51
|
Dalgetty M, Leurinda C, Cortes J. A comparative safety review of targeted therapies for acute myeloid leukemia. Expert Opin Drug Saf 2023; 22:1225-1236. [PMID: 38014918 DOI: 10.1080/14740338.2023.2289176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/26/2023] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) treatment has primarily focused on 7 + 3 chemotherapy, but in the last decade there has been a significant increase in new therapies, mostly targeted agents, approved for the treatment of AML. We performed a comparative analysis of the unique safety profile of each of these new agents. AREAS COVERED We conducted a review of the current literature on public databases (PubMed, ClinicalTrials.gov, and U.S. Food and Drug Administration) regarding new AML drugs that were approved from 2017 to 2023. EXPERT OPINION The diagnosis of AML typically carries a poor prognosis but with an increase in the number of drugs that are now available, patients' outcomes are improving. With novel mechanisms of action, the use of these agents introduces different safety profiles, occasionally with adverse events not previously seen with standard chemotherapy or at different frequencies. An understanding of the drugs available and the safety concerns associated with each one is crucial to selecting the best available option for each patient, and early recognition and appropriate management of drug-related adverse effects.
Collapse
Affiliation(s)
- Mark Dalgetty
- Department of Hematology/Oncology, Medical College of Georgia, Augusta, Georgia, USA
| | - Christian Leurinda
- Department of Hematology/Oncology, Medical College of Georgia, Augusta, Georgia, USA
| | - Jorge Cortes
- Department of Hematology/Oncology, Medical College of Georgia, Augusta, Georgia, USA
- Department of Hematology/Oncology, Georgia Cancer Center, Augusta, Georgia, USA
| |
Collapse
|
52
|
Haage TR, Schraven B, Mougiakakos D, Fischer T. How ITD Insertion Sites Orchestrate the Biology and Disease of FLT3-ITD-Mutated Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:cancers15112991. [PMID: 37296951 DOI: 10.3390/cancers15112991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Mutations of the FLT3 gene are among the most common genetic aberrations detected in AML and occur mainly as internal tandem duplications (FLT3-ITD). However, the specific sites of FLT3-ITD insertion within FLT3 show marked heterogeneity regarding both biological and clinical features. In contrast to the common assumption that ITD insertion sites (IS) are restricted to the juxtamembrane domain (JMD) of FLT3, 30% of FLT3-ITD mutations insert at the non-JMD level, thereby integrating into various segments of the tyrosine kinase subdomain 1 (TKD1). ITDs inserted within TKD1 have been shown to be associated with inferior complete remission rates as well as shorter relapse-free and overall survival. Furthermore, resistance to chemotherapy and tyrosine kinase inhibition (TKI) is linked to non-JMD IS. Although FLT3-ITD mutations in general are already recognized as a negative prognostic marker in currently used risk stratification guidelines, the even worse prognostic impact of non-JMD-inserting FLT3-ITD has not yet been particularly considered. Recently, the molecular and biological assessment of TKI resistance highlighted the pivotal role of activated WEE1 kinase in non-JMD-inserting ITDs. Overcoming therapy resistance in non-JMD FLT3-ITD-mutated AML may lead to more effective genotype- and patient-specific treatment approaches.
Collapse
Affiliation(s)
- Tobias R Haage
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Burkhart Schraven
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center of Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39106 Magdeburg, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Thomas Fischer
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
53
|
Ge SS, Qiu QC, Dai HP, Shen XD, Wu TM, Du JH, Wan CL, Shen HJ, Wu DP, Xue SL, Liu SB. Mutation spectrum of FLT3 and significance of non-canonical FLT3 mutations in haematological malignancy. Br J Haematol 2023. [PMID: 37246158 DOI: 10.1111/bjh.18877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
Fms-like tyrosine kinase 3 (FLT3) is frequently mutated in haematological malignancies. Although canonical FLT3 mutations including internal tandem duplications (ITDs) and tyrosine kinase domains (TKDs) have been extensively studied, little is known about the clinical significance of non-canonical FLT3 mutations. Here, we first profiled the spectrum of FLT3 mutations in 869 consecutively newly diagnosed acute myeloid leukaemia (AML), myelodysplastic syndrome and acute lymphoblastic leukaemia patients. Our results showed four types of non-canonical FLT3 mutations depending on the affected protein structure: namely non-canonical point mutations (NCPMs) (19.2%), deletion (0.7%), frameshift (0.8%) and ITD outside the juxtamembrane domain (JMD) and TKD1 regions (0.5%). Furthermore, we found that the survival of patients with high-frequency (>1%) FLT3-NCPM in AML was comparable to those with canonical TKD. In vitro studies using seven representative FLT3-deletion or frameshift mutant constructs showed that the deletion mutants of TKD1 and the FLT3-ITD mutant of TKD2 had significantly higher kinase activity than wild-type FLT3, whereas the deletion mutants of JMD had phosphorylation levels comparable with wild-type FLT3. All tested deletion mutations and ITD were sensitive to AC220 and sorafenib. Collectively, these data enrich our understanding of FLT3 non-canonical mutations in haematological malignancies. Our results may also facilitate prognostic stratification and targeted therapy of AML with FLT3 non-canonical mutations.
Collapse
Affiliation(s)
- Shuai-Shuai Ge
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Qiao-Cheng Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiang-Dong Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Tian-Mei Wu
- Gusu District Maternal and Child Health Center, Suzhou, China
| | - Jia-Hui Du
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Chao-Ling Wan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hong-Jie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - De-Pei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| |
Collapse
|
54
|
Guijarro F, Garrote M, Villamor N, Colomer D, Esteve J, López-Guerra M. Novel Tools for Diagnosis and Monitoring of AML. Curr Oncol 2023; 30:5201-5213. [PMID: 37366878 DOI: 10.3390/curroncol30060395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
In recent years, major advances in the understanding of acute myeloid leukemia (AML) pathogenesis, together with technological progress, have led us into a new era in the diagnosis and follow-up of patients with AML. A combination of immunophenotyping, cytogenetic and molecular studies are required for AML diagnosis, including the use of next-generation sequencing (NGS) gene panels to screen all genetic alterations with diagnostic, prognostic and/or therapeutic value. Regarding AML monitoring, multiparametric flow cytometry and quantitative PCR/RT-PCR are currently the most implemented methodologies for measurable residual disease (MRD) evaluation. Given the limitations of these techniques, there is an urgent need to incorporate new tools for MRD monitoring, such as NGS and digital PCR. This review aims to provide an overview of the different technologies used for AML diagnosis and MRD monitoring and to highlight the limitations and challenges of current versus emerging tools.
Collapse
Affiliation(s)
- Francesca Guijarro
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Marta Garrote
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Neus Villamor
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Dolors Colomer
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Jordi Esteve
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Hematology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Mónica López-Guerra
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
55
|
Eckardt JN, Röllig C, Metzeler K, Heisig P, Stasik S, Georgi JA, Kroschinsky F, Stölzel F, Platzbecker U, Spiekermann K, Krug U, Braess J, Görlich D, Sauerland C, Woermann B, Herold T, Hiddemann W, Müller-Tidow C, Serve H, Baldus CD, Schäfer-Eckart K, Kaufmann M, Krause SW, Hänel M, Berdel WE, Schliemann C, Mayer J, Hanoun M, Schetelig J, Wendt K, Bornhäuser M, Thiede C, Middeke JM. Unsupervised meta-clustering identifies risk clusters in acute myeloid leukemia based on clinical and genetic profiles. COMMUNICATIONS MEDICINE 2023; 3:68. [PMID: 37198246 DOI: 10.1038/s43856-023-00298-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Increasingly large and complex biomedical data sets challenge conventional hypothesis-driven analytical approaches, however, data-driven unsupervised learning can detect inherent patterns in such data sets. METHODS While unsupervised analysis in the medical literature commonly only utilizes a single clustering algorithm for a given data set, we developed a large-scale model with 605 different combinations of target dimensionalities as well as transformation and clustering algorithms and subsequent meta-clustering of individual results. With this model, we investigated a large cohort of 1383 patients from 59 centers in Germany with newly diagnosed acute myeloid leukemia for whom 212 clinical, laboratory, cytogenetic and molecular genetic parameters were available. RESULTS Unsupervised learning identifies four distinct patient clusters, and statistical analysis shows significant differences in rate of complete remissions, event-free, relapse-free and overall survival between the four clusters. In comparison to the standard-of-care hypothesis-driven European Leukemia Net (ELN2017) risk stratification model, we find all three ELN2017 risk categories being represented in all four clusters in varying proportions indicating unappreciated complexity of AML biology in current established risk stratification models. Further, by using assigned clusters as labels we subsequently train a supervised model to validate cluster assignments on a large external multicenter cohort of 664 intensively treated AML patients. CONCLUSIONS Dynamic data-driven models are likely more suitable for risk stratification in the context of increasingly complex medical data than rigid hypothesis-driven models to allow for a more personalized treatment allocation and gain novel insights into disease biology.
Collapse
Affiliation(s)
- Jan-Niklas Eckardt
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany.
- Else Kröner Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany.
| | - Christoph Röllig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Klaus Metzeler
- Medical Clinic and Policlinic I Hematology and Cell Therapy, University Hospital, Leipzig, Germany
| | - Peter Heisig
- Department of Software and Multimedia Technology, Technical University Dresden, Dresden, Germany
| | - Sebastian Stasik
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Julia-Annabell Georgi
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Frank Kroschinsky
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Friedrich Stölzel
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Uwe Platzbecker
- Medical Clinic and Policlinic I Hematology and Cell Therapy, University Hospital, Leipzig, Germany
| | - Karsten Spiekermann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Utz Krug
- Department of Medicine III, Hospital Leverkusen, Leverkusen, Germany
| | - Jan Braess
- Hospital Barmherzige Brueder Regensburg, Regensburg, Germany
| | - Dennis Görlich
- Institute for Biostatistics and Clinical Research, University Muenster, Muenster, Germany
| | - Cristina Sauerland
- Institute for Biostatistics and Clinical Research, University Muenster, Muenster, Germany
| | - Bernhard Woermann
- Department of Hematology, Oncology and Tumor Immunology, Charité, Berlin, Germany
| | - Tobias Herold
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Hiddemann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
- German Consortium for Translational Cancer Research DKFZ, Heidelberg, Germany
| | - Hubert Serve
- Department of Medicine 2, Hematology and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Claudia D Baldus
- Department of Hematology and Oncology, University Hospital Schleswig Holstein, Kiel, Germany
| | | | - Martin Kaufmann
- Department of Hematology, Oncology and Palliative Care, Robert-Bosch Hospital, Stuttgart, Germany
| | - Stefan W Krause
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen, Germany
| | - Mathias Hänel
- Department of Internal Medicine 3, Klinikum Chemnitz GmbH, Chemnitz, Germany
| | - Wolfgang E Berdel
- Department of Internal Medicine A, University Hospital Muenster, Muenster, Germany
| | - Christoph Schliemann
- Department of Internal Medicine A, University Hospital Muenster, Muenster, Germany
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, Masaryk University Hospital, Brno, Czech Republic
| | - Maher Hanoun
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Johannes Schetelig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Karsten Wendt
- Else Kröner Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
- Department of Software and Multimedia Technology, Technical University Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
- German Consortium for Translational Cancer Research DKFZ, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Christian Thiede
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Jan Moritz Middeke
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
- Else Kröner Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
| |
Collapse
|
56
|
Erba HP, Montesinos P, Kim HJ, Patkowska E, Vrhovac R, Žák P, Wang PN, Mitov T, Hanyok J, Kamel YM, Rohrbach JEC, Liu L, Benzohra A, Lesegretain A, Cortes J, Perl AE, Sekeres MA, Dombret H, Amadori S, Wang J, Levis MJ, Schlenk RF. Quizartinib plus chemotherapy in newly diagnosed patients with FLT3-internal-tandem-duplication-positive acute myeloid leukaemia (QuANTUM-First): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2023; 401:1571-1583. [PMID: 37116523 DOI: 10.1016/s0140-6736(23)00464-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Patients with acute myeloid leukaemia (AML) positive for internal tandem duplication (ITD) mutations of FLT3 have poor outcomes. Quizartinib, an oral, highly potent, selective, type 2 FLT3 inhibitor, plus chemotherapy showed antitumour activity with an acceptable safety profile in patients with FLT3-ITD-positive newly diagnosed AML. The aim of the study was to compare the effect of quizartinib versus placebo on overall survival in patients with FLT3-ITD-positive newly diagnosed AML aged 18-75 years. METHODS We conducted a randomised, double-blind, placebo-controlled, phase 3 trial comparing quizartinib and placebo in combination with chemotherapy in induction and consolidation, followed by quizartinib or placebo single-agent continuation, in patients with FLT3-ITD-positive newly diagnosed AML at 193 hospitals and clinics in 26 countries in Europe; North America; and Asia, Australia, and South America. Patients aged 18-75 years were eligible. Patients were randomly assigned (1:1) to the quizartinib group or the placebo group by an independent biostatistician through an interactive web and voice response system, stratified by region, age, and white blood cell count at diagnosis. Patients, investigators, funders, and contract research organisations were masked to treatments assigned. Induction therapy comprised a standard 7 + 3 induction regimen of cytarabine 100 mg/m2 per day (or 200 mg/m2 per day allowed if institutional or local standard) by continuous intravenous infusion from day 1 to day 7 and anthracycline (daunorubicin 60 mg/m2 per day or idarubicin 12 mg/m2 per day) by intravenous infusion on days 1, 2, and 3, then quizartinib 40 mg orally or placebo once per day, starting on day 8, for 14 days. Patients with complete remission or complete remission with incomplete neutrophil or platelet recovery received standard consolidation with high-dose cytarabine plus quizartinib (40 mg per day orally) or placebo, allogeneic haematopoietic cell transplantation (allo-HCT), or both as consolidation therapy, followed by continuation of single-agent quizartinib or placebo for up to 3 years. The primary outcome was overall survival, defined as time from randomisation until death from any cause and assessed in the intention-to-treat population. Safety was evaluated in all patients who received at least one dose of quizartinib or placebo. This study is registered with ClinicalTrials.gov (NCT02668653). FINDINGS Between Sept 27, 2016, and Aug 14, 2019, 3468 patients with AML were screened and 539 patients (294 [55%] male patients and 245 [45%] female patients) with FLT3-ITD-positive AML were included and randomly assigned to the quizartinib group (n=268) or placebo group (n=271). 148 (55%) of 268 patients in the quizartinib group and 168 (62%) of 271 patients in the placebo group discontinued the study, primarily because of death (133 [90%] of 148 in the quizartinib group vs 158 [94%] of 168 in the placebo group) or withdrawal of consent (13 [9%] of 148 in the quizartinib group vs 9 [5%] of 168 in the placebo group). Median age was 56 years (range 20-75, IQR 46·0-65·0). At a median follow-up of 39·2 months (IQR 31·9-45·8), median overall survival was 31·9 months (95% CI 21·0-not estimable) for quizartinib versus 15·1 months (13·2-26·2) for placebo (hazard ratio 0·78, 95% CI 0·62-0·98, p=0·032). Similar proportions of patients in the quizartinib and placebo groups had at least one adverse event (264 [100%] of 265 in the quizartinib group and 265 [99%] of 268 in the placebo group) and one grade 3 or higher adverse event (244 [92%] of 265 in the quizartinib group and 240 [90%] of 268 in the placebo group). The most common grade 3 or 4 adverse events were febrile neutropenia, hypokalaemia, and pneumonia in both groups and neutropenia in the quizartinib group. INTERPRETATION The addition of quizartinib to standard chemotherapy with or without allo-HCT, followed by continuation monotherapy for up to 3 years, resulted in improved overall survival in adults aged 18-75 years with FLT3-ITD-positive newly diagnosed AML. Based on the results from the QuANTUM-First trial, quizartinib provides a new, effective, and generally well tolerated treatment option for adult patients with FLT3-ITD-positive newly diagnosed AML. FUNDING Daiichi Sankyo.
Collapse
Affiliation(s)
| | - Pau Montesinos
- Hematology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Hee-Je Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | - Radovan Vrhovac
- Division of Hematology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Pavel Žák
- Department of Internal Medicine-Haematology, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Po-Nan Wang
- Chang Gung Medical Foundation, Linkou, Taiwan
| | | | | | | | | | - Li Liu
- Daiichi Sankyo, Basking Ridge, NJ, USA
| | | | | | - Jorge Cortes
- Augusta University Medical Center, Augusta University, Augusta, GA, USA
| | - Alexander E Perl
- Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mikkael A Sekeres
- Sylvester Cancer Center, University of Miami Health System, Miami, FL, USA
| | - Hervé Dombret
- Saint Louis Hospital, University of Paris, Paris, France
| | | | - Jianxiang Wang
- Institute of Hematology and Blood Diseases Hospital, Tianjin, China
| | - Mark J Levis
- Division of Hematologic Malignancies, Johns Hopkins University, Baltimore, MD, USA
| | - Richard F Schlenk
- National Center of Tumor Diseases Trial Center, German Cancer Research Center, Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
57
|
Oñate G, Pratcorona M, Garrido A, Artigas-Baleri A, Bataller A, Tormo M, Arnan M, Vives S, Coll R, Salamero O, Vall-Llovera F, Sampol A, Garcia A, Cervera M, Avila SG, Bargay J, Ortín X, Nomdedéu JF, Esteve J, Sierra J. Survival improvement of patients with FLT3 mutated acute myeloid leukemia: results from a prospective 9 years cohort. Blood Cancer J 2023; 13:69. [PMID: 37147301 PMCID: PMC10162955 DOI: 10.1038/s41408-023-00839-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 05/07/2023] Open
Abstract
Midostaurin added to intensive chemotherapy is the standard of care for acute myeloid leukemia (AML) with FLT3 mutations (FLT3mut). We analyzed the impact of midostaurin in 227 FLT3mut-AML patients included in the AML-12 prospective trial for fit patients ≤70 years (#NCT04687098). Patients were divided into an early (2012-2015) and late (2016-2020) cohorts. They were uniformly treated except for the addition of midostaurin in 71% of late group patients. No differences were observed in response rates or the number of allotransplants between groups. Outcome was improved in the late period: 2-year relapse incidence decreased from 42% vs 29% in early vs late group (p = 0.024) and 2-year overall survival (OS) improved from 47% vs 61% (p = 0.042), respectively. The effect of midostaurin was evident in NPM1mut patients (n = 151), with 2-yr OS of 72% (exposed) vs 50% (naive) patients (p = 0.011) and mitigated FLT3-ITD allelic ratio prognostic value: 2-yr OS with midostaurin was 85% and 58% in low and high ratio patients (p = 0.049) vs 67% and 39% in naive patients (p = 0.005). In the wild-type NPM1 subset (n = 75), we did not observe significant differences between both study periods. In conclusion, this study highlights the improved outcome of FLT3mut AML fit patients with the incorporation of midostaurin.
Collapse
Affiliation(s)
- Guadalupe Oñate
- Hospital de la Santa Creu i Sant Pau. Institut d'investigació Biomèdica Sant Pau (IIB SANT PAU) Department of Medicine, Universitat Autonoma of Barcelona, Barcelona, Spain
| | - Marta Pratcorona
- Hospital de la Santa Creu i Sant Pau. Institut d'investigació Biomèdica Sant Pau (IIB SANT PAU) Department of Medicine, Universitat Autonoma of Barcelona, Barcelona, Spain
| | - Ana Garrido
- Hospital de la Santa Creu i Sant Pau. Institut d'investigació Biomèdica Sant Pau (IIB SANT PAU) Department of Medicine, Universitat Autonoma of Barcelona, Barcelona, Spain
| | - Alicia Artigas-Baleri
- Hospital de la Santa Creu i Sant Pau. Institut d'investigació Biomèdica Sant Pau (IIB SANT PAU) Department of Medicine, Universitat Autonoma of Barcelona, Barcelona, Spain
| | - Alex Bataller
- Hospital Clinic. August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Mar Tormo
- Hospital Clinico Universitario, Biomedical Research Institute INCLIVA, Valencia, Spain
| | - Montserrat Arnan
- Institut Catala d'Oncologia, Hospital Duran i Reynals, Institut d'Investigacio Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| | - Susana Vives
- Institut Catala d'Oncologia, Hospital Germans Trias i Pujol. Josep Carreras Leukemia Research Institute, Badalona, Universitat Autonoma of Barcelona, Barcelona, Spain
| | - Rosa Coll
- Institut Català d'Oncologia, Hospital Josep Trueta, Girona, Spain
| | - Olga Salamero
- Hospital Universitari Vall d'Hebron and Institute of Oncology (VHIO), Universitat Autonoma of Barcelona, Barcelona, Spain
| | | | - Antònia Sampol
- Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | | | - Marta Cervera
- Institut Catala d'Oncologia, Hospital Joan XXIII, Tarragona, Spain
| | | | - Joan Bargay
- Hospital Son Llatzer, Palma de Mallorca, Spain
| | | | - Josep F Nomdedéu
- Hospital de la Santa Creu i Sant Pau. Institut d'investigació Biomèdica Sant Pau (IIB SANT PAU) Department of Medicine, Universitat Autonoma of Barcelona, Barcelona, Spain
| | - Jordi Esteve
- Hospital Clinic. August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jorge Sierra
- Hospital de la Santa Creu i Sant Pau. Institut d'investigació Biomèdica Sant Pau (IIB SANT PAU) Department of Medicine, Universitat Autonoma of Barcelona, Barcelona, Spain.
| |
Collapse
|
58
|
Perrone S, Ottone T, Zhdanovskaya N, Molica M. How acute myeloid leukemia (AML) escapes from FMS-related tyrosine kinase 3 (FLT3) inhibitors? Still an overrated complication? CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:223-238. [PMID: 37457126 PMCID: PMC10344728 DOI: 10.20517/cdr.2022.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 07/18/2023]
Abstract
FMS-related tyrosine kinase 3 (FLT3) mutations, present in about 25%-30% of acute myeloid leukemia (AML) patients, constitute one of the most frequently detected mutations in these patients. The binding of FLT3L to FLT3 activates the phosphatidylinositol 3-kinase (PI3K) and RAS pathways, producing increased cell proliferation and the inhibition of apoptosis. Two types of FLT3 mutations exist: FLT3-ITD and FLT3-TKD (point mutations in D835 and I836 or deletion of codon I836). A class of drugs, tyrosine-kinase inhibitors (TKI), targeting mutated FLT3, is already available with 1st and 2nd generation molecules, but only midostaurin and gilteritinib are currently approved. However, the emergence of resistance or the selection of clones not responding to FLT3 inhibitors has become an important clinical dilemma, as the duration of clinical responses is generally limited to a few months. This review analyzes the insights into mechanisms of resistance to TKI and poses a particular view on the clinical relevance of this phenomenon. Has resistance been overlooked? Indeed, FLT3 inhibitors have significantly contributed to reducing the negative impact of FLT3 mutations on the prognosis of AML patients who are no longer considered at high risk by the European LeukemiaNet (ELN) 2022. Finally, several ongoing efforts to overcome resistance to FLT3-inhibitors will be presented: new generation FLT3 inhibitors in monotherapy or combined with standard chemotherapy, hypomethylating drugs, or IDH1/2 inhibitors, Bcl2 inhibitors; novel anti-human FLT3 monoclonal antibodies (e.g., FLT3/CD3 bispecific antibodies); FLT3-CAR T-cells; CDK4/6 kinase inhibitor (e.g., palbociclib).
Collapse
Affiliation(s)
- Salvatore Perrone
- Hematology, Polo Universitario Pontino, S.M. Goretti Hospital, Latina 04100, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, the University of Rome “Tor Vergata”, Rome 00100 Italy
- Neuro-Oncohematology, Santa Lucia Foundation, I.R.C.C.S., Rome 00100, Italy
| | - Nadezda Zhdanovskaya
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome 00161, Italy
| | - Matteo Molica
- Hematology Unit, S. Eugenio Hospital, ASL Roma 2, Rome 00144, Italy
| |
Collapse
|
59
|
Duployez N, Vasseur L, Kim R, Largeaud L, Passet M, L'Haridon A, Lemaire P, Fenwarth L, Geffroy S, Helevaut N, Celli-Lebras K, Adès L, Lebon D, Berthon C, Marceau-Renaut A, Cheok M, Lambert J, Récher C, Raffoux E, Micol JB, Pigneux A, Gardin C, Delabesse E, Soulier J, Hunault M, Dombret H, Itzykson R, Clappier E, Preudhomme C. UBTF tandem duplications define a distinct subtype of adult de novo acute myeloid leukemia. Leukemia 2023:10.1038/s41375-023-01906-z. [PMID: 37085611 DOI: 10.1038/s41375-023-01906-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Tandem duplications (TDs) of the UBTF gene have been recently described as a recurrent alteration in pediatric acute myeloid leukemia (AML). Here, by screening 1946 newly diagnosed adult AML, we found that UBTF-TDs occur in about 3% of patients aged 18-60 years, in a mutually exclusive pattern with other known AML subtype-defining alterations. The characteristics of 59 adults with UBTF-TD AML included young age (median 37 years), low bone marrow (BM) blast infiltration (median 25%), and high rates of WT1 mutations (61%), FLT3-ITDs (51%) and trisomy 8 (29%). BM morphology frequently demonstrates dysmyelopoiesis albeit modulated by the co-occurrence of FLT3-ITD. UBTF-TD patients have lower complete remission (CR) rates (57% after 1 course and 76% after 2 courses of intensive chemotherapy [ICT]) than UBTF-wild-type patients. In patients enrolled in the ALFA-0702 study (n = 614 patients including 21 with UBTF-TD AML), the 3-year disease-free survival (DFS) and overall survival of UBTF-TD patients were 42.9% (95%CI: 23.4-78.5%) and 57.1% (95%CI: 39.5-82.8%) and did not significantly differ from those of ELN 2022 intermediate/adverse risk patients. Finally, the study of paired diagnosis and relapsed/refractory AML samples suggests that WT1-mutated clones are frequently selected under ICT. This study supports the recognition of UBTF-TD AML as a new AML entity in adults.
Collapse
Affiliation(s)
- Nicolas Duployez
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France.
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France.
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France.
| | - Loïc Vasseur
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Rathana Kim
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laëtitia Largeaud
- Hematology Laboratory, CHU Toulouse, INSERM 1037, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marie Passet
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anaïs L'Haridon
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
| | - Pierre Lemaire
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laurène Fenwarth
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | - Sandrine Geffroy
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | - Nathalie Helevaut
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | | | - Lionel Adès
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Delphine Lebon
- Hematology Department, CHU Amiens-Picardie, Amiens, France
| | - Céline Berthon
- Hematology Department, Claude Huriez Hospital, CHU Lille, Lille, France
| | - Alice Marceau-Renaut
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | - Meyling Cheok
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Juliette Lambert
- Hematology Department, Versailles Hospital, University Versailles-Saint-Quentin-en-Yvelines, Le Chesnay, France
| | - Christian Récher
- Service d'Hématologie, CHU Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Emmanuel Raffoux
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | | | - Arnaud Pigneux
- Hematology Department, CHU de Bordeaux, Bordeaux, France
| | - Claude Gardin
- Hematology Department, Avicenne Hospital, AP-HP, Bobigny, France
- Unité 3518, Saint-Louis Institute for Research, Université de Paris, Paris, France
| | - Eric Delabesse
- Hematology Laboratory, CHU Toulouse, INSERM 1037, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Jean Soulier
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Mathilde Hunault
- Hematology Department, Université d'Angers, Université de Nantes, CHU Angers, Inserm, CNRS, CRCI2NA, SFR ICAT, F‑49000, Angers, France
- Fédération Hospitalo-Universitaire, Grand-Ouest Acute Leukemia, Angers, France
| | - Hervé Dombret
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
- Unité 3518, Saint-Louis Institute for Research, Université de Paris, Paris, France
| | - Raphael Itzykson
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Emmanuelle Clappier
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Claude Preudhomme
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| |
Collapse
|
60
|
Najima Y. Overcoming relapse: prophylactic or pre-emptive use of azacitidine or FLT3 inhibitors after allogeneic transplantation for AML or MDS. Int J Hematol 2023:10.1007/s12185-023-03596-w. [PMID: 37036626 DOI: 10.1007/s12185-023-03596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Relapse remains the most critical obstacle in treatment by allogeneic hematopoietic stem cell transplantation (HSCT). Non-relapse mortality has improved annually, but relapse mortality remains high. Post-transplant maintenance treatment, such as hypomethylating agents and FMS-like tyrosine kinase 3 (FLT3) inhibitors, has been investigated for decades as a means of preventing disease relapse after HSCT. Other factors besides the relapse tendency of the primary disease that can affect the transition of estimated disease burden in patients undergoing HSCT are disease status at HSCT (non-remission, remission with minimal/measurable residual disease (MRD), and remission without MRD) and conditioning regimen intensity. Optimal selection of patients at high risk for relapse who can tolerate a long duration of therapy is pivotal for successful post-transplant maintenance therapy. In this review, we provide an overview of current progress in research on post-transplant maintenance treatment using azacitidine or FLT3 inhibitors for preventing disease relapse after HSCT for AML or MDS, and discuss the future outlook in this area.
Collapse
Affiliation(s)
- Yuho Najima
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-8-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan.
| |
Collapse
|
61
|
Ritchie EK, Cella D, Fabbiano F, Pigneux A, Kanda Y, Ivanescu C, Pandya BJ, Shah MV. Patient-reported outcomes from the phase 3 ADMIRAL trial in patients with FLT3-mutated relapsed/refractory AML. Leuk Lymphoma 2023:1-13. [PMID: 37019445 DOI: 10.1080/10428194.2023.2186731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Patient-reported outcomes (PROs) can inform treatment selection and assess treatment value in acute myeloid leukemia (AML). We evaluated PROs from the ADMIRAL trial (NCT02421939) in patients with FLT3-mutated relapsed/refractory (R/R) AML. PRO instruments consisted of Brief Fatigue Inventory (BFI), Functional Assessment of Cancer Therapy-Leukemia (FACT-Leu), Functional Assessment of Chronic Illness Therapy-Dyspnea Short Form (FACIT-Dys SF), EuroQoL 5-Dimension 5-Level (EQ-5D-5L), and leukemia treatment-specific symptom questionnaires. Clinically significant effects on fatigue were observed with gilteritinib during the first two treatment cycles. Shorter survival was associated with clinically significant worsening of BFI, FACT-Leu, FACIT-Dys SF, and EQ-5D-5L measures. Transplantation and transfusion independence in gilteritinib-arm patients were also associated with maintenance or improvement in PROs. Health-related quality of life remained stable in the gilteritinib arm. Hospitalization had a small but significant effect on patient-reported fatigue. Gilteritinib was associated with a favorable effect on fatigue and other PROs in patients with FLT3-mutated R/R AML.
Collapse
Affiliation(s)
- Ellen K Ritchie
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - David Cella
- Department of Medical Social Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Francesco Fabbiano
- Department of Hematology, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Arnaud Pigneux
- Department of Hematology and Cell Therapy, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University, Tochigi, Japan
| | | | | | - Manasee V Shah
- Medical Affairs, Astellas Pharma, Inc., Northbrook, IL, USA
| |
Collapse
|
62
|
Mrózek K, Kohlschmidt J, Blachly JS, Nicolet D, Carroll AJ, Archer KJ, Mims AS, Larkin KT, Orwick S, Oakes CC, Kolitz JE, Powell BL, Blum WG, Marcucci G, Baer MR, Uy GL, Stock W, Byrd JC, Eisfeld AK. Outcome prediction by the 2022 European LeukemiaNet genetic-risk classification for adults with acute myeloid leukemia: an Alliance study. Leukemia 2023; 37:788-798. [PMID: 36823396 PMCID: PMC10079544 DOI: 10.1038/s41375-023-01846-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
Recently, the European LeukemiaNet (ELN) revised its genetic-risk classification of acute myeloid leukemia (AML). We categorized 1637 adults with AML treated with cytarabine/anthracycline regimens according to the 2022 and 2017 ELN classifications. Compared with the 2017 ELN classification, 2022 favorable group decreased from 40% to 35% and adverse group increased from 37% to 41% of patients. The 2022 genetic-risk groups seemed to accurately reflect treatment outcomes in all patients and patients aged <60 years, but in patients aged ≥60 years, relapse rates, disease-free (DFS) and overall (OS) survival were not significantly different between intermediate and adverse groups. In younger African-American patients, DFS and OS did not differ between intermediate-risk and adverse-risk patients nor did DFS between favorable and intermediate groups. In Hispanic patients, DFS and OS did not differ between favorable and intermediate groups. Outcome prediction abilities of 2022 and 2017 ELN classifications were similar. Among favorable-risk patients, myelodysplasia-related mutations did not affect patients with CEBPAbZIP mutations or core-binding factor AML, but changed risk assignment of NPM1-mutated/FLT3-ITD-negative patients to intermediate. NPM1-mutated patients with adverse-risk cytogenetic abnormalities were closer prognostically to the intermediate than adverse group. Our analyses both confirm and challenge prognostic significance of some of the newly added markers.
Collapse
Grants
- UG1 CA233180 NCI NIH HHS
- U10 CA180821 NCI NIH HHS
- UG1 CA189850 NCI NIH HHS
- P30 CA033572 NCI NIH HHS
- UG1 CA233247 NCI NIH HHS
- R35 CA197734 NCI NIH HHS
- UG1 CA233339 NCI NIH HHS
- P50 CA140158 NCI NIH HHS
- UG1 CA233331 NCI NIH HHS
- U10 CA180882 NCI NIH HHS
- UG1 CA233338 NCI NIH HHS
- U24 CA196171 NCI NIH HHS
- P30 CA016058 NCI NIH HHS
- UG1 CA233327 NCI NIH HHS
- Leukemia and Lymphoma Society (Leukemia & Lymphoma Society)
- Aptevo, Daiichi Sankyo, Glycomemetics, Kartos Pharmaceuticals, Xencor and Genentech
- U.S. Department of Health & Human Services | NIH | NCI | Division of Cancer Epidemiology and Genetics, National Cancer Institute (National Cancer Institute Division of Cancer Epidemiology and Genetics)
- BLP is a consultant for Cornerstone Pharmaceuticals and reported research funding from Ambit Biosciences, Cornerstone, Genentech, Hoffman LaRoche, Jazz Pharmaceuticals, Novartis and Pfizer.
- WGB reported honoraria from Abbvie, Syndax, and AmerisourceBergen and research funding from Celyad Oncology, Nkarta, Xencor, Forma Therapeutics and Leukemia and Lymphoma Society.
- Agios Savvas Regional Cancer Hospital
- GLU is a consultant for AbbVie, Agios, Jazz, GlaxoSmithKline, Genentech, and Novartis; reported honoraria from Astellas and research funding from Macrogenics.
- JCB consults for Astellas, AstraZeneca, Novartis, Pharmacyclics, Syndax and Trillium; receives honoraria from Astellas, AstraZeneca, Novartis, Pharmacyclics, Syndax and Trillium; he is a Chairman of the Scientific Advisory Board of Vincerx Pharmaceuticals and a member of advisory committee of Newave; and is a current equity holder of Vincerx Pharmaceuticals.
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- American Cancer Society (American Cancer Society, Inc.)
- Leukemia Research Foundation (LRF)
- Pelotonia
Collapse
Affiliation(s)
- Krzysztof Mrózek
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| | - Jessica Kohlschmidt
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Alliance Statistics and Data Management Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - James S Blachly
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Deedra Nicolet
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Alliance Statistics and Data Management Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kellie J Archer
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Alice S Mims
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Karilyn T Larkin
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Shelley Orwick
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Christopher C Oakes
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Jonathan E Kolitz
- Monter Cancer Center, Hofstra Northwell School of Medicine, Lake Success, NY, USA
| | - Bayard L Powell
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | | | - Guido Marcucci
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Geoffrey L Uy
- Washington University School of Medicine, St. Louis, MO, USA
| | - Wendy Stock
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - John C Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Ann-Kathrin Eisfeld
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- The Ohio State University, Department of Internal Medicine, Columbus, OH, USA.
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
63
|
Ou ZY, Wang K, Shen WW, Deng G, Xu YY, Wang LF, Zai ZY, Ling YA, Zhang T, Peng XQ, Chen FH. Oncogenic FLT3 internal tandem duplication activates E2F1 to regulate purine metabolism in acute myeloid leukaemia. Biochem Pharmacol 2023; 210:115458. [PMID: 36803956 DOI: 10.1016/j.bcp.2023.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/28/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Oncogene FLT3 internal tandem duplication (FLT3-ITD) mutation accounts for 30 % of acute myeloid leukaemia (AML) cases and induces transformation. Previously, we found that E2F transcription factor 1 (E2F1) was involved in AML cell differentiation. Here, we reported that E2F1 expression was aberrantly upregulated in AML patients, especially in AML patients carrying FLT3-ITD. E2F1 knockdown inhibited cell proliferation and increased cell sensitivity to chemotherapy in cultured FLT3-ITD-positive AML cells. E2F1-depleted FLT3-ITD+ AML cells lost their malignancy as shown by the reduced leukaemia burden and prolonged survival in NOD-PrkdcscidIl2rgem1/Smoc mice receiving xenografts. Additionally, FLT3-ITD-driven transformation of human CD34+ hematopoietic stem and progenitor cells was counteracted by E2F1 knockdown. Mechanistically, FLT3-ITD enhanced the expression and nuclear accumulation of E2F1 in AML cells. Further study using chromatin immunoprecipitation-sequencing and metabolomics analyses revealed that ectopic FLT3-ITD promoted the recruitment of E2F1 on genes encoding key enzymatic regulators of purine metabolism and thus supported AML cell proliferation. Together, this study demonstrates that E2F1-activated purine metabolism is a critical downstream process of FLT3-ITD in AML and a potential target for FLT3-ITD+ AML patients.
Collapse
Affiliation(s)
- Zi-Yao Ou
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China; Anhui Laboratory of Inflammatory and Immune Disease, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Ke Wang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wen-Wen Shen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China; Anhui Laboratory of Inflammatory and Immune Disease, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Ge Deng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China; Anhui Laboratory of Inflammatory and Immune Disease, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Ya-Yun Xu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China; Anhui Laboratory of Inflammatory and Immune Disease, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Long-Fei Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China; Anhui Laboratory of Inflammatory and Immune Disease, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Zhuo-Yan Zai
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China; Anhui Laboratory of Inflammatory and Immune Disease, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-An Ling
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China; Anhui Laboratory of Inflammatory and Immune Disease, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Tao Zhang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China; Anhui Laboratory of Inflammatory and Immune Disease, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiao-Qing Peng
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Fei-Hu Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China; Anhui Laboratory of Inflammatory and Immune Disease, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| |
Collapse
|
64
|
Perl AE, Larson RA, Podoltsev NA, Strickland S, Wang ES, Atallah E, Schiller GJ, Martinelli G, Neubauer A, Sierra J, Montesinos P, Recher C, Yoon SS, Maeda Y, Hosono N, Onozawa M, Kato T, Kim HJ, Hasabou N, Nuthethi R, Tiu R, Levis MJ. Outcomes in Patients with FLT3-Mutated Relapsed/ Refractory Acute Myelogenous Leukemia Who Underwent Transplantation in the Phase 3 ADMIRAL Trial of Gilteritinib versus Salvage Chemotherapy. Transplant Cell Ther 2023; 29:265.e1-265.e10. [PMID: 36526260 PMCID: PMC10189888 DOI: 10.1016/j.jtct.2022.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/04/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
The fms-like tyrosine kinase 3 (FLT3) inhibitor gilteritinib improved the survival of patients with relapsed or refractory (R/R) FLT3-mutated acute myelogenous leukemia (AML) in the phase 3 ADMIRAL trial. In this study, we assessed survival and relapse rates of patients in the ADMIRAL trial who underwent hematopoietic stem cell transplantation (HSCT), as well as safety outcomes in patients who received post-transplantation gilteritinib maintenance therapy. ADMIRAL was a global phase 3 randomized controlled trial that enrolled adult patients with FLT3-mutated R/R AML. Patients with R/R AML who harbored FLT3 internal tandem duplication mutations in the juxtamembrane domain or D835/I836 point mutations in the tyrosine kinase domain were randomized (2:1) to gilteritinib (120 mg/day) or to preselected high- or low-intensity salvage chemotherapy (1 or 2 cycles). Patients in the gilteritinib arm who proceeded to HSCT could receive post-transplantation gilteritinib maintenance therapy if they were within 30 to 90 days post-transplantation and had achieved composite complete remission (CRc) with successful engraftment and no post-transplantation complications. Adverse events (AEs) during HSCT were recorded in the gilteritinib arm only. Survival outcomes and the cumulative incidence of relapse were assessed in patients who underwent HSCT during the trial. Treatment-emergent AEs were evaluated in patients who restarted gilteritinib as post-transplantation maintenance therapy. Patients in the gilteritinib arm underwent HSCT more frequently than those in the chemotherapy arm (26% [n = 64] versus 15% [n = 19]). For all transplantation recipients, 12- and 24-month overall survival (OS) rates were 68% and 47%, respectively. Despite a trend toward longer OS after pretransplantation CRc, post-transplantation survival was comparable in the 2 arms. Patients who resumed gilteritinib after HSCT had a low relapse rate after pretransplantation CRc (20%) or CR (0%). The most common AEs observed with post-transplantation gilteritinib therapy were increased alanine aminotransferase level (45%), pyrexia (43%), and diarrhea (40%); grade ≥3 AEs were related primarily to myelosuppression. The incidences of grade ≥III acute graft-versus-host disease and related mortality were low. Post-transplantation survival was similar across the 2 study arms in the ADMIRAL trial, but higher remission rates with gilteritinib facilitated receipt of HSCT. Gilteritinib as post-transplantation maintenance therapy had a stable safety and tolerability profile and was associated with low relapse rates. Taken together, these data support a preference for bridging therapy with gilteritinib over chemotherapy in transplantation-eligible patients.
Collapse
Affiliation(s)
- Alexander E Perl
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Richard A Larson
- Division of the Biological Sciences, University of Chicago, Chicago, Illinois
| | - Nikolai A Podoltsev
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Stephen Strickland
- Department of Internal Medicine, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Eunice S Wang
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Ehab Atallah
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gary J Schiller
- Division of Hematology and Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Giovanni Martinelli
- IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori "Dino Amadori" IRST S.r.l, Meldola, Italy
| | | | - Jorge Sierra
- Hospital de la Santa Creu i Sant Pau and Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Pau Montesinos
- Department of Hematology, University Hospital La Fe, Valencia, Spain
| | - Christian Recher
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Sung-Soo Yoon
- Department of Hemato Oncology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoshinobu Maeda
- Department of Hematology and Oncology, Okayama University Hospital, Okoyama, Japan
| | - Naoko Hosono
- Department of Internal Medicine, University of Fukui, Fukui, Japan
| | | | - Takayasu Kato
- Department of Hematology, University of Tsukuba, Tsukuba, Japan
| | - Hee-Je Kim
- Catholic Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | | - Ramon Tiu
- Astellas Pharma US, Inc., Northbrook, Illinois
| | - Mark J Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
65
|
Zhou C, Zheng F, Xu L, Zhang X, Chang Y, Mo X, Sun Y, Huang X, Wang Y. The FLT3-ITD allelic ratio and NPM1 mutation do not impact outcomes in AML patients with FLT3-ITD after allo-HSCT: a retrospective propensity-score matching study. Transplant Cell Ther 2023:S2666-6367(23)01209-5. [PMID: 37028555 DOI: 10.1016/j.jtct.2023.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND FLT3-ITD mutation has consistently been correlated with poor outcomes in AML patients. Allo-HSCT (allogeneic hematopoietic stem cell transplantation) plays a major role in curing blood diseases. Whether allo-HSCT can eliminate the detrimental effects of FLT3-ITD mutation in AML patients remains debatable. In addition, studies showed that FLT3-ITD allelic ratio (AR) and NPM1 mutation appear to further influence the prognostic utility of FLT3-ITD in patients with FLT3-ITD-mutated AML. The influence of NPM1 mutation and AR on FLT3-ITDmut patients remains unclear in our database. OBJECTIVE To compare the survival outcomes following allo-HSCT between FLT3-ITDmut and FLT3-ITDwt patients and further analyze the influence of NPM1 and AR on outcomes. STUDY DESIGN 118 FLT3-ITDmut patients and 497 FLT3-ITDwt patients with allo-HSCT were matched 1:3 on the propensity score using a nearest-neighbor matching with a caliper size of 0.2. 430 AML patients were considered, including 116 FLT3-ITDmut patients and 314 FLT3-ITDwt patients. RESULTS OS (overall survival) and LFS (leukemia-free survival) of FLT3-ITDmut patients were similar to FLT3-ITDwt (2-year OS:78.5% vs 82.6%, P=0.374; 2-year LFS: 75.1% vs 80.8%, P= 0.215). A cut-off of 0.50 was applied to define subgroups with a low or high AR of FLT3-ITD, no significant CIR (cumulative incidence of relapse) and LFS differences were observed between the low AR and high AR groups (2-year CIR: P=0.617; 2-year LFS: P=0.563). CIR and LFS were comparable when patients were grouped according to the presence or absence of NPM1 and FLT3-ITD (2-year CIR: P=0.356; 2-year LFS: P=0.159). Additionally, the CIR and LFS of FLT3-ITDmut and FLT3-ITDwt patients tended to be different after MSD-HSCT (matched-sibling donor hematopoietic stem cell transplantation) (2-year CIR: P= 0.072; 2-year LFS: P= 0.084), however, the differences were not observed in patients with haplo-HSCT (2-year CIR: P= 0.59; 2-year LFS: P= 0.794). The presence of MRD before transplantation and non-CR1 were risk factors related to inferior outcomes in a multivariate analysis, regardless of FLT3-ITD or NPM1 status. CONCLUSION Our results suggested that allo-HSCT, especially haplo-HSCT, may overcome the adverse effect of FLT3-ITD mutation, regardless of the NPM1 status or AR. Allo-HSCT could be an ideal option for AML patients with FLT3-ITD.
Collapse
|
66
|
Pogosova-Agadjanyan EL, Hua X, Othus M, Appelbaum FR, Chauncey TR, Erba HP, Fitzgibbon MP, Jenkins IC, Fang M, Lee SC, Moseley A, Naru J, Radich JP, Smith JL, Willborg BE, Willman CL, Wu F, Meshinchi S, Stirewalt DL. Verification of prognostic expression biomarkers is improved by examining enriched leukemic blasts rather than mononuclear cells from acute myeloid leukemia patients. Biomark Res 2023; 11:31. [PMID: 36927800 PMCID: PMC10022072 DOI: 10.1186/s40364-023-00461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/30/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Studies have not systematically compared the ability to verify performance of prognostic transcripts in paired bulk mononuclear cells versus viable CD34-expressing leukemic blasts from patients with acute myeloid leukemia. We hypothesized that examining the homogenous leukemic blasts will yield different biological information and may improve prognostic performance of expression biomarkers. METHODS To assess the impact of cellular heterogeneity on expression biomarkers in acute myeloid leukemia, we systematically examined paired mononuclear cells and viable CD34-expressing leukemic blasts from SWOG diagnostic specimens. After enrichment, patients were assigned into discovery and validation cohorts based on availability of extracted RNA. Analyses of RNA sequencing data examined how enrichment impacted differentially expressed genes associated with pre-analytic variables, patient characteristics, and clinical outcomes. RESULTS Blast enrichment yielded significantly different expression profiles and biological pathways associated with clinical characteristics (e.g., cytogenetics). Although numerous differentially expressed genes were associated with clinical outcomes, most lost their prognostic significance in the mononuclear cells and blasts after adjusting for age and ELN risk, with only 11 genes remaining significant for overall survival in both cell populations (CEP70, COMMD7, DNMT3B, ECE1, LNX2, NEGR1, PIK3C2B, SEMA4D, SMAD2, TAF8, ZNF444). To examine the impact of enrichment on biomarker verification, these 11 candidate biomarkers were examined by quantitative RT/PCR in the validation cohort. After adjusting for ELN risk and age, expression of 4 genes (CEP70, DNMT3B, ECE1, and PIK3CB) remained significantly associated with overall survival in the blasts, while none met statistical significance in mononuclear cells. CONCLUSIONS This study provides insights into biological information gained/lost by examining viable CD34-expressing leukemic blasts versus mononuclear cells from the same patient and shows an improved verification rate for expression biomarkers in blasts.
Collapse
Affiliation(s)
- Era L Pogosova-Agadjanyan
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, D5-112, Seattle, WA, 98109, USA
| | - Xing Hua
- SWOG Statistical Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Megan Othus
- SWOG Statistical Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Frederick R Appelbaum
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, D5-112, Seattle, WA, 98109, USA
- Departments of Oncology and Hematology, University of Washington, Seattle, WA, USA
| | - Thomas R Chauncey
- Departments of Oncology and Hematology, University of Washington, Seattle, WA, USA
- VA Puget Sound Health Care System, Seattle, WA, USA
| | | | | | - Isaac C Jenkins
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, D5-112, Seattle, WA, 98109, USA
- Clinical Biostatistics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Min Fang
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, D5-112, Seattle, WA, 98109, USA
| | - Stanley C Lee
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, D5-112, Seattle, WA, 98109, USA
| | - Anna Moseley
- SWOG Statistical Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jasmine Naru
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, D5-112, Seattle, WA, 98109, USA
| | - Jerald P Radich
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, D5-112, Seattle, WA, 98109, USA
- Departments of Oncology and Hematology, University of Washington, Seattle, WA, USA
| | - Jenny L Smith
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, D5-112, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Brooke E Willborg
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, D5-112, Seattle, WA, 98109, USA
| | - Cheryl L Willman
- Department of Laboratory Medicine and Pathology, Mayo Clinic Comprehensive Cancer Center, Rochester, MN, USA
| | - Feinan Wu
- Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, D5-112, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Derek L Stirewalt
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, D5-112, Seattle, WA, 98109, USA.
- Departments of Oncology and Hematology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
67
|
Li F, Liu YP, Zhu H, Hong M, Qian SX, Zhu Y, Shen WY, Chen LJ, He GS, Wu HX, Lu H, Li JY, Miao KR. [Clinical study of induction chemotherapy followed by allogeneic hematopoietic stem cell transplantation in the treatment of FLT3-ITD(+) acute myeloid leukemia with normal karyotype]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:230-235. [PMID: 37356985 PMCID: PMC10119728 DOI: 10.3760/cma.j.issn.0253-2727.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 06/27/2023]
Abstract
Objective: To assess the efficacy of induction chemotherapy followed by allogeneic hematopoietic stem cell transplantation (allo-HSCT) in the treatment of FLT3-ITD(+) acute myeloid leukemia (AML) with normal karyotype. Methods: The clinical data of FLT3-ITD(+) AML patients with normal karyotype in the First Affiliated Hospital of Nanjing Medical University from Jan 2018 to March 2021 were retrospectively analyzed. Results: The study included 49 patients with FLT3-ITD(+)AML, 31 males, and 18 females, with a median age of 46 (16-59) years old. All patients received induction chemotherapy, and 24 patients received sequential allo-HSCT (transplantation group) . The median follow-up time was 465 days, the one-year overall survival (OS) from diagnosis was (70.0 ± 7.4) %, and one-year disease-free survival (DFS) was (70.3±7.4) %. The one-year OS was significantly different between the transplantation group and the non-transplantation group [ (85.2 ± 7.9) % vs (52.6 ± 12.3) %, P=0.049]. but one-year DFS [ (84.7 ± 8.1) % vs (55.2 ± 11.9) %, P=0.061] was not. No significance was found in one-year OS between patients with low-frequency and high-frequency FLT3-ITD(+) (P>0.05) . There were 12 patients with high-frequency FLT3-ITD(+) in the transplantation and the non-transplantation groups, respectively. The one-year OS [ (68.8 ± 15.7) % in the transplantation group vs (26.2 ± 15.3) % in the non-transplantation group, P=0.027] and one-year DFS [ (45.5 ± 21.3) % in the transplantation group vs (27.8±15.8) % in the non-transplantation group, P=0.032] were significantly different between the two groups. Conclusion: Induction chemotherapy followed by allo-HSCT can enhance the prognosis of FLT3-ITD(+) patients, particularly those with FLT3-ITD high-frequency mutation.
Collapse
Affiliation(s)
- F Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Y P Liu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - H Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - M Hong
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - S X Qian
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Y Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - W Y Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - L J Chen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - G S He
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - H X Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - H Lu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - J Y Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - K R Miao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
68
|
Skopek R, Palusińska M, Kaczor-Keller K, Pingwara R, Papierniak-Wyglądała A, Schenk T, Lewicki S, Zelent A, Szymański Ł. Choosing the Right Cell Line for Acute Myeloid Leukemia (AML) Research. Int J Mol Sci 2023; 24:5377. [PMID: 36982453 PMCID: PMC10049680 DOI: 10.3390/ijms24065377] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Immortalized cell lines are widely used in vitro tools in oncology and hematology research. While these cell lines represent artificial systems and may accumulate genetic aberrations with each passage, they are still considered valuable models for pilot, preliminary, and screening studies. Despite their limitations, cell lines are cost-effective and provide repeatable and comparable results. Choosing the appropriate cell line for acute myeloid leukemia (AML) research is crucial for obtaining reliable and relevant results. Several factors should be considered when selecting a cell line for AML research, such as specific markers and genetic abnormalities associated with different subtypes of AML. It is also essential to evaluate the karyotype and mutational profile of the cell line, as these can influence the behavior and response to the treatment of the cells. In this review, we evaluate immortalized AML cell lines and discuss the issues surrounding them concerning the revised World Health Organization and the French-American-British classifications.
Collapse
Affiliation(s)
- Rafał Skopek
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Małgorzata Palusińska
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Katarzyna Kaczor-Keller
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Rafał Pingwara
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland
| | | | - Tino Schenk
- Department of Hematology and Medical Oncology, Clinic of Internal Medicine II, Jena University Hospital, 07747 Jena, Germany
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine Jena (CMB), Jena University Hospital, 07747 Jena, Germany
| | - Sławomir Lewicki
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities, 26-600 Radom, Poland
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, 00-001 Warsaw, Poland
| | - Artur Zelent
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
69
|
Eckardt JN, Röllig C, Metzeler K, Kramer M, Stasik S, Georgi JA, Heisig P, Spiekermann K, Krug U, Braess J, Görlich D, Sauerland CM, Woermann B, Herold T, Berdel WE, Hiddemann W, Kroschinsky F, Schetelig J, Platzbecker U, Müller-Tidow C, Sauer T, Serve H, Baldus C, Schäfer-Eckart K, Kaufmann M, Krause S, Hänel M, Schliemann C, Hanoun M, Thiede C, Bornhäuser M, Wendt K, Middeke JM. Prediction of complete remission and survival in acute myeloid leukemia using supervised machine learning. Haematologica 2023; 108:690-704. [PMID: 35708137 PMCID: PMC9973482 DOI: 10.3324/haematol.2021.280027] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 11/09/2022] Open
Abstract
Achievement of complete remission signifies a crucial milestone in the therapy of acute myeloid leukemia (AML) while refractory disease is associated with dismal outcomes. Hence, accurately identifying patients at risk is essential to tailor treatment concepts individually to disease biology. We used nine machine learning (ML) models to predict complete remission and 2-year overall survival in a large multicenter cohort of 1,383 AML patients who received intensive induction therapy. Clinical, laboratory, cytogenetic and molecular genetic data were incorporated and our results were validated on an external multicenter cohort. Our ML models autonomously selected predictive features including established markers of favorable or adverse risk as well as identifying markers of so-far controversial relevance. De novo AML, extramedullary AML, double-mutated CEBPA, mutations of CEBPA-bZIP, NPM1, FLT3-ITD, ASXL1, RUNX1, SF3B1, IKZF1, TP53, and U2AF1, t(8;21), inv(16)/t(16;16), del(5)/del(5q), del(17)/del(17p), normal or complex karyotypes, age and hemoglobin concentration at initial diagnosis were statistically significant markers predictive of complete remission, while t(8;21), del(5)/del(5q), inv(16)/t(16;16), del(17)/del(17p), double-mutated CEBPA, CEBPA-bZIP, NPM1, FLT3-ITD, DNMT3A, SF3B1, U2AF1, and TP53 mutations, age, white blood cell count, peripheral blast count, serum lactate dehydrogenase level and hemoglobin concentration at initial diagnosis as well as extramedullary manifestations were predictive for 2-year overall survival. For prediction of complete remission and 2-year overall survival areas under the receiver operating characteristic curves ranged between 0.77-0.86 and between 0.63-0.74, respectively in our test set, and between 0.71-0.80 and 0.65-0.75 in the external validation cohort. We demonstrated the feasibility of ML for risk stratification in AML as a model disease for hematologic neoplasms, using a scalable and reusable ML framework. Our study illustrates the clinical applicability of ML as a decision support system in hematology.
Collapse
Affiliation(s)
- Jan-Niklas Eckardt
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden.
| | - Christoph Röllig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden
| | - Klaus Metzeler
- Medical Clinic and Policlinic I Hematology and Cell Therapy. University Hospital, Leipzig
| | - Michael Kramer
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden
| | - Sebastian Stasik
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden
| | | | - Peter Heisig
- Institute of Software and Multimedia Technology, Technical University Dresden, Dresden
| | - Karsten Spiekermann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich
| | - Utz Krug
- Medical Clinic III, Hospital Leverkusen, Leverkusen
| | - Jan Braess
- Hospital Barmherzige Brueder Regensburg, Regensburg
| | - Dennis Görlich
- Institute for Biometrics and Clinical Research, University Muenster, Muenster
| | | | - Bernhard Woermann
- Department of Hematology, Oncology and Tumor Immunology, Charité, Berlin
| | - Tobias Herold
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich
| | - Wolfgang E Berdel
- Department of Internal Medicine A, University Hospital Muenster, Muenster
| | - Wolfgang Hiddemann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich
| | - Frank Kroschinsky
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden
| | - Johannes Schetelig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden
| | - Uwe Platzbecker
- Medical Clinic and Policlinic I Hematology and Cell Therapy. University Hospital, Leipzig
| | - Carsten Müller-Tidow
- Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany; German Consortium for Translational Cancer Research DKFZ, Heidelberg
| | - Tim Sauer
- Department of Medicine V, University Hospital Heidelberg, Heidelberg
| | - Hubert Serve
- Department of Medicine 2, Hematology and Oncology, Goethe University Frankfurt, Frankfurt
| | - Claudia Baldus
- Department of Hematology and Oncology, University Hospital Schleswig Holstein, Kiel
| | - Kerstin Schäfer-Eckart
- Department of Internal Medicine 5, Paracelsus Medical Private University Nuremberg, Nuremberg
| | - Martin Kaufmann
- Department of Hematology, Oncology and Palliative Care, Robert-Bosch Hospital, Stuttgart
| | - Stefan Krause
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen
| | - Mathias Hänel
- Department of Internal Medicine 3, Klinikum Chemnitz GmbH, Chemnitz, Germany; Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen
| | | | - Maher Hanoun
- Department of Internal Medicine 3, Klinikum Chemnitz GmbH, Chemnitz, Germany; Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen
| | - Christian Thiede
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany; German Consortium for Translational Cancer Research DKFZ, Heidelberg
| | - Martin Bornhäuser
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany; German Consortium for Translational Cancer Research DKFZ, Heidelberg, Germany; National Center for Tumor Diseases (NCT), Dresden
| | - Karsten Wendt
- Medical Clinic and Policlinic I Hematology and Cell Therapy. University Hospital, Leipzig
| | - Jan Moritz Middeke
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden
| |
Collapse
|
70
|
Fei X, Zhang S, Gu J, Wang J. FLT3 inhibitors as maintenance therapy post allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia patients with FLT3 mutations: A meta-analysis. Cancer Med 2023; 12:6877-6888. [PMID: 36411731 PMCID: PMC10067110 DOI: 10.1002/cam4.5480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/31/2022] [Accepted: 11/13/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) patients with a Fms-like tyrosine kinase 3 (FLT3) mutation have a high incidence of relapse despite allogeneic hematopoietic stem cell transplantation (allo-HSCT) and a subsequent poor prognosis. FLT3 inhibitors (FLT3i) have been suggested to reduce the post-transplant relapse risk in recent studies. As more evidence is accumulated, we perform the present meta-analysis to assess the efficacy and safety of FLT3i as post-transplant maintenance therapy in AML patients. METHODS Literature search was performed in public databases from inception to December 31, 2021. Overall survival (OS), relapse-free survival (RFS), cumulative incidence of relapse (CIR), non-relapse mortality (NRM), graft-versus-host disease (GVHD) and adverse events were compared between FLT3i and control groups. Pooled hazard ratio (HR) or relative risk (RR) with corresponding 95% confidence interval (CI) were calculated. RESULTS We identified 12 eligible studies with 2282 FLT3-mutated AML patients who had received HSCT. There was no between-study heterogeneity and a fix-effect model was used. Post-transplant FLT3i maintenance significantly prolonged OS (HR = 0.41, 95%CI: 0.32-0.52, p < 0.001) and RFS (HR = 0.39, 95%CI 0.31-0.50, p < 0.001), and reduced CIR (HR = 0.31, 95%CI 0.20-0.46, p < 0.001) as compared with control. There were no significant risk differences in NRM (RR = 0.69, 95%CI 0.41-1.17, p = 0.169), acute GVHD (RR = 1.17, 95%CI 0.93-1.47, p = 0.175), chronic GVHD (RR = 1.31, 95%CI 0.91-1.39, p = 0.276) and grade ≥3 adverse events between both groups, except for skin toxicity (RR = 5.86, 95%CI 1.34-25.57, p = 0.019). CONCLUSION Post-transplant FLT3i maintenance can improve survival and reduce relapse in FLT3-mutated AML patients and is tolerable.
Collapse
Affiliation(s)
- Xinhong Fei
- Department of HematologyAerospace Center HospitalBeijingChina
| | - Shuqin Zhang
- Department of HematologyAerospace Center HospitalBeijingChina
| | - Jiangying Gu
- Department of HematologyAerospace Center HospitalBeijingChina
| | - Jingbo Wang
- Department of HematologyAerospace Center HospitalBeijingChina
| |
Collapse
|
71
|
Jentzsch M, Bischof L, Brauer D, Backhaus D, Ussmann J, Franke GN, Vucinic V, Platzbecker U, Schwind S. Clinical Implications of the FLT3-ITD Allelic Ratio in Acute Myeloid Leukemia in the Context of an Allogeneic Stem Cell Transplantation. Cancers (Basel) 2023; 15:1312. [PMID: 36831653 PMCID: PMC9954047 DOI: 10.3390/cancers15041312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Although the presence of FLT3-ITD, as well as levels of the FLT3-ITD allelic ratio, have been described as prognostic factors in acute myeloid leukemia (AML), little is known about how the FLT3-ITD allelic ratio impacts patients' outcomes when receiving an allogeneic hematopoietic stem cell transplantation (HSCT). We analyzed 118 patients (median age at diagnosis 58.3, range 14.3-82.3 years) harboring FLT3-ITD, of whom 94 patients were consolidated with an allogeneic HSCT and included in outcome analyses. A high FLT3-ITD allelic ratio was associated with a higher white blood cell count, higher blood and bone marrow blasts, and worse ELN2017 risk at diagnosis. Patients with a high FLT3-ITD allelic ratio more often had NPM1 mutations, while patients with a low allelic ratio more often had FLT3-TKD mutations. Patients with a high FLT3-ITD allelic ratio were less likely to achieve a measurable residual disease (MRD)-negative remission prior to allogeneic HSCT and had a trend for a shorter time to relapse. However, there was no distinct cumulative incidence of relapse, non-relapse mortality, or overall survival according to the FLT3-ITD allelic ratio in transplanted patients. While co-mutated FLT3-TKD was associated with better outcomes, the MRD status at HSCT was the most significant factor for outcomes. While our data indicates that an allogeneic HSCT may mitigate the adverse effect of a high FLT3-ITD allelic ratio, comparative studies are needed to evaluate which FLT3-ITD mutated patients benefit from which consolidation strategy.
Collapse
Affiliation(s)
- Madlen Jentzsch
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Bystrom R, Levis MJ. An Update on FLT3 in Acute Myeloid Leukemia: Pathophysiology and Therapeutic Landscape. Curr Oncol Rep 2023; 25:369-378. [PMID: 36808557 DOI: 10.1007/s11912-023-01389-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 02/21/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize the pathophysiology, clinical presentation, and management of acute myeloid leukemia (AML) with FMS-like tyrosine kinase-3 (FLT3) mutations. RECENT FINDINGS The recent European Leukemia Net (ELN2022) recommendations re-classified AML with FLT3 internal tandem duplications (FLT3-ITD) as intermediate risk regardless of Nucleophosmin 1 (NPM1) co-mutation or the FLT3 allelic ratio. Allogeneic hematopoietic cell transplantation (alloHCT) is now recommended for all eligible patients with FLT3-ITD AML. This review outlines the role of FLT3 inhibitors in induction and consolidation, as well as for post-alloHCT maintenance. It outlines the unique challenges and advantages of assessing FLT3 measurable residual disease (MRD) and discusses the pre-clinical basis for the combination of FLT3 and menin inhibitors. And, for the older or unfit patient ineligible for upfront intensive chemotherapy, it discusses the recent clinical trials incorporating FLT3 inhibitors into azacytidine- and venetoclax-based regimens. Finally, it proposes a rational sequential approach for integrating FLT3 inhibitors into less intensive regimens, with a focus on improved tolerability in the older and unfit patient population. The management of AML with FLT3 mutation remains a challenge in clinical practice. This review provides an update on the pathophysiology and therapeutic landscape of FLT3 AML, as well as a clinical management framework for managing the older or unfit patient ineligible for intensive chemotherapy.
Collapse
Affiliation(s)
- Rebecca Bystrom
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark J Levis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
73
|
Real world molecular characterisation and clonal evolution of acute myeloid leukaemia reveals therapeutic opportunities and challenges. Pathology 2023; 55:64-70. [PMID: 36357248 DOI: 10.1016/j.pathol.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 11/06/2022]
Abstract
Acute myeloid leukaemia (AML) is an aggressive haematological malignancy with poor prognosis. Increasing understanding of the molecular mechanisms driving clonal proliferation has resulted in advancements in classification and available therapeutic targets. Fms-related tyrosine kinase 3 (FLT3) mutations are prognostically important and offer options for targeted inhibition, however they are not stable and can emerge or disappear at relapse. Our aim was to review diagnostic testing of consecutive cases of newly diagnosed and relapsed AML reported across Queensland in comparison to available literature. We conducted a retrospective review of 1531 samples from 1231 patients to identify patterns of molecular testing and AML subtypes in our cohort. Outcomes included World Health Organization (WHO) classification, European LeukaemiaNet (ELN) risk category and rates of missed FLT3 mutation testing. Patients aged <60 years had significantly more favourable risk AML (48% vs 25%, p<0.01), with favourable risk chromosomal translocations [t(8;21) and inv(16)] being more common. Thirteen patients (1%) did not have FLT3 mutation testing at diagnosis, with 103 relapse samples (39%) not being tested. Eighteen patients (10%) had FLT3 mutations lost at relapse, with five patients (3%) developing new FLT3 mutations at relapse. This study identifies the subtypes and risk stratification of a large cohort of AML patients over an extended period. The relatively high rate of absent FLT3 mutation testing at relapse as well as FLT3 loss or gain highlights the potential missed opportunities for salvage treatment strategies.
Collapse
|
74
|
Clinically relevant variation in FLT3-ITD quantitation as a result of PCR cycle number and ITD insertion size. Pathology 2023; 55:71-76. [PMID: 36153154 DOI: 10.1016/j.pathol.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 01/11/2023]
Abstract
FLT3 internal tandem duplication (ITD) quantitation is key to prognostication in acute myeloid leukaemia (AML). One potential source of variability in the allelic ratio (AR) is the number of polymerase chain reaction (PCR) cycles used. Using 30 archived samples of varying ITD lengths and AR, we compared two FLT3-ITD assays (Huang and RATIFY), evaluated the effect of PCR cycle number on each assay, and examined the potential clinical consequences. Huang and RATIFY assays at 35 and 27 PCR cycles, respectively, were highly concordant. A progressive decrease in AR (median 47%) was observed with the RATIFY assay when the PCR cycles were increased from 27 to 35 cycles, potentially impacting risk categorisation in 29% of patients. In contrast, minimal change in AR was observed with the Huang assay. Hence, both FLT3-ITD assays were almost identical using respective standard conditions, but the effect of PCR cycle number is assay-dependent, which may impact risk stratification in AML.
Collapse
|
75
|
Krigstein M, Iland HJ, Wei AH. Applying molecular measurable residual disease testing in acute myeloid leukaemia. Pathology 2023; 55:1-7. [PMID: 36503638 DOI: 10.1016/j.pathol.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
Molecular testing in acute myeloid leukaemia (AML) has continued to dramatically advance in recent years, facilitating the ability to detect residual disease at exponentially lower levels. With the advent of the recently updated ELN consensus recommendations, there is increasing complexity to ordering and interpreting measurable residual disease (MRD) assays in AML. We outline the technology itself in conjunction with the relevant testing timepoints, clinically significant thresholds and potential prognostic and therapeutic significance of MRD testing for the major molecular targets in AML. This practical overview should assist haematologists in incorporating molecular MRD assays routinely into their personalised AML clinical management.
Collapse
Affiliation(s)
- Michael Krigstein
- Department of Haematology, St Vincent's Hospital, Sydney, NSW, Australia.
| | - Harry J Iland
- Department of Haematology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Andrew H Wei
- Department of Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Vic, Australia
| |
Collapse
|
76
|
Mecklenbrauck R, Heuser M. Resistance to targeted therapies in acute myeloid leukemia. Clin Exp Metastasis 2023; 40:33-44. [PMID: 36318439 PMCID: PMC9898349 DOI: 10.1007/s10585-022-10189-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/12/2022] [Indexed: 02/04/2023]
Abstract
The introduction of new targeted therapies to the treatment algorithm of acute myeloid leukemia (AML) offers new opportunities, but also presents new challenges. Patients diagnosed with AML receiving targeted therapies as part of lower intensity regimens will relapse inevitably due to primary or secondary resistance mechanisms. In this review, we summarize the current knowledge on the main mechanisms of resistance to targeted therapies in AML. Resistance to FLT3 inhibitors is mainly mediated by on target mutations and dysregulation of downstream pathways. Switching the FLT3 inhibitor has a potential therapeutic benefit. During treatment with IDH inhibitors resistance can develop due to aberrant cell metabolism or secondary site IDH mutations. As a unique resistance mechanism the mutated IDH isotype may switch from IDH1 to IDH2 or vice versa. Resistance to gemtuzumab-ozogamicin is determined by the CD33 isotype and the degradation of the cytotoxin. The main mechanisms of resistance to venetoclax are the dysregulation of alternative pathways especially the upregulation of the BCL-2-analogues MCL-1 and BCL-XL or the induction of an aberrant cell metabolism. The introduction of therapies targeting immune processes will lead to new forms of therapy resistance. Knowing those mechanisms will help to develop strategies that can overcome resistance to treatment.
Collapse
Affiliation(s)
- Rabea Mecklenbrauck
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
77
|
Niswander LM, Graff ZT, Chien CD, Chukinas JA, Meadows CA, Leach LC, Loftus JP, Kohler ME, Tasian SK, Fry TJ. Potent preclinical activity of FLT3-directed chimeric antigen receptor T-cell immunotherapy against FLT3- mutant acute myeloid leukemia and KMT2A-rearranged acute lymphoblastic leukemia. Haematologica 2023; 108:457-471. [PMID: 35950535 PMCID: PMC9890025 DOI: 10.3324/haematol.2022.281456] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/03/2022] [Indexed: 02/03/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell immunotherapies targeting CD19 or CD22 induce remissions in the majority of patients with relapsed/refractory B-cell acute lymphoblastic leukemia (ALL), although relapse due to target antigen loss or downregulation has emerged as a major clinical dilemma. Accordingly, great interest exists in developing CAR T cells directed against alternative leukemia cell surface antigens that may help to overcome immunotherapeutic resistance. The fms-like tyrosine kinase 3 receptor (FLT3) is constitutively activated via FLT3 mutation in acute myeloid leukemia (AML) or wild-type FLT3 overexpression in KMT2A (lysine-specific methyltransferase 2A)-rearranged ALL, which are associated with poor clinical outcomes in children and adults. We developed monovalent FLT3-targeted CAR T cells (FLT3CART) and bispecific CD19xFLT3CART and assessed their anti-leukemia activity in preclinical models of FLT3-mutant AML and KMT2A-rearranged infant ALL. We report robust in vitro FLT3CART-induced cytokine production and cytotoxicity against AML and ALL cell lines with minimal cross-reactivity against normal hematopoietic and non-hematopoietic tissues. We also observed potent in vivo inhibition of leukemia proliferation in xenograft models of both FLT3-mutant AML and KMT2A-rearranged ALL, including a post-tisagenlecleucel ALL-to-AML lineage switch patient-derived xenograft model pairing. We further demonstrate significant in vitro and in vivo activity of bispecific CD19xFLT3CART against KMT2Arearranged ALL and posit that this additional approach might also diminish potential antigen escape in these high-risk leukemias. Our preclinical data credential FLT3CART as a highly effective immunotherapeutic strategy for both FLT3- mutant AML and KMT2A-rearranged ALL which is poised for further investigation and clinical translation.
Collapse
Affiliation(s)
- Lisa M Niswander
- Children's Hospital of Philadelphia, Division of Oncology and Center for Childhood Cancer Research; Philadelphia PA
| | - Zachary T Graff
- Center for Cancer and Blood Disorders, Children's Hospital Colorado; Aurora, CO, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO
| | - Christopher D Chien
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health; Bethesda, MD
| | - John A Chukinas
- Children's Hospital of Philadelphia, Division of Oncology and Center for Childhood Cancer Research; Philadelphia PA
| | - Christina A Meadows
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO
| | - Lillie C Leach
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO
| | - Joseph P Loftus
- Children's Hospital of Philadelphia, Division of Oncology and Center for Childhood Cancer Research; Philadelphia, PA
| | - M Eric Kohler
- Center for Cancer and Blood Disorders, Children's Hospital Colorado; Aurora, CO, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO
| | - Sarah K Tasian
- Children's Hospital of Philadelphia, Division of Oncology and Center for Childhood Cancer Research; Philadelphia PA, USA; University of Pennsylvania Perelman School of Medicine and Abramson Cancer Center; Philadelphia PA.
| | - Terry J Fry
- Center for Cancer and Blood Disorders, Children's Hospital Colorado; Aurora, CO, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO.
| |
Collapse
|
78
|
Ghelli Luserna di Rorà A, Jandoubi M, Martinelli G, Simonetti G. Targeting Proliferation Signals and the Cell Cycle Machinery in Acute Leukemias: Novel Molecules on the Horizon. Molecules 2023; 28:molecules28031224. [PMID: 36770891 PMCID: PMC9920029 DOI: 10.3390/molecules28031224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/04/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Uncontrolled proliferative signals and cell cycle dysregulation due to genomic or functional alterations are important drivers of the expansion of undifferentiated blast cells in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) cells. Therefore, they are largely studied as potential therapeutic targets in the field. We here present the most recent advancements in the evaluation of novel compounds targeting cell cycle proteins or oncogenic mechanisms, including those showing an antiproliferative effect in acute leukemia, independently of the identification of a specific target. Several new kinase inhibitors have been synthesized that showed effectiveness in a nanomolar to micromolar concentration range as inhibitors of FLT3 and its mutant forms, a highly attractive therapeutic target due to its driver role in a significant fraction of AML cases. Moreover, we introduce novel molecules functioning as microtubule-depolymerizing or P53-restoring agents, G-quadruplex-stabilizing molecules and CDK2, CHK1, PI3Kδ, STAT5, BRD4 and BRPF1 inhibitors. We here discuss their mechanisms of action, including the downstream intracellular changes induced by in vitro treatment, hematopoietic toxicity, in vivo bio-availability and efficacy in murine xenograft models. The promising activity profile demonstrated by some of these candidates deserves further development towards clinical investigation.
Collapse
Affiliation(s)
- Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli 40, 47014 Meldola, Italy
- Fondazione Pisana per Scienza ONLUS, 56017 San Giuliano Terme, Italy
| | - Mouna Jandoubi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli 40, 47014 Meldola, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli 40, 47014 Meldola, Italy
- Correspondence:
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli 40, 47014 Meldola, Italy
| |
Collapse
|
79
|
Zhang Y, Wang P, Wang Y, Shen Y. Sitravatinib as a potent FLT3 inhibitor can overcome gilteritinib resistance in acute myeloid leukemia. Biomark Res 2023; 11:8. [PMID: 36691065 PMCID: PMC9872318 DOI: 10.1186/s40364-022-00447-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Gilteritinib is the only drug approved as monotherapy for acute myeloid leukemia (AML) patients harboring FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) mutation throughout the world. However, drug resistance inevitably develops in clinical. Sitravatinib is a multi-kinase inhibitor under evaluation in clinical trials of various solid tumors. In this study, we explored the antitumor activity of sitravatinib against FLT3-ITD and clinically-relevant drug resistance in FLT3 mutant AML. METHODS Growth inhibitory assays were performed in AML cell lines and BaF3 cells expressing various FLT3 mutants to evaluate the antitumor activity of sitravatinib in vitro. Immunoblotting was used to examine the activity of FLT3 and its downstream pathways. Molecular docking was performed to predict the binding sites of FLT3 to sitravatinib. The survival benefit of sitravatinib in vivo was assessed in MOLM13 xenograft mouse models and mouse models of transformed BaF3 cells harboring different FLT3 mutants. Primary patient samples and a patient-derived xenograft (PDX) model were also used to determine the efficacy of sitravatinib. RESULTS Sitravatinib inhibited cell proliferation, induced cell cycle arrest and apoptosis in FLT3-ITD AML cell lines. In vivo studies showed that sitravatinib exhibited a better therapeutic effect than gilteritinib in MOLM13 xenograft model and BaF3-FLT3-ITD model. Unlike gilteritinib, the predicted binding sites of sitravatinib to FLT3 did not include F691 residue. Sitravatinib displayed a potent inhibitory effect on FLT3-ITD-F691L mutation which conferred resistance to gilteritinib and all other FLT3 inhibitors available, both in vitro and in vivo. Compared with gilteritinib, sitravatinib retained effective activity against FLT3 mutation in the presence of cytokines through the more potent and steady inhibition of p-ERK and p-AKT. Furthermore, patient blasts harboring FLT3-ITD were more sensitive to sitravatinib than to gilteritinib in vitro and in the PDX model. CONCLUSIONS Our study reveals the potential therapeutic role of sitravatinib in FLT3 mutant AML and provides an alternative inhibitor for the treatment of AML patients who are resistant to current FLT3 inhibitors.
Collapse
Affiliation(s)
- Yvyin Zhang
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Peihong Wang
- Department of Hematology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000 China
| | - Yang Wang
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yang Shen
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
80
|
Hino C, Xu Y, Xiao J, Baylink DJ, Reeves ME, Cao H. The potential role of the thymus in immunotherapies for acute myeloid leukemia. Front Immunol 2023; 14:1102517. [PMID: 36814919 PMCID: PMC9940763 DOI: 10.3389/fimmu.2023.1102517] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Understanding the factors which shape T-lymphocyte immunity is critical for the development and application of future immunotherapeutic strategies in treating hematological malignancies. The thymus, a specialized central lymphoid organ, plays important roles in generating a diverse T lymphocyte repertoire during the infantile and juvenile stages of humans. However, age-associated thymic involution and diseases or treatment associated injury result in a decline in its continuous role in the maintenance of T cell-mediated anti-tumor/virus immunity. Acute myeloid leukemia (AML) is an aggressive hematologic malignancy that mainly affects older adults, and the disease's progression is known to consist of an impaired immune surveillance including a reduction in naïve T cell output, a restriction in T cell receptor repertoire, and an increase in frequencies of regulatory T cells. As one of the most successful immunotherapies thus far developed for malignancy, T-cell-based adoptive cell therapies could be essential for the development of a durable effective treatment to eliminate residue leukemic cells (blasts) and prevent AML relapse. Thus, a detailed cellular and molecular landscape of how the adult thymus functions within the context of the AML microenvironment will provide new insights into both the immune-related pathogenesis and the regeneration of a functional immune system against leukemia in AML patients. Herein, we review the available evidence supporting the potential correlation between thymic dysfunction and T-lymphocyte impairment with the ontogeny of AML (II-VI). We then discuss how the thymus could impact current and future therapeutic approaches in AML (VII). Finally, we review various strategies to rejuvenate thymic function to improve the precision and efficacy of cancer immunotherapy (VIII).
Collapse
Affiliation(s)
- Christopher Hino
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Yi Xu
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Mark E Reeves
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| |
Collapse
|
81
|
Li S, Li N, Chen Y, Zheng Z, Guo Y. FLT3-TKD in the prognosis of patients with acute myeloid leukemia: A meta-analysis. Front Oncol 2023; 13:1086846. [PMID: 36874106 PMCID: PMC9982020 DOI: 10.3389/fonc.2023.1086846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Background Fms-like tyrosine kinase 3 (FLT3) gene mutations occur in approximately 30% of all patients with acute myeloid leukemia (AML). Internal tandem duplication (ITD) in the juxtamembrane domain and point mutations within the tyrosine kinase domain (TKD) are two distinct types of FLT3 mutations. FLT3-ITD has been determined as an independent poor prognostic factor, but the prognostic impact of potentially metabolically related FLT3-TKD remains controversial. Hence, we performed a meta-analysis to investigate the prognostic significance of FLT3-TKD in patients with AML. Methods A systematic retrieval of studies on FLT3-TKD in patients with AML was performed in PubMed, Embase, and Chinese National Knowledge Infrastructure databases on 30 September 2020. Hazard ratio (HR) and its 95% confidence intervals (95% CIs) were used to determine the effect size. Meta-regression model and subgroup analysis were used for heterogeneity analysis. Begg's and Egger's tests were performed to detect potential publication bias. The sensitivity analysis was performed to evaluate the stability of findings in meta-analysis. Results Twenty prospective cohort studies (n = 10,970) on the prognostic effect of FLT3-TKD in AML were included: 9,744 subjects with FLT3-WT and 1,226 subjects with FLT3-TKD. We found that FLT3-TKD revealed no significant effect on disease-free survival (DFS) (HR = 1.12, 95% CI: 0.90-1.41) and overall survival (OS) (HR = 0.98, 95% CI: 0.76-1.27) in general. However, meta-regressions demonstrated that patient source contributed to the high heterogeneity observed in the prognosis of FLT3-TKD in AML. To be specific, FLT3-TKD represented a beneficial prognosis of DFS (HR = 0.56, 95% CI: 0.37-0.85) and OS (HR = 0.63, 95% CI: 0.42-0.95) for Asians, whereas it represented an adverse prognosis of DFS for Caucasians with AML (HR = 1.34, 95% CI: 1.07-1.67). Conclusion FLT3-TKD revealed no significant effects on DFS and OS of patients with AML, which is consistent with the controversial status nowadays. Patient source (Asians or Caucasians) can be partially explained the different effects of FLT3-TKD in the prognosis of patients with AML.
Collapse
Affiliation(s)
- Shuping Li
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.,Department of Nephrology, Center of Nephrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Na Li
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.,Department of Nephrology, Center of Nephrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhihua Zheng
- Department of Nephrology, Center of Nephrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
82
|
Cabrera ME, Monardes V, Salgado C, Cares C, Gonzalez C. Incidence and clinical significance of FLT3 and nucleophosmin mutation in childhood acute myeloid leukemia in Chile. Hematol Transfus Cell Ther 2023; 45:77-82. [PMID: 34690101 PMCID: PMC9938456 DOI: 10.1016/j.htct.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a heterogeneous disease and approximately one-third of its carriers do not have evident genetic abnormalities. The mutation of specific molecular markers, such as fms-like tyrosine kinase 3 (FTL3) internal tandem duplication (ITD), FLT3 tyrosine kinase domain (TKD) and nucleophosmin (NPM1), are associated with an adverse and favorable prognosis, respectively. OBJECTIVE The objective was to determine the prevalence of FLT3/ITD and NPM1 in Chilean patients and their association with clinical data and prognosis. METHOD AND RESULTS Two hundred and thirty-two children were studied between 2011 and 2017, the median being 8.6 years (ranging from 1 to 18 months). Acute promyelocytic leukemia (APL) was diagnosed in 29%. The FLT3/ITD-mutated in non-promyelocytic AML was at 10% (14/133) and the FLT3/TKD, at 3.7% (2/54). In APL, it was at 25.4% (16/63). In non-promyelocytic AML, the FLT3/ITD-mutated was associated with a high leucocyte count, the median being 28.5 x mm3 (n = 14) versus 19.4 x mm3 (n = 119), (p = 0.25), in non-mutated cases. In APL, the median was 33.6 x mm3 (n = 15) versus 2.8 x mm3 (n = 47), (p < 0.001). The five-year overall survival (OS) in non-promyelocytic AML with non-mutated and mutated FLT3/ITD were 62.7% and 21.4%, respectively, (p < 0.001); the 5-year event-free survival (EFS) were 79.5% and 50%, respectively, (p < 0.01). The five-year OS in APL with non-mutated and mutated FLT3/ITD was 84.7% and 62.5%, respectively, (p = 0.05); the 5-year EFS was 84.7% and 68.8%, respectively, (p = 0.122). The NPM1 mutation was observed in 3.2% (5/155), all non-promyelocytic AML with the normal karyotype. CONCLUSION The FLT3/ITD mutation was observed more frequently in APL and associated with a higher white cell count at diagnosis. However, the most important finding was that the FLT3/ITD mutation was associated with a shorter survival in non-promyelocytic AML.
Collapse
Affiliation(s)
| | | | - Carmen Salgado
- Programa de Salud de Cáncer Infantil (PINDA), Santiago, Chile
| | | | | |
Collapse
|
83
|
Metafuni E, Amato V, Giammarco S, Bellesi S, Rossi M, Minnella G, Frioni F, Limongiello MA, Pagano L, Bacigalupo A, Sica S, Chiusolo P. Pre-transplant gene profiling characterization by next-generation DNA sequencing might predict relapse occurrence after hematopoietic stem cell transplantation in patients affected by AML. Front Oncol 2022; 12:939819. [PMID: 36568206 PMCID: PMC9768016 DOI: 10.3389/fonc.2022.939819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/18/2022] [Indexed: 12/12/2022] Open
Abstract
Background In the last decade, many steps forward have been made in acute myeloid leukemia prognostic stratification, adding next-generation sequencing techniques to the conventional molecular assays. This resulted in the revision of the current risk classification and the introduction of new target therapies. Aims and methods We wanted to evaluate the prognostic impact of acute myeloid leukemia (AML) mutational pattern on relapse occurrence and survival after allogeneic stem cell transplantation. A specific next-generation sequencing (NGS) panel containing 26 genes was designed for the study. Ninety-six patients studied with NGS at diagnosis were included and retrospectively studied for post-transplant outcomes. Results Only eight patients did not show any mutations. Multivariate Cox regression revealed FLT3 (HR, 3.36; p=0.02), NRAS (HR, 4.78; p=0.01), TP53 (HR, 4.34; p=0.03), and WT1 (HR 5.97; p=0.005) mutations as predictive variables for relapse occurrence after transplantation. Other independent variables for relapse recurrence were donor age (HR, 0.97; p=0.04), the presence of an adverse cytogenetic risk at diagnosis (HR, 3.03; p=0.04), and the obtainment of complete remission of the disease before transplantation (HR, 0.23; p=0.001). Overall survival appeared to be affected only by grade 2-4 acute GvHD occurrence (HR, 2.29; p=0.05) and relapse occurrence (HR, 4.33; p=0.0001) in multivariate analysis. Conclusions The small number of patients and the retrospective design of the study might affect the resonance of our data. Although results on TP53, FLT3, and WT1 were comparable to previous reports, the interesting data on NRAS deserve attention.
Collapse
Affiliation(s)
- Elisabetta Metafuni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Viviana Amato
- Division of Haemato-Oncology, IEO European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Sabrina Giammarco
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Silvia Bellesi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Monica Rossi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gessica Minnella
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Filippo Frioni
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Assunta Limongiello
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Livio Pagano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy,Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Bacigalupo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy,Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simona Sica
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy,Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy,*Correspondence: Simona Sica,
| | - Patrizia Chiusolo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy,Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
84
|
Muacevic A, Adler JR, Rinaldi I, Wanandi SI. Resistance Mechanism of Acute Myeloid Leukemia Cells Against Daunorubicin and Cytarabine: A Literature Review. Cureus 2022; 14:e33165. [PMID: 36726936 PMCID: PMC9885730 DOI: 10.7759/cureus.33165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2022] [Indexed: 01/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy commonly found in adult patients. Low overall survival and resistance to therapy are the main issues in AML. The first line of treatment for AML chemotherapy is the induction phase, namely, the phase to induce remission by administering a combination of daunorubicin (DNR) for three days followed by administration of cytarabine (Ara-C) with continuous infusion for seven days, which is referred to as "3 + 7." Such induction therapy has been the standard therapy for AML for the last four decades. This review article is made to discuss daunorubicin and cytarabine from their chemical structure, pharmacodynamics, pharmacokinetics, and mechanisms of resistance in AML.
Collapse
|
85
|
Wang T, Hua H, Wang Z, Wang B, Cao L, Qin W, Wu P, Cai X, Chao H, Lu X. Frequency and clinical impact of WT1 mutations in the context of CEBPA-mutated acute myeloid leukemia. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:994-1002. [PMID: 36066283 DOI: 10.1080/16078454.2022.2103964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Several studies have confirmed that mutations in the Wilms tumor 1 (WT1) gene occur in adult acute myeloid leukemia (AML). However, few data are available regarding the incidence of WT1 mutations in CEBPAmut AML and their impact. METHODS We retrospectively analyzed the frequency and clinical impact of WT1 mutations in 220 newly diagnosed AML patients with CEBPA mutations(CEBPAmut). Chromosome karyotype analysis was performed by R or G banding method and further confirmed either by fluorescence in situ hybridization (FISH) and/or by multiple reverse transcription polymerase chain reaction (multiple RT-PCR). Mutations were detected with a panel of 112mutational genes using next-generation sequencing (NGS). RESULTS Overall, 30 WT1 mutations were detected in 29 of the 220 CEBPAmut AML patients (13.18%) screened. These mutations clustered overwhelmingly in exon 7 (n=16). WT1 mutations were found to be significantly more frequent in AML patients with double-mutated CEBPA (CEBPAdm) than in AML patients with single-mutated CEBPA (17.36%vs. 8.08%, P = 0.043). Among WT1-mutated patients, the most common co-mutation was FLT3-ITD (n = 7, 24.14%), followed by NRAS (n = 5, 17.24%), CSF3R (n = 4, 13.79%), GATA2 (n = 4, 13.79%), and KIT (n = 4, 13.79%). The most frequent functional pathway was signaling pathways inas many as 62.07% of cases. Notably,the concomitant mutations in epigenetic regulatorswere inversely correlated with WT1 mutations(P = 0.003). CEBPAdm AML patients with WT1 mutations had inferior relapse-free survival, event-free survival and overall survival compared with patients CEBPAdm AML without WT1 mutations (P = 0.002, 0.004, and 0.010, respectively). CONCLUSION Our data showed that WT1 mutations are frequently identified in CEBPAmut AML, especially in CEBPAdm AML. CEBPAmut AML patients with WT1 mutations show distinct spectrum of comutations. In the context of CEBPAdm AML, WT1 mutations predict a poor prognosis.
Collapse
Affiliation(s)
- Ting Wang
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| | - Haiying Hua
- Department of Hematology, Wuxi Third people's hospital, Wuxi, People's Republic of China
| | - Zheng Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People's Republic of China.,Suzhou jsuniwell medical laboratory, Suzhou, People's Republic of China
| | - Biao Wang
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Liujun Cao
- Department of Hematology, Affiliated Jintan People's Hospital of Jiangsu University, Changzhou, People's Republic of China
| | - Wei Qin
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| | - Pin Wu
- Department of Hematology, Wuxi Second people's hospital, Wuxi, People's Republic of China
| | - Xiaohui Cai
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| | - Hongying Chao
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| | - XuZhang Lu
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| |
Collapse
|
86
|
Ayala R, Carreño-Tarragona G, Barragán E, Boluda B, Larráyoz MJ, Chillón MC, Carrillo-Cruz E, Bilbao C, Sánchez-García J, Bernal T, Martinez-Cuadron D, Gil C, Serrano J, Rodriguez-Medina C, Bergua J, Pérez-Simón JA, Calbacho M, Alonso-Domínguez JM, Labrador J, Tormo M, Amigo ML, Herrera-Puente P, Rapado I, Sargas C, Vazquez I, Calasanz MJ, Gomez-Casares T, García-Sanz R, Sanz MA, Martínez-López J, Montesinos P. Impact of FLT3-ITD Mutation Status and Its Ratio in a Cohort of 2901 Patients Undergoing Upfront Intensive Chemotherapy: A PETHEMA Registry Study. Cancers (Basel) 2022; 14:cancers14235799. [PMID: 36497281 PMCID: PMC9737662 DOI: 10.3390/cancers14235799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
FLT3−ITD results in a poor prognosis in terms of overall survival (OS) and relapse-free survival (RFS) in acute myeloid leukemia (AML). However, the prognostic usefulness of the allelic ratio (AR) to select post-remission therapy remains controversial. Our study focuses on the prognostic impact of FLT3−ITD and its ratio in a series of 2901 adult patients treated intensively in the pre-FLT3 inhibitor era and reported in the PETHEMA registry. A total of 579 of these patients (20%) harbored FLT3−ITD mutations. In multivariate analyses, patients with an FLT3−ITD allele ratio (AR) of >0.5 showed a lower complete remission (CR rate) and OS (HR 1.47, p = 0.009), while AR > 0.8 was associated with poorer RFS (HR 2.1; p < 0.001). Among NPM1/FLT3−ITD-mutated patients, median OS gradually decreased according to FLT3−ITD status and ratio (34.3 months FLT3−ITD-negative, 25.3 months up to 0.25, 14.5 months up to 0.5, and 10 months ≥ 0.5, p < 0.001). Post-remission allogeneic transplant (allo-HSCT) resulted in better OS and RFS as compared to auto-HSCT in NPM1/FLT3−ITD-mutated AML regardless of pre-established AR cutoff (≤0.5 vs. >0.5). Using the maximally selected log-rank statistics, we established an optimal cutoff of FLT3−ITD AR of 0.44 for OS, and 0.8 for RFS. We analyzed the OS and RFS according to FLT3−ITD status in all patients, and we found that the group of FLT3−ITD-positive patients with AR < 0.44 had similar 5-year OS after allo-HSCT or auto-HSCT (52% and 41%, respectively, p = 0.86), but worse RFS after auto-HSCT (p = 0.01). Among patients with FLT3−ITD AR > 0.44, allo-HSCT was superior to auto-HSCT in terms of OS and RFS. This study provides more evidence for a better characterization of patients with AML harboring FLT3−ITD mutations.
Collapse
Affiliation(s)
- Rosa Ayala
- Hematology Department, Hospital Universitario 12 de Octubre, i+12, CNIO, CIBERONC, Complutense University, 28041 Madrid, Spain
| | - Gonzalo Carreño-Tarragona
- Hematology Department, Hospital Universitario 12 de Octubre, i+12, CNIO, CIBERONC, Complutense University, 28041 Madrid, Spain
| | - Eva Barragán
- Molecular Biology Unit, Hospital Universitari i Politécnic-IIS La Fe, 46026 Valencia, Spain
| | - Blanca Boluda
- Hematology Department, Hospital Universitari i Politécnic-IIS La Fe, CIBERONC, 46026 Valencia, Spain
| | | | - María Carmen Chillón
- Hospital Universitario de Salamanca (HUS/IBSAL), CIBERONC and Center for Cancer Research-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Estrella Carrillo-Cruz
- Hospital Universitario Virgen del Rocío, Instituto de Biomedicina (IBIS/CSIC/CIBERONC), Universidad de Sevilla, 41120 Sevilla, Spain
| | - Cristina Bilbao
- Hospital Universitario de Gran Canaria Dr. Negrín, 35002 Las Palmas de Gran Canaria, Spain
| | | | - Teresa Bernal
- Hospital Universitario Central de Asturias, Instituto de Investigación del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - David Martinez-Cuadron
- Hematology Department, Hospital Universitari i Politécnic-IIS La Fe, CIBERONC, 46026 Valencia, Spain
| | - Cristina Gil
- Hospital General Universitario de Alicante, 03010 Alicante, Spain
| | - Josefina Serrano
- IMIBIC, Hematology, Hospital Universitario Reina Sofía, UCO, 14004 Córdoba, Spain
| | | | - Juan Bergua
- Hospital Universitario San Pedro de Alcántara, 10001 Cáceres, Spain
| | - José A. Pérez-Simón
- Hospital Universitario Virgen del Rocío, Instituto de Biomedicina (IBIS/CSIC/CIBERONC), Universidad de Sevilla, 41120 Sevilla, Spain
| | - María Calbacho
- Hematology Department, Hospital Universitario 12 de Octubre, i+12, CNIO, CIBERONC, Complutense University, 28041 Madrid, Spain
| | | | - Jorge Labrador
- Research Unit, Hematology Department, Hospital Universitario de Burgos, Universidad Isabel I, 09006 Burgos, Spain
| | - Mar Tormo
- Hematology Department, Hospital Clínico Universitario-INCLIVA, 46026 Valencia, Spain
| | - Maria Luz Amigo
- Hospital Universitario Morales Messeguer, 30008 Murcia, Spain
| | | | - Inmaculada Rapado
- Hematology Department, Hospital Universitario 12 de Octubre, i+12, CNIO, CIBERONC, Complutense University, 28041 Madrid, Spain
| | - Claudia Sargas
- Molecular Biology Unit, Hospital Universitari i Politécnic-IIS La Fe, 46026 Valencia, Spain
| | - Iria Vazquez
- CIMA LAB Diagnostics, Universidad de Navarra, 31008 Pamplona, Spain
| | | | - Teresa Gomez-Casares
- Hospital Universitario de Gran Canaria Dr. Negrín, 35002 Las Palmas de Gran Canaria, Spain
| | - Ramón García-Sanz
- Hospital Universitario de Salamanca (HUS/IBSAL), CIBERONC and Center for Cancer Research-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Miguel A. Sanz
- Hematology Department, Hospital Universitari i Politécnic-IIS La Fe, CIBERONC, 46026 Valencia, Spain
| | - Joaquín Martínez-López
- Hematology Department, Hospital Universitario 12 de Octubre, i+12, CNIO, CIBERONC, Complutense University, 28041 Madrid, Spain
- Correspondence: (J.M.-L.); (P.M.); Tel.: +34-917-792-788 (J.M.-L.); +34-961-244-925 (P.M.); Fax: +34-961-246-201 (P.M.)
| | - Pau Montesinos
- Hematology Department, Hospital Universitari i Politécnic-IIS La Fe, CIBERONC, 46026 Valencia, Spain
- Correspondence: (J.M.-L.); (P.M.); Tel.: +34-917-792-788 (J.M.-L.); +34-961-244-925 (P.M.); Fax: +34-961-246-201 (P.M.)
| |
Collapse
|
87
|
Zhou W, Yu J, Li Y, Wang K. Neoantigen-specific TCR-T cell-based immunotherapy for acute myeloid leukemia. Exp Hematol Oncol 2022; 11:100. [PMID: 36384590 PMCID: PMC9667632 DOI: 10.1186/s40164-022-00353-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
Neoantigens derived from non-synonymous somatic mutations are restricted to malignant cells and are thus considered ideal targets for T cell receptor (TCR)-based immunotherapy. Adoptive transfer of T cells bearing neoantigen-specific TCRs exhibits the ability to preferentially target tumor cells while remaining harmless to normal cells. High-avidity TCRs specific for neoantigens expressed on AML cells have been identified in vitro and verified using xenograft mouse models. Preclinical studies of these neoantigen-specific TCR-T cells are underway and offer great promise as safe and effective therapies. Additionally, TCR-based immunotherapies targeting tumor-associated antigens are used in early-phase clinical trials for the treatment of AML and show encouraging anti-leukemic effects. These clinical experiences support the application of TCR-T cells that are specifically designed to recognize neoantigens. In this review, we will provide a detailed profile of verified neoantigens in AML, describe the strategies to identify neoantigen-specific TCRs, and discuss the potential of neoantigen-specific T-cell-based immunotherapy in AML.
Collapse
|
88
|
Song MK, Park BB, Uhm JE. Clinical Efficacies of FLT3 Inhibitors in Patients with Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms232012708. [PMID: 36293564 PMCID: PMC9604443 DOI: 10.3390/ijms232012708] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
FLT3 mutations are the most common genomic alteration detected in acute myeloid leukemia (AML) with a worse clinical prognosis. The highly frequent FLT3 mutations, together with the side effects associated with clinical prognosis, make FLT3 promising treatment targets and have provoked the advancement of FLT3 inhibitors. Recently, numerous FLT3 inhibitors were actively developed, and thus the outcomes of this aggressive subtype of AML were significantly improved. Recently, midostaurin and gilteritinib were approved as frontline treatment of AML and as therapeutic agents in the recurred disease by the United States Food and Drug Administration. Recently, numerous promising clinical trials attempted to seek appropriate management in frontline settings, in relapsed/refractory disease, or after stem cell transplantation in AML. This review follows numerous clinical trials about the usefulness of FLT3 inhibitors as frontline therapy, as relapsed/refractory conditioning, and as maintenance therapy of stem cell transplantation. The cumulative data of FLT3 inhibitors would be important clinical evidence for further management with FLT3 inhibitors in AML patients with FLT3 mutations.
Collapse
Affiliation(s)
- Moo-Kon Song
- Department of Hematology-Oncology, Hanyang University Hanmaeum Changwon Hospital, Changwon 51497, Korea
| | - Byeong-Bae Park
- Division of Hematology-Oncology, Department of Internal Medicine, Hanyang University College of Medicine, Hanyang University Seoul Hospital, Seoul 04763, Korea
- Correspondence: ; Tel.: +82-2-2290-8114; Fax: +82-2-2290-7112
| | - Ji-Eun Uhm
- Division of Hematology-Oncology, Department of Internal Medicine, Hanyang University College of Medicine, Hanyang University Seoul Hospital, Seoul 04763, Korea
| |
Collapse
|
89
|
Sun L, Ye SJ, Zhou N, Han XZ, Qi JX, Liu XJ, Luo JM, Yang L. [Efficacy of venetoclax combined azacitidine in newly diagnosed acute myeloid leukemia unfit for standard chemotherapy: a single center experience]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:826-832. [PMID: 36709196 PMCID: PMC9669628 DOI: 10.3760/cma.j.issn.0253-2727.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 01/30/2023]
Abstract
Objective: To investigate the effectiveness and safety of the VA regimen, which combines venetoclax with azacitidine in the treatment of patients with newly diagnosed acute myeloid leukemia (AML) who are not suitable candidates for conventional chemotherapy. Methods: In the Department of Hematology at the Second Hospital of Hebei Medical University, 66 AML patients who received venetoclax and azacitidine treatment from May 2020 to March 2022 were the subject of a retrospective study. The complete remission (CR) rate, cCR rate, ORR rate, MRD negative rate, the incidence of adverse events,1-year EFS, and OS were retrospectively analyzed. Patients subgroups with varying ages, ECOG scores, primary and secondary, risk stratifications, and gene mutation were compared for differences in efficacy and survival. Results: The median follow-up was 4.25 (0.9-19.9) months, and the median number of treatment courses was 2 (1-8) cycles. After the first cycle, the cCR rate was 78.8% , and the MRD negative rate was 51.9% . After prolonged treatment, the cCR rate was 81.8% and MRD negative rate was 66.7% . The median EFS and OS, respectively, were13.2 and 15.3 months. Secondary AML showed inferior efficacy and prognosis. IDH1/2 or NPM1 mutation groups had a significantly higher rate of CR than the control group (P<0.05) . The CR rate and MRD negative rate of patients with rebound thrombocytosis were significantly higher than those without rebound thrombocytosis (P<0.05) . Those who had epigenetic modification mutations (DNMT3, ASXL1, TET2) were more likely to benefit from ongoing therapy. The most common grade 3 and 4 adverse reactions were neutropenia, thrombocytopenia, and anemia. Conclusions: In real-world patients with newly diagnosed AML who are not candidates for standard chemotherapy, the VA regimen produces rapid deep remission. Primary AML patients, rebound thrombocytosis, IDH1/2, and NPM1 gene mutations are favorable factors for treatment benefit, and adverse reactions were tolerable.
Collapse
Affiliation(s)
- L Sun
- Department of Hematology, the Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang 050000, China
| | - S J Ye
- Department of Hematology, the Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang 050000, China
| | - N Zhou
- Department of Hematology, the Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang 050000, China
| | - X Z Han
- Department of Hematology, the Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang 050000, China
| | - J X Qi
- Department of Hematology, the Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang 050000, China
| | - X J Liu
- Department of Hematology, the Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang 050000, China
| | - J M Luo
- Department of Hematology, the Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang 050000, China
| | - L Yang
- Department of Hematology, the Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang 050000, China
| |
Collapse
|
90
|
Döhner H, Wei AH, Roboz GJ, Montesinos P, Thol FR, Ravandi F, Dombret H, Porkka K, Sandhu I, Skikne B, See WL, Ugidos M, Risueño A, Chan ET, Thakurta A, Beach CL, Lopes de Menezes D. Prognostic impact of NPM1 and FLT3 mutations in patients with AML in first remission treated with oral azacitidine. Blood 2022; 140:1674-1685. [PMID: 35960871 PMCID: PMC10653004 DOI: 10.1182/blood.2022016293] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
The randomized, placebo-controlled, phase 3 QUAZAR AML-001 trial (ClinicalTrials.gov identifier: NCT01757535) evaluated oral azacitidine (Oral-AZA) in patients with acute myeloid leukemia (AML) in first remission after intensive chemotherapy (IC) who were not candidates for hematopoietic stem cell transplantation. Eligible patients were randomized 1:1 to Oral-AZA 300 mg or placebo for 14 days per 28-day cycle. We evaluated relapse-free survival (RFS) and overall survival (OS) in patient subgroups defined by NPM1 and FLT3 mutational status at AML diagnosis and whether survival outcomes in these subgroups were influenced by presence of post-IC measurable residual disease (MRD). Gene mutations at diagnosis were collected from patient case report forms; MRD was determined centrally by multiparameter flow cytometry. Overall, 469 of 472 randomized patients (99.4%) had available mutational data; 137 patients (29.2%) had NPM1 mutations (NPM1mut), 66 patients (14.1%) had FLT3 mutations (FLT3mut; with internal tandem duplications [ITD], tyrosine kinase domain mutations [TKDmut], or both), and 30 patients (6.4%) had NPM1mut and FLT3-ITD at diagnosis. Among patients with NPM1mut, OS and RFS were improved with Oral-AZA by 37% (hazard ratio [HR], 0.63; 95% confidence interval [CI], 0.41-0.98) and 45% (HR, 0.55; 95% CI, 0.35-0.84), respectively, vs placebo. Median OS was improved numerically with Oral-AZA among patients with NPM1mut whether without MRD (48.6 months vs 31.4 months with placebo) or with MRD (46.1 months vs 10.0 months with placebo) post-IC. Among patients with FLT3mut, Oral-AZA improved OS and RFS by 37% (HR, 0.63; 95% CI, 0.35-1.12) and 49% (HR, 0.51; 95% CI, 0.27-0.95), respectively, vs placebo. Median OS with Oral-AZA vs placebo was 28.2 months vs 16.2 months, respectively, for patients with FLT3mut and without MRD and 24.0 months vs 8.0 months for patients with FLT3mut and MRD. In multivariate analyses, Oral-AZA significantly improved survival independent of NPM1 or FLT3 mutational status, cytogenetic risk, or post-IC MRD status.
Collapse
Affiliation(s)
- Hartmut Döhner
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Andrew H Wei
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, Australia
| | - Gail J Roboz
- Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY
- Division of Hematology & Medical Oncology, New York Presbyterian Hospital, New York, NY
| | - Pau Montesinos
- Servicio de Hematología y Hemoterapia, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Felicitas R Thol
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Medizinische Hochschule Hannover, Hannover, Germany
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hervé Dombret
- Leukemia Unit, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Institut de Recherche Saint Louis, Université de Paris, Paris, France
| | - Kimmo Porkka
- Hematology Research Unit Helsinki, HUS Comprehensive Cancer Center, and iCAN Digital Precision Cancer Center Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Irwindeep Sandhu
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Barry Skikne
- University of Kansas Medical Center, Kansas City, KS
- Bristol Myers Squibb, Princeton, NJ
| | - Wendy L See
- Translational Medicine, Bristol Myers Squibb, Summit, NJ
| | - Manuel Ugidos
- BMS Center for Innovation and Translational Research Europe (CITRE), a Bristol-Myers Squibb Company, Seville, Spain
| | - Alberto Risueño
- BMS Center for Innovation and Translational Research Europe (CITRE), a Bristol-Myers Squibb Company, Seville, Spain
| | | | - Anjan Thakurta
- Translational Medicine, Bristol Myers Squibb, Summit, NJ
| | | | | |
Collapse
|
91
|
Prasad Shenoy G, Pal R, Gurubasavaraja Swamy P, Singh E, Manjunathaiah Raghavendra N, Sanjay Dhiwar P. Discoidin Domain Receptor Inhibitors as Anticancer Agents: A Systematic Review on Recent Development of DDRs Inhibitors, their Resistance and Structure Activity Relationship. Bioorg Chem 2022; 130:106215. [DOI: 10.1016/j.bioorg.2022.106215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/02/2022]
|
92
|
Recent Advances in the Development of Anti-FLT3 CAR T-Cell Therapies for Treatment of AML. Biomedicines 2022; 10:biomedicines10102441. [PMID: 36289703 PMCID: PMC9598885 DOI: 10.3390/biomedicines10102441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Following the success of the anti-CD19 chimeric antigen receptor (CAR) T-cell therapies against B-cell malignancies, the CAR T-cell approach is being developed towards other malignancies like acute myeloid leukemia (AML). Treatment options for relapsed AML patients are limited, and the upregulation of the FMS-like tyrosine kinase 3 (FLT3) in malignant T-cells is currently not only being investigated as a prognostic factor, but also as a target for new treatment options. In this review, we provide an overview and discuss different approaches of current anti-FLT3 CAR T-cells under development. In general, these therapies are effective both in vitro and in vivo, however the safety profile still needs to be further investigated. The first clinical trials have been initiated, and the community now awaits clinical evaluation of the approach of targeting FLT3 with CAR T-cells.
Collapse
|
93
|
Prognostic Relevance of NPM1 and FLT3 Mutations in Acute Myeloid Leukaemia, Longterm Follow-Up-A Single Center Experience. Cancers (Basel) 2022; 14:cancers14194716. [PMID: 36230640 PMCID: PMC9562865 DOI: 10.3390/cancers14194716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
The prognosis of acute myeloid leukemia depends on genetic aberrations, particularly NPM1 and FLT3-ITD mutations. The targeted drugs’ availability has renewed interest in FLT3 mutations, but the impact of these genetic alterations using these treatments is yet to be confirmed. Our objective was to evaluate the results obtained with the intensified NILG-AML 01/00 protocol (ClinicalTrials.gov Identifier: NCT 00400673) in 171 unselected patients (median age, 54.5 years, range 15−74) carrying the FLT3 (ITD or TKD) and/or NPM1 mutations. The CR rate and 5-y survival were 88.3% and 58% +/− 4, respectively, significantly higher in the NPM1-mutated (CR 93.9%, p: 0.0001; survival 71% +/− 6, p: 0.0017, respectively). In isolated ITD patients, the CR was lower (66.7%, p: 0.0009), and the 3 years-relapse-free survival worse (24%, p: <0.0002). The presence of ITD, irrespective of the allelic ratio, or TKD mutation, did not significantly affect the survival or relapse-free survival among the NPM1-co-mutated patients. Our data indicate that a high dose of ARAC plus idarubicin consolidation exerts a strong anti-leukemic effect in NPM1-mutated patients both with the FLT3 wild-type and mutated AML, while in the NPM1 wild-type and FLT3-mutated, the therapeutic effect remains unsatisfactory. New strategies incorporating target therapy with second-generation inhibitors will improve these results and their addition to this aggressive chemotherapeutic program merits testing.
Collapse
|
94
|
Huang BJ, Smith JL, Farrar JE, Wang YC, Umeda M, Ries RE, Leonti AR, Crowgey E, Furlan SN, Tarlock K, Armendariz M, Liu Y, Shaw TI, Wei L, Gerbing RB, Cooper TM, Gamis AS, Aplenc R, Kolb EA, Rubnitz J, Ma J, Klco JM, Ma X, Alonzo TA, Triche T, Meshinchi S. Integrated stem cell signature and cytomolecular risk determination in pediatric acute myeloid leukemia. Nat Commun 2022; 13:5487. [PMID: 36123353 PMCID: PMC9485122 DOI: 10.1038/s41467-022-33244-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Relapsed or refractory pediatric acute myeloid leukemia (AML) is associated with poor outcomes and relapse risk prediction approaches have not changed significantly in decades. To build a robust transcriptional risk prediction model for pediatric AML, we perform RNA-sequencing on 1503 primary diagnostic samples. While a 17 gene leukemia stem cell signature (LSC17) is predictive in our aggregated pediatric study population, LSC17 is no longer predictive within established cytogenetic and molecular (cytomolecular) risk groups. Therefore, we identify distinct LSC signatures on the basis of AML cytomolecular subtypes (LSC47) that were more predictive than LSC17. Based on these findings, we build a robust relapse prediction model within a training cohort and then validate it within independent cohorts. Here, we show that LSC47 increases the predictive power of conventional risk stratification and that applying biomarkers in a manner that is informed by cytomolecular profiling outperforms a uniform biomarker approach. Relapsed pediatric acute myeloid leukemia is associated with poor prognosis. Here, the authors use RNA-seq data from 1503 primary samples to create a combined transcriptional and cytomolecular signature to improve relapse risk prediction.
Collapse
Affiliation(s)
- Benjamin J Huang
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA. .,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| | - Jenny L Smith
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jason E Farrar
- University of Arkansas for Medical Sciences & Arkansas Children's Research Institute, Little Rock, AR, USA
| | | | - Masayuki Umeda
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rhonda E Ries
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Erin Crowgey
- Nemours Center for Cancer and Blood Disorders and Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| | - Scott N Furlan
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Katherine Tarlock
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Marcos Armendariz
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Timothy I Shaw
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lisa Wei
- Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | | | - Todd M Cooper
- Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Alan S Gamis
- Children's Mercy Hospitals and Clinics, Kansas City, MO, USA
| | - Richard Aplenc
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders and Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| | - Jeffrey Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Todd A Alonzo
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Soheil Meshinchi
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| |
Collapse
|
95
|
Buelow DR, Bhatnagar B, Orwick SJ, Jeon JY, Eisenmann ED, Stromatt JC, Pabla NS, Blachly JS, Baker SD, Blaser BW. BMX kinase mediates gilteritinib resistance in FLT3-mutated AML through microenvironmental factors. Blood Adv 2022; 6:5049-5060. [PMID: 35797240 PMCID: PMC9631628 DOI: 10.1182/bloodadvances.2022007952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Despite the clinical benefit associated with gilteritinib in relapsed/refractory acute myeloid leukemia (AML), most patients eventually develop resistance through unknown mechanisms. To delineate the mechanistic basis of resistance to gilteritinib, we performed targeted sequencing and scRNASeq on primary FLT3-ITD-mutated AML samples. Co-occurring mutations in RAS pathway genes were the most common genetic abnormalities, and unresponsiveness to gilteritinib was associated with increased expression of bone marrow-derived hematopoietic cytokines and chemokines. In particular, we found elevated expression of the TEK-family kinase, BMX, in gilteritinib-unresponsive patients pre- and post-treatment. BMX contributed to gilteritinib resistance in FLT3-mutant cell lines in a hypoxia-dependent manner by promoting pSTAT5 signaling, and these phenotypes could be reversed with pharmacological inhibition and genetic knockout. We also observed that inhibition of BMX in primary FLT3-mutated AML samples decreased chemokine secretion and enhanced the activity of gilteritinib. Collectively, these findings indicate a crucial role for microenvironment-mediated factors modulated by BMX in the escape from targeted therapy and have implications for the development of novel therapeutic interventions to restore sensitivity to gilteritinib.
Collapse
Affiliation(s)
- Daelynn R. Buelow
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Bhavana Bhatnagar
- West Virginia University Cancer Institute, Department of Hematology and Medical Oncology, Wheeling, WV; and
| | - Shelley J. Orwick
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Jae Yoon Jeon
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Eric D. Eisenmann
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Jack C. Stromatt
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Navjot Singh Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - James S. Blachly
- Division of Hematology, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Bradley W. Blaser
- Division of Hematology, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
96
|
Recent Advances in PROTACs for Drug Targeted Protein Research. Int J Mol Sci 2022; 23:ijms231810328. [PMID: 36142231 PMCID: PMC9499226 DOI: 10.3390/ijms231810328] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 01/30/2023] Open
Abstract
Proteolysis-targeting chimera (PROTAC) is a heterobifunctional molecule. Typically, PROTAC consists of two terminals which are the ligand of the protein of interest (POI) and the specific ligand of E3 ubiquitin ligase, respectively, via a suitable linker. PROTAC degradation of the target protein is performed through the ubiquitin–proteasome system (UPS). The general process is that PROTAC binds to the target protein and E3 ligase to form a ternary complex and label the target protein with ubiquitination. The ubiquitinated protein is recognized and degraded by the proteasome in the cell. At present, PROTAC, as a new type of drug, has been developed to degrade a variety of cancer target proteins and other disease target proteins, and has shown good curative effects on a variety of diseases. For example, PROTACs targeting AR, BR, BTK, Tau, IRAK4, and other proteins have shown unprecedented clinical efficacy in cancers, neurodegenerative diseases, inflammations, and other fields. Recently, PROTAC has entered a phase of rapid development, opening a new field for biomedical research and development. This paper reviews the various fields of targeted protein degradation by PROTAC in recent years and summarizes and prospects the hot targets and indications of PROTAC.
Collapse
|
97
|
Blackmon A, Aldoss I, Ball BJ. FLT3 Inhibitors as Maintenance Therapy after Allogeneic Stem-Cell Transplantation. Blood Lymphat Cancer 2022; 12:137-147. [PMID: 36097605 PMCID: PMC9464008 DOI: 10.2147/blctt.s281252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022]
Abstract
Mutations in the FLT3 gene are associated with poor prognosis in patients with AML, even after consolidation with allogeneic hematopoietic cell transplantation (alloHCT) in first remission. Treatment failure in FLT3-mutated AML is largely driven by excessive risk of relapse compared to other genetic subtypes, including in patients post-alloHCT. As a result, there is substantial interest in studying posttransplant maintenance therapy in FLT3-mutated AML as an approach to optimize disease control and improve long-term outcomes. Clinical trials utilizing posttransplant FLT3 inhibitors, such as sorafenib and midostaurin, have shown feasibility, safety, and encouraging posttransplant outcomes, and there are ongoing studies using newer-generation tyrosine-kinase inhibitors as posttransplant maintenance therapy. Here, we review the toxicities and efficacy of FLT3 inhibitors as posttransplant maintenance, recommendations on the use of FLT3 inhibitors by international consensus guidelines, and highlight key remaining questions.
Collapse
Affiliation(s)
- Amanda Blackmon
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Brian J Ball
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
98
|
Díaz-Santa J, Rodríguez-Romanos R, Coll R, Osca G, Pratcorona M, González-Bartulos M, Garrido A, Angona A, Talarn C, Tormo M, Arnan M, Vives S, Salamero O, Tuset E, Lloveras N, Díez I, Zamora L, Bargay J, Sampol A, Cruz D, Vila J, Sitges M, Garcia A, Vall-Llovera F, Esteve J, Sierra J, Gallardo D. 5'-nucleotidase, cytosolic ii genotype and clinical outcome in patients with acute myeloid leukemia with intermediate-risk cytogenetics. Eur J Haematol Suppl 2022; 109:755-764. [PMID: 36063368 DOI: 10.1111/ejh.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
Abstract
Acute myeloid leukemia (AML) is a complex disease, and its treatment needs to be adjusted to the risk, which is conferred by cytogenetics and molecular markers. Cytarabine is the main drug to treat AML, and it has been suggested that the genotype of cytarabine metabolizing enzymes may have a prognostic relevance in AML. Here we report the association between the 5'-nucleotidase, cytosolic II (NT5C2) rs10883841, cytidine deaminase (CDA) rs2072671 and rs532545 genotypes and the clinical outcome of 477 intermediate-risk cytogenetic AML patients receiving cytarabine-based chemotherapy. Patients younger than 50 years old with the NT5C2 rs10883841 AA genotype had lower overall survival (OS) (p: 0.003; HR 2.16, 95%CI 1.29 - 3.61) and lower disease-free survival (DFS) (p: 0.002; HR 2.45, 95%CI 1.41 - 4.27), associated to a higher relapse incidence (p: 0.010; HR 2.23, 95%CI 1.21 - 4.12). Interestingly, subgroup analysis showed that the negative effect of the NT5C2 rs10883841 AA genotype was detected in all subgroups except in patients with nucleophosmin mutation without high ratio FLT-3 internal tandem duplication. CDA polymorphisms were associated with the complete remission rate after induction chemotherapy, without influencing OS. Further studies are warranted to determine whether this pharmacogenomic approach may be helpful to individualize AML treatment.
Collapse
Affiliation(s)
- Johana Díaz-Santa
- Hematology Department, Institut Català d'Oncologia - Hospital Dr. Josep Trueta; Institut d'Investigació Biomèdica de Girona (IDIBGI); Josep Carreras Research Institute, Girona; Universitat de Girona, Girona, Spain
| | - Rocío Rodríguez-Romanos
- Hematology Department, Institut Català d'Oncologia - Hospital Dr. Josep Trueta; Institut d'Investigació Biomèdica de Girona (IDIBGI); Josep Carreras Research Institute, Girona; Universitat de Girona, Girona, Spain
| | - Rosa Coll
- Hematology Department, Institut Català d'Oncologia - Hospital Dr. Josep Trueta; Institut d'Investigació Biomèdica de Girona (IDIBGI); Josep Carreras Research Institute, Girona; Universitat de Girona, Girona, Spain
| | - Gemma Osca
- Hematology Department, Institut Català d'Oncologia - Hospital Dr. Josep Trueta; Institut d'Investigació Biomèdica de Girona (IDIBGI); Josep Carreras Research Institute, Girona; Universitat de Girona, Girona, Spain
| | - Marta Pratcorona
- Hematology Department, Hospital de la Santa Creu i Sant Pau; Institut d'Investigació Biomèdica Sant Pau; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta González-Bartulos
- Hematology Department, Institut Català d'Oncologia - Hospital Dr. Josep Trueta; Institut d'Investigació Biomèdica de Girona (IDIBGI); Josep Carreras Research Institute, Girona; Universitat de Girona, Girona, Spain
| | - Ana Garrido
- Hematology Department, Hospital de la Santa Creu i Sant Pau; Institut d'Investigació Biomèdica Sant Pau; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Angona
- Hematology Department, Institut Català d'Oncologia - Hospital Dr. Josep Trueta; Institut d'Investigació Biomèdica de Girona (IDIBGI); Josep Carreras Research Institute, Girona; Universitat de Girona, Girona, Spain
| | - Carme Talarn
- Hematology Department, Institut Català d'Oncologia - Hospital Joan XXIII, Tarragona, Spain
| | - Mar Tormo
- Hematology Department, Hospital Clínico Universitario, Valencia, Spain
| | - Montserrat Arnan
- Hematology Department, Institut Català d'Oncologia - Hospital Duran I Reynals; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL); Universitat de Barcelona, L'Hospitalet, Barcelona, Spain
| | - Susanna Vives
- Institut Català d'Oncologia - Hospital Germans Trias i Pujol; Josep Carreras Research Institute, Badalona; Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Olga Salamero
- Hematology Department, Hospital Universitari Vall d'Hebró. Barcelona, Spain
| | - Esperanza Tuset
- Hematology Department, Institut Català d'Oncologia - Hospital Dr. Josep Trueta; Institut d'Investigació Biomèdica de Girona (IDIBGI); Josep Carreras Research Institute, Girona; Universitat de Girona, Girona, Spain
| | - Natàlia Lloveras
- Hematology Department, Institut Català d'Oncologia - Hospital Dr. Josep Trueta; Institut d'Investigació Biomèdica de Girona (IDIBGI); Josep Carreras Research Institute, Girona; Universitat de Girona, Girona, Spain
| | - Isabel Díez
- Hematology Department, Institut Català d'Oncologia - Hospital Dr. Josep Trueta; Institut d'Investigació Biomèdica de Girona (IDIBGI); Josep Carreras Research Institute, Girona; Universitat de Girona, Girona, Spain
| | - Lurdes Zamora
- Institut Català d'Oncologia - Hospital Germans Trias i Pujol; Josep Carreras Research Institute, Badalona; Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Joan Bargay
- Hematology Department, Hospital de Son Llàtzer, Palma de Mallorca, Spain
| | - Antonia Sampol
- Hematology Department, Hospital Son Espases. Palma de Mallorca, Spain
| | - David Cruz
- Hematology Department, Institut Català d'Oncologia - Hospital Dr. Josep Trueta; Institut d'Investigació Biomèdica de Girona (IDIBGI); Josep Carreras Research Institute, Girona; Universitat de Girona, Girona, Spain
| | - Jordi Vila
- Hematology Department, Institut Català d'Oncologia - Hospital Dr. Josep Trueta; Institut d'Investigació Biomèdica de Girona (IDIBGI); Josep Carreras Research Institute, Girona; Universitat de Girona, Girona, Spain
| | - Marta Sitges
- Hematology Department, Institut Català d'Oncologia - Hospital Dr. Josep Trueta; Institut d'Investigació Biomèdica de Girona (IDIBGI); Josep Carreras Research Institute, Girona; Universitat de Girona, Girona, Spain
| | - Antoni Garcia
- Hematology Department, Hospital Arnau de Vilanova. Lleida, Spain
| | | | - Jordi Esteve
- Hematology Department, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Jorge Sierra
- Hematology Department, Hospital de la Santa Creu i Sant Pau; Institut d'Investigació Biomèdica Sant Pau; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - David Gallardo
- Hematology Department, Institut Català d'Oncologia - Hospital Dr. Josep Trueta; Institut d'Investigació Biomèdica de Girona (IDIBGI); Josep Carreras Research Institute, Girona; Universitat de Girona, Girona, Spain
| | | |
Collapse
|
99
|
Kunadt D, Stasik S, Metzeler KH, Röllig C, Schliemann C, Greif PA, Spiekermann K, Rothenberg-Thurley M, Krug U, Braess J, Krämer A, Hochhaus A, Scholl S, Hilgendorf I, Brümmendorf TH, Jost E, Steffen B, Bug G, Einsele H, Görlich D, Sauerland C, Schäfer-Eckart K, Krause SW, Hänel M, Hanoun M, Kaufmann M, Wörmann B, Kramer M, Sockel K, Egger-Heidrich K, Herold T, Ehninger G, Burchert A, Platzbecker U, Berdel WE, Müller-Tidow C, Hiddemann W, Serve H, Stelljes M, Baldus CD, Neubauer A, Schetelig J, Thiede C, Bornhäuser M, Middeke JM, Stölzel F. Impact of IDH1 and IDH2 mutational subgroups in AML patients after allogeneic stem cell transplantation. J Hematol Oncol 2022; 15:126. [PMID: 36064577 PMCID: PMC9442956 DOI: 10.1186/s13045-022-01339-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background The role of allogeneic hematopoietic cell transplantation (alloHCT) in acute myeloid leukemia (AML) with mutated IDH1/2 has not been defined. Therefore, we analyzed a large cohort of 3234 AML patients in first complete remission (CR1) undergoing alloHCT or conventional chemo-consolidation and investigated outcome in respect to IDH1/2 mutational subgroups (IDH1 R132C, R132H and IDH2 R140Q, R172K). Methods Genomic DNA was extracted from bone marrow or peripheral blood samples at diagnosis and analyzed for IDH mutations with denaturing high-performance liquid chromatography, Sanger sequencing and targeted myeloid panel next-generation sequencing, respectively. Statistical as-treated analyses were performed using R and standard statistical methods (Kruskal–Wallis test for continuous variables, Chi-square test for categorical variables, Cox regression for univariate and multivariable models), incorporating alloHCT as a time-dependent covariate. Results Among 3234 patients achieving CR1, 7.8% harbored IDH1 mutations (36% R132C and 47% R132H) and 10.9% carried IDH2 mutations (77% R140Q and 19% R172K). 852 patients underwent alloHCT in CR1. Within the alloHCT group, 6.2% had an IDH1 mutation (43.4% R132C and 41.4% R132H) and 10% were characterized by an IDH2 mutation (71.8% R140Q and 24.7% R172K). Variants IDH1 R132C and IDH2 R172K showed a significant benefit from alloHCT for OS (p = .017 and p = .049) and RFS (HR = 0.42, p = .048 and p = .009) compared with chemotherapy only. AlloHCT in IDH2 R140Q mutated AML resulted in longer RFS (HR = 0.4, p = .002). Conclusion In this large as-treated analysis, we showed that alloHCT is able to overcome the negative prognostic impact of certain IDH mutational subclasses in first-line consolidation treatment and could pending prognostic validation, provide prognostic value for AML risk stratification and therapeutic decision making. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-022-01339-8.
Collapse
Affiliation(s)
- Desiree Kunadt
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany.
| | - Sebastian Stasik
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Klaus H Metzeler
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Klinik und Poliklinik für Hämatologie, Zelltherapie und Hämostaseologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Christoph Röllig
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | | | - Philipp A Greif
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Karsten Spiekermann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Maja Rothenberg-Thurley
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Utz Krug
- Medizinische Klinik III, Klinikum Leverkusen, Leverkusen, Germany
| | - Jan Braess
- Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Alwin Krämer
- Medizinische Klinik Und Poliklinik, Abteilung Innere Medizin V, Universität Heidelberg, Heidelberg, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Sebastian Scholl
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Inken Hilgendorf
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | | | - Edgar Jost
- Medizinische Klinik IV, Uniklinik RWTH Aachen, Aachen, Germany
| | - Björn Steffen
- Medizinische Klinik 2, Hämatologie/Onkologie, Goethe-Universität, Frankfurt am Main, Germany
| | - Gesine Bug
- Medizinische Klinik 2, Hämatologie/Onkologie, Goethe-Universität, Frankfurt am Main, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Dennis Görlich
- Institut für Biometrie und Klinische Forschung, Universität Münster, Münster, Germany
| | - Cristina Sauerland
- Institut für Biometrie und Klinische Forschung, Universität Münster, Münster, Germany
| | - Kerstin Schäfer-Eckart
- Klinik für Innere Medizin 5, Klinikum Nürnberg, Paracelsus Medizinische Privatuniversität, Nuremberg, Germany
| | - Stefan W Krause
- Medizinische Klinik 5, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mathias Hänel
- Medizinische Klinik III, Klinikum Chemnitz, Chemnitz, Germany
| | - Maher Hanoun
- Klinik für Hämatologie, Universitätsklinikum Essen, Essen, Germany
| | - Martin Kaufmann
- Abteilung für Hämatologie, Onkologie und Palliativmedizin, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Bernhard Wörmann
- Abteilung für Hämatologie, Onkologie und Palliativmedizin, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Michael Kramer
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Katja Sockel
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | | | - Tobias Herold
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Gerhard Ehninger
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Andreas Burchert
- Klinik für Innere Medizin, Schwerpunkt Hämatologie, Onkologie und Immunologie, Philipps Universität Marburg, Marburg, Germany
| | - Uwe Platzbecker
- Klinik und Poliklinik für Hämatologie, Zelltherapie und Hämostaseologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Wolfgang E Berdel
- Medizinische Klinik A, Universitätsklinikum Münster, Münster, Germany
| | - Carsten Müller-Tidow
- Medizinische Klinik Und Poliklinik, Abteilung Innere Medizin V, Universität Heidelberg, Heidelberg, Germany
| | - Wolfgang Hiddemann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Hubert Serve
- Medizinische Klinik 2, Hämatologie/Onkologie, Goethe-Universität, Frankfurt am Main, Germany
| | - Matthias Stelljes
- Medizinische Klinik A, Universitätsklinikum Münster, Münster, Germany
| | - Claudia D Baldus
- Klinik für Innere Medizin II, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Andreas Neubauer
- Klinik für Innere Medizin, Schwerpunkt Hämatologie, Onkologie und Immunologie, Philipps Universität Marburg, Marburg, Germany
| | - Johannes Schetelig
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany.,DKMS Clinical Trials Unit, Dresden, Germany
| | - Christian Thiede
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Martin Bornhäuser
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany.,National Center for Tumor Diseases, Dresden (NCT/UCC), Dresden, Germany.,German Consortium for Translational Cancer Research (DKTK), DKFZ, Heidelberg, Germany
| | - Jan M Middeke
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Friedrich Stölzel
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | | |
Collapse
|
100
|
Synergistic Lethality Effects of Apatinib and Homoharringtonine in Acute Myeloid Leukemia. JOURNAL OF ONCOLOGY 2022; 2022:9005804. [PMID: 36081666 PMCID: PMC9448536 DOI: 10.1155/2022/9005804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022]
Abstract
Purpose The significance of vascular endothelial growth factor receptor (VEGFR)-2 in numerous solid tumors and acute myeloid leukemia (AML) has been demonstrated, but Apatinib remains largely unexplored. In this study, whether Apatinib combined with homoharringtonine (HHT) kills AML cell lines and its possible mechanisms have been explored. Methods AML cell lines were treated with Apatinib and HHT in different concentrations with control, Apatinib alone, HHT alone, and Apatinib combined with HHT. The changes of IC50 were measured by CCK8 assay, and apoptosis rate, cell cycle, and the mitochondrial membrane potential in each group were measured by flow cytometry. Finally, the possible cytotoxicity mechanism was analyzed by Western blotting. Results Our results noted that Apatinib combined with HHT remarkably inhibited cell proliferation, reduced the capacity of colony-forming, and induced apoptosis and cell cycle arrest in AML cells. Mechanistically, Apatinib and HHT play a role as a suppressor in the expression of VEGFR-2 and the downstream signaling cascades, such as the PI3K, MAPK, and STAT3 pathways. Conclusion Our preclinical data demonstrate that Apatinib combined with HHT exerts a better antileukemia effect than Apatinib alone by inhibiting the VEGFR-2 signaling pathway, suggesting the potential role of Apatinib and HHT in the treatment of AML. This study provides clinicians with innovative combination therapies and new therapeutic targets for the treatment of AML.
Collapse
|