51
|
Montesi SB, Zhou IY, Liang LL, Digumarthy SR, Mercaldo S, Mercaldo N, Seethamraju RT, Rosen BR, Caravan P. Dynamic contrast-enhanced magnetic resonance imaging of the lung reveals important pathobiology in idiopathic pulmonary fibrosis. ERJ Open Res 2021; 7:00907-2020. [PMID: 34760997 PMCID: PMC8573229 DOI: 10.1183/23120541.00907-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/21/2021] [Indexed: 01/02/2023] Open
Abstract
Introduction Evidence suggests that abnormalities occur in the lung microvasculature in idiopathic pulmonary fibrosis (IPF). We hypothesised that dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) could detect alterations in permeability, perfusion and extracellular extravascular volume in IPF, thus providing in vivo regional functional information not otherwise available. Methods Healthy controls and IPF subjects underwent DCE-MRI of the thorax using a dynamic volumetric radial sampling sequence and administration of gadoterate meglumine at a dose of 0.1 mmol·kg−1 at 2 mL·s−1. Model-free analysis of signal intensity versus time curves in regions of interest from a lower, middle and upper axial plane, a posterior coronal plane and the whole lung yielded parameters reflective of perfusion and permeability (peak enhancement and rate of contrast arrival (kwashin)) and the extracellular extravascular space (rate of contrast clearance (kwashout)). These imaging parameters were compared between IPF and healthy control subjects, and between fast/slow IPF progressors. Results IPF subjects (n=16, 56% male, age (range) 67.5 (60–79) years) had significantly reduced peak enhancement and slower kwashin in all measured lung regions compared to the healthy volunteers (n=17, 65% male, age (range) 58 (51–63) years) on unadjusted analyses consistent with microvascular alterations. kwashout, as a measure of the extravascular extracellular space, was significantly slower in the lower lung and posterior coronal regions in the IPF subjects consistent with an increased extravascular extracellular space. All estimates were attenuated after adjusting for age. Similar trends were observed, but only the associations with kwashin in certain lung regions remained statistically significant. Among IPF subjects, kwashout rates nearly perfectly discriminated between those with rapidly progressive disease versus those with stable/slowly progressive disease. Conclusions DCE-MRI detects changes in the microvasculature and extravascular extracellular space in IPF, thus providing in vivo regional functional information. Dynamic contrast-enhanced MRI demonstrates important in vivo lung regional microvascular and extravascular extracellular differences between IPF patients and healthy controls. These results signify IPF pathobiology and may have prognostic significance.https://bit.ly/3l14SWM
Collapse
Affiliation(s)
- Sydney B Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA.,Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,These authors contributed equally
| | - Iris Y Zhou
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.,Dept of Radiology, Massachusetts General Hospital, Boston, MA, USA.,These authors contributed equally
| | - Lloyd L Liang
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Subba R Digumarthy
- Harvard Medical School, Boston, MA, USA.,Dept of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Sarah Mercaldo
- Dept of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Bruce R Rosen
- Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.,Dept of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Peter Caravan
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.,Dept of Radiology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
52
|
Frija-Masson J, Bancal C, Plantier L, Benzaquen H, Mangin L, Penaud D, Arnoult F, Flamant M, d’Ortho MP. Alteration of Diffusion Capacity After SARS-CoV-2 Infection: A Pathophysiological Approach. Front Physiol 2021; 12:624062. [PMID: 33841169 PMCID: PMC8030254 DOI: 10.3389/fphys.2021.624062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has affected millions of people worldwide, and pneumonia affects 90% of patients. This raises the possibility of millions of people with altered lung function. Few data exist to date on pulmonary function after SARS-CoV-2 infection, but alteration of diffusion capacity of CO (D LCO) is the most frequently described abnormality. First, we present original data on lung function at 3 months after SARS-CoV-2 infection and discuss the effect of using European Coal and Steel Community (ECSC) or Global Lung Function Initiative (GLI) reference equations to diagnose diffusion capacity. Second, we review existing data on D LCO alteration after SARS-CoV-2 infection and discuss the implication of restrictive disorder in D LCO alteration. Last, we discuss the pathophysiology of D LCO alteration and try to disentangle vascular damage and fibrosis.
Collapse
Affiliation(s)
- Justine Frija-Masson
- Neurodiderot, INSERM, Université de Paris, Paris, France
- Physiologie-Explorations Fonctionnelles, FHU APOLLO, Assistance Publique Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Paris, France
| | - Catherine Bancal
- Physiologie-Explorations Fonctionnelles, FHU APOLLO, Assistance Publique Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Paris, France
| | - Laurent Plantier
- Centre de Ressources et de Compétences de la Mucoviscidose, Service de Pneumologie et Explorations Fonctionnelles Respiratoires, CHRU de Tours, Tours, France
- CEPR/INSERM, UMR 1100, Université de Tours, Tours, France
| | - Hélène Benzaquen
- Physiologie-Explorations Fonctionnelles, FHU APOLLO, Assistance Publique Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Paris, France
| | - Laurence Mangin
- Physiologie-Explorations Fonctionnelles, FHU APOLLO, Assistance Publique Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Paris, France
- Laboratoire Matière et Systèmes Complexes, UMR 7505, CNRS, Paris, France
| | - Dominique Penaud
- Physiologie-Explorations Fonctionnelles, FHU APOLLO, Assistance Publique Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Paris, France
| | - Florence Arnoult
- Physiologie-Explorations Fonctionnelles, FHU APOLLO, Assistance Publique Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Paris, France
| | - Martin Flamant
- Physiologie-Explorations Fonctionnelles, FHU APOLLO, Assistance Publique Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Paris, France
- INSERM U 1149, Center for Research in Inflammation, Université de Paris, Paris, France
| | - Marie-Pia d’Ortho
- Neurodiderot, INSERM, Université de Paris, Paris, France
- Physiologie-Explorations Fonctionnelles, FHU APOLLO, Assistance Publique Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Paris, France
| |
Collapse
|
53
|
McDonald LT. Healing after COVID-19: are survivors at risk for pulmonary fibrosis? Am J Physiol Lung Cell Mol Physiol 2021; 320:L257-L265. [PMID: 33355522 PMCID: PMC7900916 DOI: 10.1152/ajplung.00238.2020] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
The novel SARS-CoV-2 coronavirus, which is responsible for COVID-19 disease, was first reported in Wuhan, China, in December of 2019. The virus rapidly spread, and the World Health Organization declared a pandemic by March 2020. With millions of confirmed cases worldwide, there is growing concern and considerable debate regarding the potential for coronavirus infection to contribute to an appreciable burden of chronic respiratory symptoms or fibrotic disease among recovered individuals. Because the first case of COVID-19 was documented less than one year ago, data regarding long-term clinical outcomes are not yet available, and predictions for long-term outcome are speculative at best. However, due to the staggering number of cases and the severity of disease in many individuals, there is a critical need to consider the potential long-term implications of COVID-19. This review examines current basic and clinical data regarding fibrogenic mechanisms of viral injury in the context of SARS-CoV-2. Several intersecting mechanisms between coronavirus infection and fibrotic pathways are discussed to highlight factors and processes that may be targetable to improve patient outcome. Reports of post-infection sequelae from previous coronavirus outbreaks are presented toward the goal of improved recognition of potential contributing risk factors for fibrotic disease.
Collapse
Affiliation(s)
- Lindsay T McDonald
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
54
|
Löfdahl A, Tornling G, Wigén J, Larsson-Callerfelt AK, Wenglén C, Westergren-Thorsson G. Pathological Insight into 5-HT 2B Receptor Activation in Fibrosing Interstitial Lung Diseases. Int J Mol Sci 2020; 22:ijms22010225. [PMID: 33379351 PMCID: PMC7796180 DOI: 10.3390/ijms22010225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 11/29/2022] Open
Abstract
Interstitial lung disease (ILD) encompasses a heterogeneous group of more than 200 conditions, of which primarily idiopathic pulmonary fibrosis (IPF), idiopathic nonspecific interstitial pneumonia, hypersensitivity pneumonitis, ILD associated with autoimmune diseases and sarcoidosis may present a progressive fibrosing (PF) phenotype. Despite different aetiology and histopathological patterns, the PF-ILDs have similarities regarding disease mechanisms with self-sustaining fibrosis, which suggests that the diseases may share common pathogenetic pathways. Previous studies show an enhanced activation of serotonergic signaling in pulmonary fibrosis, and the serotonin (5-HT)2 receptors have been implicated to have important roles in observed profibrotic actions. Our research findings in support by others, demonstrate antifibrotic effects with 5-HT2B receptor antagonists, alleviating several key events common for the fibrotic diseases such as myofibroblast differentiation and connective tissue deposition. In this review, we will address the potential role of 5-HT and in particular the 5-HT2B receptors in three PF-ILDs: ILD associated with systemic sclerosis (SSc-ILD), ILD associated with rheumatoid arthritis (RA-ILD) and IPF. Highlighting the converging pathways in these diseases discloses the 5-HT2B receptor as a potential disease target for PF-ILDs, which today have an urgent unmet need for therapeutic strategies.
Collapse
Affiliation(s)
- Anna Löfdahl
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184 Lund, Sweden; (J.W.); (A.-K.L.-C.); (G.W.-T.)
- Correspondence:
| | - Göran Tornling
- AnaMar AB, Medicon Village, Scheeletorget 1, 22381 Lund, Sweden; (C.W.); (G.T.)
- Respiratory Medicine Division, Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jenny Wigén
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184 Lund, Sweden; (J.W.); (A.-K.L.-C.); (G.W.-T.)
| | - Anna-Karin Larsson-Callerfelt
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184 Lund, Sweden; (J.W.); (A.-K.L.-C.); (G.W.-T.)
| | - Christina Wenglén
- AnaMar AB, Medicon Village, Scheeletorget 1, 22381 Lund, Sweden; (C.W.); (G.T.)
| | - Gunilla Westergren-Thorsson
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184 Lund, Sweden; (J.W.); (A.-K.L.-C.); (G.W.-T.)
| |
Collapse
|
55
|
Ackermann M, Mentzer SJ, Kolb M, Jonigk D. Inflammation and intussusceptive angiogenesis in COVID-19: everything in and out of flow. Eur Respir J 2020; 56:13993003.03147-2020. [PMID: 33008942 PMCID: PMC7530910 DOI: 10.1183/13993003.03147-2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Maximilian Ackermann
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany .,Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| |
Collapse
|
56
|
Crisan-Dabija R, Pavel CA, Popa IV, Tarus A, Burlacu A. "A Chain Only as Strong as Its Weakest Link": An Up-to-Date Literature Review on the Bidirectional Interaction of Pulmonary Fibrosis and COVID-19. J Proteome Res 2020; 19:4327-4338. [PMID: 32883081 PMCID: PMC7640958 DOI: 10.1021/acs.jproteome.0c00387] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic rapidly became a worldwide healthcare emergency affecting millions of people, with poor outcomes for patients with chronic conditions and enormous pressure on healthcare systems. Pulmonary fibrosis (PF) has been cited as a risk factor for a more severe evolution of COVID-19, primarily because its acute exacerbations are already associated with high mortality. We reviewed the available literature on biochemical, pathophysiological, and pharmacological mechanisms of PF and COVID-19 in an attempt to foresee the particular risk of infection and possible evolution of PF patients if infected with SARS-COV-2. We also analyzed the possible role of medication and risk factors (such as smoking) in the disease's evolution and clinical course. We found out that there is a complexity of interactions between coexisting idiopathic pulmonary fibrosis/interstitial lung disease (ILD) and COVID-19 disease. Also, patients recovering from severe COVID-19 disease are at serious risk of developing PF. Smokers seem to have, in theory, a chance for a better outcome if they develop a severe form of COVID-19 but statistically are at much higher risk of dying if they become critically ill.
Collapse
Affiliation(s)
- Radu Crisan-Dabija
- Clinic
of Pulmonary Diseases Iasi, Iasi, Romania
- ‘Grigore
T. Popa’ University of Medicine, Iasi, Romania
| | | | - Iolanda Valentina Popa
- ‘Grigore
T. Popa’ University of Medicine, Iasi, Romania
- Institute
of Gastroenterology and Hepatology, Iasi, Romania
| | - Andrei Tarus
- ‘Grigore
T. Popa’ University of Medicine, Iasi, Romania
- Department
of Cardiovascular Surgery, Cardiovascular
Diseases Institute, Iasi, Romania
| | - Alexandru Burlacu
- ‘Grigore
T. Popa’ University of Medicine, Iasi, Romania
- Department
of Interventional Cardiology, Cardiovascular
Diseases Institute, Iasi Romania
| |
Collapse
|
57
|
Bo C, Geng X, Zhang J, Sai L, Zhang Y, Yu G, Zhang Z, Liu K, Du Z, Peng C, Jia Q, Shao H. Comparative proteomic analysis of silica-induced pulmonary fibrosis in rats based on tandem mass tag (TMT) quantitation technology. PLoS One 2020; 15:e0241310. [PMID: 33119648 PMCID: PMC7595299 DOI: 10.1371/journal.pone.0241310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Silicosis is a systemic disease characterized by chronic persistent inflammation and incurable pulmonary fibrosis with the underlying molecular mechanisms to be fully elucidated. In this study, we employed tandem mass tag (TMT) based on quantitative proteomics technology to detect differentially expressed proteins (DEPs) in lung tissues of silica-exposed rats. A total of 285 DEPs (145 upregulated and 140 downregulated) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to predict the biological pathway and functional classification of the proteins. Results showed that these DEPs were mainly enriched in the phagosome, lysosome function, complement and the coagulation cascade, glutathione metabolism, focal adhesion and ECM-receptor interactions. To validate the proteomics data, we selected and analyzed the expression trends of six proteins including CD14, PSAP, GM2A, COL1A1, ITGA8 and CLDN5 using parallel reaction monitoring (PRM). The consistent result between PRM and TMT indicated the reliability of our proteomic data. These findings will help to reveal the pathogenesis of silicosis and provide potential therapeutic targets. Data are available via ProteomeXchange with identifier PXD020625.
Collapse
Affiliation(s)
- Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Xiao Geng
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Juan Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Linlin Sai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Yu Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Gongchang Yu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Zhenling Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Kai Liu
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Cheng Peng
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
- * E-mail: (QJ); (HS)
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
- * E-mail: (QJ); (HS)
| |
Collapse
|
58
|
Shibata S, Arima H, Asayama K, Hoshide S, Ichihara A, Ishimitsu T, Kario K, Kishi T, Mogi M, Nishiyama A, Ohishi M, Ohkubo T, Tamura K, Tanaka M, Yamamoto E, Yamamoto K, Itoh H. Hypertension and related diseases in the era of COVID-19: a report from the Japanese Society of Hypertension Task Force on COVID-19. Hypertens Res 2020; 43:1028-1046. [PMID: 32737423 PMCID: PMC7393334 DOI: 10.1038/s41440-020-0515-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected more than seven million people worldwide, contributing to 0.4 million deaths as of June 2020. The fact that the virus uses angiotensin-converting enzyme (ACE)-2 as the cell entry receptor and that hypertension as well as cardiovascular disorders frequently coexist with COVID-19 have generated considerable discussion on the management of patients with hypertension. In addition, the COVID-19 pandemic necessitates the development of and adaptation to a “New Normal” lifestyle, which will have a profound impact not only on communicable diseases but also on noncommunicable diseases, including hypertension. Summarizing what is known and what requires further investigation in this field may help to address the challenges we face. In the present review, we critically evaluate the existing evidence for the epidemiological association between COVID-19 and hypertension. We also summarize the current knowledge regarding the pathophysiology of SARS-CoV-2 infection with an emphasis on ACE2, the cardiovascular system, and the kidney. Finally, we review evidence on the use of antihypertensive medication, namely, ACE inhibitors and angiotensin receptor blockers, in patients with COVID-19.
Collapse
Affiliation(s)
- Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan.
| | - Hisatomi Arima
- Department of Preventive Medicine and Public Health, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kei Asayama
- Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan
| | - Satoshi Hoshide
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Atsuhiro Ichihara
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshihiko Ishimitsu
- Department of Nephrology and Hypertension, Dokkyo Medical University, Tochigi, Japan
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Takuya Kishi
- Department of Graduate School of Medicine (Cardiology), International University of Health and Welfare, Fukuoka, Japan
| | - Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takayoshi Ohkubo
- Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masami Tanaka
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Itoh
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|