51
|
Jia N, Wang J, Shi W, Du L, Sun Y, Zhan W, Jiang JF, Wang Q, Zhang B, Ji P, Bell-Sakyi L, Cui XM, Yuan TT, Jiang BG, Yang WF, Lam TTY, Chang QC, Ding SJ, Wang XJ, Zhu JG, Ruan XD, Zhao L, Wei JT, Ye RZ, Que TC, Du CH, Zhou YH, Cheng JX, Dai PF, Guo WB, Han XH, Huang EJ, Li LF, Wei W, Gao YC, Liu JZ, Shao HZ, Wang X, Wang CC, Yang TC, Huo QB, Li W, Chen HY, Chen SE, Zhou LG, Ni XB, Tian JH, Sheng Y, Liu T, Pan YS, Xia LY, Li J, Zhao F, Cao WC. Large-Scale Comparative Analyses of Tick Genomes Elucidate Their Genetic Diversity and Vector Capacities. Cell 2020; 182:1328-1340.e13. [PMID: 32814014 DOI: 10.1016/j.cell.2020.07.023] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/01/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
Among arthropod vectors, ticks transmit the most diverse human and animal pathogens, leading to an increasing number of new challenges worldwide. Here we sequenced and assembled high-quality genomes of six ixodid tick species and further resequenced 678 tick specimens to understand three key aspects of ticks: genetic diversity, population structure, and pathogen distribution. We explored the genetic basis common to ticks, including heme and hemoglobin digestion, iron metabolism, and reactive oxygen species, and unveiled for the first time that genetic structure and pathogen composition in different tick species are mainly shaped by ecological and geographic factors. We further identified species-specific determinants associated with different host ranges, life cycles, and distributions. The findings of this study are an invaluable resource for research and control of ticks and tick-borne diseases.
Collapse
Affiliation(s)
- Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China; Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, P.R. China
| | - Jinfeng Wang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, P.R. China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Wenqiang Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Lifeng Du
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, P.R. China; Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan 250012, Shandong, P.R. China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Wei Zhan
- Annoroad Gene Technology (Beijing) Company Limited, Beijing 100176, P.R. China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China; Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, P.R. China
| | - Qian Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China; Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan 250012, Shandong, P.R. China
| | - Bing Zhang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Peifeng Ji
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Ecological and Veterinary Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China; Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, P.R. China
| | - Ting-Ting Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Wei-Fei Yang
- Annoroad Gene Technology (Beijing) Company Limited, Beijing 100176, P.R. China
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - Qiao-Cheng Chang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, P.R. China
| | - Shu-Jun Ding
- Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Jinan 250014, Shandong, P.R. China
| | - Xian-Jun Wang
- Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Jinan 250014, Shandong, P.R. China
| | - Jin-Guo Zhu
- ManZhouLi Customs District, Manzhouli 021400, Inner Mongolia, P.R. China
| | - Xiang-Dong Ruan
- Academy of Forest Inventory and Planning, State Forestry and Grassland Administration, Beijing 100714, P.R. China
| | - Lin Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China; Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan 250012, Shandong, P.R. China
| | - Jia-Te Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China; Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan 250012, Shandong, P.R. China
| | - Run-Ze Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China; Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan 250012, Shandong, P.R. China
| | - Teng Cheng Que
- Guangxi Zhuang Autonomous Region Terrestrial Wildlife Medical-aid and Monitoring Epidemic Diseases Research Center, Nanjing 530028, Guangxi, P.R. China
| | - Chun-Hong Du
- Yunnan Institute for Endemic Diseases Control and Prevention, Dali 671000, Yunnan, P.R. China
| | - Yu-Hao Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Jing Xia Cheng
- Shanxi Provence Center for Disease Control and Prevention, Xian 030012, Shanxi, P.R. China
| | - Pei-Fang Dai
- Shanxi Provence Center for Disease Control and Prevention, Xian 030012, Shanxi, P.R. China
| | - Wen-Bin Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Xiao-Hu Han
- Shenyang Agriculture University, Shenyang 110866, Liaoning, P.R. China
| | - En-Jiong Huang
- Fuzhou International Travel Healthcare Center, Fuzhou 350001, Fujian, P.R. China
| | - Lian-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Wei Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Yu-Chi Gao
- Annoroad Gene Technology (Beijing) Company Limited, Beijing 100176, P.R. China
| | - Jing-Ze Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, P.R. China
| | - Hong-Ze Shao
- Animal Husbandry and Veterinary Science Research Institute of Jilin Province, Changchun 130062, Jilin, P.R. China
| | - Xin Wang
- Qingjiangpu District Center for Disease Control and Prevention, Huai'an 223001, Jiangsu, P.R. China
| | - Chong-Cai Wang
- Hainan International Travel Healthcare Center, Haikou 570311, Hainan, P.R. China
| | - Tian-Ci Yang
- State Key Lab of Mosquito-borne Diseases, Hangzhou International Tourism Healthcare Center, Hangzhou Customs of China, Hangzhou 310012, Zhejiang, P.R. China
| | - Qiu-Bo Huo
- Mudanjiang Forestry Central Hospital, Mudanjiang 157000, Heilongjiang, P.R. China
| | - Wei Li
- Xinjiang Center for Disease Control and Prevention, Urumqi 830002, Xinjiang, P.R. China
| | - Hai-Ying Chen
- Collaboration Unit for Field Epidemiology of the State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Center for Disease Control and Prevention. Nanchang 330038, Jiangxi, P.R. China
| | - Shen-En Chen
- Collaboration Unit for Field Epidemiology of the State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Center for Disease Control and Prevention. Nanchang 330038, Jiangxi, P.R. China
| | - Ling-Guo Zhou
- Shaanxi Natural Reserve and Wildlife Administration Station, Xi'an 710082, Shaanxi, P.R. China
| | - Xue-Bing Ni
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - Jun-Hua Tian
- Wuhan Center for Disease Control and Prevention, Wuhan 430015, Hubei, P.R. China
| | - Yue Sheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Tao Liu
- Annoroad Gene Technology (Beijing) Company Limited, Beijing 100176, P.R. China
| | - Yu-Sheng Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Luo-Yuan Xia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Jie Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Fangqing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, P.R. China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China; Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, P.R. China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, Yunan, P.R. China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, Zhejiang, P.R. China; University of the Chinese Academy of Sciences, Beijing 100049, P.R. China.
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China; Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan 250012, Shandong, P.R. China; Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, P.R. China.
| |
Collapse
|
52
|
Bozza MT, Jeney V. Pro-inflammatory Actions of Heme and Other Hemoglobin-Derived DAMPs. Front Immunol 2020; 11:1323. [PMID: 32695110 PMCID: PMC7339442 DOI: 10.3389/fimmu.2020.01323] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Damage associated molecular patterns (DAMPs) are endogenous molecules originate from damaged cells and tissues with the ability to trigger and/or modify innate immune responses. Upon hemolysis hemoglobin (Hb) is released from red blood cells (RBCs) to the circulation and give a rise to the production of different Hb redox states and heme which can act as DAMPs. Heme is the best characterized Hb-derived DAMP that targets different immune and non-immune cells. Heme is a chemoattractant, activates the complement system, modulates host defense mechanisms through the activation of innate immune receptors and the heme oxygenase-1/ferritin system, and induces innate immune memory. The contribution of oxidized Hb forms is much less studied, but some evidence show that these species might play distinct roles in intravascular hemolysis-associated pathologies independently of heme release. This review aims to summarize our current knowledge about the formation and pro-inflammatory actions of heme and other Hb-derived DAMPs.
Collapse
Affiliation(s)
- Marcelo T Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Viktória Jeney
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
53
|
Nader E, Romana M, Connes P. The Red Blood Cell-Inflammation Vicious Circle in Sickle Cell Disease. Front Immunol 2020; 11:454. [PMID: 32231672 PMCID: PMC7082402 DOI: 10.3389/fimmu.2020.00454] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/27/2020] [Indexed: 12/31/2022] Open
Abstract
Sickle cell disease (SCD) is a genetic disease caused by a single mutation in the β-globin gene, leading to the production of an abnormal hemoglobin called hemoglobin S (HbS), which polymerizes under deoxygenation, and induces the sickling of red blood cells (RBCs). Sickled RBCs are very fragile and rigid, and patients consequently become anemic and develop frequent and recurrent vaso-occlusive crises. However, it is now evident that SCD is not only a RBC rheological disease. Accumulating evidence shows that SCD is also characterized by the presence of chronic inflammation and oxidative stress, participating in the development of chronic vasculopathy and several chronic complications. The accumulation of hemoglobin and heme in the plasma, as a consequence of enhanced intravascular hemolysis, decreases nitric oxide bioavailability and enhances the production of reactive oxygen species (ROS). Heme and hemoglobin also represent erythrocytic danger-associated molecular pattern molecules (eDAMPs), which may activate endothelial inflammation through TLR-4 signaling and promote the development of complications, such as acute chest syndrome. It is also suspected that heme may activate the innate immune complement system and stimulate neutrophils to release neutrophil extracellular traps. A large amount of microparticles (MPs) from various cellular origins (platelets, RBCs, white blood cells, endothelial cells) is also released into the plasma of SCD patients and participate in the inflammation and oxidative stress in SCD. In turn, this pro-inflammatory and oxidative stress environment further alters the RBC properties. Increased pro-inflammatory cytokine concentrations promote the activation of RBC NADPH oxidase and, thus, raise the production of intra-erythrocyte ROS. Such enhanced oxidative stress causes deleterious damage to the RBC membrane and further alters the deformability of the cells, modifying their aggregation properties. These RBC rheological alterations have been shown to be associated to specific SCD complications, such as leg ulcers, priapism, and glomerulopathy. Moreover, RBCs positive for the Duffy antigen receptor for chemokines may be very sensitive to various inflammatory molecules that promote RBC dehydration and increase RBC adhesiveness to the vascular wall. In summary, SCD is characterized by a vicious circle between abnormal RBC rheology and inflammation, which modulates the clinical severity of patients.
Collapse
Affiliation(s)
- Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Marc Romana
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Université des Antilles, UMR_S1134, BIGR, Pointe-à-Pitre, France.,Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| |
Collapse
|
54
|
Abstract
Sepsis is a heterogeneous clinical syndrome that is complicated commonly by acute kidney injury (sepsis-AKI). Currently, no approved pharmacologic therapies exist to either prevent sepsis-AKI or to treat sepsis-AKI once it occurs. A growing body of evidence supports a connection between red blood cell biology and sepsis-AKI. Increased levels of circulating cell-free hemoglobin (CFH) released from red blood cells during hemolysis are common during sepsis and can contribute to sepsis-AKI through several mechanisms including tubular obstruction, nitric oxide depletion, oxidative injury, and proinflammatory signaling. A number of potential pharmacologic therapies targeting CFH in sepsis have been identified including haptoglobin, hemopexin, and acetaminophen, and early phase clinical trials have suggested that acetaminophen may have beneficial effects on lipid peroxidation and kidney function in patients with sepsis. Bedside measurement of CFH levels may facilitate predictive enrichment for future clinical trials of CFH-targeted therapeutics. However, rapid and reliable bedside tests for plasma CFH will be required for such trials to move forward.
Collapse
Affiliation(s)
- V Eric Kerchberger
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville TN.
| |
Collapse
|
55
|
Wang Y, Shi L, Ye Z, Guan K, Teng L, Wu J, Yin X, Song G, Zhang XB. Reactive Oxygen Correlated Chemiluminescent Imaging of a Semiconducting Polymer Nanoplatform for Monitoring Chemodynamic Therapy. NANO LETTERS 2020; 20:176-183. [PMID: 31777250 DOI: 10.1021/acs.nanolett.9b03556] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In chemodynamic therapy (CDT), real-time monitoring of reactive oxygen species (ROS) production is critical to reducing the nonspecific damage during CDT and feasibly evaluating the therapeutic response. However, CDT agents that can emit ROS-related signals are rare. Herein, we synthesize a semiconducting polymer nanoplatform (SPN) that can not only produce highly toxic ROS to kill cancer cells but also emit ROS-correlated chemiluminescent signals. Notably, the efficacy of both chemiluminescence and CDT can be significantly enhanced by hemin doping (∼10-fold enhancement for luminescent intensity). Such ROS-dependent chemiluminescence of SPN allows ROS generation within a tumor to be optically monitored during the CDT process. Importantly, SPN establishes an excellent correlation of chemiluminescence intensities with cancer inhibition rates in vitro and in vivo. Thus, our nanoplatform represents the first intelligent strategy that enables chemiluminescence-imaging-monitored CDT, which holds potential in assessing therapeutic responsivity and predicting treatment outcomes in early stages.
Collapse
Affiliation(s)
- Youjuan Wang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Linan Shi
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Zhifei Ye
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Kesong Guan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Lili Teng
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Jianghong Wu
- College of Health Science and Environmental Engineering , Shenzhen Technology University , Shenzhen , Guangdong 518118 , China
| | - Xia Yin
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| |
Collapse
|
56
|
van Hezel ME, Boshuizen M, Peters AL, Straat M, Vlaar AP, Spoelstra-de Man AME, Tanck MWT, Tool ATJ, Beuger BM, Kuijpers TW, Juffermans NP, van Bruggen R. Red blood cell transfusion results in adhesion of neutrophils in human endotoxemia and in critically ill patients with sepsis. Transfusion 2019; 60:294-302. [PMID: 31804732 PMCID: PMC7028139 DOI: 10.1111/trf.15613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/23/2019] [Accepted: 10/14/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND Red blood cell (RBC) transfusion is associated with adverse effects, which may involve activation of the host immune response. The effect of RBC transfusion on neutrophil Reactive Oxygen Species (ROS) production and adhesion ex vivo was investigated in endotoxemic volunteers and in critically ill patients that received a RBC transfusion. We hypothesized that RBC transfusion would cause neutrophil activation, the extent of which depends on the storage time and the inflammatory status of the recipient. STUDY DESIGN AND METHODS Volunteers were injected with lipopolysaccharide (LPS) and transfused with either saline, fresh, or stored autologous RBCs. In addition, 47 critically ill patients with and without sepsis receiving either fresh (<8 days) or standard stored RBC (2‐35 days) were included. Neutrophils from healthy volunteers were incubated with the plasma samples from the endotoxemic volunteers and from the critically ill patients, after which priming of neutrophil ROS production and adhesion were assessed. RESULTS In the endotoxemia model, ex vivo neutrophil adhesion, but not ROS production, was increased after transfusion, which was not affected by RBC storage duration. In the critically ill, ex vivo neutrophil ROS production was already increased prior to transfusion and was not increased following transfusion. Neutrophil adhesion was increased following transfusion, which was more notable in the septic patients than in non‐septic patients. Transfusion of fresh RBCs, but not standard issued RBCs, resulted in enhanced ROS production in neutrophils. CONCLUSION RBC transfusion was associated with increased neutrophil adhesion in a model of human endotoxemia as well as in critically ill patients with sepsis.
Collapse
Affiliation(s)
- Maike E van Hezel
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, The Netherlands.,Department of Intensive Care Medicine and Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Margit Boshuizen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, The Netherlands.,Department of Intensive Care Medicine and Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Anna L Peters
- Department of Anesthesiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M Straat
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Alexander P Vlaar
- Department of Intensive Care Medicine and Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | | | - Michael W T Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics (KEBB), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Anton T J Tool
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Boukje M Beuger
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, The Netherlands.,Department of Pediatric Hematology, Immunology & Infectious Disease, Emma Children's Hospital, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole P Juffermans
- Department of Intensive Care Medicine and Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
57
|
Seiwert N, Heylmann D, Hasselwander S, Fahrer J. Mechanism of colorectal carcinogenesis triggered by heme iron from red meat. Biochim Biophys Acta Rev Cancer 2019; 1873:188334. [PMID: 31783067 DOI: 10.1016/j.bbcan.2019.188334] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the major tumor entities worldwide, with an increasing incidence in younger people. CRC formation is causally linked to various genetic, life-style and dietary risk factors. Among the ladder, the consumption of red meat has emerged as important risk factor contributing to CRC. A large body of evidence shows that heme iron is the critical component of red meat, which promotes colorectal carcinogenesis. In this review, we describe the uptake and cellular fate of both heme and inorganic iron in intestinal epithelial cells. Next, an overview on the DNA damaging properties of heme iron is provided, highlighting the DNA adducts relevant for CRC etiology. Moreover, heme triggered mechanisms leading to colonic hyperproliferation are presented, which are intimately linked to changes in the intestinal microbiota induced by heme. A special focus was set on the impact of heme iron on innate and adaptive immune cells, which could be relevant in the context of CRC. Finally, we recapitulate in vivo studies providing evidence for the tumor-promoting potential of dietary heme iron. Altogether, heme iron affects numerous key pathways involved in the pathogenesis of CRC.
Collapse
Affiliation(s)
- Nina Seiwert
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany; Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany; Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Daniel Heylmann
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | | | - Jörg Fahrer
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany; Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany; Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| |
Collapse
|
58
|
Hemolysis Derived Products Toxicity and Endothelium: Model of the Second Hit. Toxins (Basel) 2019; 11:toxins11110660. [PMID: 31766155 PMCID: PMC6891750 DOI: 10.3390/toxins11110660] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
Vascular diseases are multifactorial, often requiring multiple challenges, or ‘hits’, for their initiation. Intra-vascular hemolysis illustrates well the multiple-hit theory where a first event lyses red blood cells, releasing hemolysis-derived products, in particular cell-free heme which is highly toxic for the endothelium. Physiologically, hemolysis derived-products are rapidly neutralized by numerous defense systems, including haptoglobin and hemopexin which scavenge hemoglobin and heme, respectively. Likewise, cellular defense mechanisms are involved, including heme-oxygenase 1 upregulation which metabolizes heme. However, in cases of intra-vascular hemolysis, those systems are overwhelmed. Heme exerts toxic effects by acting as a damage-associated molecular pattern and promoting, together with hemoglobin, nitric oxide scavenging and ROS production. In addition, it activates the complement and the coagulation systems. Together, these processes lead to endothelial cell injury which triggers pro-thrombotic and pro-inflammatory phenotypes. Moreover, among endothelial cells, glomerular ones display a particular susceptibility explained by a weaker capacity to counteract hemolysis injury. In this review, we illustrate the ‘multiple-hit’ theory through the example of intra-vascular hemolysis, with a particular focus on cell-free heme, and we advance hypotheses explaining the glomerular susceptibility observed in hemolytic diseases. Finally, we describe therapeutic options for reducing endothelial injury in hemolytic diseases.
Collapse
|
59
|
Dutta D, Aujla A, Knoll BM, Lim SH. Intestinal pathophysiological and microbial changes in sickle cell disease: Potential targets for therapeutic intervention. Br J Haematol 2019; 188:488-493. [PMID: 31693163 DOI: 10.1111/bjh.16273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a large therapeutic gap in the treatment of sickle cell disease (SCD). Recent studies demonstrated the presence of pathophysiological and microbial changes in the intestine of patients with SCD. The intestinal microbes have also been found to regulate neutrophil ageing and possible basal activation of circulating neutrophils. Both aged and activated neutrophils are pivotal for the pathogenesis of vaso-occlusive crisis in SCD. In this paper, we will provide an overview of the intestinal pathophysiological and microbial changes in SCD. Based on these changes, we will propose therapeutic approaches that could be investigated for treating SCD.
Collapse
Affiliation(s)
- Dibyendu Dutta
- Division of Hematology and Oncology, Department of Medicine, New York Medical College, Valhalla, NY, USA
| | - Amandeep Aujla
- Division of Hematology and Oncology, Department of Medicine, New York Medical College, Valhalla, NY, USA
| | - Bettina M Knoll
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY, USA
| | - Seah H Lim
- Division of Hematology and Oncology, Department of Medicine, New York Medical College, Valhalla, NY, USA.,Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
60
|
Kerchberger VE, Bastarache JA, Shaver CM, Nagata H, McNeil JB, Landstreet SR, Putz ND, Yu WK, Jesse J, Wickersham NE, Sidorova TN, Janz DR, Parikh CR, Siew ED, Ware LB. Haptoglobin-2 variant increases susceptibility to acute respiratory distress syndrome during sepsis. JCI Insight 2019; 4:131206. [PMID: 31573976 DOI: 10.1172/jci.insight.131206] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/20/2019] [Indexed: 01/15/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an inflammatory lung disorder that frequently complicates critical illness and commonly occurs in sepsis. Although numerous clinical and environmental risk factors exist, not all patients with risk factors develop ARDS, raising the possibility of genetic underpinnings for ARDS susceptibility. We have previously reported that circulating cell-free hemoglobin (CFH) is elevated during sepsis, and higher levels predict worse outcomes. Excess CFH is rapidly scavenged by haptoglobin (Hp). A common HP genetic variant, HP2, is unique to humans and is common in many populations worldwide. HP2 haptoglobin has reduced ability to inhibit CFH-mediated inflammation and oxidative stress compared with the alternative HP1. We hypothesized that HP2 increases ARDS susceptibility during sepsis when plasma CFH levels are elevated. In a murine model of sepsis with elevated CFH, transgenic mice homozygous for Hp2 had increased lung inflammation, pulmonary vascular permeability, lung apoptosis, and mortality compared with wild-type mice. We then tested the clinical relevance of our findings in 496 septic critically ill adults, finding that HP2 increased ARDS susceptibility after controlling for clinical risk factors and plasma CFH. These observations identify HP2 as a potentially novel genetic ARDS risk factor during sepsis and may have important implications in the study and treatment of ARDS.
Collapse
Affiliation(s)
- V Eric Kerchberger
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine.,Department of Biomedical Informatics
| | - Julie A Bastarache
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine.,Department of Cell and Developmental Biology, and.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ciara M Shaver
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - Hiromasa Nagata
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - J Brennan McNeil
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - Stuart R Landstreet
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - Nathan D Putz
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - Wen-Kuang Yu
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine.,Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jordan Jesse
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - Nancy E Wickersham
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - Tatiana N Sidorova
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - David R Janz
- Section of Pulmonary and Critical Care Medicine, Louisiana State University School of Medicine, New Orleans, Louisiana, USA
| | - Chirag R Parikh
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Edward D Siew
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
61
|
Rocco-Machado N, Cosentino-Gomes D, Nascimento MT, Paes-Vieira L, Khan YA, Mittra B, Andrews NW, Meyer-Fernandes JR. Leishmania amazonensis ferric iron reductase (LFR1) is a bifunctional enzyme: Unveiling a NADPH oxidase activity. Free Radic Biol Med 2019; 143:341-353. [PMID: 31446054 DOI: 10.1016/j.freeradbiomed.2019.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 01/26/2023]
Abstract
Leishmania amazonensis is one of leishmaniasis' causative agents, a disease that has no cure and leads to the appearance of cutaneous lesions. Recently, our group showed that heme activates a Na+/K+ ATPase in these parasites through a signaling cascade involving hydrogen peroxide (H2O2) generation. Heme has a pro-oxidant activity and signaling capacity, but the mechanism by which this molecule increases H2O2 levels in L. amazonensis has not been elucidated. Here we investigated the source of H2O2 stimulated by heme, ruling out the participation of mitochondria and raising the possibility of a role for a NADPH oxidase (Nox) activity. Despite the absence of a classical Nox sequence in trypanosomatid genomes, L. amazonensis expresses a surface ferric iron reductase (LFR1). Interestingly, Nox enzymes are thought to have evolved from ferric iron reductases because they share same core domain and are very similar in structure. The main difference is that Nox catalyses electron flow from NADPH to oxygen, generating reactive oxygen species (ROS), while ferric iron reductase promotes electron flow to ferric iron, generating ferrous iron. Using L. amazonensis overexpressing or knockout for LFR1 and heterologous expression of LFR1 in mammalian embryonic kidney (HEK 293) cells, we show that this enzyme is bifunctional, being able to generate both ferrous iron and H2O2. It was previously described that protozoans knockout for LFR1 have their differentiation to virulent forms (amastigote and metacyclic promastigote) impaired. In this work, we observed that LFR1 overexpression stimulates protozoan differentiation to amastigote forms, reinforcing the importance of this enzyme in L. amazonensis life cycle regulation. Thus, we not only identified a new source of ROS production in Leishmania, but also described, for the first time, an enzyme with both ferric iron reductase and Nox activities.
Collapse
Affiliation(s)
- N Rocco-Machado
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - D Cosentino-Gomes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of Chemistry, Department of Biochemistry, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - M T Nascimento
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - L Paes-Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Y A Khan
- Department of Cell Biology and Molecular Genetics, University of Maryland, 20742, College Park, MD, United States
| | - B Mittra
- Department of Cell Biology and Molecular Genetics, University of Maryland, 20742, College Park, MD, United States
| | - N W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, 20742, College Park, MD, United States
| | - J R Meyer-Fernandes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
62
|
Knackstedt SL, Georgiadou A, Apel F, Abu-Abed U, Moxon CA, Cunnington AJ, Raupach B, Cunningham D, Langhorne J, Krüger R, Barrera V, Harding SP, Berg A, Patel S, Otterdal K, Mordmüller B, Schwarzer E, Brinkmann V, Zychlinsky A, Amulic B. Neutrophil extracellular traps drive inflammatory pathogenesis in malaria. Sci Immunol 2019; 4:eaaw0336. [PMID: 31628160 PMCID: PMC6892640 DOI: 10.1126/sciimmunol.aaw0336] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 06/04/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Neutrophils are essential innate immune cells that extrude chromatin in the form of neutrophil extracellular traps (NETs) when they die. This form of cell death has potent immunostimulatory activity. We show that heme-induced NETs are essential for malaria pathogenesis. Using patient samples and a mouse model, we define two mechanisms of NET-mediated inflammation of the vasculature: activation of emergency granulopoiesis via granulocyte colony-stimulating factor production and induction of the endothelial cytoadhesion receptor intercellular adhesion molecule-1. Soluble NET components facilitate parasite sequestration and mediate tissue destruction. We demonstrate that neutrophils have a key role in malaria immunopathology and propose inhibition of NETs as a treatment strategy in vascular infections.
Collapse
Affiliation(s)
- Sebastian Lorenz Knackstedt
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany
| | | | - Falko Apel
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ulrike Abu-Abed
- Max Planck Institute for Infection Biology, Microscopy Core Facility, Charitéplatz 1, 10117 Berlin, Germany
| | - Christopher A Moxon
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK
| | | | - Bärbel Raupach
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany
| | | | - Jean Langhorne
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Renate Krüger
- Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Pneumology, Immunology and Intensive Care, Berlin, Germany
| | - Valentina Barrera
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Simon P Harding
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Aase Berg
- Stavanger University Hospital, Stavanger, Norway
| | - Sam Patel
- Maputo Central Hospital, Maputo, Mozambique
| | - Kari Otterdal
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Universität Tübingen, Institut für Tropenmedizin, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - Evelin Schwarzer
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126 Turin, Italy
| | - Volker Brinkmann
- Max Planck Institute for Infection Biology, Microscopy Core Facility, Charitéplatz 1, 10117 Berlin, Germany
| | - Arturo Zychlinsky
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Borko Amulic
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany.
- University of Bristol, School of Cellular and Molecular Medicine, Bristol BS8 1TD, UK
| |
Collapse
|
63
|
Griffiths S, Clark J, Adamides AA, Ziogas J. The role of haptoglobin and hemopexin in the prevention of delayed cerebral ischaemia after aneurysmal subarachnoid haemorrhage: a review of current literature. Neurosurg Rev 2019; 43:1273-1288. [PMID: 31493061 DOI: 10.1007/s10143-019-01169-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/23/2019] [Accepted: 08/26/2019] [Indexed: 01/01/2023]
Abstract
Delayed cerebral ischaemia (DCI) after aneurysmal subarachnoid haemorrhage (aSAH) is a major cause of mortality and morbidity. The pathophysiology of DCI after aSAH is thought to involve toxic mediators released from lysis of red blood cells within the subarachnoid space, including free haemoglobin and haem. Haptoglobin and hemopexin are endogenously produced acute phase proteins that are involved in the clearance of these toxic mediators. The aim of this review is to investigate the pathophysiological mechanisms involved in DCI and the role of both endogenous as well as exogenously administered haptoglobin and hemopexin in the prevention of DCI.
Collapse
Affiliation(s)
- Sean Griffiths
- Department of Neurosurgery, Royal Melbourne Hospital, 300 Grattan St, Parkville, 3050, Australia. .,Western Hospital, 160 Gordon St, Footscray, 3011, Australia.
| | - Jeremy Clark
- Department of Neurosurgery, Royal Melbourne Hospital, 300 Grattan St, Parkville, 3050, Australia
| | - Alexios A Adamides
- Department of Neurosurgery, Royal Melbourne Hospital, 300 Grattan St, Parkville, 3050, Australia
| | - James Ziogas
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, 3010, Australia
| |
Collapse
|
64
|
Van Avondt K, Nur E, Zeerleder S. Mechanisms of haemolysis-induced kidney injury. Nat Rev Nephrol 2019; 15:671-692. [PMID: 31455889 DOI: 10.1038/s41581-019-0181-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/16/2022]
Abstract
Intravascular haemolysis is a fundamental feature of chronic hereditary and acquired haemolytic anaemias, including those associated with haemoglobinopathies, complement disorders and infectious diseases such as malaria. Destabilization of red blood cells (RBCs) within the vasculature results in systemic inflammation, vasomotor dysfunction, thrombophilia and proliferative vasculopathy. The haemoprotein scavengers haptoglobin and haemopexin act to limit circulating levels of free haemoglobin, haem and iron - potentially toxic species that are released from injured RBCs. However, these adaptive defence systems can fail owing to ongoing intravascular disintegration of RBCs. Induction of the haem-degrading enzyme haem oxygenase 1 (HO1) - and potentially HO2 - represents a response to, and endogenous defence against, large amounts of cellular haem; however, this system can also become saturated. A frequent adverse consequence of massive and/or chronic haemolysis is kidney injury, which contributes to the morbidity and mortality of chronic haemolytic diseases. Intravascular destruction of RBCs and the resulting accumulation of haemoproteins can induce kidney injury via a number of mechanisms, including oxidative stress and cytotoxicity pathways, through the formation of intratubular casts and through direct as well as indirect proinflammatory effects, the latter via the activation of neutrophils and monocytes. Understanding of the detailed pathophysiology of haemolysis-induced kidney injury offers opportunities for the design and implementation of new therapeutic strategies to counteract the unfavourable and potentially fatal effects of haemolysis on the kidney.
Collapse
Affiliation(s)
- Kristof Van Avondt
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, Munich, Germany.
| | - Erfan Nur
- Department of Haematology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Haematology and Central Haematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland. .,Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
65
|
Thomas AM, Gerogianni A, McAdam MB, Fløisand Y, Lau C, Espevik T, Nilsson PH, Mollnes TE, Barratt-Due A. Complement Component C5 and TLR Molecule CD14 Mediate Heme-Induced Thromboinflammation in Human Blood. THE JOURNAL OF IMMUNOLOGY 2019; 203:1571-1578. [PMID: 31413105 DOI: 10.4049/jimmunol.1900047] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/14/2019] [Indexed: 12/25/2022]
Abstract
Heme is a critical danger molecule liberated from hemeproteins in various conditions, including from hemoglobin in hemolytic diseases. Heme may cause thromboinflammatory damage by activating inflammatory and hemostatic pathways, such as complement, the TLRs, coagulation, and platelets. In this study, we explored the effect of single and dual inhibition of complement component C5 and TLR coreceptor CD14 on heme-induced thromboinflammation in an ex vivo human whole blood model. Heme induced a dose-dependent activation of complement via the alternative pathway. Single inhibition of C5 by eculizumab attenuated the release of IL-6, IL-8, TNF, MCP-1, MIP-1α, IFN-γ, LTB-4, MMP-8 and -9, and IL-1Ra with more than 60% (p < 0.05 for all) reduced the upregulation of CD11b on granulocytes and monocytes by 59 and 40%, respectively (p < 0.05), and attenuated monocytic tissue factor expression by 33% (p < 0.001). Blocking CD14 attenuated IL-6 and TNF by more than 50% (p < 0.05). In contrast to single inhibition, combined C5 and CD14 was required for a significantly attenuated prothrombin cleavage (72%, p < 0.05). Markers of thromboinflammation were also quantified in two patients admitted to the hospital with sickle cell disease (SCD) crisis. Both SCD patients had pronounced hemolysis and depleted plasma hemopexin and haptoglobin. Plasma heme and complement activation was markedly increased in one patient, a coinciding observation as demonstrated ex vivo. In conclusion, heme-induced thromboinflammation was largely attenuated by C5 inhibition alone, with a beneficial effect of adding a CD14 inhibitor to attenuate prothrombin activation. Targeting C5 has the potential to reduce thromboinflammation in SCD crisis patients.
Collapse
Affiliation(s)
- Anub M Thomas
- Department of Immunology, Oslo University Hospital and K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway
| | - Alexandra Gerogianni
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, 391 82 Kalmar, Sweden
| | - Martin B McAdam
- Department of Immunology, Oslo University Hospital and K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway
| | - Yngvar Fløisand
- Department of Haematology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway
| | - Corinna Lau
- Research Laboratory, Nordland Hospital, 8092 Bodo, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital and K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway.,Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, 391 82 Kalmar, Sweden
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway.,Research Laboratory, Nordland Hospital, 8092 Bodo, Norway.,K.G. Jebsen Thrombosis Research and Expertise Centre, University of Tromso, 9037 Tromso, Norway; and
| | - Andreas Barratt-Due
- Department of Immunology, Oslo University Hospital and K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway; .,Division of Emergencies and Critical Care, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway
| |
Collapse
|
66
|
Wu B, Wu Y, Tang W. Heme Catabolic Pathway in Inflammation and Immune Disorders. Front Pharmacol 2019; 10:825. [PMID: 31396090 PMCID: PMC6667928 DOI: 10.3389/fphar.2019.00825] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
In recent years, the heme catabolic pathway is considered to play an important regulatory role in cell protection, apoptosis, inflammation, and other physiological and pathological processes. An appropriate amount of heme forms the basic elements of various life activities, while when released in large quantities, it can induce toxicity by mediating oxidative stress and inflammation. Heme oxygenase (HO) -1 can catabolize free heme into carbon monoxide (CO), ferrous iron, and biliverdin (BV)/bilirubin (BR). The diverse functions of these metabolites in immune systems are fascinating. Decades work shows that administration of degradation products of heme such as CO and BV/BR exerts protective activities in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS) and other immune disorders. This review elaborates the molecular and biochemical characterization of heme catabolic pathway, discusses the signal transduction and immunomodulatory mechanism in inflammation and summarizes the promising therapeutic strategies based on this pathway in inflammatory and immune disorders.
Collapse
Affiliation(s)
- Bing Wu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Yanwei Wu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Tang
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
67
|
The malaria toxin hemozoin induces apoptosis in human neurons and astrocytes: Potential role in the pathogenesis of cerebral malaria. Brain Res 2019; 1720:146317. [PMID: 31276637 DOI: 10.1016/j.brainres.2019.146317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/11/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
Malaria, caused by an intracellular protozoan parasite of the genus Plasmodium, is one of the most important infectious diseases worldwide. In 2017, a total of 219 millions cases were reported with 435,000 deaths related to malaria. A major complication of malaria infection is cerebral malaria (CM), characterized by enhanced blood-brain barrier permeability, leukocyte infiltration and/or activation, and neuronal dropout resulting in coma and death in significant numbers of individuals, especially children. Despite the high incidence and mortality, the pathogenesis of cerebral malaria is not well characterized. Hemozoin (HMZ) or "malaria pigment," a by-product of intraerythrocytic parasite-mediated hemoglobin catabolism, is released into the bloodstream after lysis of the host infected erythrocyte. The effects of HMZ on brain cells has not been studied due to the contamination/adhesion/aggregation of the HMZ with host and toxic parasitic factors. We now demonstrate that extracellular purified HMZ is taken up by human neurons and astrocytes, resulting in cellular dysfunction and toxicity. These findings contribute to a better understanding of the neuropathogenesis of CM and provide evidence that HMZ accumulation in the bloodstream could result in CNS compromise. Thus, alternative approaches to reducing circulating HMZ could serve as a potential treatment.
Collapse
|
68
|
Dufrusine B, Di Francesco A, Oddi S, Scipioni L, Angelucci CB, D'Addario C, Serafini M, Häfner AK, Steinhilber D, Maccarrone M, Dainese E. Iron-Dependent Trafficking of 5-Lipoxygenase and Impact on Human Macrophage Activation. Front Immunol 2019; 10:1347. [PMID: 31316498 PMCID: PMC6610208 DOI: 10.3389/fimmu.2019.01347] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/28/2019] [Indexed: 01/21/2023] Open
Abstract
5-lipoxygenase (5-LOX) is a non-heme iron-containing dioxygenase expressed in immune cells that catalyzes the two initial steps in the biosynthesis of leukotrienes. It is well known that 5-LOX activation in innate immunity cells is related to different iron-associated pro-inflammatory disorders, including cancer, neurodegenerative diseases, and atherosclerosis. However, the molecular and cellular mechanism(s) underlying the interplay between iron and 5-LOX activation are largely unexplored. In this study, we investigated whether iron (in the form of Fe3+ and hemin) might modulate 5-LOX influencing its membrane binding, subcellular distribution, and functional activity. We proved by fluorescence resonance energy transfer approach that metal removal from the recombinant human 5-LOX, not only altered the catalytic activity of the enzyme, but also impaired its membrane-binding. To ascertain whether iron can modulate the subcellular distribution of 5-LOX in immune cells, we exposed THP-1 macrophages and human primary macrophages to exogenous iron. Cells exposed to increasing amounts of Fe3+ showed a redistribution (ranging from ~45 to 75%) of the cytosolic 5-LOX to the nuclear fraction. Accordingly, confocal microscopy revealed that acute exposure to extracellular Fe3+, as well as hemin, caused an overt increase in the nuclear fluorescence of 5-LOX, accompanied by a co-localization with the 5-LOX activating protein (FLAP) both in THP-1 macrophages and human macrophages. The functional relevance of iron overloading was demonstrated by a marked induction of the expression of interleukin-6 in iron-treated macrophages. Importantly, pre-treatment of cells with the iron-chelating agent deferoxamine completely abolished the hemin-dependent translocation of 5-LOX to the nuclear fraction, and significantly reverted its effect on interleukin-6 overexpression. These results suggest that exogenous iron modulates the biological activity of 5-LOX in macrophages by increasing its ability to bind to nuclear membranes, further supporting a role for iron in inflammation-based diseases where its homeostasis is altered and suggesting further evidence of risks related to iron overload.
Collapse
Affiliation(s)
- Beatrice Dufrusine
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Andrea Di Francesco
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Sergio Oddi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy.,European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy
| | - Lucia Scipioni
- European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mauro Serafini
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Ann-Kathrin Häfner
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Mauro Maccarrone
- European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Enrico Dainese
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy.,European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
69
|
Glomerular Hematuria: Cause or Consequence of Renal Inflammation? Int J Mol Sci 2019; 20:ijms20092205. [PMID: 31060307 PMCID: PMC6539976 DOI: 10.3390/ijms20092205] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/21/2019] [Accepted: 04/28/2019] [Indexed: 12/12/2022] Open
Abstract
Glomerular hematuria is a cardinal symptom of renal disease. Glomerular hematuria may be classified as microhematuria or macrohematuria according to the number of red blood cells in urine. Recent evidence suggests a pathological role of persistent glomerular microhematuria in the progression of renal disease. Moreover, gross hematuria, or macrohematuria, promotes acute kidney injury (AKI), with subsequent impairment of renal function in a high proportion of patients. In this pathological context, hemoglobin, heme, or iron released from red blood cells in the urinary space may cause direct tubular cell injury, oxidative stress, pro-inflammatory cytokine production, and further monocyte/macrophage recruitment. The aim of this manuscript is to review the role of glomerular hematuria in kidney injury, the role of inflammation as cause and consequence of glomerular hematuria, and to discuss novel therapies to combat hematuria.
Collapse
|
70
|
Giuliani KTK, Kassianos AJ, Healy H, Gois PHF. Pigment Nephropathy: Novel Insights into Inflammasome-Mediated Pathogenesis. Int J Mol Sci 2019; 20:E1997. [PMID: 31018590 PMCID: PMC6514712 DOI: 10.3390/ijms20081997] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 01/05/2023] Open
Abstract
Pigment nephropathy is an acute decline in renal function following the deposition of endogenous haem-containing proteins in the kidneys. Haem pigments such as myoglobin and haemoglobin are filtered by glomeruli and absorbed by the proximal tubules. They cause renal vasoconstriction, tubular obstruction, increased oxidative stress and inflammation. Haem is associated with inflammation in sterile and infectious conditions, contributing to the pathogenesis of many disorders such as rhabdomyolysis and haemolytic diseases. In fact, haem appears to be a signalling molecule that is able to activate the inflammasome pathway. Recent studies highlight a pathogenic function for haem in triggering inflammatory responses through the activation of the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome. Among the inflammasome multiprotein complexes, the NLRP3 inflammasome has been the most widely characterized as a trigger of inflammatory caspases and the maturation of interleukin-18 and -1β. In the present review, we discuss the latest evidence on the importance of inflammasome-mediated inflammation in pigment nephropathy. Finally, we highlight the potential role of inflammasome inhibitors in the prophylaxis and treatment of pigment nephropathy.
Collapse
Affiliation(s)
- Kurt T K Giuliani
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029, Australia.
- Conjoint Kidney Research Laboratory, Chemical Pathology-Pathology Queensland, Brisbane, QLD 4029, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia.
| | - Andrew J Kassianos
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029, Australia.
- Conjoint Kidney Research Laboratory, Chemical Pathology-Pathology Queensland, Brisbane, QLD 4029, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia.
- Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia.
| | - Helen Healy
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029, Australia.
- Conjoint Kidney Research Laboratory, Chemical Pathology-Pathology Queensland, Brisbane, QLD 4029, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia.
| | - Pedro H F Gois
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029, Australia.
- Conjoint Kidney Research Laboratory, Chemical Pathology-Pathology Queensland, Brisbane, QLD 4029, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia.
| |
Collapse
|
71
|
P-selectin drives complement attack on endothelium during intravascular hemolysis in TLR-4/heme-dependent manner. Proc Natl Acad Sci U S A 2019; 116:6280-6285. [PMID: 30850533 DOI: 10.1073/pnas.1814797116] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hemolytic diseases are frequently linked to multiorgan failure subsequent to vascular damage. Deciphering the mechanisms leading to organ injury upon hemolytic event could bring out therapeutic approaches. Complement system activation occurs in hemolytic disorders, such as sickle cell disease, but the pathological relevance and the acquisition of a complement-activating phenotype during hemolysis remain unclear. Here we found that intravascular hemolysis, induced by injection of phenylhydrazine, resulted in increased alanine aminotransferase plasma levels and NGAL expression. This liver damage was at least in part complement-dependent, since it was attenuated in complement C3-/- mice and by injection of C5-blocking antibody. We evidenced C3 activation fragments' deposits on liver endothelium in mice with intravascular hemolysis or injected with heme as well as on cultured human endothelial cells (EC) exposed to heme. This process was mediated by TLR4 signaling, as revealed by pharmacological blockade and TLR4 deficiency in mice. Mechanistically, TLR4-dependent surface expression of P-selectin triggered an unconventional mechanism of complement activation by noncovalent anchoring of C3 activation fragments, including the typical fluid-phase C3(H2O), measured by surface plasmon resonance and flow cytometry. P-selectin blockade by an antibody prevented complement deposits and attenuated the liver stress response, measured by NGAL expression, in the hemolytic mice. In conclusion, these results revealed the critical impact of the triad TLR4/P-selectin/complement in the liver damage and its relevance for hemolytic diseases. We anticipate that blockade of TLR4, P-selectin, or the complement system could prevent liver injury in hemolytic diseases like sickle cell disease.
Collapse
|
72
|
Berger M, de Moraes JA, Beys-da-Silva WO, Santi L, Terraciano PB, Driemeier D, Cirne-Lima EO, Passos EP, Vieira MAR, Barja-Fidalgo TC, Guimarães JA. Renal and vascular effects of kallikrein inhibition in a model of Lonomia obliqua venom-induced acute kidney injury. PLoS Negl Trop Dis 2019; 13:e0007197. [PMID: 30763408 PMCID: PMC6392336 DOI: 10.1371/journal.pntd.0007197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 02/27/2019] [Accepted: 10/30/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Lonomia obliqua venom is nephrotoxic and acute kidney injury (AKI) is the main cause of death among envenomed victims. Mechanism underlying L. obliqua-induced AKI involves renal hypoperfusion, inflammation, tubular necrosis and loss of glomerular filtration and tubular reabsorption capacities. In the present study, we aimed to investigate the contribution of kallikrein to the hemodynamic instability, inflammation and consequent renal and vascular impairment. METHODOLOGY/PRINCIPAL FINDINGS Addition of L. obliqua venom to purified prekallikrein and human plasma in vitro or to vascular smooth muscle cells (VSMC) in culture, was able to generate kallikrein in a dose-dependent manner. Injected in rats, the venom induced AKI and increased kallikrein levels in plasma and kidney. Kallikrein inhibition by aprotinin prevented glomerular injury and the decrease in glomerular filtration rate, restoring fluid and electrolyte homeostasis. The mechanism underlying these effects was associated to lowering renal inflammation, with decrease in pro-inflammatory cytokines and matrix metalloproteinase expression, reduced tubular degeneration, and protection against oxidative stress. Supporting the key role of kallikrein, we demonstrated that aprotinin inhibited effects directly associated with vascular injury, such as the generation of intracellular reactive oxygen species (ROS) and migration of VSMC induced by L. obliqua venom or by diluted plasma obtained from envenomed rats. In addition, kallikrein inhibition also ameliorated venom-induced blood incoagulability and decreased kidney tissue factor expression. CONCLUSIONS/SIGNIFICANCE These data indicated that kallikrein and consequently kinin release have a key role in kidney injury and vascular remodeling. Thus, blocking kallikrein may be a therapeutic alternative to control the progression of venom-induced AKI and vascular disturbances.
Collapse
Affiliation(s)
- Markus Berger
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- * E-mail:
| | - João Alfredo de Moraes
- Laboratório de Biologia REDOX, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Cellular and Molecular Pharmacology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Walter Orlando Beys-da-Silva
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Lucélia Santi
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Paula Barros Terraciano
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - David Driemeier
- Departamento de Patologia Clínica Veterinária, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Elizabeth Obino Cirne-Lima
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Eduardo Pandolfi Passos
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Maria Aparecida Ribeiro Vieira
- Laboratório de Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Thereza Christina Barja-Fidalgo
- Laboratory of Cellular and Molecular Pharmacology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Jorge Almeida Guimarães
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular de Molecular (PPGBCM), Centro de Biotecnologia (Cbiot-UFRGS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
73
|
Sun G, Lu Y, Zhao L, Xia W, Zhang H, Wang L, Zhang L, Wen A. Hemin impairs resolution of inflammation via microRNA-144-3p-dependent downregulation of ALX/FPR2. Transfusion 2018; 59:196-206. [PMID: 30499593 DOI: 10.1111/trf.14991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 07/03/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND The pathomechanisms of complications due to blood transfusion are not fully understood. Elevated levels of heme derived from stored RBCs are thought to be associated with transfusion reactions, especially inflammatory responses. Recently, the proinflammatory effect of heme has been widely studied. However, it is still unknown whether heme can influence the resolution of inflammation, a key step of inflammatory response. STUDY DESIGN AND METHODS A murine model of self-limited peritonitis was used, and resolution was assessed by resolution indices. Western blot, quantitative reverse transcriptase polymerase chain reaction, chemotaxis assay, luciferase reporter assay, and lentivirus infections were used to investigate possible mediating mechanisms in neutrophils. RESULTS The administration of hemin by intraperitoneal injection significantly increased the leukocyte infiltration and prolonged the resolution interval by approximately 7 hours in mouse peritonitis. In vitro, hemin significantly downregulated ALX/FPR2 protein levels (p < 0.05), a key resolution receptor, leading to the suppression of proresolution responses triggered by the proresolution ligand resolvin D1. Subsequently, miR-144-3p, selected by prediction databases, was found to be significantly upregulated by hemin (p < 0.05). The inhibition of miR-144-3p attenuated the inhibitory effect of hemin on lipoxin A4 receptor (ALX)/formyl peptide receptor 2 (FPR2) protein expression (p < 0.05). Luciferase reporter assay confirmed that miR-144-3p directly bound ALX/FPR2 3'-UTR. MiR-144-3p overexpression significantly downregulated ALX/FPR2 protein levels, whereas miR-144-3p inhibition led to a significant increase in ALX/FPR2 (p < 0.05). CONCLUSION Our results suggest that hemin prolongs resolution in self-limited inflammation, and this action is associated with downregulation of ALX/FPR2 mediated by hemin-induced miR-144-3p. These findings demonstrate a novel mechanism of hemin derived from stored RBCs for inflammatory response.
Collapse
Affiliation(s)
- Guixiang Sun
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yao Lu
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lu Zhao
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wenjun Xia
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Han Zhang
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Linfeng Wang
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Linjing Zhang
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Aiqing Wen
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
74
|
Barikbin R, Berkhout L, Bolik J, Schmidt-Arras D, Ernst T, Ittrich H, Adam G, Parplys A, Casar C, Krech T, Karimi K, Sass G, Tiegs G. Early heme oxygenase 1 induction delays tumour initiation and enhances DNA damage repair in liver macrophages of Mdr2 -/- mice. Sci Rep 2018; 8:16238. [PMID: 30389969 PMCID: PMC6214975 DOI: 10.1038/s41598-018-33233-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/20/2018] [Indexed: 12/24/2022] Open
Abstract
Multi drug resistance protein 2 knockout mice (Mdr2-/-) are a mouse model of chronic liver inflammation and inflammation-induced tumour development. Here we investigated the kinetics of early heme oxygenase 1 (HO-1) induction on inflammation, tumour development, and DNA damage in Mdr2-/- mice. HO-1 was induced by intraperitoneal injection of cobalt protoporphyrin IX (CoPP) twice weekly for 9 consecutive weeks. Immediately after HO-1 induction, liver function improved and infiltration of CD4+ and CD8+ T cells was reduced. Furthermore, we observed increased p38 activation with concomitant reduction of Cyclin D1 expression in aged Mdr2-/- mice. Long-term effects of HO-1 induction included increased CD8+ T cell infiltration as well as delayed and reduced tumour growth in one-year-old animals. Unexpectedly, DNA double-strand breaks were detected predominantly in macrophages of 65-week-old Mdr2-/- mice, while DNA damage was reduced in response to early HO-1 induction in vivo and in vitro. Overall, early induction of HO-1 in Mdr2-/- mice had a beneficial short-term effect on liver function and reduced hepatic T cell accumulation. Long-term effects of early HO-1 induction were increased CD8+ T cell numbers, decreased proliferation as wells as reduced DNA damage in liver macrophages of aged animals, accompanied by delayed and reduced tumour growth.
Collapse
Affiliation(s)
- Roja Barikbin
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Berkhout
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Bolik
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dirk Schmidt-Arras
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Thomas Ernst
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Duisburg, Germany
| | - Harald Ittrich
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ann Parplys
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Casar
- Medical Clinics I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Khalil Karimi
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Gabriele Sass
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Infectious Diseases, California Institute for Medical Research, San Jose, CA, USA
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
75
|
Sundd P, Gladwin MT, Novelli EM. Pathophysiology of Sickle Cell Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:263-292. [PMID: 30332562 DOI: 10.1146/annurev-pathmechdis-012418-012838] [Citation(s) in RCA: 339] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the discovery of sickle cell disease (SCD) in 1910, enormous strides have been made in the elucidation of the pathogenesis of its protean complications, which has inspired recent advances in targeted molecular therapies. In SCD, a single amino acid substitution in the β-globin chain leads to polymerization of mutant hemoglobin S, impairing erythrocyte rheology and survival. Clinically, erythrocyte abnormalities in SCD manifest in hemolytic anemia and cycles of microvascular vaso-occlusion leading to end-organ ischemia-reperfusion injury and infarction. Vaso-occlusive events and intravascular hemolysis promote inflammation and redox instability that lead to progressive small- and large-vessel vasculopathy. Based on current evidence, the pathobiology of SCD is considered to be a vicious cycle of four major processes, all the subject of active study and novel therapeutic targeting: ( a) hemoglobin S polymerization, ( b) impaired biorheology and increased adhesion-mediated vaso-occlusion, ( c) hemolysis-mediated endothelial dysfunction, and ( d) concerted activation of sterile inflammation (Toll-like receptor 4- and inflammasome-dependent innate immune pathways). These molecular, cellular, and biophysical processes synergize to promote acute and chronic pain and end-organ injury and failure in SCD. This review provides an exhaustive overview of the current understanding of the molecular pathophysiology of SCD, how this pathophysiology contributes to complications of the central nervous and cardiopulmonary systems, and how this knowledge is being harnessed to develop current and potential therapies.
Collapse
Affiliation(s)
- Prithu Sundd
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA; .,Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Sickle Cell Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Mark T Gladwin
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA; .,Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Sickle Cell Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Enrico M Novelli
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Sickle Cell Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
76
|
Remy KE, Cortés-Puch I, Solomon SB, Sun J, Pockros BM, Feng J, Lertora JJ, Hantgan RR, Liu X, Perlegas A, Warren HS, Gladwin MT, Kim-Shapiro DB, Klein HG, Natanson C. Haptoglobin improves shock, lung injury, and survival in canine pneumonia. JCI Insight 2018; 3:123013. [PMID: 30232287 PMCID: PMC6237235 DOI: 10.1172/jci.insight.123013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/09/2018] [Indexed: 11/17/2022] Open
Abstract
During the last half-century, numerous antiinflammatory agents were tested in dozens of clinical trials and have proven ineffective for treating septic shock. The observation in multiple studies that cell-free hemoglobin (CFH) levels are elevated during clinical sepsis and that the degree of increase correlates with higher mortality suggests an alternative approach. Human haptoglobin binds CFH with high affinity and, therefore, can potentially reduce iron availability and oxidative activity. CFH levels are elevated over approximately 24-48 hours in our antibiotic-treated canine model of S. aureus pneumonia that simulates the cardiovascular abnormalities of human septic shock. In this 96-hour model, resuscitative treatments, mechanical ventilation, sedation, and continuous care are translatable to management in human intensive care units. We found, in this S. aureus pneumonia model inducing septic shock, that commercial human haptoglobin concentrate infusions over 48-hours bind canine CFH, increase CFH clearance, and lower circulating iron. Over the 96-hour study, this treatment was associated with an improved metabolic profile (pH, lactate), less lung injury, reversal of shock, and increased survival. Haptoglobin binding compartmentalized CFH to the intravascular space. This observation, in combination with increasing CFHs clearance, reduced available iron as a potential source of bacterial nutrition while decreasing the ability for CFH and iron to cause extravascular oxidative tissue injury. In contrast, haptoglobin therapy had no measurable antiinflammatory effect on elevations in proinflammatory C-reactive protein and cytokine levels. Haptoglobin therapy enhances normal host defense mechanisms in contrast to previously studied antiinflammatory sepsis therapies, making it a biologically plausible novel approach to treat septic shock.
Collapse
Affiliation(s)
- Kenneth E. Remy
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA.,Department of Pediatrics, Division of Critical Care, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Irene Cortés-Puch
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Steven B. Solomon
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Benjamin M. Pockros
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Jing Feng
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Juan J. Lertora
- Clinical Pharmacology Program, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Roy R. Hantgan
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Xiaohua Liu
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Andreas Perlegas
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, USA
| | - H. Shaw Warren
- Infectious Disease Unit, Massachusetts General Hospital, and Shriners Hospital for Crippled Children, Boston, Massachusetts, USA
| | - Mark T. Gladwin
- Department of Medicine, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Harvey G. Klein
- Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Charles Natanson
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| |
Collapse
|
77
|
Urdaneta J, Arroyo D, Mon C, Abadal J, Gálvez E, Ortiz M, Camacho R, Herrero JC. Acute hemolytic pancreatitis and hepatitis secondary to percutaneous pharmacomechanical thrombectomy of prosthetic vascular access for hemodialysis. Nefrologia 2018; 39:104-105. [PMID: 30119947 DOI: 10.1016/j.nefro.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/16/2018] [Indexed: 11/29/2022] Open
Affiliation(s)
- Jessica Urdaneta
- Servicio de Nefrología, Hospital Universitario Severo Ochoa, Leganés, Madrid, España
| | - David Arroyo
- Servicio de Nefrología, Hospital Universitario Severo Ochoa, Leganés, Madrid, España.
| | - Carmen Mon
- Servicio de Nefrología, Hospital Universitario Severo Ochoa, Leganés, Madrid, España
| | - José Abadal
- Servicio de Radiología, Hospital Universitario Severo Ochoa, Leganés, Madrid, España
| | - Esther Gálvez
- Servicio de Radiología, Hospital Universitario Severo Ochoa, Leganés, Madrid, España
| | - Milagros Ortiz
- Servicio de Nefrología, Hospital Universitario Severo Ochoa, Leganés, Madrid, España
| | - Rosa Camacho
- Servicio de Nefrología, Hospital Universitario Severo Ochoa, Leganés, Madrid, España
| | - Juan Carlos Herrero
- Servicio de Nefrología, Hospital Universitario Severo Ochoa, Leganés, Madrid, España
| |
Collapse
|
78
|
Abstract
PURPOSE OF REVIEW To review epidemiology and pathophysiology of acute kidney injury (AKI) in trauma patients and propose strategies that aim at preventing AKI after trauma. RECENT FINDINGS AKI in trauma patients has been reported to be as frequent as 50% with an association to a prolonged length of stay and a raise in mortality. Among the specific risk factors encountered in trauma patients, hemorrhagic shock, rhabdomyolysis severity, age, and comorbidities are independently associated with AKI occurrence. Resuscitation with balanced solutes seems to have beneficial effects on renal outcome compared with NaCl 0.9%, particularly in the context of rhabdomyolysis. However, randomized clinical studies are needed to confirm this signal. Abdominal compartment syndrome (ACS) is rare but has to be diagnosed to initiate a dedicated therapy. SUMMARY The high incidence of AKI in trauma patients should lead to early identification of those at risk of AKI to establish a resuscitation strategy that aims at preventing AKI.
Collapse
|
79
|
Vallelian F, Schaer CA, Deuel JW, Ingoglia G, Humar R, Buehler PW, Schaer DJ. Revisiting the putative role of heme as a trigger of inflammation. Pharmacol Res Perspect 2018; 6:e00392. [PMID: 29610666 PMCID: PMC5878102 DOI: 10.1002/prp2.392] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/11/2018] [Indexed: 12/23/2022] Open
Abstract
Activation of the innate immune system by free heme has been proposed as one of the principal consequences of cell‐free hemoglobin (Hb) exposure. Nonetheless, in the absence of infection, heme exposures within a hematoma, during hemolysis, or upon systemic administration of Hb (eg, as a Hb‐based oxygen carrier) are typically not accompanied by uncontrolled inflammation, challenging the assumption that heme is a major proinflammatory mediator in vivo. Because of its hydrophobic nature, heme liberated from oxidized hemoglobin is rapidly transferred to alternative protein‐binding sites (eg, albumin) or to hydrophobic lipid compartments minimizing protein‐free heme under in vivo equilibrium conditions. We demonstrate that the capacity of heme to activate human neutrophil granulocytes strictly depends on the availability of non protein‐associated heme. In human endothelial cells as well as in mouse macrophage cell cultures and in mouse models of local and systemic heme exposure, protein‐associated heme or Hb do not induce inflammatory gene expression over a broad range of exposure conditions. Only experiments in protein‐free culture medium demonstrated a weak capacity of heme‐solutions to induce toll‐like receptor‐(TLR4) dependent TNF‐alpha expression in macrophages. Our data suggests that the equilibrium‐state of free and protein‐associated heme critically determines the proinflammatory capacity of the metallo‐porphyrin. Based on these data it appears unlikely that inflammation‐promoting equilibrium conditions could ever occur in vivo.
Collapse
Affiliation(s)
| | | | - Jeremy W Deuel
- Division of Internal Medicine University of Zurich Zurich Switzerland
| | - Giada Ingoglia
- Division of Internal Medicine University of Zurich Zurich Switzerland
| | - Rok Humar
- Division of Internal Medicine University of Zurich Zurich Switzerland
| | - Paul W Buehler
- Center of Biologics Evaluation and Research (CBER) FDA Silver Spring MD USA
| | - Dominik J Schaer
- Division of Internal Medicine University of Zurich Zurich Switzerland
| |
Collapse
|
80
|
The potential adverse effects of haemolysis. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2018; 15:218-221. [PMID: 28518048 DOI: 10.2450/2017.0311-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/13/2016] [Indexed: 12/25/2022]
Abstract
Haemolysis occurs in many haematologic and non-haematologic diseases. Transfusion of packed red blood cells (pRBCs) can result in intravascular haemolysis, in which the RBCs are destroyed within the circulation, and extravascular haemolysis, in which RBCs are phagocytosed in the monocyte-macrophage system. This happens especially after RBCs have been stored under refrigerated conditions for long periods. The clinical implications and the relative contribution of intra- vs extra-vascular haemolysis are still a subject of debate. They have been associated with adverse effects in animal models, but it remains to be determined whether these may be involved in mediating adverse effects in humans.
Collapse
|
81
|
Remy KE, Hall MW, Cholette J, Juffermans NP, Nicol K, Doctor A, Blumberg N, Spinella PC, Norris PJ, Dahmer MK, Muszynski JA. Mechanisms of red blood cell transfusion-related immunomodulation. Transfusion 2018; 58:804-815. [PMID: 29383722 DOI: 10.1111/trf.14488] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/13/2017] [Accepted: 12/10/2017] [Indexed: 01/28/2023]
Abstract
Red blood cell (RBC) transfusion is common in critically ill, postsurgical, and posttrauma patients in whom both systemic inflammation and immune suppression are associated with adverse outcomes. RBC products contain a multitude of immunomodulatory mediators that interact with and alter immune cell function. These interactions can lead to both proinflammatory and immunosuppressive effects. Defining clinical outcomes related to immunomodulatory effects of RBCs in transfused patients remains a challenge, likely due to complex interactions between individual blood product characteristics and patient-specific risk factors. Unpacking these complexities requires an in-depth understanding of the mechanisms of immunomodulatory effects of RBC products. In this review, we outline and classify potential mediators of RBC transfusion-related immunomodulation and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Kenneth E Remy
- Department of Pediatrics, Division of Pediatric Critical Care, Washington University School of Medicine, St Louis, Missouri
| | - Mark W Hall
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, Ohio.,The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Jill Cholette
- Pediatric Critical Care and Cardiology, University of Rochester, Rochester, New York
| | - Nicole P Juffermans
- Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Kathleen Nicol
- Department of Pathology, Nationwide Children's Hospital, Columbus, Ohio
| | - Allan Doctor
- Department of Pediatrics, Division of Pediatric Critical Care, Washington University School of Medicine, St Louis, Missouri
| | - Neil Blumberg
- Transfusion Medicine/Blood Bank and Clinical Laboratories, Departments of Pathology and Laboratory Medicine, University of Rochester, Rochester, New York
| | - Philip C Spinella
- Department of Pediatrics, Division of Pediatric Critical Care, Washington University School of Medicine, St Louis, Missouri
| | - Philip J Norris
- Blood Systems Research Institute, San Francisco, California.,Departments of Laboratory Medicine and Medicine, University of California at San Francisco, San Francisco, California
| | - Mary K Dahmer
- Department of Pediatrics, Division of Pediatric Critical Care, University of Michigan, Ann Arbor, Michigan
| | - Jennifer A Muszynski
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, Ohio.,The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | | |
Collapse
|
82
|
Abstract
Damage-associated molecular patterns (DAMPs) or alarmins are endogenous danger signals that are derived from damaged cells and extracellular matrix degradation, capable of triggering innate immune response to promote tissue damage repair. Hemolytic or hemorrhagic episodes are often associated with inflammation, even when infectious agents are absent, suggesting that damaged red blood cells (RBCs) release DAMPs.Hemoglobin (Hb) composes 96% of the dry weight of RBCs; therefore upon hemolysis, tremendous amounts of Hb are released into the extracellular milieu. Hb oxidation occurs outside the protective environment of RBCs, leading to the formation of different Hb oxidation products and heme. Heme acts as a prototypic DAMP participating in toll-like receptor as well as intracellular nucleotide-binding oligomerization domain-like receptor signaling. Oxidized Hb forms also possess some inflammatory actions independently of their heme releasing capability. Non-Hb-derived DAMPs such as ATP, interleukin-33, heat shock protein 70, as well as RBC membrane-derived microparticles might also contribute to the innate immune response triggered by hemolysis/hemorrhage.In this chapter we will discuss the inflammatory properties of RBC-derived DAMPs with a particular focus on Hb derivatives, as well as therapeutic potential of the endogenous Hb and heme-binding proteins haptoglobin and hemopexin in the prevention of hemolysis/hemorrhage-associated inflammation.
Collapse
Affiliation(s)
- Viktória Jeney
- Faculty of Medicine, Department of Internal Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
83
|
Quintela-Carvalho G, Luz NF, Celes FS, Zanette DL, Andrade D, Menezes D, Tavares NM, Brodskyn CI, Prates DB, Gonçalves MS, de Oliveira CI, Almeida RP, Bozza MT, Andrade BB, Borges VM. Heme Drives Oxidative Stress-Associated Cell Death in Human Neutrophils Infected with Leishmania infantum. Front Immunol 2017; 8:1620. [PMID: 29218050 PMCID: PMC5703736 DOI: 10.3389/fimmu.2017.01620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/08/2017] [Indexed: 11/25/2022] Open
Abstract
Free heme is an inflammatory molecule capable of inducing migration and activation of neutrophils. Here, we examine the heme-driven oxidative stress-associated cell death mechanisms in human neutrophils infected with Leishmania infantum, an etiologic agent of visceral leishmaniasis (VL). We first performed exploratory analyses in a population of well characterized treatment-naïve VL patients as well as uninfected controls, who were part of previously reported studies. We noted a positive correlation between serum concentrations of heme with heme oxygenase-1 (HO-1) and lactate deydrogenase, as well as, a negative correlation between heme values and peripheral blood neutrophils counts. Moreover, in vitro infection with L. infantum in the presence of heme enhanced parasite burden in neutrophils, while increasing the production of reactive oxygen species and release of neutrophilic enzymes. Additional experiments demonstrated that treatment of infected neutrophils with ferrous iron (Fe+2), a key component of the heme molecule, resulted in increased parasite survival without affecting neutrophil activation status. Furthermore, stimulation of infected neutrophils with heme triggered substantial increases in HO-1 mRNA expression as well as in superoxide dismutase-1 enzymatic activity. Heme, but not Fe+2, induced oxidative stress-associated cell death. These findings indicate that heme promotes intracellular L. infantum survival via activation of neutrophil function and oxidative stress. This study opens new perspectives for the understanding of immunopathogenic mechanisms involving neutrophils in VL.
Collapse
Affiliation(s)
- Graziele Quintela-Carvalho
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia Baiano (IFBaiano), Santa Inês, Brazil
| | - Nívea F Luz
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Fabiana S Celes
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Dalila L Zanette
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Daniela Andrade
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Diego Menezes
- Instituto de Tecnologia e Pesquisa (ITP), Aracaju, Brazil
| | - Natália M Tavares
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Claudia I Brodskyn
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Deboraci B Prates
- Departamento de Biomorfologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Marilda S Gonçalves
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Camila I de Oliveira
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Roque P Almeida
- Departamento de Medicina, Hospital Universitário, Universidade Federal de Sergipe (UFS), Aracaju, Brazil
| | - Marcelo T Bozza
- Departamento de Imunologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno B Andrade
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil.,Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Valeria M Borges
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| |
Collapse
|
84
|
Gouveia Z, Carlos AR, Yuan X, Aires-da-Silva F, Stocker R, Maghzal GJ, Leal SS, Gomes CM, Todorovic S, Iranzo O, Ramos S, Santos AC, Hamza I, Gonçalves J, Soares MP. Characterization of plasma labile heme in hemolytic conditions. FEBS J 2017; 284:3278-3301. [PMID: 28783254 PMCID: PMC5978748 DOI: 10.1111/febs.14192] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/13/2017] [Accepted: 08/03/2017] [Indexed: 01/29/2023]
Abstract
Extracellular hemoglobin, a byproduct of hemolysis, can release its prosthetic heme groups upon oxidation. This produces metabolically active heme that is exchangeable between acceptor proteins, macromolecules and low molecular weight ligands, termed here labile heme. As it accumulates in plasma labile heme acts in a pro‐oxidant manner and regulates cellular metabolism while exerting pro‐inflammatory and cytotoxic effects that foster the pathogenesis of hemolytic diseases. Here, we developed and characterized a panel of heme‐specific single domain antibodies (sdAbs) that together with a cellular‐based heme reporter assay, allow for quantification and characterization of labile heme in plasma during hemolytic conditions. Using these approaches, we demonstrate that when generated during hemolytic conditions labile heme is bound to plasma molecules with an affinity higher than 10−7m and that 2–8% (~ 2–5 μm) of the total amount of heme detected in plasma can be internalized by bystander cells, termed here bioavailable heme. Acute, but not chronic, hemolysis is associated with transient reduction of plasma heme‐binding capacity, that is, the ability of plasma molecules to bind labile heme with an affinity higher than 10−7m. The heme‐specific sdAbs neutralize the pro‐oxidant activity of soluble heme in vitro, suggesting that these maybe used to counter the pathologic effects of labile heme during hemolytic conditions. Finally, we show that heme‐specific sdAbs can be used to visualize cellular heme. In conclusion, we describe a panel of heme‐specific sdAbs that when used with other approaches provide novel insights to the pathophysiology of heme.
Collapse
Affiliation(s)
| | - Ana R Carlos
- Instituto Gulbenkian da Ciência, Oeiras, Portugal
| | - Xiaojing Yuan
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Frederico Aires-da-Silva
- Technophage S.A., Lisboa, Portugal.,CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Portugal
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ghassan J Maghzal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sónia S Leal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cláudio M Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Olga Iranzo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Susana Ramos
- Instituto Gulbenkian da Ciência, Oeiras, Portugal
| | - Ana C Santos
- IMM, Faculdade Medicina, Universidade de Lisboa, Portugal.,CPM-URIA, Faculdade Farmácia, Universidade de Lisboa, Portugal
| | - Iqbal Hamza
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - João Gonçalves
- IMM, Faculdade Medicina, Universidade de Lisboa, Portugal.,CPM-URIA, Faculdade Farmácia, Universidade de Lisboa, Portugal
| | | |
Collapse
|
85
|
Guo Q, Duffy SP, Matthews K, Islamzada E, Ma H. Deformability based Cell Sorting using Microfluidic Ratchets Enabling Phenotypic Separation of Leukocytes Directly from Whole Blood. Sci Rep 2017; 7:6627. [PMID: 28747668 PMCID: PMC5529452 DOI: 10.1038/s41598-017-06865-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 06/20/2017] [Indexed: 12/25/2022] Open
Abstract
The separation of leukocytes from whole blood is a prerequisite for many biological assays. Traditional methods require significant sample volumes and are often undesirable because they expose leukocytes to harsh physical or chemical treatment. Existing microfluidic approaches can work with smaller volumes, but lack selectivity. In particular, the selectivity of microfluidic systems based on microfiltration is limited by fouling due to clogging. Here, we developed a method to separate leukocytes from whole blood using the microfluidic ratchet mechanism, which filters the blood sample using a matrix of micrometer-scale tapered constrictions. Deforming single cells through such constrictions requires directionally asymmetrical forces, which enables oscillatory flow to create a ratcheting transport that depends on cell size and deformability. Simultaneously, oscillatory flow continuously agitates the cells to limit the contact time with the filter microstructure to prevent adsorption and clogging. We show this device is capable of isolating leukocytes from whole blood with 100% purity (i.e. no contaminant erythrocytes) and <2% leukocytes loss. We further demonstrate the potential to phenotypically sort leukocytes to enrich for granulocytes and lymphocytes subpopulations. Together, this process provides a sensitive method to isolate and sort leukocytes directly from whole blood based on their biophysical properties.
Collapse
Affiliation(s)
- Quan Guo
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Simon P Duffy
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Kerryn Matthews
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Emel Islamzada
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Hongshen Ma
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
- Department of Urologic Science, University of British Columbia, Vancouver, BC, Canada.
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.
| |
Collapse
|
86
|
Ohbuchi A, Kono M, Kitagawa K, Takenokuchi M, Imoto S, Saigo K. Quantitative analysis of hemin-induced neutrophil extracellular trap formation and effects of hydrogen peroxide on this phenomenon. Biochem Biophys Rep 2017; 11:147-153. [PMID: 28955779 PMCID: PMC5614717 DOI: 10.1016/j.bbrep.2017.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Formation of neutrophil extracellular traps (NETs) can perpetuate sterile inflammation; thus, it is important to clarify their pathophysiological characteristics. Free heme, derived via hemolysis, is a major contributor to organ damage, and reportedly induces neutrophil activation as well as reactive oxygen species (ROS) production and NET formation. For this study, we examined hemin (Fe3+ -protoporphyrin IX)-induced NET formation quantitatively in vitro as well as the effects of oxidative stress. NETs formed in vitro from cultured neutrophils were quantitatively detected by using nuclease treatment and Sytox Green, a nucleic acid stain. Hemin-induced NET production was found to be in a dose-dependent manner, NADPH oxidase-dependent and toll-like receptor (TLR)-4 independent. Additionally, the iron molecule in the porphyrin ring was considered essential for the formation of NETs. In the presence of low concentrations of hydrogen peroxide, low concentrations of hemin-induced NETs were enhanced, unlike those of phorbol myristate acetate (PMA)-induced NETs. Quantitative analysis of NET formation may prove to be a useful tool for investigating NET physiology, and hemin could function as a possible therapeutic target for hemolysis-related events.
Collapse
Key Words
- DPI, diphenyleneiodonium
- ELISA, Enzyme-Linked Immuno-Sorbent Assay
- Extracellular trap
- HO-1, heme oxygenase-1
- Hemin
- Hydrogen peroxide
- LPS, lipopolysaccharide
- MPO, myeloperoxidase
- NADPH oxidase, nicotinamide adenine dinucleotide phosphate oxidase
- NET, neutrophil extracellular traps
- Neutrophil
- PAD4, peptidylarginine deiminases 4
- PMA, phorbol myristate acetate
- Quantitative detection
- ROS, reactive oxygen species
- TAK-242 (PubChem CID: 11703255)
- TLR, toll-like receptor
- diphenylene iodonium (PubChem CID: 3101)
- hemin (PubChem CID: 121225420)
- hydrogen peroxide (PubChem CID: 784)
- phorbol myristate acetate (PubChem CID: 22833501)
- polymyxin B (PubChem CID: 4868)
- protoporphyrin IX (PubChem CID: 4971)
- sytox green (PubChem CID: 46863923)
Collapse
Affiliation(s)
- Ayako Ohbuchi
- Faculty of Pharmacological Sciences, Himeji Dokkyo University, 7-2-1 Kamiono, Himeji, Hyogo 670-8524, Japan
| | - Mari Kono
- Scientific Research Division, Scientific Affairs, Sysmex Corporation, 1-3-2 Murotani, Nishi-ku, Kobe, Hyogo 651-2241, Japan
| | - Kaihei Kitagawa
- Faculty of Pharmacological Sciences, Himeji Dokkyo University, 7-2-1 Kamiono, Himeji, Hyogo 670-8524, Japan
| | - Mariko Takenokuchi
- Faculty of Pharmacological Sciences, Himeji Dokkyo University, 7-2-1 Kamiono, Himeji, Hyogo 670-8524, Japan
| | - Shion Imoto
- Department of Health Science, Kobe Tokiwa University, 2-6-2 Otani-cho, Nagata-ku, Kobe, Hyogo 653-0838, Japan
| | - Katsuyasu Saigo
- Faculty of Pharmacological Sciences, Himeji Dokkyo University, 7-2-1 Kamiono, Himeji, Hyogo 670-8524, Japan
- Corresponding author.
| |
Collapse
|
87
|
Abo El Gheit R, Emam MN. Targeting heme oxygenase-1 in early diabetic nephropathy in streptozotocin-induced diabetic rats. Physiol Int 2017; 103:413-427. [PMID: 28229631 DOI: 10.1556/2060.103.2016.4.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular diabetic complications. This study was designed to evaluate the possible protective effect and underlying mechanisms of HO-1 induction in streptozotocin (STZ)-induced early DN in rats. The diabetic rats were divided into three groups: STZ-diabetic, cobalt protoporphyrin (CoPP)-treated diabetic, and zinc protoporphyrin IX (ZnPP)-treated diabetic groups. Compared to the STZ-diabetic group, CoPP-induced HO-1 upregulation improved the diabetic state and renal functional parameters, suppressed the renal proinflammatory marker, NF-κB, abrogated the elevated renal hydroxyprolin, and decreased the enhanced renal nicotinamide adenine dinucleotide phosphate oxidase activity with parallel reduction of urinary oxidative stress markers. On the contrary, treatment with ZnPP abrogated HO-1 levels, aggravated the diabetic condition with further increases in renal oxidative stress, fibrotic and inflammatory markers, and exacerbated renal dysfunction in diabetic animals. These findings suggest that the reduced diabetic renal injury upon HO-1 induction implicates the role of HO-1 induction as a potential treatment for DN.
Collapse
Affiliation(s)
- R Abo El Gheit
- 1 Physiology Department, Faculty of Medicine, Tanta University , Tanta, Egypt
| | - M N Emam
- 1 Physiology Department, Faculty of Medicine, Tanta University , Tanta, Egypt
| |
Collapse
|
88
|
Sterkel M, Oliveira JHM, Bottino-Rojas V, Paiva-Silva GO, Oliveira PL. The Dose Makes the Poison: Nutritional Overload Determines the Life Traits of Blood-Feeding Arthropods. Trends Parasitol 2017; 33:633-644. [PMID: 28549573 DOI: 10.1016/j.pt.2017.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
Vertebrate blood composition is heavily biased towards proteins, and hemoglobin, which is a hemeprotein, is by far the most abundant protein. Typically, hematophagous insects ingest blood volumes several times their weight before the blood meal. This barbarian feast offers an abundance of nutrients, but the degradation of blood proteins generates toxic concentrations of amino acids and heme, along with unparalleled microbiota growth. Despite this challenge, hematophagous arthropods have successfully developed mechanisms that bypass the toxicity of these molecules. While these adaptations allow hematophagous arthropods to tolerate their diet, they also constitute a unique mode of operation for cell signaling, immunity, and metabolism, the study of which may offer insights into the biology of disease vectors and may lead to novel vector-specific control methods.
Collapse
Affiliation(s)
- Marcos Sterkel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Henrique M Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Vanessa Bottino-Rojas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil.
| |
Collapse
|
89
|
Guarda CCD, Santiago RP, Fiuza LM, Aleluia MM, Ferreira JRD, Figueiredo CVB, Yahouedehou SCMA, Oliveira RMD, Lyra IM, Gonçalves MDS. Heme-mediated cell activation: the inflammatory puzzle of sickle cell anemia. Expert Rev Hematol 2017; 10:533-541. [PMID: 28482712 DOI: 10.1080/17474086.2017.1327809] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Hemolysis triggers the onset of several clinical manifestations of sickle cell anemia (SCA). During hemolysis, heme, which is derived from hemoglobin (Hb), accumulates due to the inability of detoxification systems to scavenge sufficiently. Heme exerts multiple harmful effects, including leukocyte activation and migration, enhanced adhesion molecule expression by endothelial cells and the production of pro-oxidant molecules. Area covered: In this review, we describe the effects of heme on leukocytes and endothelial cells, as well as the features of vascular endothelial cells related to vaso-occlusion in SCA. Expert commentary: Free Hb, heme and iron, potent cytotoxic intravascular molecules released during hemolysis, can exacerbate, modulate and maintain the inflammatory response, a main feature of SCA. Endothelial cells in the vascular environment, as well as leukocytes, can become activated via the molecular signaling effects of heme. Due to the hemolytic nature of SCA, hemolysis represents an interesting therapeutic target for heme-scavenging purposes.
Collapse
Affiliation(s)
- Caroline Conceição da Guarda
- a Laboratório de Hematologia, Genética e Biologia Computacional , Instituto Gonçalo Moniz, FIOCRUZ , Salvador , Bahia , Brasil
| | - Rayra Pereira Santiago
- a Laboratório de Hematologia, Genética e Biologia Computacional , Instituto Gonçalo Moniz, FIOCRUZ , Salvador , Bahia , Brasil
| | - Luciana Magalhães Fiuza
- a Laboratório de Hematologia, Genética e Biologia Computacional , Instituto Gonçalo Moniz, FIOCRUZ , Salvador , Bahia , Brasil
| | - Milena Magalhães Aleluia
- a Laboratório de Hematologia, Genética e Biologia Computacional , Instituto Gonçalo Moniz, FIOCRUZ , Salvador , Bahia , Brasil
| | - Júnia Raquel Dutra Ferreira
- a Laboratório de Hematologia, Genética e Biologia Computacional , Instituto Gonçalo Moniz, FIOCRUZ , Salvador , Bahia , Brasil.,b Faculdade de Farmácia , Universidade Federal da Bahia , Salvador , Bahia , Brasil
| | - Camylla Vilas Boas Figueiredo
- a Laboratório de Hematologia, Genética e Biologia Computacional , Instituto Gonçalo Moniz, FIOCRUZ , Salvador , Bahia , Brasil
| | | | | | - Isa Menezes Lyra
- c Hematologia, Fundação de Hematologia e Hemoterapia do Estado da Bahia , Salvador , Bahia , Brasil
| | - Marilda de Souza Gonçalves
- a Laboratório de Hematologia, Genética e Biologia Computacional , Instituto Gonçalo Moniz, FIOCRUZ , Salvador , Bahia , Brasil.,b Faculdade de Farmácia , Universidade Federal da Bahia , Salvador , Bahia , Brasil
| |
Collapse
|
90
|
Li G, Xue H, Fan Z, Bai Y. Impact of heme on specific antibody production in mice: promotive, inhibitive or null outcome is determined by its concentration. Heliyon 2017; 3:e00303. [PMID: 28560357 PMCID: PMC5435615 DOI: 10.1016/j.heliyon.2017.e00303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/30/2017] [Accepted: 05/11/2017] [Indexed: 12/28/2022] Open
Abstract
Free heme is an endogenous danger signal that provokes innate immunity. Active innate immunity provides a precondition of an effective adaptive immune response. However, heme catabolites, CO, biliverdin and bilirubin trigger immunosuppression. Furthermore, free heme induces expression of heme oxygenase-1 to increase production of CO, biliverdin and bilirubin. As such, free heme can play a paradoxical role in adaptive immunity. What is the outcome of the animal immune response to an antigen in the presence of free heme? This question remains to be explored. Here, we report the immunization results of rats and mice after intraperitoneal injection of formulations containing BSA and heme. When the heme concentrations were below 1 μM, between 1 μM and 5 μM and above 5 μM, production of anti-BSA IgG and IgM was unaffected, enhanced and suppressed, respectively. The results suggest that heme can influence adaptive immunity by double concentration-thresholds. If the heme concentrations are less than the first threshold, there is no effect on adaptive immunity; if the concentrations are more than the first but less than the second threshold, there is promotion effect; and if the concentrations are more than the second threshold, there is an inhibitory effect. A hypothesis is also presented here to explain the mechanism.
Collapse
Affiliation(s)
- Guofu Li
- Experimental Training Center, Sun Yat-Sen University, Zhuhai, China, 519082
| | - Haiyan Xue
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China, 510275
| | - Zeng Fan
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China, 510275
| | - Yun Bai
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China, 510275
| |
Collapse
|
91
|
Jaworski FM, Gentilini LD, Gueron G, Meiss RP, Ortiz EG, Berguer PM, Ahmed A, Navone N, Rabinovich GA, Compagno D, Laderach DJ, Vazquez ES. In Vivo Hemin Conditioning Targets the Vascular and Immunologic Compartments and Restrains Prostate Tumor Development. Clin Cancer Res 2017; 23:5135-5148. [PMID: 28512172 DOI: 10.1158/1078-0432.ccr-17-0112] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/01/2017] [Accepted: 05/10/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Conditioning strategies constitute a relatively unexplored and exciting opportunity to shape tumor fate by targeting the tumor microenvironment. In this study, we assessed how hemin, a pharmacologic inducer of heme oxygenase-1 (HO-1), has an impact on prostate cancer development in an in vivo conditioning model.Experimental Design: The stroma of C57BL/6 mice was conditioned by subcutaneous administration of hemin prior to TRAMP-C1 tumor challenge. Complementary in vitro and in vivo assays were performed to evaluate hemin effect on both angiogenesis and the immune response. To gain clinical insight, we used prostate cancer patient-derived samples in our studies to assess the expression of HO-1 and other relevant genes.Results: Conditioning resulted in increased tumor latency and decreased initial growth rate. Histologic analysis of tumors grown in conditioned mice revealed impaired vascularization. Hemin-treated human umbilical vein endothelial cells (HUVEC) exhibited decreased tubulogenesis in vitro only in the presence of TRAMP-C1-conditioned media. Subcutaneous hemin conditioning hindered tumor-associated neovascularization in an in vivo Matrigel plug assay. In addition, hemin boosted CD8+ T-cell proliferation and degranulation in vitro and antigen-specific cytotoxicity in vivo A significant systemic increase in CD8+ T-cell frequency was observed in preconditioned tumor-bearing mice. Tumors from hemin-conditioned mice showed reduced expression of galectin-1 (Gal-1), key modulator of tumor angiogenesis and immunity, evidencing persistent remodeling of the microenvironment. We also found a subset of prostate cancer patient-derived xenografts and prostate cancer patient samples with mild HO-1 and low Gal-1 expression levels.Conclusions: These results highlight a novel function of a human-used drug as a means of boosting the antitumor response. Clin Cancer Res; 23(17); 5135-48. ©2017 AACR.
Collapse
Affiliation(s)
- Felipe M Jaworski
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales (FCEN), Departamento de Química Biológica (QB), Laboratorio de Inflamación y Cáncer, Buenos Aires, Argentina.,Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales (FCEN), Departamento de Química Biológica (QB), Laboratorio de Glico-Oncología Molecular y Funcional, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires (UBA), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Lucas D Gentilini
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales (FCEN), Departamento de Química Biológica (QB), Laboratorio de Glico-Oncología Molecular y Funcional, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires (UBA), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Geraldine Gueron
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales (FCEN), Departamento de Química Biológica (QB), Laboratorio de Inflamación y Cáncer, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires (UBA), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Roberto P Meiss
- Department of Pathology, Institute of Oncological Studies, National Academy of Medicine, Buenos Aires, Argentina
| | - Emiliano G Ortiz
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales (FCEN), Departamento de Química Biológica (QB), Laboratorio de Inflamación y Cáncer, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires (UBA), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Paula M Berguer
- Fundación Instituto Leloir (FIL) - IIBBA - CONICET, Buenos Aires, Argentina
| | - Asif Ahmed
- Aston Medical Research Institute, Aston Medical School, University of Aston, Birmingham, United Kingdom
| | - Nora Navone
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Daniel Compagno
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales (FCEN), Departamento de Química Biológica (QB), Laboratorio de Glico-Oncología Molecular y Funcional, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires (UBA), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Diego J Laderach
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales (FCEN), Departamento de Química Biológica (QB), Laboratorio de Glico-Oncología Molecular y Funcional, Buenos Aires, Argentina. .,CONICET - Universidad de Buenos Aires (UBA), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.,Departamento de Ciencias Básicas, Universidad Nacional de Luján, Buenos Aires, Argentina
| | - Elba S Vazquez
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales (FCEN), Departamento de Química Biológica (QB), Laboratorio de Inflamación y Cáncer, Buenos Aires, Argentina. .,CONICET - Universidad de Buenos Aires (UBA), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| |
Collapse
|
92
|
Jung JY, Kwak YH, Chang I, Kwon WY, Suh GJ, Choi D. Protective effect of hemopexin on systemic inflammation and acute lung injury in an endotoxemia model. J Surg Res 2017; 212:15-21. [DOI: 10.1016/j.jss.2016.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/21/2016] [Accepted: 12/21/2016] [Indexed: 01/17/2023]
|
93
|
Hilary S, Habib H, Souka U, Ibrahim W, Platat C. Bioactivity of arid region honey: an in vitro study. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:177. [PMID: 28356100 PMCID: PMC5371251 DOI: 10.1186/s12906-017-1664-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/07/2017] [Indexed: 12/12/2022]
Abstract
Background Antioxidant and anti-inflammatory properties of honey have been largely recognized by various studies. Almost all of the potential benefits are associated with polyphenol content. Honey varieties from the arid region are reported to be rich in polyphenols, but data related to its bioactivity in vitro is greatly lacking. This study aimed at establishing the antioxidant and anti-inflammatory properties of arid region honey. Four honey varieties from arid region (H1, H2, H3, and H4) and two popular non-arid region honey (H5 and H6) were tested in vitro in this study. Methods The erythrocyte membrane protection effect of honey varieties were measured by hemolysis assay after exposing erythrocytes to a peroxide generator. The subsequent production of MDA (malondialdehyde) content in erythrocytes was measured. Immunomodulatory effect of the honey varieties was tested in prostate cancer cells PC-3 and PBMC (peripheral blood mononuclear cells) by measuring the IL-6 (interleukin 6) and NO (nitric oxide) levels in cell culture supernatant after incubation with the honey varieties. PC-3 cell viability was assessed after incubation with honey varieties for 24 h. Results Arid region honey exhibited superior erythrocyte membrane protection effect with H4 measuring 1.3 ± 0.042mMTE/g and H2 measuring 1.122 ± 0.018mMTE/g. MDA levels were significantly reduced by honey samples, especially H4 (20.819 ± 0.63 nmol/mg protein). We observed a significant decrease in cell population in PC-3 after 24 h in culture on treatment with honey. A moderate increase in NO levels was observed in both cultures after 24 h at the same time levels of IL-6 were remarkably reduced by honey varieties. Conclusion The results demonstrate the antioxidant effect of arid region honey due to its erythrocyte membrane protection effect and subsequent lowering of oxidative damage as evident from lower levels of lipid peroxidation byproduct MDA. Arid region honey varieties were as good as non-arid region types at decreasing cell viability of prostate cancer cells. The moderate increase in NO levels in PC-3 and PBMCs were not significant enough to elicit any pro-inflammatory response. However, IL-6 secretion was remarkably reduced by all honey varieties in a comparable level indicating the potential anti-inflammatory property of arid region honey.
Collapse
|
94
|
Luks AM, Swenson ER, Bärtsch P. Acute high-altitude sickness. Eur Respir Rev 2017; 26:26/143/160096. [PMID: 28143879 PMCID: PMC9488514 DOI: 10.1183/16000617.0096-2016] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/23/2016] [Indexed: 12/28/2022] Open
Abstract
At any point 1–5 days following ascent to altitudes ≥2500 m, individuals are at risk of developing one of three forms of acute altitude illness: acute mountain sickness, a syndrome of nonspecific symptoms including headache, lassitude, dizziness and nausea; high-altitude cerebral oedema, a potentially fatal illness characterised by ataxia, decreased consciousness and characteristic changes on magnetic resonance imaging; and high-altitude pulmonary oedema, a noncardiogenic form of pulmonary oedema resulting from excessive hypoxic pulmonary vasoconstriction which can be fatal if not recognised and treated promptly. This review provides detailed information about each of these important clinical entities. After reviewing the clinical features, epidemiology and current understanding of the pathophysiology of each disorder, we describe the current pharmacological and nonpharmacological approaches to the prevention and treatment of these diseases. Lack of acclimatisation is the main risk factor for acute altitude illness; descent is the optimal treatmenthttp://ow.ly/45d2305JyZ0
Collapse
Affiliation(s)
- Andrew M Luks
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA
| | - Erik R Swenson
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA.,Medical Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Peter Bärtsch
- Dept of Internal Medicine, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
95
|
Forest S, Rapido F, Hod EA. Storage Lesion: Evolving Concepts and Controversies. Respir Med 2017. [DOI: 10.1007/978-3-319-41912-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
96
|
Whelihan MF, Lim MY, Mooberry MJ, Piegore MG, Ilich A, Wogu A, Cai J, Monroe DM, Ataga KI, Mann KG, Key NS. Thrombin generation and cell-dependent hypercoagulability in sickle cell disease. J Thromb Haemost 2016; 14:1941-1952. [PMID: 27430959 DOI: 10.1111/jth.13416] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Indexed: 02/03/2023]
Abstract
Essentials Sickle cell disease is increasingly being recognized as a chronic hypercoagulable state. Thrombin generation is elevated in the whole blood, but not the plasma of sickle cell patients. Whole blood thrombin generation inversely correlates to erythrocyte phosphatidylserine exposure. Acquired protein S deficiency is likely explained by binding of protein S to sickle red cells. Click to hear Dr Hillery discuss coagulation and vascular pathologies in mouse models of sickle cell disease. SUMMARY Introduction Sickle cell disease (SCD) is a hypercoagulable state with chronic activation of coagulation and an increased incidence of thromboembolic events. However, although plasma pre-thrombotic markers such as thrombin-anithrombin complexes and D-dimer are elevated, there is no consensus on whether global assays of thrombin generation in plasma are abnormal in patients with SCD. Based on our recent observation that normal red blood cells (RBCs) contribute to thrombin generation in whole blood, we hypothesized that the cellular components in blood (notably phosphatidylserine-expressing erythrocytes) contribute to enhanced thrombin generation in SCD. Methods Whole blood and plasma thrombin generation assays were performed on blood samples from 25 SCD patients in a non-crisis 'steady state' and 25 healthy race-matched controls. Results Whole blood thrombin generation was significantly elevated in SCD, whereas plasma thrombin generation was paradoxically reduced compared with controls. Surprisingly, whole blood and plasma thrombin generation were both negatively correlated with phosphatidylserine exposure on RBCs. Plasma thrombin generation in the presence of exogenous activated protein C or soluble thrombomodulin revealed deficiencies in the protein C/S anticoagulant pathway in SCD. These global changes were associated with significantly lower plasma protein S activity in SCD that correlated inversely with RBC phosphatidylserine exposure. Conclusion Increased RBC phosphatidylserine exposure in SCD is associated with acquired protein S deficiency. In addition, these data suggest a cellular contribution to thrombin generation in SCD (other than RBC phosphatidylserine exposure) that explains the elevated thrombin generation in whole blood.
Collapse
Affiliation(s)
| | - M Y Lim
- Department of Medicine, Chapel Hill, NC, USA
| | | | - M G Piegore
- Department of Medicine, Chapel Hill, NC, USA
| | - A Ilich
- Department of Medicine, Chapel Hill, NC, USA
| | - A Wogu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Cai
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - D M Monroe
- Department of Medicine, Chapel Hill, NC, USA
| | - K I Ataga
- Department of Medicine, Chapel Hill, NC, USA
| | - K G Mann
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - N S Key
- Department of Medicine, Chapel Hill, NC, USA.
- Department of Pathology and Laboratory Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
97
|
Mendonça R, Silveira AAA, Conran N. Red cell DAMPs and inflammation. Inflamm Res 2016; 65:665-78. [PMID: 27251171 DOI: 10.1007/s00011-016-0955-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/19/2016] [Accepted: 05/21/2016] [Indexed: 12/14/2022] Open
Abstract
Intravascular hemolysis, or the destruction of red blood cells in the circulation, can occur in numerous diseases, including the acquired hemolytic anemias, sickle cell disease and β-thalassemia, as well as during some transfusion reactions, preeclampsia and infections, such as those caused by malaria or Clostridium perfringens. Hemolysis results in the release of large quantities of red cell damage-associated molecular patterns (DAMPs) into the circulation, which, if not neutralized by innate protective mechanisms, have the potential to activate multiple inflammatory pathways. One of the major red cell DAMPs, heme, is able to activate converging inflammatory pathways, such as toll-like receptor signaling, neutrophil extracellular trap formation and inflammasome formation, suggesting that this DAMP both activates and amplifies inflammation. Other potent DAMPs that may be released by the erythrocytes upon their rupture include heat shock proteins (Hsp), such as Hsp70, interleukin-33 and Adenosine 5' triphosphate. As such, hemolysis represents a major inflammatory mechanism that potentially contributes to the clinical manifestations that have been associated with the hemolytic diseases, such as pulmonary hypertension and leg ulcers, and likely plays a role in specific complications of sickle cell disease such as endothelial activation, vaso-occlusive processes and tissue injury.
Collapse
Affiliation(s)
- Rafaela Mendonça
- Hematology Center, School of Medicine, University of Campinas-UNICAMP, Barão Geraldo, Campinas, Sao Paulo, 13083-970, Brazil
| | - Angélica A A Silveira
- Hematology Center, School of Medicine, University of Campinas-UNICAMP, Barão Geraldo, Campinas, Sao Paulo, 13083-970, Brazil
| | - Nicola Conran
- Hematology Center, School of Medicine, University of Campinas-UNICAMP, Barão Geraldo, Campinas, Sao Paulo, 13083-970, Brazil.
| |
Collapse
|
98
|
da Guarda CC, Santiago RP, Pitanga TN, Santana SS, Zanette DL, Borges VM, Goncalves MS. Heme changes HIF-α, eNOS and nitrite production in HUVECs after simvastatin, HU, and ascorbic acid therapies. Microvasc Res 2016; 106:128-36. [PMID: 27089822 DOI: 10.1016/j.mvr.2016.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/09/2016] [Accepted: 04/07/2016] [Indexed: 12/31/2022]
Abstract
The sickle cell disease (SCD) is a hemolytic genetic anemia characterized by free heme and hemoglobin release into intravascular spaces, with endothelial activation. Heme is a proinflammatory molecule able to directly activate vascular endothelium, thus, endothelial dysfunction and vascular disease are major chronic events described in SCD. The aim of this study was to evaluate the production of endothelial nitric oxide synthase (eNOS), nitrite and hypoxia inducible factor alpha (HIF-α) in HUVECs (human umbilical vein endothelial cells) activated by heme in response to simvastatin, hydroxyurea (HU), and ascorbic acid therapies. eNOS and HIF-α production were evaluated by ELISA and nitrite was measured by the Griess technique. The production of HIF-α increased when the cells were stimulated by heme (p<0.01), while treatment with HU and simvastatin reduced the production (p<0.01), and treatment with ascorbic acid increased HIF-1a production by the cells (p<0.01). Heme increased eNOS production, (p<0.01) but showed a heterogeneous pattern, and the lowest concentrations of all the treatments reduced the enzyme production (p<0.01). The nitrite production by HUVECs was enhanced by stimulation with heme (p<0.001) and was reduced by treatment with HU (p<0.001), ascorbic acid (p<0.001) and simvastatin (p<0.01). In summary, our results suggest that the hemolytic vascular microenvironment in SCD requires different therapeutic approaches to promote clinical improvement, and that a combination of therapies may be a viable strategy for treating patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marilda S Goncalves
- Centro de Pesquisa Gonçalo Moniz/FIOCRUZ, Salvador, Brazil; Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brazil.
| |
Collapse
|
99
|
Pitanga TN, Oliveira RR, Zanette DL, Guarda CC, Santiago RP, Santana SS, Nascimento VML, Lima JB, Carvalho GQ, Maffili VV, Carvalho MOS, Alcântara LCJ, Borges VM, Goncalves MS. Sickle red cells as danger signals on proinflammatory gene expression, leukotriene B4 and interleukin-1 beta production in peripheral blood mononuclear cell. Cytokine 2016; 83:75-84. [PMID: 27045344 DOI: 10.1016/j.cyto.2016.03.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/08/2016] [Accepted: 03/21/2016] [Indexed: 02/06/2023]
Abstract
This study tested the hypothesis that sickle red blood cell (SS-RBC) induce Toll-like receptors (TLR) and Nod-like receptor family, pyrin domain containing 3 (NLRP3)- inflammasome expression in peripheral blood mononuclear cells (PBMC). TLR and NLRP3 inflammasome could contribute to the maintenance of the inflammatory status in sickle cell anemia (SCA) patients, since SS-RBC act as danger signals activating these pathways. In this study, first, we evaluated TLR (2, 4, 5 and 9), NLRP3, Caspase-1, interleukin (IL)-1β and IL-18 expression in PBMC freshly isolated from SCA patients (SS-PBMC) in comparison with PBMC from healthy individuals (AA-PBMC). In the second moment, we investigated whether SS-RBC could interfere with the expression of these molecules in PBMC from healthy donor, in the absence or presence of hydroxyurea (HU) in vitro. TLRs and NLRP3 inflammasome expression were investigated by qPCR. IL-1β, Leukotriene-B4 (LTB4) and nitrite production were measured in PBMC (from healthy donor) culture supernatants. TLR2, TLR4, TLR5, NLRP3 and IL-1β were highly expressed in SS-PBMC when compared to AA-PBMC. Additionally, SS-RBC induced TLR9, NLRP3, Caspase-1, IL-1β and IL-18 expression and induced IL-1β, LTB4 and nitrite production in PBMC cultures. HU did not prevent TLR and NLRP3 inflammasome expression, but increased TLR2 and IL-18 expression and reduced nitrite production. In conclusion, our data suggest that TLR and inflammasome complexes may be key inducers of inflammation in SCA patients, probably through SS-RBC; also, HU does not prevent NLRP3 inflammasome- and TLR-dependent inflammation, indicating the need to develop new therapeutic strategies to SCA patients that act with different mechanisms of those observed for HU.
Collapse
Affiliation(s)
- Thassila N Pitanga
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil; Instituto de Ciências da Saúde (ICS), Universidade Federal da Bahia (UFBA), 40110902 Salvador, Bahia, Brazil
| | - Ricardo R Oliveira
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil
| | - Dalila L Zanette
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil
| | - Caroline C Guarda
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil
| | - Rayra P Santiago
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil
| | - Sanzio S Santana
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil
| | - Valma M L Nascimento
- Fundação de Hematologia e Hemoterapia da Bahia (HEMOBA), 40286240 Salvador, Bahia, Brazil
| | - Jonilson B Lima
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil
| | - Graziele Q Carvalho
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil
| | - Vitor V Maffili
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil
| | - Magda O S Carvalho
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil; Hospital Universitário Professor Edgard Santos (HUPES), UFBA, 40110060 Salvador, Bahia, Brazil
| | - Luiz C J Alcântara
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil
| | - Valéria M Borges
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil
| | - Marilda S Goncalves
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil; Faculdade de Farmácia, UFBA, 40170115 Salvador, Bahia, Brazil.
| |
Collapse
|
100
|
Roumenina LT, Rayes J, Lacroix-Desmazes S, Dimitrov JD. Heme: Modulator of Plasma Systems in Hemolytic Diseases. Trends Mol Med 2016; 22:200-213. [PMID: 26875449 DOI: 10.1016/j.molmed.2016.01.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/15/2022]
Abstract
Hemolytic diseases such as sickle-cell disease, β-thalassemia, malaria, and autoimmune hemolytic anemia continue to present serious clinical hurdles. In these diseases, lysis of erythrocytes causes the release of hemoglobin and heme into plasma. Extracellular heme has strong proinflammatory potential and activates immune cells and endothelium, thus contributing to disease pathogenesis. Recent studies have revealed that heme can interfere with the function of plasma effector systems such as the coagulation and complement cascades, in addition to the activity of immunoglobulins. Any perturbation in such functions may have severe pathological consequences. In this review we analyze heme interactions with coagulation, complement, and immunoglobulins. Deciphering such interactions to better understand the complex pathogenesis of hemolytic diseases is pivotal.
Collapse
Affiliation(s)
- Lubka T Roumenina
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, Unité Mixte de Recherche en Santé (UMRS 1138), Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F75006 Paris, France.
| | - Julie Rayes
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Sébastien Lacroix-Desmazes
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, Unité Mixte de Recherche en Santé (UMRS 1138), Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F75006 Paris, France
| | - Jordan D Dimitrov
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, Unité Mixte de Recherche en Santé (UMRS 1138), Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F75006 Paris, France.
| |
Collapse
|