51
|
Marneth AE, Mullally A. The Molecular Genetics of Myeloproliferative Neoplasms. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a034876. [PMID: 31548225 DOI: 10.1101/cshperspect.a034876] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activated JAK-STAT signaling is central to the pathogenesis of BCR-ABL-negative myeloproliferative neoplasms (MPNs) and occurs as a result of MPN phenotypic driver mutations in JAK2, CALR, or MPL The spectrum of concomitant somatic mutations in other genes has now largely been defined in MPNs. With the integration of targeted next-generation sequencing (NGS) panels into clinical practice, the clinical significance of concomitant mutations in MPNs has become clearer. In this review, we describe the consequences of concomitant mutations in the most frequently mutated classes of genes in MPNs: (1) DNA methylation pathways, (2) chromatin modification, (3) RNA splicing, (4) signaling pathways, (5) transcription factors, and (6) DNA damage response/stress signaling. The increased use of molecular genetics for early risk stratification of patients brings the possibility of earlier intervention to prevent disease progression in MPNs. However, additional studies are required to decipher underlying molecular mechanisms and effectively target them.
Collapse
Affiliation(s)
- Anna E Marneth
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute, Cambridge, Massachusetts 02142, USA.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
52
|
Jia R, Kralovics R. Progress in elucidation of molecular pathophysiology of myeloproliferative neoplasms and its application to therapeutic decisions. Int J Hematol 2020; 111:182-191. [PMID: 31741139 DOI: 10.1007/s12185-019-02778-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 01/14/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are hematological diseases that are driven by somatic mutations in hematopoietic stem and progenitor cells. These mutations include JAK2, CALR and MPL mutations as the main disease drivers, mutations driving clonal expansion, and mutations that contribute to progression of chronic MPNs to myelodysplasia and acute leukemia. JAK-STAT pathway has played a central role in the disease pathogenesis of MPNs. Mutant JAK2, CALR or MPL constitutively activates JAK-STAT pathway independent of the cytokine regulation. Symptomatic management is the primary goal of MPN therapy in ET and low-risk PV patients. JAK2 inhibitors and interferon-α are the established therapies in MF and high-risk PV patients.
Collapse
Affiliation(s)
- Ruochen Jia
- Department of Laboratory Medicine, Medical University of Vienna, 18-20 Währinger Gürtel, 1090, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Robert Kralovics
- Department of Laboratory Medicine, Medical University of Vienna, 18-20 Währinger Gürtel, 1090, Vienna, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
53
|
Mutant Calreticulin in the Myeloproliferative Neoplasms. Hemasphere 2020; 4:e333. [PMID: 32382708 PMCID: PMC7000472 DOI: 10.1097/hs9.0000000000000333] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Mutations in the gene for calreticulin (CALR) were identified in the myeloproliferative neoplasms (MPNs) essential thrombocythaemia (ET) and primary myelofibrosis (MF) in 2013; in combination with previously described mutations in JAK2 and MPL, driver mutations have now been described for the majority of MPN patients. In subsequent years, researchers have begun to unravel the mechanisms by which mutant CALR drives transformation and to understand their clinical implications. Mutant CALR activates the thrombopoietin receptor (MPL), causing constitutive activation of Janus kinase 2 (JAK2) signaling and cytokine independent growth in vitro. Mouse models show increased numbers of hematopoietic stem cells (HSCs) and overproduction of megakaryocytic lineage cells with associated thrombocytosis. In the clinic, detection of CALR mutations has been embedded in World Health Organization and other international diagnostic guidelines. Distinct clinical and laboratory associations of CALR mutations have been identified together with their prognostic significance, with CALR mutant patients showing increased overall survival. The discovery and subsequent study of CALR mutations have illuminated novel aspects of megakaryopoiesis and raised the possibility of new therapeutic approaches.
Collapse
|
54
|
Jang MA, Choi CW. Recent insights regarding the molecular basis of myeloproliferative neoplasms. Korean J Intern Med 2020; 35:1-11. [PMID: 31778606 PMCID: PMC6960053 DOI: 10.3904/kjim.2019.317] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are a heterogeneous group of clonal disorders characterized by the overproduction of mature blood cells that have an increased risk of thrombosis and progression to acute myeloid leukemia. Next-generation sequencing studies have provided key insights regarding the molecular mechanisms of MPNs. MPN driver mutations in genes associated with the JAK-STAT pathway include JAK2 V617F, JAK2 exon 12 mutations and mutations in MPL, CALR, and CSF3R. Cooperating driver genes are also frequently detected and also mutated in other myeloid neoplasms; these driver genes are involved in epigenetic methylation, messenger RNA splicing, transcription regulation, and signal transduction. In addition, other genetic factors such as germline predisposition, order of mutation acquisition, and variant allele frequency also influence disease initiation and progression. This review summarizes the current understanding of the genetic basis of MPN, and demonstrates how molecular pathophysiology can improve both our understanding of MPN heterogeneity and clinical practice.
Collapse
Affiliation(s)
- Mi-Ae Jang
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Chul Won Choi
- Division of Oncology and Hematology, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
- Correspondence to Chul Won Choi, M.D. Division of Oncology and Hematology, Department of Internal Medicine, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, Korea Tel: +82-2-2626-3058 Fax: +82-2-862-6453 E-mail:
| |
Collapse
|
55
|
Shide K. The role of driver mutations in myeloproliferative neoplasms: insights from mouse models. Int J Hematol 2019; 111:206-216. [PMID: 31865539 DOI: 10.1007/s12185-019-02803-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/11/2023]
Abstract
High frequency of JAK2V617F or CALR exon 9 mutations is a main molecular feature of myeloproliferative neoplasms (MPNs). Analysis of mouse models driven by these mutations suggests that they are a direct cause of MPNs and that the expression levels of the mutated genes define the disease phenotype. The function of MPN-initiating cells has also been elucidated by these mouse models. Such mouse models also play an important role in modeling disease to investigate the effects and action mechanisms of therapeutic drugs, such as JAK2 inhibitors and interferon α, against MPNs. The mutation landscape of hematological tumors has already been clarified by next-generation sequencing technology, and the importance of functional analysis of mutant genes in vivo should increase further in the future.
Collapse
Affiliation(s)
- Kotaro Shide
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| |
Collapse
|
56
|
The role of calreticulin mutations in myeloproliferative neoplasms. Int J Hematol 2019; 111:200-205. [DOI: 10.1007/s12185-019-02800-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022]
|
57
|
Knock-in of murine Calr del52 induces essential thrombocythemia with slow-rising dominance in mice and reveals key role of Calr exon 9 in cardiac development. Leukemia 2019; 34:510-521. [PMID: 31471561 DOI: 10.1038/s41375-019-0538-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022]
Abstract
Frameshifting mutations (-1/+2) of the calreticulin (CALR) gene are responsible for the development of essential thrombocythemia (ET) and primary myelofibrosis (PMF). The mutant CALR proteins activate the thrombopoietin receptor (TpoR) inducing cytokine-independent megakaryocyte progenitor proliferation. Here, we generated via CRISPR/Cas9 technology two knock-in mouse models that are heterozygous for a type-I murine Calr mutation. These mice exhibit an ET phenotype with elevated circulating platelets compared with wild-type controls, consistent with our previous results showing that murine CALR mutants activate TpoR. We also show that the mutant CALR proteins can be detected in plasma. The phenotype of Calr del52 is transplantable, and the Calr mutated hematopoietic cells have a slow-rising advantage over wild-type hematopoiesis. Importantly, a homozygous state of a type-1 Calr mutation is lethal at a late embryonic development stage, showing narrowed ventricular myocardium walls, similar to the murine Calr knockout phenotype, pointing to the C terminus of CALR as crucial for heart development.
Collapse
|
58
|
Holmström MO, Novotny GW, Petersen J, Aaboe-Jørgensen M, Hasselbalch HC, Andersen MH, Nielsen SL, Fassi DE, Schöllkopf C. Progression of JAK2-mutant polycythemia vera to CALR-mutant myelofibrosis severely impacts on disease phenotype and response to therapy. Leuk Lymphoma 2019; 60:3296-3299. [DOI: 10.1080/10428194.2019.1633634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Morten Orebo Holmström
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
- National Center for Cancer Immune Therapy, Department of Hematology, Herlev University Hospital, Herlev, Denmark
| | - Guy W. Novotny
- Department of Hematology, Herlev University Hospital, Herlev, Denmark
| | - Jesper Petersen
- Department of Hematology, Herlev University Hospital, Herlev, Denmark
| | - Mia Aaboe-Jørgensen
- National Center for Cancer Immune Therapy, Department of Hematology, Herlev University Hospital, Herlev, Denmark
| | - Hans Carl Hasselbalch
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
- Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mads H. Andersen
- National Center for Cancer Immune Therapy, Department of Hematology, Herlev University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Daniel El Fassi
- Department of Hematology, Herlev University Hospital, Herlev, Denmark
- Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Institute for Inflammation Research, Rigshospitalet University Hospital, Copenhagen, Denmark
| | | |
Collapse
|
59
|
Vainchenker W, Plo I, Marty C, Varghese LN, Constantinescu SN. The role of the thrombopoietin receptor MPL in myeloproliferative neoplasms: recent findings and potential therapeutic applications. Expert Rev Hematol 2019; 12:437-448. [PMID: 31092065 DOI: 10.1080/17474086.2019.1617129] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Classical Myeloproliferative Neoplasms (MPNs) include three disorders: Polycythemia Vera (PV), Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF). MPNs are associated with constitutive activation of JAK2 leading to persistent cell signaling downstream of the dimeric myeloid cytokine receptors due to mutations in three genes encoding JAK2, calreticulin (CALR) and the thrombopoietin (TPO) receptor (MPL or TPOR). CALR and MPL mutants induce JAK2 activation that depends on MPL expression, thus explaining why they induce megakaryocyte pathologies including ET and PMF, but not PV. In contrast, JAK2 V617F drives all three diseases as it induces persistent signaling via EPOR, G-CSFR (CSF3R) and MPL. Areas Covered: Here, we review how different pathogenic mutations of MPL are translated into active receptors by inducing stable dimerization. We focus on the unique role of MPL on the hematopoietic stem cell (HSC), explaining why MPL is indispensable for the development of all MPNs. Last but not least, we describe how CALR mutants are pathogenic via binding and activation of MPL. Expert Opinion: Altogether, we believe that MPL is an important, but challenging, therapeutic target in MPNs that requires novel strategies to interrupt the specific conformational changes induced by each mutation or pathologic interaction without compromising the key functions of wild type MPL.
Collapse
Affiliation(s)
- William Vainchenker
- a UMR1170 , INSERM , Villejuif , France.,b Université Paris-Saclay , Villejuif , France
| | - Isabelle Plo
- a UMR1170 , INSERM , Villejuif , France.,b Université Paris-Saclay , Villejuif , France
| | - Caroline Marty
- a UMR1170 , INSERM , Villejuif , France.,b Université Paris-Saclay , Villejuif , France
| | - Leila N Varghese
- c Ludwig Institute for Cancer Research Brussels , Brussels , Belgium.,d de Duve Institute, Université catholique de Louvain , Brussels , Belgium
| | - Stefan N Constantinescu
- c Ludwig Institute for Cancer Research Brussels , Brussels , Belgium.,d de Duve Institute, Université catholique de Louvain , Brussels , Belgium.,e WELBIO (Walloon Excellence in Life Sciences and Biotechnology) , Brussels , Belgium
| |
Collapse
|
60
|
Mice with Calr mutations homologous to human CALR mutations only exhibit mild thrombocytosis. Blood Cancer J 2019; 9:42. [PMID: 30926777 PMCID: PMC6440999 DOI: 10.1038/s41408-019-0202-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/27/2022] Open
Abstract
Calreticulin (CALR) exon 9 frameshift mutations, commonly detected in essential thrombocythemia (ET) and primary myelofibrosis patients, activate signal transducer and activator of transcription (STAT) proteins in the presence of Myeloproliferative Leukemia Virus (MPL) and induce ET in vivo. Loss of the KDEL motif, an endoplasmic reticulum retention signal, and generation of many positively charged amino acids (AAs) in the mutated C-terminus are thought to be important for disease induction. To test this hypothesis, we generated mice harboring a Calr frameshift mutation using the CRISPR/Cas9 system. Deletion of 19-base pairs in exon 9 (c.1099-1117del), designated the del19 mutation, induced loss of the KDEL motif and generated many positively charged AAs, similar to human mutants. Calr del19 mice exhibited mild thrombocytosis, slightly increased megakaryocytes, and mild splenomegaly. In vitro experiments revealed that the murine CALR del19 mutant had a weaker ability to combine with murine MPL than the human CALR del52 mutant. Consequently, STAT5 activation was also very weak downstream of the murine mutant and murine MPL, and may be the reason for the mild disease severity. In summary, loss of the KDEL motif and positively charged AAs in the C-terminus of CALR is insufficient for MPL binding and ET development.
Collapse
|
61
|
Merlinsky TR, Levine RL, Pronier E. Unfolding the Role of Calreticulin in Myeloproliferative Neoplasm Pathogenesis. Clin Cancer Res 2019; 25:2956-2962. [PMID: 30655313 DOI: 10.1158/1078-0432.ccr-18-3777] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/18/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022]
Abstract
In 2013, two seminal studies identified gain-of-function mutations in the Calreticulin (CALR) gene in a subset of JAK2/MPL-negative myeloproliferative neoplasm (MPN) patients. CALR is an endoplasmic reticulum (ER) chaperone protein that normally binds misfolded proteins in the ER and prevents their export to the Golgi and had never previously been reported mutated in cancer or to be associated with hematologic disorders. Further investigation determined that mutated CALR is able to achieve oncogenic transformation primarily through constitutive activation of the MPL-JAK-STAT signaling axis. Here we review our current understanding of the role of CALR mutations in MPN pathogenesis and how these insights can lead to innovative therapeutics approaches.
Collapse
Affiliation(s)
- Tiffany R Merlinsky
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elodie Pronier
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
62
|
Ciboddo M, Mullally A. JAK2 (and other genes) be nimble with MPN diagnosis, prognosis, and therapy. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:110-117. [PMID: 30504299 PMCID: PMC6246021 DOI: 10.1182/asheducation-2018.1.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Now that the spectrum of somatic mutations that initiate, propagate, and drive the progression of myeloproliferative neoplasms (MPNs) has largely been defined, recent efforts have focused on integrating this information into clinical decision making. In this regard, the greatest progress has been made in myelofibrosis, in which high-molecular-risk mutations have been identified and incorporated into prognostic models to help guide treatment decisions. In this chapter, we focus on advances in 4 main areas: (1) What are the MPN phenotypic driver mutations? (2) What constitutes high molecular risk in MPN (focusing on ASXL1)? (3) How do we risk-stratify patients with MPN? And (4) What is the significance of molecular genetics for MPN treatment? Although substantial progress has been made, we still have an incomplete understanding of the molecular basis for phenotypic diversity in MPN, and few rationally designed therapeutic approaches to target high-risk mutations are available. Ongoing research efforts in these areas are critical to understanding the biological consequences of genetic heterogeneity in MPN and to improving outcomes for patients.
Collapse
Affiliation(s)
- Michele Ciboddo
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA; and
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Università di Pavia, Pavia, Italy
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA; and
| |
Collapse
|
63
|
O'Sullivan J, Mead AJ. Heterogeneity in myeloproliferative neoplasms: Causes and consequences. Adv Biol Regul 2018; 71:55-68. [PMID: 30528537 DOI: 10.1016/j.jbior.2018.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 01/09/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are haematopoietic stem cell-derived clonal disorders characterised by proliferation of some or all myeloid lineages, depending on the subtype. MPNs are classically categorized into three disease subgroups; essential thrombocythaemia (ET), polycythaemia vera (PV) and primary myelofibrosis (PMF). The majority (>85%) of patients carry a disease-initiating or driver mutation, the most prevalent occurring in the janus kinase 2 gene (JAK2 V617F), followed by calreticulin (CALR) and myeloproliferative leukaemia virus (MPL) genes. Although these diseases are characterised by shared clinical, pathological and molecular features, one of the most challenging aspects of these disorders is the diverse clinical features which occur in each disease type, with marked variability in risks of disease complications and progression to leukaemia. A remarkable aspect of MPN biology is that the JAK2 V617F mutation, often occurring in the absence of additional mutations, generates a spectrum of phenotypes from asymptomatic ET through to aggressive MF, associated with a poor outcome. The mechanisms promoting MPN heterogeneity remain incompletely understood, but contributing factors are broad and include patient characteristics (gender, age, comorbidities and environmental exposures), additional somatic mutations, target disease-initiating cell, bone marrow microenvironment and germline genetic associations. In this review, we will address these in detail and discuss their role in heterogeneity of MPN disease phenotypes. Tailoring patient management according to the multiple different factors that influence disease phenotype may prove to be the most effective approach to modify the natural history of the disease and ultimately improve outcomes for patients.
Collapse
Affiliation(s)
- Jennifer O'Sullivan
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom.
| | - Adam J Mead
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom; NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| |
Collapse
|
64
|
Pronier E, Cifani P, Merlinsky TR, Berman KB, Somasundara AVH, Rampal RK, LaCava J, Wei KE, Pastore F, Maag JL, Park J, Koche R, Kentsis A, Levine RL. Targeting the CALR interactome in myeloproliferative neoplasms. JCI Insight 2018; 3:122703. [PMID: 30429377 DOI: 10.1172/jci.insight.122703] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023] Open
Abstract
Mutations in the ER chaperone calreticulin (CALR) are common in myeloproliferative neoplasm (MPN) patients, activate the thrombopoietin receptor (MPL), and mediate constitutive JAK/STAT signaling. The mechanisms by which CALR mutations cause myeloid transformation are incompletely defined. We used mass spectrometry proteomics to identify CALR-mutant interacting proteins. Mutant CALR caused mislocalization of binding partners and increased recruitment of FLI1, ERP57, and CALR to the MPL promoter to enhance transcription. Consistent with a critical role for CALR-mediated JAK/STAT activation, we confirmed the efficacy of JAK2 inhibition on CALR-mutant cells in vitro and in vivo. Due to the altered interactome induced by CALR mutations, we hypothesized that CALR-mutant MPNs may be vulnerable to disruption of aberrant CALR protein complexes. A synthetic peptide designed to competitively inhibit the carboxy terminal of CALR specifically abrogated MPL/JAK/STAT signaling in cell lines and primary samples and improved the efficacy of JAK kinase inhibitors. These findings reveal what to our knowledge is a novel potential therapeutic approach for patients with CALR-mutant MPN.
Collapse
Affiliation(s)
- Elodie Pronier
- Human Oncology and Pathogenesis Program.,Center for Epigenetics Research, and
| | - Paolo Cifani
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Tiffany R Merlinsky
- Human Oncology and Pathogenesis Program.,Center for Epigenetics Research, and
| | | | | | - Raajit K Rampal
- Human Oncology and Pathogenesis Program.,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Karen E Wei
- Human Oncology and Pathogenesis Program.,Center for Epigenetics Research, and
| | - Friederike Pastore
- Human Oncology and Pathogenesis Program.,Center for Epigenetics Research, and
| | | | - Jane Park
- Center for Epigenetics Research, and
| | | | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA.,Department of Pediatrics, Weill Cornell Medical College of Cornell University and Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program.,Center for Epigenetics Research, and.,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
65
|
Rare type 1-like and type 2-like calreticulin mutants induce similar myeloproliferative neoplasms as prevalent type 1 and 2 mutants in mice. Oncogene 2018; 38:1651-1660. [PMID: 30846848 DOI: 10.1038/s41388-018-0538-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/03/2018] [Accepted: 09/23/2018] [Indexed: 01/14/2023]
Abstract
Frameshift mutations in the calreticulin (CALR) gene are present in 30% of essential thrombocythemia and myelofibrosis patients. The two most frequent mutations are CALR del52 (type 1, approximately 60%) and CALR ins5 (type 2, around 30%), but many other rarer mutations exist accounting each for less than 2% of all CALR mutations. Most of them are structurally classified as type 1-like and type 2-like CALR mutations according to the absence or presence of a residual wild-type calcium-binding motif and the modification of the alpha-helix structure. Yet, several key questions remain unanswered, especially the reason of such low frequencies of these other mutations. In an attempt to investigate specific pathogenic differences between type 1-like and type 2-like CALR mutations and del52 and ins5, we modeled two type 1-like (del34 and del46) and one type 2-like (del19) mutations in cell lines and in mice. All CALR mutants constitutively activate JAK2 and STAT5/3/1 in a similar way in the presence of the thrombopoietin receptor (MPL) and induced cytokine-independent cell growth but to a lesser extent with rare mutants over time. This correlates with reduced expression levels of rare CALR mutants compared to del52 and ins5. Lethally irradiated mice that were engrafted with bone marrow transduced with the different CALR mutations developed thrombocytosis, but to a much lesser extent with ins5 and the type 2-like CALR mutation. In contrast to type 2-like mice, type 1-like mice developed marked myelofibrosis and splenomegaly 10 months after engraftment. Similar to del52, type 1-like CALR mutations induced an expansion at an early stage of hematopoiesis compared to ins5 and type 2-like mutation. Thus, type 1-like and type 2-like CALR mutants structurally and functionally resemble del52 and ins5 mutants, respectively.
Collapse
|
66
|
Alvarez-Larran A, Martínez D, Arenillas L, Rubio A, Arellano-Rodrigo E, Hernández Boluda JC, Papaleo N, Caballero G, Martínez C, Ferrer-Marín F, Mata MI, Pérez-Encinas M, Durán MA, Alonso JM, Carreño-Tarragona G, Alonso JM, Noya S, Magro E, Pérez R, López-Guerra M, Pastor-Galán I, Cervantes F, Besses C, Colomo L, Rozman M. Essential thrombocythaemia with mutation in MPL: clinicopathological correlation and comparison with JAK2V617F-mutated and CALR-mutated genotypes. J Clin Pathol 2018; 71:975-980. [PMID: 29934356 DOI: 10.1136/jclinpath-2018-205227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 01/08/2023]
Abstract
AIM To characterise the clinical and histological features of MPL-mutated essential thrombocythaemia (ET). PATIENTS AND METHODS Bone marrow biopsies of 175 patients with ET were centrally reviewed according to the 2016 WHO classification, including 42 cases with MPL mutation, 98 JAK2V617F-mutated and 35 CALR-mutated. Clinical and histological features were compared among the three genotypes included in the current 2016 WHO classification and among the different types of MPL mutations. RESULTS Patients with MPL-mutated ET were significantly older than those with the other genotypes. Haematological values at diagnosis were similar among MPL-mutated and CALR-mutated ET, with both genotypes showing higher platelet counts and lower haemoglobin values than ET with JAK2V617F genotype. In the bone marrow, the median number of megakaryocytes was higher in MPL and CALR than in JAK2V617F genotype (16, 19 and 14 megakaryocytes per ×20 power field, respectively, p=0.004). Histological features of prefibrotic myelofibrosis were rarely observed in MPL genotype, whereas sinusoidal hyperplasia, dense clusters of megakaryocytes and reticulin fibrosis were more frequent in CALR-mutated ET, with 11% of such cases fulfilling WHO 2016 histological criteria of prefibrotic myelofibrosis. With a median follow-up of 3.5 years, no significant differences were seen among genotypes regarding survival, vascular complications or myelofibrotic transformation. There were no significant differences in the clinical data or in the histological characteristics depending on the type of MPL mutation. CONCLUSION MPL and CALR ET genotypes share clinical and histological characteristics. In contrast to CALR genotype, features of prefibrotic myelofibrosis are uncommon in MPL-mutated ET.
Collapse
Affiliation(s)
| | - Daniel Martínez
- Pathology Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Leonor Arenillas
- Pathology Department-IMIM, Hospital del Mar, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Ariadna Rubio
- Hematology Department-IMIM, Hospital del Mar, Universitat Autónoma de Barcelona, Barcelona, Spain
| | | | | | - Natalia Papaleo
- Pathology Department-IMIM, Hospital del Mar, Universidad Autónoma de Barcelona, Barcelona, Spain
| | | | - Clara Martínez
- Hematology Department, Hospital Sant Pau, Barcelona, Spain
| | - Francisca Ferrer-Marín
- Hematology and Medical Oncology, Hospital Morales-Messeguer, CIBERER, UCAM, Murcia, Spain
| | - María Isabel Mata
- Hematology Department, Hospital de la Costa del Sol, Marbella, Spain
| | | | | | | | | | | | - Soledad Noya
- Hematology Department, Complexo Hospitalario, A Coruña, Spain
| | - Elena Magro
- Hematology Department, Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Raúl Pérez
- Hematology Department, Hospital Virgen de la Arrixaca, Murcia, Spain
| | | | | | | | - Carlos Besses
- Hematology Department-IMIM, Hospital del Mar, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Luis Colomo
- Pathology Department-IMIM, Hospital del Mar, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - María Rozman
- Pathology Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| |
Collapse
|
67
|
Arshad N, Cresswell P. Tumor-associated calreticulin variants functionally compromise the peptide loading complex and impair its recruitment of MHC-I. J Biol Chem 2018; 293:9555-9569. [PMID: 29769311 DOI: 10.1074/jbc.ra118.002836] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/10/2018] [Indexed: 12/22/2022] Open
Abstract
Major histocompatibility complex-I-β2m dimers (MHC-I) bind peptides derived from intracellular proteins, enabling the immune system to distinguish between normal cells and those expressing pathogen-derived or mutant proteins. The peptides bind to MHC-I in the endoplasmic reticulum (ER), and this binding is facilitated by the peptide loading complex (PLC), which contains calreticulin (CRT). CRT associates with MHC-I via a conserved glycan present on MHC-I and recruits it to the PLC for peptide binding. Somatic frameshift mutations in CRT (CRT-FS) drive the proliferation of a subset of myeloproliferative neoplasms, which are chronic blood tumors. All CRT-FS proteins have a C-terminal sequence lacking the normal ER-retention signal and possessing a net negative charge rather than the normal positive charge. We characterized the effect of CRT-FS on antigen presentation by MHC-I in human cells. Our results indicate that CRT-FS cannot mediate CRT's peptide loading function in the PLC. Cells lacking CRT exhibited reduced surface MHC-I levels, consistent with reduced binding of high-affinity peptides, and this was not reversed by CRT-FS expression. CRT-FS was secreted and not detectably associated with the PLC, leading to poor MHC-I recruitment, although CRT-FS could still associate with MHC-I in a glycan-dependent manner. The addition of an ER-retention sequence to CRT-FS restored its association with the PLC but did not rescue MHC-I recruitment or its surface expression, indicating that the CRT-FS mutants functionally compromise the PLC. MHC-I down-regulation permits tumor cells to evade immune surveillance, and these findings may therefore be relevant for designing effective immunotherapies for managing myeloproliferative neoplasms.
Collapse
Affiliation(s)
| | - Peter Cresswell
- From the Departments of Immunobiology and .,Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8011
| |
Collapse
|