51
|
Zhang RR, Zhu XF. [Relationship between macrophages and erythropoiesis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:94-99. [PMID: 26781420 PMCID: PMC7390087 DOI: 10.7499/j.issn.1008-8830.2016.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Academic Contribution Register] [Received: 08/14/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
Macrophages have two major roles in regulating the dynamic equilibrium in erythropoiesis, promoting the differentiation and maturation of nucleated red blood cells into reticulocytes and removing old red blood cells. A recent mouse study has demonstrated that the phenotype of macrophages in erythroblastic islands is CD169+ VCAM-1+ ER-HR3+ CD11b+ F4/80+ Ly-6G+. Molecular connections between erythroid progenitor cells and central macrophages help to maintain the function and integrity of erythroblastic islands. New research advances in Kruppel-like factor 1 (KLF1) provide new evidence for the important role of macrophages in erythroblastic islands. Macrophages play an important role in erythropoiesis both in sickness and in health, and provide a potential targeted therapy for diseases such as polycythemia vera and beta-thalassemia in the future.
Collapse
Affiliation(s)
- Ran-Ran Zhang
- Diagnosis and Treatment Center of Pediatric Blood Diseases, Institute of Hematology and Blood Disease Hospital, Pecking Union Medical College, Chinese Academy of Medical Sciences, Tianjin 300020, China.
| | | |
Collapse
|
52
|
Vollrath D, Yasumura D, Benchorin G, Matthes MT, Feng W, Nguyen NM, Sedano CD, Calton MA, LaVail MM. Tyro3 Modulates Mertk-Associated Retinal Degeneration. PLoS Genet 2015; 11:e1005723. [PMID: 26656104 PMCID: PMC4687644 DOI: 10.1371/journal.pgen.1005723] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2015] [Accepted: 11/13/2015] [Indexed: 01/24/2023] Open
Abstract
Inherited photoreceptor degenerations (IPDs) are the most genetically heterogeneous of Mendelian diseases. Many IPDs exhibit substantial phenotypic variability, but the basis is usually unknown. Mutations in MERTK cause recessive IPD phenotypes associated with the RP38 locus. We have identified a murine genetic modifier of Mertk-associated photoreceptor degeneration, the C57BL/6 (B6) allele of which acts as a suppressor. Photoreceptors degenerate rapidly in Mertk-deficient animals homozygous for the 129P2/Ola (129) modifier allele, whereas animals heterozygous for B6 and 129 modifier alleles exhibit an unusual intermixing of degenerating and preserved retinal regions, with females more severely affected than males. Mertk-deficient mice homozygous for the B6 modifier allele display degeneration only in the far periphery, even at 8 months of age, and have improved retinal function compared to animals homozygous for the 129 allele. We genetically mapped the modifier to an approximately 2-megabase critical interval that includes Tyro3, a paralog of Mertk. Tyro3 expression in the outer retina varies with modifier genotype in a manner characteristic of a cis-acting expression quantitative trait locus (eQTL), with the B6 allele conferring an approximately three-fold higher expression level. Loss of Tyro3 function accelerates the pace of photoreceptor degeneration in Mertk knockout mice, and TYRO3 protein is more abundant in the retinal pigment epithelium (RPE) adjacent to preserved central retinal regions of Mertk knockout mice homozygous for the B6 modifier allele. Endogenous human TYRO3 protein co-localizes with nascent photoreceptor outer segment (POS) phagosomes in a primary RPE cell culture assay, and expression of murine Tyro3 in cultured cells stimulates phagocytic ingestion of POS. Our findings demonstrate that Tyro3 gene dosage modulates Mertk-associated retinal degeneration, provide strong evidence for a direct role for TYRO3 in RPE phagocytosis, and suggest that an eQTL can modify a recessive IPD.
Collapse
Affiliation(s)
- Douglas Vollrath
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Douglas Yasumura
- Beckman Vision Center, University of California San Francisco, San Francisco, California, United States of America
| | - Gillie Benchorin
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Michael T. Matthes
- Beckman Vision Center, University of California San Francisco, San Francisco, California, United States of America
| | - Wei Feng
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Natalie M. Nguyen
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Cecilia D. Sedano
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Melissa A. Calton
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Matthew M. LaVail
- Beckman Vision Center, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
53
|
Phagocytosis of apoptotic cells in homeostasis. Nat Immunol 2015; 16:907-17. [PMID: 26287597 DOI: 10.1038/ni.3253] [Citation(s) in RCA: 597] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023]
Abstract
Human bodies collectively turn over about 200 billion to 300 billion cells every day. Such turnover is an integral part of embryonic and postnatal development, as well as routine tissue homeostasis. This process involves the induction of programmed cell death in specific cells within the tissues and the specific recognition and removal of dying cells by a clearance 'crew' composed of professional, non-professional and specialized phagocytes. In the past few years, considerable progress has been made in identifying many features of apoptotic cell clearance. Some of these new observations challenge the way dying cells themselves are viewed, as well as how healthy cells interact with and respond to dying cells. Here we focus on the homeostatic removal of apoptotic cells in tissues.
Collapse
|
54
|
The phospholipid code: a key component of dying cell recognition, tumor progression and host-microbe interactions. Cell Death Differ 2015; 22:1893-905. [PMID: 26450453 DOI: 10.1038/cdd.2015.122] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/24/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 02/06/2023] Open
Abstract
A significant effort is made by the cell to maintain certain phospholipids at specific sites. It is well described that proteins involved in intracellular signaling can be targeted to the plasma membrane and organelles through phospholipid-binding domains. Thus, the accumulation of a specific combination of phospholipids, denoted here as the 'phospholipid code', is key in initiating cellular processes. Interestingly, a variety of extracellular proteins and pathogen-derived proteins can also recognize or modify phospholipids to facilitate the recognition of dying cells, tumorigenesis and host-microbe interactions. In this article, we discuss the importance of the phospholipid code in a range of physiological and pathological processes.
Collapse
|
55
|
Abstract
Apoptotic cells are engulfed and digested by macrophages to maintain homeostasis in animals. If dead cells are not engulfed swiftly, they undergo secondary necrosis and release intracellular components that activate the immune system. Apoptotic cells are efficiently cleared due to phosphatidylserine (PtdSer) exposed on the cell surface that acts as an "eat me" signal. PtdSer is exposed through the activation of phospholipid scramblase and the inactivation of phospholipid flippase, which are both caspase-mediated events. Macrophages express a variety of molecules to recognize PtdSer, and use a sophisticated mechanism to engulf apoptotic cells. In red blood cells, the nucleus is lost when it is extruded as a pyrenocyte during definitive erythropoiesis. These pyrenocytes (nuclei surrounded by plasma membrane) also expose PtdSer on their surface and are efficiently engulfed by macrophages in a PtdSer-dependent manner. Macrophages transfer the engulfed apoptotic cell or pyrenocyte into lysosomes, where the components of the dead cell or pyrenocyte are degraded. If lysosomes cannot digest the DNA from apoptotic cells or pyrenocytes, the undigested DNA accumulates in the lysosome and activates macrophages to produce type I interferon (IFN) via a STING-dependent pathway; in embryos, this causes severe anemia. Here, we discuss how macrophages clear apoptotic cells and pyrenocytes.
Collapse
Affiliation(s)
- Satoshi Toda
- Laboratory of Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Chihiro Nishi
- Laboratory of Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yuichi Yanagihashi
- Laboratory of Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Katsumori Segawa
- Laboratory of Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| |
Collapse
|
56
|
Maruyama K, Akiyama M, Kokame K, Sekiya A, Morishita E, Miyata T. ELISA-Based Detection System for Protein S K196E Mutation, a Genetic Risk Factor for Venous Thromboembolism. PLoS One 2015; 10:e0133196. [PMID: 26186226 PMCID: PMC4505939 DOI: 10.1371/journal.pone.0133196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2014] [Accepted: 06/23/2015] [Indexed: 01/27/2023] Open
Abstract
Protein S (PS) acts as a cofactor for activated protein C in the plasma anticoagulant system. PS Lys196-to-Glu (K196E) mutation is a genetic risk factor for venous thromboembolism in Japanese individuals. Because of the substantial overlap in PS anticoagulant activity between KK (wild-type) and KE (heterozygous) genotypes, it is difficult to identify PS K196E carriers by measuring PS activity. Here, we generated monoclonal antibodies specific to the PS K196E mutant and developed a simple and reliable method for the identification of PS K196E carriers. We immunized mice with a keyhole limpet hemocyanin-conjugated synthetic peptide with Glu196. The hybridoma cells were screened for the binding ability of the produced antibodies to recombinant mutant EGF-like domains of PS (Ile117–Glu283). We obtained three hybridoma cell lines producing PS K196E mutation-specific antibodies. We established a sandwich enzyme-linked immunosorbent assay (ELISA) system in which the PS K196E mutation-specific monoclonal antibody was used as a detection antibody. We measured human plasma samples by using this system and successfully discriminated 11 individuals with the KE genotype from 122 individuals with the KK genotype. The ELISA system using the PS K196E mutation-specific antibody is a useful tool for the rapid identification of PS K196E carriers, who are at a higher risk for venous thromboembolism.
Collapse
Affiliation(s)
- Keiko Maruyama
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Masashi Akiyama
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Koichi Kokame
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Akiko Sekiya
- Department of Clinical Laboratory Sciences, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Eriko Morishita
- Department of Clinical Laboratory Sciences, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Toshiyuki Miyata
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Japan
- * E-mail:
| |
Collapse
|
57
|
Liu M, Jin X, He X, Pan L, Zhang X, Zhao Y. Macrophages support splenic erythropoiesis in 4T1 tumor-bearing mice. PLoS One 2015; 10:e0121921. [PMID: 25822717 PMCID: PMC4378955 DOI: 10.1371/journal.pone.0121921] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2014] [Accepted: 02/05/2015] [Indexed: 11/26/2022] Open
Abstract
Anemia is a common complication of cancer; a role of spleen in tumor-stress erythropoiesis has been suggested. However, the molecular mechanisms involved in the splenic erythropoiesis following tumor maintenance remain poorly understood. Here we show that tumor development blocks medullar erythropoiesis by granulocyte colony-stimulating factor (G-CSF) and then causes anemia in murine 4T1 breast tumor-bearing mice. Meanwhile, tumor-stress promotes splenic erythropoiesis. Splenectomy worsened tumor-induced anemia, and reduced tumor volume and tumor weight, indicating the essential role of spleen in tumor-stress erythropoiesis and tumor growth. Tumor progression of these mice led to increased amounts of bone morphogenetic protein 4 (BMP4) in spleen. The in vivo role of macrophages in splenic erythropoiesis under tumor-stress conditions was investigated. Macrophage depletion by injecting liposomal clodronate decreased the expression of BMP4, inhibited splenic erythropoiesis, aggravated the tumor-induced anemia and suppressed tumor growth. Our results provide insight that macrophages and BMP4 are positive regulators of splenic erythropoiesis in tumor pathological situations. These findings reveal that during the tumor-stress period, the microenvironment of the spleen is undergoing changes, which contributes to adopt a stress erythropoietic fate and supports the expansion and differentiation of stress erythroid progenitors, thereby replenishing red blood cells and promoting tumor growth.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, 250012, China
| | - Xing Jin
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, 250012, China
| | - Xigan He
- Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Ling Pan
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, 250012, China
| | - Xiumei Zhang
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, 250012, China
- * E-mail: (XZ); (YZ)
| | - Yunxue Zhao
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, 250012, China
- * E-mail: (XZ); (YZ)
| |
Collapse
|
58
|
Ji P. New Insights into the Mechanisms of Mammalian Erythroid Chromatin Condensation and Enucleation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:159-82. [DOI: 10.1016/bs.ircmb.2015.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
|
59
|
Abstract
In this issue of Blood, Toda et al present a shift in the paradigm of erythroid enucleation and provide novel tools to further study and optimize terminal erythroid maturation in vitro.
Collapse
|