantar (i.pl.) administration of HMGB1 rapidly evoked paw swelling and gradually caused hyperalgesia in rats. Systemic administration of rhsTM abolished HMGB1-induced hyperalgesia, and partially blocked paw swelling. LPS, administered i.pl., rapidly produced mild paw swelling, and gradually caused hyperalgesia. The anti-HMGB1 neutralizing antibody abolished LPS-induced hyperalgesia, but partially inhibited paw swelling. rhsTM at a high dose, 10 mg kg(-1) , prevented both hyperalgesia and paw swelling caused by LPS. In contrast, rhsTM at low doses, 0.001-1 mg kg(-1) , abolished the LPS-induced hyperalgesia, but not paw swelling. HMGB1 levels greatly decreased in the hindpaw, but not DRG. Serum HMGB1 tended to increase after i.pl. LPS in rats pretreated with vehicle, but not rhsTM. CONCLUSION AND IMPLICATIONS These data suggest that peripheral HMGB1 causes hyperalgesia, and that rhsTM abolishes HMGB1-dependent hyperalgesia, providing novel evidence for therapeutic usefulness of rhsTM as an analgesic.
Collapse
Affiliation(s)
- Junichi Tanaka
- Division of Pharmacology & Pathophysiology, Kinki University School of Pharmacy, Higashi-Osaka, 577-8502, Japan; Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, Fukuoka, 814-0180, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Migas UM, Abbey L, Velasco-Torrijos T, McManus JJ. Adding glycolipid functionality to model membranes--phase behaviour of a synthetic glycolipid in a phospholipid membrane. SOFT MATTER 2014; 10:3978-3983. [PMID: 24733306 DOI: 10.1039/c4sm00147h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Glycolipid phase behaviour is less well understood than for many phospholipids, but due to their structural and functional diversity, glycolipids represent an important group of amphiphiles from which biological function is derived. Here we have incorporated a synthetic glycolipid in binary mixtures with DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) into giant unilamellar vesicles (GUVs) at biologically relevant concentrations and observed the phase behaviour of the lipid mixtures for a range of glycolipid concentrations. At low concentrations, the glycolipid is fully dispersed in the GUV membrane. At glycolipid molar concentrations above 10%, the formation of lipid tubules is observed, and is consistent with the formation of a columnar lipid phase. Lipid tubules are observed in aqueous and oil solvents, suggesting that both hexagonal and inverted hexagonal lipid arrangements can be formed. This work may offer insights into the biological function of glycolipids and the challenges in formulating them for use in industrial applications.
Collapse
Affiliation(s)
- Urszula M Migas
- Department of Chemistry, National University of Ireland Maynooth, Maynooth Co. Kildare, Ireland.
| | | | | | | |
Collapse
|
96
|
Takazono T, Nakamura S, Imamura Y, Yoshioka S, Miyazaki T, Izumikawa K, Sawai T, Matsuo N, Yanagihara K, Suyama N, Kohno S. A retrospective comparative study of recombinant human thrombomodulin and gabexate mesilate in sepsis-induced disseminated intravascular coagulation patients. J Infect Chemother 2014; 20:484-8. [PMID: 24855912 DOI: 10.1016/j.jiac.2014.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/17/2014] [Accepted: 04/18/2014] [Indexed: 01/22/2023]
Abstract
The novel biological agent recombinant human thrombomodulin (rhTM) has been used clinically in Japan to treat disseminated intravascular coagulation (DIC) since 2008. Previous studies have shown the efficacy of rhTM versus heparin therapy or non-rhTM therapy. We retrospectively evaluated and compared the efficacies of rhTM and gabexate mesilate (GM) in patients diagnosed with sepsis-induced DIC. From September 2010 to October 2012, patients with sepsis-induced DIC who were treated with rhTM (n = 13) or GM (n = 10) at Nagasaki Municipal Hospital were extracted. Patients receiving other anticoagulants in combination were excluded. Clinical information, laboratory data, Sequential Organ Failure Assessment (SOFA) scores, and DIC scores were obtained from the medical records. Mortality at days 7 and 30 after DIC diagnosis and changes in laboratory data and SOFA scores from days 1-7 were evaluated. The groups' clinical characteristics did not differ, except for the relatively higher C-reactive protein (CRP) levels in the rhTM group (P = 0.0508). The survival rates of the rhTM and GM groups on days 7 and 30 were 92.3%, 69.2% and 80%, 70%, respectively, both group indicated similar mortality. However, on day 7, the platelet counts, SOFA scores, and CRP levels significantly improved in the rhTM group; the platelet counts and SOFA scores did not improve significantly in the GM group. The platelet counts of the rhTM group significantly improved compared to the GM group (P = 0.004). Recombinant human thrombomodulin might be more effective for sepsis-induced DIC than GM.
Collapse
Affiliation(s)
- Takahiro Takazono
- Department of Internal Medicine, Nagasaki Municipal Hospital, Nagasaki, Japan; Department of Respiratory Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Shigeki Nakamura
- Department of Respiratory Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshifumi Imamura
- Department of Respiratory Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Sumako Yoshioka
- Department of Internal Medicine, Nagasaki Municipal Hospital, Nagasaki, Japan
| | - Taiga Miyazaki
- Department of Respiratory Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toyomitsu Sawai
- Department of Internal Medicine, Nagasaki Municipal Hospital, Nagasaki, Japan
| | - Nobuko Matsuo
- Department of Internal Medicine, Nagasaki Municipal Hospital, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Naofumi Suyama
- Department of Internal Medicine, Nagasaki Municipal Hospital, Nagasaki, Japan
| | - Shigeru Kohno
- Department of Respiratory Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
97
|
Eguchi Y, Gando S, Ishikura H, Saitoh D, Mimuro J, Takahashi H, Kitajima I, Tsuji H, Matsushita T, Tsujita R, Nagao O, Sakata Y. Post-marketing surveillance data of thrombomodulin alfa: sub-analysis in patients with sepsis-induced disseminated intravascular coagulation. J Intensive Care 2014; 2:30. [PMID: 25520842 PMCID: PMC4267702 DOI: 10.1186/2052-0492-2-30] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 04/07/2014] [Indexed: 11/18/2022] Open
Abstract
Background Thrombomodulin alfa (TM-α, recombinant thrombomodulin) significantly improved disseminated intravascular coagulation (DIC) when compared with heparin therapy in a phase III study. Post-marketing surveillance of TM-α was performed to evaluate the effects and safety in patients with sepsis-induced DIC. Methods From May 2008 to April 2010, a total of 1,787 patients with sepsis-induced DIC treated with TM-α were registered. DIC was diagnosed based on the Japanese Association for Acute Medicine (JAAM) criteria. The DIC resolution and survival rates on day 28 after the last TM-α administration, and changes in DIC, systemic inflammatory response syndrome (SIRS), and sequential organ failure assessment (SOFA) scores and coagulation and inflammation markers were evaluated. Results The most frequent underlying disease was infectious focus-unknown sepsis (29.8%). The mean ± SD values of age, dose, and the duration of TM-α administration were 64.7 ± 20.3 years, 297.3 ± 111.4 U/kg/day, and 5.6 ± 3.4 days, respectively. A total of 1,320 subjects (73.9%) received combined administration with other anticoagulants. Both coagulation and inflammation markers, such as fibrin/fibrinogen degradation products, prothrombin time ratio, thrombin-antithrombin complex, and C-reactive protein, as well as JAAM DIC, SIRS, and SOFA scores, significantly and simultaneously decreased after TM-α administration (p < 0.001). DIC resolution and 28-day survival rates were 44.4% and 66.0%, respectively. The 28-day survival rate decreased significantly according to the duration of DIC before TM-α administration (p < 0.001). Total adverse drug reactions (ADRs), bleeding ADRs, and serious bleeding adverse events occurred in 126 (7.1%), 98 (5.5%), and 121 (6.8%) subjects, respectively. On day 28, after the last TM-α administration available for an antibody test, only one patient was positive for anti-TM-α antibodies (0.11%). Conclusion Our results suggest that TM-α is most effective for treating patients with sepsis-induced DIC when administered within the first 3 days after diagnosis.
Collapse
Affiliation(s)
- Yutaka Eguchi
- Department of Critical and Intensive Care Medicine, Shiga University of Medical Science, Shiga, Japan ; The Japanese Society on Thrombosis and Hemostasis Post-Marketing Surveillance Committee for Recomodulin® Injection, Tokyo, Japan
| | - Satoshi Gando
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Hiroyasu Ishikura
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Daizoh Saitoh
- Division of Traumatology, National Defense Medical College Research Institute, National Defense Medical College, Saitama, Japan
| | - Jun Mimuro
- Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, School of Medicine, Tochigi, Japan ; The Japanese Society on Thrombosis and Hemostasis Post-Marketing Surveillance Committee for Recomodulin® Injection, Tokyo, Japan
| | - Hoyu Takahashi
- Department of Internal Medicine, Niigata Prefectural Kamo Hospital, Niigata, Japan ; The Japanese Society on Thrombosis and Hemostasis Post-Marketing Surveillance Committee for Recomodulin® Injection, Tokyo, Japan
| | - Isao Kitajima
- Department of Clinical Laboratory and Molecular Pathology, Graduate School of Medical and Pharmaceutical Science, University of Toyama, Toyama, Japan ; The Japanese Society on Thrombosis and Hemostasis Post-Marketing Surveillance Committee for Recomodulin® Injection, Tokyo, Japan
| | - Hajime Tsuji
- Department of Blood Transfusion, Kyoto Prefectural University of Medicine, Kyoto, Japan ; The Japanese Society on Thrombosis and Hemostasis Post-Marketing Surveillance Committee for Recomodulin® Injection, Tokyo, Japan
| | - Tadashi Matsushita
- Department of Transfusion Medicine, Nagoya University Hospital, Aichi, Japan ; The Japanese Society on Thrombosis and Hemostasis Post-Marketing Surveillance Committee for Recomodulin® Injection, Tokyo, Japan
| | - Ryuichi Tsujita
- ART Project, Pharmaceuticals Sales Division, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Osamu Nagao
- Post-Marketing Surveillance Dept. Reliability Assurance Center, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Yoichi Sakata
- Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, School of Medicine, Tochigi, Japan ; The Japanese Society on Thrombosis and Hemostasis Post-Marketing Surveillance Committee for Recomodulin® Injection, Tokyo, Japan
| |
Collapse
|
98
|
Penack O, Becker C, Buchheidt D, Christopeit M, Kiehl M, von Lilienfeld-Toal M, Hentrich M, Reinwald M, Salwender H, Schalk E, Schmidt-Hieber M, Weber T, Ostermann H. Management of sepsis in neutropenic patients: 2014 updated guidelines from the Infectious Diseases Working Party of the German Society of Hematology and Medical Oncology (AGIHO). Ann Hematol 2014; 93:1083-95. [PMID: 24777705 PMCID: PMC4050292 DOI: 10.1007/s00277-014-2086-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/09/2014] [Indexed: 12/29/2022]
Abstract
Sepsis is a major cause of mortality during the neutropenic phase after intensive cytotoxic therapies for malignancies. Improved management of sepsis during neutropenia may reduce the mortality of cancer therapies. Clinical guidelines on sepsis treatment have been published by others. However, optimal management may differ between neutropenic and non-neutropenic patients. Our aim is to give evidence-based recommendations for haematologist, oncologists and intensive care physicians on how to manage adult patients with neutropenia and sepsis.
Collapse
Affiliation(s)
- Olaf Penack
- Department of Hematology, Oncology and Tumourimmunology, Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Matsushita T, Watanabe J, Honda G, Mimuro J, Takahashi H, Tsuji H, Eguchi Y, Kitajima I, Sakata Y. Thrombomodulin alfa treatment in patients with acute promyelocytic leukemia and disseminated intravascular coagulation: a retrospective analysis of an open-label, multicenter, post-marketing surveillance study cohort. Thromb Res 2014; 133:772-81. [PMID: 24636871 DOI: 10.1016/j.thromres.2014.02.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/09/2014] [Accepted: 02/25/2014] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Patients with acute promyelocytic leukemia (APL) can develop disseminated intravascular coagulation (DIC) that results in life-threatening hemorrhagic complications. Studies regarding the safety and efficacy of thrombomodulin alfa (TM-α; recombinant human soluble thrombomodulin) in patients with APL and DIC are limited. MATERIALS AND METHODS A retrospective evaluation was performed on a cohort of 172 patients with APL from an open-label, multicenter, post-marketing surveillance study of TM-α. RESULTS Of the 172 patients, 31 were relapse/refractory APL patients, and 141 were newly diagnosed APL patients. Within the first 30 days, 24 patients (14.0%) died, and six of those deaths (3.5%) were due to hemorrhage. In total, 12 patients (7.0%) had severe hemorrhagic complications. Both the early death rate due to hemorrhage as well as the severe hemorrhage rate did not exceed those in some recent population-based studies of patients with APL. Forty-nine patients received TM-α prior to the initiation of antileukemic treatment, and one patient experienced hemorrhagic early death (ED), suggesting that early TM-α treatment appeared to result in a reduction in the hemorrhagic ED rate. Moreover, TM-α improved coagulopathy regardless of concomitant all-trans retinoic acid treatment. CONCLUSIONS This study confirmed the safety and efficacy of TM-α in daily clinical practice for patients with APL and DIC. TM-α appeared to reduce hemorrhagic early deaths due to DIC in patients with APL who were receiving antileukemic treatment.
Collapse
Affiliation(s)
- Tadashi Matsushita
- Department of Transfusion Medicine, Nagoya University Hospital, Aichi, Japan; The Japanese Society on Thrombosis and Hemostasis Post-Marketing Surveillance Committee for Recomodulin(®) Injection, Japan.
| | | | - Goichi Honda
- ART Project, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Jun Mimuro
- Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, School of Medicine, Tochigi, Japan; The Japanese Society on Thrombosis and Hemostasis Post-Marketing Surveillance Committee for Recomodulin(®) Injection, Japan
| | - Hoyu Takahashi
- Department of Internal Medicine, Niigata Prefectural Kamo Hospital, Niigata, Japan; The Japanese Society on Thrombosis and Hemostasis Post-Marketing Surveillance Committee for Recomodulin(®) Injection, Japan
| | - Hajime Tsuji
- Department of Blood Transfusion, Kyoto Prefectural University of Medicine, Kyoto, Japan; The Japanese Society on Thrombosis and Hemostasis Post-Marketing Surveillance Committee for Recomodulin(®) Injection, Japan
| | - Yutaka Eguchi
- Critical and Intensive Care Medicine, Shiga University of Medical Science, Shiga, Japan; The Japanese Society on Thrombosis and Hemostasis Post-Marketing Surveillance Committee for Recomodulin(®) Injection, Japan
| | - Isao Kitajima
- Department of Clinical Laboratory and Molecular Pathology, Graduate School of Medical and Pharmaceutical Science, University of Toyama, Toyama, Japan; The Japanese Society on Thrombosis and Hemostasis Post-Marketing Surveillance Committee for Recomodulin(®) Injection, Japan
| | - Yoichi Sakata
- Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, School of Medicine, Tochigi, Japan; The Japanese Society on Thrombosis and Hemostasis Post-Marketing Surveillance Committee for Recomodulin(®) Injection, Japan
| |
Collapse
|
100
|
Mice Lacking the Lectin-Like Domain of Thrombomodulin Are Protected Against Melioidosis. Crit Care Med 2014; 42:e221-30. [DOI: 10.1097/ccm.0000000000000134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|