51
|
Definition and expression in E. coli of large fragments from the human lipid kinase phosphatidylinositol 4-kinase type III alpha, and purification of a 1100-residue N-terminal module. Protein Expr Purif 2015; 114:121-7. [DOI: 10.1016/j.pep.2015.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 06/29/2015] [Indexed: 11/22/2022]
|
52
|
Pagnamenta AT, Howard MF, Wisniewski E, Popitsch N, Knight SJL, Keays DA, Quaghebeur G, Cox H, Cox P, Balla T, Taylor JC, Kini U. Germline recessive mutations in PI4KA are associated with perisylvian polymicrogyria, cerebellar hypoplasia and arthrogryposis. Hum Mol Genet 2015; 24:3732-41. [PMID: 25855803 PMCID: PMC4459391 DOI: 10.1093/hmg/ddv117] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/03/2015] [Indexed: 01/06/2023] Open
Abstract
Polymicrogyria (PMG) is a structural brain abnormality involving the cerebral cortex that results from impaired neuronal migration and although several genes have been implicated, many cases remain unsolved. In this study, exome sequencing in a family where three fetuses had all been diagnosed with PMG and cerebellar hypoplasia allowed us to identify regions of the genome for which both chromosomes were shared identical-by-descent, reducing the search space for causative variants to 8.6% of the genome. In these regions, the only plausibly pathogenic mutations were compound heterozygous variants in PI4KA, which Sanger sequencing confirmed segregated consistent with autosomal recessive inheritance. The paternally transmitted variant predicted a premature stop mutation (c.2386C>T; p.R796X), whereas the maternally transmitted variant predicted a missense substitution (c.5560G>A; p.D1854N) at a conserved residue within the catalytic domain. Functional studies using expressed wild-type or mutant PI4KA enzyme confirmed the importance of p.D1854 for kinase activity. Our results emphasize the importance of phosphoinositide signalling in early brain development.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Malcolm F Howard
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Eva Wisniewski
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Niko Popitsch
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Samantha J L Knight
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - David A Keays
- Institute of Molecular Pathology, Vienna 1030, Austria
| | | | - Helen Cox
- West Midlands Regional Clinical Genetics Service, Clinical Genetics Unit and
| | - Phillip Cox
- Department of Histopathology, Birmingham Women's Hospital NHS Foundation Trust, Birmingham B15 2TG, UK
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenny C Taylor
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Usha Kini
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK,
| |
Collapse
|
53
|
Peña I, Pilar Manzano M, Cantizani J, Kessler A, Alonso-Padilla J, Bardera AI, Alvarez E, Colmenarejo G, Cotillo I, Roquero I, de Dios-Anton F, Barroso V, Rodriguez A, Gray DW, Navarro M, Kumar V, Sherstnev A, Drewry DH, Brown JR, Fiandor JM, Julio Martin J. New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites: an open resource. Sci Rep 2015; 5:8771. [PMID: 25740547 PMCID: PMC4350103 DOI: 10.1038/srep08771] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/28/2015] [Indexed: 12/11/2022] Open
Abstract
Using whole-cell phenotypic assays, the GlaxoSmithKline high-throughput screening (HTS) diversity set of 1.8 million compounds was screened against the three kinetoplastids most relevant to human disease, i.e. Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. Secondary confirmatory and orthogonal intracellular anti-parasiticidal assays were conducted, and the potential for non-specific cytotoxicity determined. Hit compounds were chemically clustered and triaged for desirable physicochemical properties. The hypothetical biological target space covered by these diversity sets was investigated through bioinformatics methodologies. Consequently, three anti-kinetoplastid chemical boxes of ~200 compounds each were assembled. Functional analyses of these compounds suggest a wide array of potential modes of action against kinetoplastid kinases, proteases and cytochromes as well as potential host–pathogen targets. This is the first published parallel high throughput screening of a pharma compound collection against kinetoplastids. The compound sets are provided as an open resource for future lead discovery programs, and to address important research questions.
Collapse
Affiliation(s)
- Imanol Peña
- Molecular Discovery Research, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - M Pilar Manzano
- Diseases of the Developing World (DDW), Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - Juan Cantizani
- Diseases of the Developing World (DDW), Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - Albane Kessler
- Diseases of the Developing World (DDW), Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - Julio Alonso-Padilla
- Department of Microbiology, Division of Parasitology, New York University School of Medicine, New York, NY, USA
| | - Ana I Bardera
- Molecular Discovery Research, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - Emilio Alvarez
- Molecular Discovery Research, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - Gonzalo Colmenarejo
- Molecular Discovery Research, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - Ignacio Cotillo
- Diseases of the Developing World (DDW), Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - Irene Roquero
- Molecular Discovery Research, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - Francisco de Dios-Anton
- Molecular Discovery Research, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - Vanessa Barroso
- Molecular Discovery Research, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - Ana Rodriguez
- Department of Microbiology, Division of Parasitology, New York University School of Medicine, New York, NY, USA
| | - David W Gray
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina "López-Neyra" Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Vinod Kumar
- Computational Biology, Quantitative Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | - Alexander Sherstnev
- Computational Biology, Quantitative Sciences, GlaxoSmithKline, Medicines Research Center, Stevenage, Hertfordshire, UK
| | - David H Drewry
- Chemical Sciences, Molecular Discovery Research, GlaxoSmithKline, Research Triangle Park, NC, USA
| | - James R Brown
- Computational Biology, Quantitative Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | - Jose M Fiandor
- Diseases of the Developing World (DDW), Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| | - J Julio Martin
- Molecular Discovery Research, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Tres Cantos, Spain
| |
Collapse
|
54
|
Profiling of phosphatidylinositol 3-kinase (PI3K) proteins in insulin signaling pathway. Appl Biochem Biotechnol 2015; 175:3431-46. [PMID: 25637510 DOI: 10.1007/s12010-015-1515-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 01/21/2015] [Indexed: 01/22/2023]
Abstract
Phosphoinositide 3-kinase (PI3K) enzyme plays a vital role in the insulin signaling pathway as well as in other pathways that are involved in the growth, migration, and survival of cells. In the insulin signaling pathway, PI3K proteins that include p50α, p85α, p85β, p55γ, p110α, p110β, and p110γ are associated with the critical node-2. This study has used bioinformatic tools to understand phylogenetics, conservation patterns, conserved domains, orientation of residues, and interactions among PI3K proteins. The phylogenetic analysis showed p110α and p110γ with a common origin while p50α and p85α sharing an evolutionary history. The sequence alignment showed the highest score (97) between p85α and p50α. Several highly conserved amino acid residues were found high in p110 beta (n = 102). Subsequently, the number of highly conserved amino acid restudies was low in p50alpha and p55γ (n = 15). The PI3K proteins are evidentially linked to other proteins and pathways as well.
Collapse
|
55
|
Pemberton JG, Stafford JL, Chang JP. Ligand-selective signal transduction by two endogenous GnRH isoforms involves biased activation of the class I PI3K catalytic subunits p110β, p110γ, and p110δ in pituitary gonadotropes and somatotropes. Endocrinology 2015; 156:218-30. [PMID: 25343277 DOI: 10.1210/en.2014-1640] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In goldfish, 2 endogenous GnRH isoforms, GnRH2 and GnRH3, are released at the pituitary and directly stimulate LH and GH release using the same population of GnRH receptors (GnRHRs) but with GnRH-specific transduction mechanisms. Previously, we have shown that phosphoinositide 3-kinases (PI3Ks) mediate GnRH2- and GnRH3-stimulated LH and GH release. Among the 3 classes of PI3Ks, class I PI3Ks are the best characterized and consist of 4 110-kDa catalytic isoforms (p110α, p110β, p110γ, and p110δ). Importantly, p110β and p110γ, but not p110α or p110δ, can be directly activated by the Gβγ heterodimer of Gαβγ protein complexes. In the present study, we examined the expression of class I PI3K isoforms and the effects of selective inhibitors of p110α, p110β, p110γ, and p110δ catalytic activity on basal, as well as acute, GnRH2- and GnRH3-stimulated LH and GH release responses using primary cultures of dispersed goldfish pituitary cells in column perifusion. Results demonstrate that p110γ and p110δ are involved in the control of basal LH and GH release, whereas p110α and p110β only regulate basal LH secretion. However, p110β and p110γ both participated in GnRH3- and GnRH2-stimulated GH release, whereas p110β and p110γ mediated GnRH2- and GnRH3-induced LH release responses, respectively. GnRH2- and GnRH3-stimulated LH release, as well as GnRH3-elicited GH release, also required p110δ. These results constitute the first evidence for the differential involvement of class I PI3K catalytic subunits in GnRH actions, in general, and suggest that GnRH2 and GnRH3 binding to GnRHRs can bias the activation of class I PI3K signaling to mediate hormone release responses in 2 distinct pituitary cell types. The involvement of both class IA and IB PI3Ks implicates Gβγ subunits, as well as other known regulators of class I PI3Ks, as important components of GnRHR-mediated responses that could influence GnRH-selective signaling in other cell types.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | | | | |
Collapse
|
56
|
Abstract
The phosphoinositide 3-kinase (PI3K) family is important to nearly all aspects of cell and tissue biology and central to human cancer, diabetes and aging. PI3Ks are spatially regulated and multifunctional, and together, act at nearly all membranes in the cell to regulate a wide range of signaling, membrane trafficking and metabolic processes. There is a broadening recognition of the importance of distinct roles for each of the three different PI3K classes (I, II and III), as well as for the different isoforms within each class. Ongoing issues include the need for a better understanding of the in vivo complexity of PI3K regulation and cellular functions. This Cell Science at a Glance article and the accompanying poster summarize the biochemical activities, cellular roles and functional requirements for the three classes of PI3Ks. In doing so, we aim to provide an overview of the parallels, the key differences and crucial interplays between the regulation and roles of the three PI3K classes.
Collapse
Affiliation(s)
- Steve Jean
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | | |
Collapse
|
57
|
Kennedy DO. Polyphenols and the human brain: plant “secondary metabolite” ecologic roles and endogenous signaling functions drive benefits. Adv Nutr 2014; 5:515-33. [PMID: 25469384 PMCID: PMC4188223 DOI: 10.3945/an.114.006320] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Flavonoids and other polyphenols are ubiquitous plant chemicals that fulfill a range of ecologic roles for their home plant, including protection from a range of biotic and abiotic stressors and a pivotal role in the management of pathogenic and symbiotic soil bacteria and fungi. They form a natural part of the human diet, and evidence suggests that their consumption is associated with the beneficial modulation of a number of health-related variables, including those related to cardiovascular and brain function. Over recent years, the consensus as to the mechanisms responsible for these effects in humans has shifted away from polyphenols having direct antioxidant effects and toward their modulation of cellular signal transduction pathways. To date, little consideration has been given to the question of why, rather than how, these plant-derived chemicals might exert these effects. Therefore, this review summarizes the evidence suggesting that polyphenols beneficially affect human brain function and describes the current mechanistic hypotheses explaining these effects. It then goes on to describe the ecologic roles and potential endogenous signaling functions that these ubiquitous phytochemicals play within their home plant and discusses whether these functions drive their beneficial effects in humans via a process of “cross-kingdom” signaling predicated on the many conserved similarities in plant, microbial, and human cellular signal transduction pathways.
Collapse
|
58
|
Clark J, Kay RR, Kielkowska A, Niewczas I, Fets L, Oxley D, Stephens LR, Hawkins PT. Dictyostelium uses ether-linked inositol phospholipids for intracellular signalling. EMBO J 2014; 33:2188-200. [PMID: 25180230 DOI: 10.15252/embj.201488677] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Inositol phospholipids are critical regulators of membrane biology throughout eukaryotes. The general principle by which they perform these roles is conserved across species and involves binding of differentially phosphorylated inositol head groups to specific protein domains. This interaction serves to both recruit and regulate the activity of several different classes of protein which act on membrane surfaces. In mammalian cells, these phosphorylated inositol head groups are predominantly borne by a C38:4 diacylglycerol backbone. We show here that the inositol phospholipids of Dictyostelium are different, being highly enriched in an unusual C34:1e lipid backbone, 1-hexadecyl-2-(11Z-octadecenoyl)-sn-glycero-3-phospho-(1'-myo-inositol), in which the sn-1 position contains an ether-linked C16:0 chain; they are thus plasmanylinositols. These plasmanylinositols respond acutely to stimulation of cells with chemoattractants, and their levels are regulated by PIPKs, PI3Ks and PTEN. In mammals and now in Dictyostelium, the hydrocarbon chains of inositol phospholipids are a highly selected subset of those available to other phospholipids, suggesting that different molecular selectors are at play in these organisms but serve a common, evolutionarily conserved purpose.
Collapse
Affiliation(s)
- Jonathan Clark
- Babraham Biosciences Technology Babraham Research Campus, Cambridge, UK
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Anna Kielkowska
- Babraham Biosciences Technology Babraham Research Campus, Cambridge, UK
| | - Izabella Niewczas
- Babraham Biosciences Technology Babraham Research Campus, Cambridge, UK
| | - Louise Fets
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - David Oxley
- Signalling Programme Babraham Research Campus, Cambridge, UK
| | - Len R Stephens
- Signalling Programme Babraham Research Campus, Cambridge, UK
| | | |
Collapse
|
59
|
Thieleke-Matos C, da Silva ML, Cabrita-Santos L, Pires CF, Ramalho JS, Ikonomov O, Seixas E, Shisheva A, Seabra MC, Barral DC. Host PI(3,5)P2 activity is required for Plasmodium berghei growth during liver stage infection. Traffic 2014; 15:1066-82. [PMID: 24992508 DOI: 10.1111/tra.12190] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 01/18/2023]
Abstract
Malaria parasites go through an obligatory liver stage before they infect erythrocytes and cause disease symptoms. In the host hepatocytes, the parasite is enclosed by a parasitophorous vacuole membrane (PVM). Here, we dissected the interaction between the Plasmodium parasite and the host cell late endocytic pathway and show that parasite growth is dependent on the phosphoinositide 5-kinase (PIKfyve) that converts phosphatidylinositol 3-phosphate [PI(3)P] into phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2 ] in the endosomal system. We found that inhibition of PIKfyve by either pharmacological or non-pharmacological means causes a delay in parasite growth. Moreover, we show that the PI(3,5)P2 effector protein TRPML1 that is involved in late endocytic membrane fusion, is present in vesicles closely contacting the PVM and is necessary for parasite growth. Thus, our studies suggest that the parasite PVM is able to fuse with host late endocytic vesicles in a PI(3,5)P2 -dependent manner, allowing the exchange of material between the host and the parasite, which is essential for successful infection.
Collapse
Affiliation(s)
- Carolina Thieleke-Matos
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal; IGC, Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
The role of PI3K/AKT-related PIP5K1α and the discovery of its selective inhibitor for treatment of advanced prostate cancer. Proc Natl Acad Sci U S A 2014; 111:E3689-98. [PMID: 25071204 DOI: 10.1073/pnas.1405801111] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nitrogen-containing heterocyclic compounds are an important class of molecules that are commonly used for the synthesis of candidate drugs. Phosphatidylinositol-4-phosphate 5-kinase-α (PIP5Kα) is a lipid kinase, similar to PI3K. However, the role of PIP5K1α in oncogenic processes and the development of inhibitors that selectively target PIP5K1α have not been reported. In the present study we report that overexpression of PIP5K1α is associated with poor prognosis in prostate cancer and correlates with an elevated level of the androgen receptor. Overexpression of PIP5K1α in PNT1A nonmalignant cells results in an increased AKT activity and an increased survival, as well as invasive malignant phenotype, whereas siRNA-mediated knockdown of PIP5K1α in aggressive PC-3 cells leads to a reduced AKT activity and an inhibition in tumor growth in xenograft mice. We further report a previously unidentified role for PIP5K1α as a druggable target for our newly developed compound ISA-2011B using a high-throughput KINOMEscan platform. ISA-2011B was discovered during our synthetic studies of C-1 indol-3-yl substituted 1,2,3,4-tetrahydroisoquinolines via a Pictet-Spengler approach. ISA-2011B significantly inhibits growth of tumor cells in xenograft mice, and we show that this is mediated by targeting PIP5K1α-associated PI3K/AKT and the downstream survival, proliferation, and invasion pathways. Further, siRNA-mediated knockdown of PIP5K1α exerts similar effects on PC3 cells as ISA-2011B treatment, significantly inhibiting AKT activity, increasing apoptosis and reducing invasion. Thus, PIP5K1α has high potential as a drug target, and compound ISA-2011B is interesting for further development of targeted cancer therapy.
Collapse
|
61
|
Mapping of functional domains of the lipid kinase phosphatidylinositol 4-kinase type III alpha involved in enzymatic activity and hepatitis C virus replication. J Virol 2014; 88:9909-26. [PMID: 24920820 DOI: 10.1128/jvi.01063-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The lipid kinase phosphatidylinositol 4-kinase III alpha (PI4KIIIα) is an endoplasmic reticulum (ER)-resident enzyme that synthesizes phosphatidylinositol 4-phosphate (PI4P). PI4KIIIα is an essential host factor for hepatitis C virus (HCV) replication. Interaction with HCV nonstructural protein 5A (NS5A) leads to kinase activation and accumulation of PI4P at intracellular membranes. In this study, we investigated the structural requirements of PI4KIIIα in HCV replication and enzymatic activity. Therefore, we analyzed PI4KIIIα mutants for subcellular localization, reconstitution of HCV replication in PI4KIIIα knockdown cell lines, PI4P induction in HCV-positive cells, and lipid kinase activity in vitro. All mutants still interacted with NS5A and localized in a manner similar to that of the full-length enzyme, suggesting multiple regions of PI4KIIIα are involved in NS5A interaction and subcellular localization. Interestingly, the N-terminal 1,152 amino acids were dispensable for HCV replication, PI4P induction, and enzymatic function, whereas further N-terminal or C-terminal deletions were deleterious, thereby defining the minimal PI4KIIIα core enzyme at a size of ca. 108 kDa. Additional deletion of predicted functional motifs within the C-terminal half of PI4KIIIα also were detrimental for enzymatic activity and for the ability of PI4KIIIα to rescue HCV replication, with the exception of a proposed nuclear localization signal, suggesting that the entire C-terminal half of PI4KIIIα is involved in the formation of a minimal enzymatic core. This view was supported by structural modeling of the PI4KIIIα C terminus, suggesting a catalytic center formed by an N- and C-terminal lobe and an armadillo-fold motif, which is preceded by three distinct alpha-helical domains probably involved in regulation of enzymatic activity. IMPORTANCE The lipid kinase PI4KIIIα is of central importance for cellular phosphatidylinositol metabolism and is a key host cell factor of hepatitis C virus replication. However, little is known so far about the structure of this 240-kDa protein and the functional importance of specific subdomains regarding lipid kinase activity and viral replication. This work focuses on the phenotypic analysis of distinct PI4KIIIα mutants in different biochemical and cell-based assays and develops a structural model of the C-terminal enzymatic core. The results shed light on the structural and functional requirements of enzymatic activity and the determinants required for HCV replication.
Collapse
|
62
|
Dean SJ, Holden KR, Dwivedi A, Dupont BR, Lyons MJ. Acquired microcephaly in blepharophimosis-ptosis-epicanthus inversus syndrome because of an interstitial 3q22.3q23 deletion. Pediatr Neurol 2014; 50:636-9. [PMID: 24725350 DOI: 10.1016/j.pediatrneurol.2014.01.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 01/10/2014] [Accepted: 01/18/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Blepharophimosis-ptosis-epicanthus inversus syndrome is an autosomal dominant condition because of mutations or deletions of the FOXL2 gene. Microcephaly is not associated with FOXL2 mutations but has been reported in individuals with chromosome 3q deletions, which include the FOXL2 gene and other contiguous genes. The ATR gene has been reported as a candidate gene for microcephaly in individuals with contiguous deletion of chromosome 3q involving the FOXL2 gene. PATIENT We describe a girl with blepharophimosis-ptosis-epicanthus inversus syndrome along with acquired microcephaly and intellectual disability. RESULTS Our patient had a deletion of chromosome 3q22.2q23, which does not include the ATR gene but does include the PIK3CB gene as a candidate gene for microcephaly. CONCLUSION We propose that the PIK3CB gene included in our patient's chromosome 3q deletion may be the gene responsible for microcephaly and other patients with blepharophimosis-ptosis-epicanthus inversus syndrome because of a chromosome 3q deletion.
Collapse
Affiliation(s)
- Sarah J Dean
- College of Medicine, Medical University of South Carolina, Charleston, South Carolina.
| | - Kenton R Holden
- Neurosciences (Neurology) and Pediatrics, Medical University of South Carolina, Charleston, South Carolina; Greenwood Genetic Center, Greenwood, South Carolina
| | - Alka Dwivedi
- Greenwood Genetic Center, Greenwood, South Carolina
| | | | | |
Collapse
|
63
|
Gupta AR, Pirruccello M, Cheng F, Kang HJ, Fernandez TV, Baskin JM, Choi M, Liu L, Ercan-Sencicek AG, Murdoch JD, Klei L, Neale BM, Franjic D, Daly MJ, Lifton RP, De Camilli P, Zhao H, Sestan N, State MW. Rare deleterious mutations of the gene EFR3A in autism spectrum disorders. Mol Autism 2014; 5:31. [PMID: 24860643 PMCID: PMC4032628 DOI: 10.1186/2040-2392-5-31] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/28/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Whole-exome sequencing studies in autism spectrum disorder (ASD) have identified de novo mutations in novel candidate genes, including the synaptic gene Eighty-five Requiring 3A (EFR3A). EFR3A is a critical component of a protein complex required for the synthesis of the phosphoinositide PtdIns4P, which has a variety of functions at the neural synapse. We hypothesized that deleterious mutations in EFR3A would be significantly associated with ASD. METHODS We conducted a large case/control association study by deep resequencing and analysis of whole-exome data for coding and splice site variants in EFR3A. We determined the potential impact of these variants on protein structure and function by a variety of conservation measures and analysis of the Saccharomyces cerevisiae Efr3 crystal structure. We also analyzed the expression pattern of EFR3A in human brain tissue. RESULTS Rare nonsynonymous mutations in EFR3A were more common among cases (16 / 2,196 = 0.73%) than matched controls (12 / 3,389 = 0.35%) and were statistically more common at conserved nucleotides based on an experiment-wide significance threshold (P = 0.0077, permutation test). Crystal structure analysis revealed that mutations likely to be deleterious were also statistically more common in cases than controls (P = 0.017, Fisher exact test). Furthermore, EFR3A is expressed in cortical neurons, including pyramidal neurons, during human fetal brain development in a pattern consistent with ASD-related genes, and it is strongly co-expressed (P < 2.2 × 10(-16), Wilcoxon test) with a module of genes significantly associated with ASD. CONCLUSIONS Rare deleterious mutations in EFR3A were found to be associated with ASD using an experiment-wide significance threshold. Synaptic phosphoinositide metabolism has been strongly implicated in syndromic forms of ASD. These data for EFR3A strengthen the evidence for the involvement of this pathway in idiopathic autism.
Collapse
Affiliation(s)
- Abha R Gupta
- Department of Pediatrics and Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Feng Cheng
- Department of Neurobiology, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA ; College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Hyo Jung Kang
- Department of Neurobiology, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA ; Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Thomas V Fernandez
- Department of Psychiatry and Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jeremy M Baskin
- Department of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06520, USA
| | - Murim Choi
- Department of Genetics, Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06520, USA
| | - Li Liu
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | - John D Murdoch
- Program on Neurogenetics, Child Study Center, Department of Psychiatry, Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Benjamin M Neale
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Daniel Franjic
- Department of Neurobiology, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mark J Daly
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Richard P Lifton
- Department of Genetics, Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06520, USA
| | - Pietro De Camilli
- Department of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06520, USA
| | - Hongyu Zhao
- Departments of Biostatistics and Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Nenad Sestan
- Department of Neurobiology, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Matthew W State
- Department of Psychiatry, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
64
|
Hammond GRV, Machner MP, Balla T. A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. ACTA ACUST UNITED AC 2014; 205:113-26. [PMID: 24711504 PMCID: PMC3987136 DOI: 10.1083/jcb.201312072] [Citation(s) in RCA: 489] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Characterization of a new biosensor for PtdIns4P reveals a wider cellular distribution for the polyphosphoinositide than the Golgi localization reported previously, including pools in both the plasma membrane and late endosomes/lysosomes. Polyphosphoinositides are an important class of lipid that recruit specific effector proteins to organelle membranes. One member, phosphatidylinositol 4-phosphate (PtdIns4P) has been localized to Golgi membranes based on the distribution of lipid binding modules from PtdIns4P effector proteins. However, these probes may be biased by additional interactions with other Golgi-specific determinants. In this paper, we derive a new PtdIns4P biosensor using the PtdIns4P binding of SidM (P4M) domain of the secreted effector protein SidM from the bacterial pathogen Legionella pneumophila. PtdIns4P was necessary and sufficient for localization of P4M, which revealed pools of the lipid associated not only with the Golgi but also with the plasma membrane and Rab7-positive late endosomes/lysosomes. PtdIns4P distribution was determined by the localization and activities of both its anabolic and catabolic enzymes. Therefore, P4M reports a wider cellular distribution of PtdIns4P than previous probes and therefore will be valuable for dissecting the biological functions of PtdIns4P in its assorted membrane compartments.
Collapse
Affiliation(s)
- Gerald R V Hammond
- Program in Developmental Neuroscience and 2 Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
65
|
Pleskot R, Pejchar P, Staiger CJ, Potocký M. When fat is not bad: the regulation of actin dynamics by phospholipid signaling molecules. FRONTIERS IN PLANT SCIENCE 2014; 5:5. [PMID: 24478785 PMCID: PMC3899574 DOI: 10.3389/fpls.2014.00005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/04/2014] [Indexed: 05/21/2023]
Abstract
The actin cytoskeleton plays a key role in the plant morphogenesis and is involved in polar cell growth, movement of subcellular organelles, cell division, and plant defense. Organization of actin cytoskeleton undergoes dynamic remodeling in response to internal developmental cues and diverse environmental signals. This dynamic behavior is regulated by numerous actin-binding proteins (ABPs) that integrate various signaling pathways. Production of the signaling lipids phosphatidylinositol 4,5-bisphosphate and phosphatidic acid affects the activity and subcellular distribution of several ABPs, and typically correlates with increased actin polymerization. Here we review current knowledge of the inter-regulatory dynamics between signaling phospholipids and the actin cytoskeleton in plant cells.
Collapse
Affiliation(s)
- Roman Pleskot
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | | | - Martin Potocký
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
| |
Collapse
|
66
|
Akematsu T, Fukuda Y, Attiq R, Pearlman RE. Role of class III phosphatidylinositol 3-kinase during programmed nuclear death of Tetrahymena thermophila. Autophagy 2013; 10:209-25. [PMID: 24280724 PMCID: PMC5396089 DOI: 10.4161/auto.26929] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Programmed nuclear death (PND) in the ciliate protozoan Tetrahymena thermophila is a novel type of autophagy that occurs during conjugation, in which only the parental somatic macronucleus is destined to die and is then eliminated from the progeny cytoplasm. Other coexisting nuclei, however, such as new micro- and macronuclei are unaffected. PND starts with condensation in the nucleus followed by apoptotic DNA fragmentation, lysosomal acidification, and final resorption. Because of the peculiarity in the process and the absence of some ATG genes in this organism, the mechanism of PND has remained unclear. In this study, we focus on the role of class III phosphatidylinositol 3-kinase (PtdIns3K, corresponding to yeast Vps34) in order to identify central regulators of PND. We identified the sole Tetrahymena thermophila ortholog (TtVPS34) to yeast Vps34 and human PIK3C3 (the catalytic subunit of PtdIns3K), through phylogenetic analysis, and generated the gene knockdown mutant for functional analysis. Loss of TtVPS34 activity prevents autophagosome formation on the parental macronucleus, and this nucleus escapes from the lysosomal pathway. In turn, DNA fragmentation and final resorption of the nucleus are drastically impaired. These phenotypes are similar to the situation in the ATG8Δ mutants of Tetrahymena, implying an inextricable link between TtVPS34 and TtATG8s in controlling PND as well as general macroautophagy. On the other hand, TtVPS34 does not appear responsible for the nuclear condensation and does not affect the progeny nuclear development. These results demonstrate that TtVPS34 is critically involved in the nuclear degradation events of PND in autophagosome formation rather than with an involvement in commitment to the death program.
Collapse
Affiliation(s)
| | - Yasuhiro Fukuda
- Department of Biodiversity Science; Division of Biological Resource Science; Graduate School of Agricultural Science; Tohoku University, Oosaki, Japan
| | - Rizwan Attiq
- Department of Biology; York University; Toronto, CA
| | | |
Collapse
|
67
|
Genome-wide analysis of the phosphoinositide kinome from two ciliates reveals novel evolutionary links for phosphoinositide kinases in eukaryotic cells. PLoS One 2013; 8:e78848. [PMID: 24244373 PMCID: PMC3823935 DOI: 10.1371/journal.pone.0078848] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022] Open
Abstract
Background The complexity of phosphoinositide signaling in higher eukaryotes is partly due to expansion of specific families and types of phosphoinositide kinases (PIKs) that can generate all phosphoinositides via multiple routes. This is particularly evident in the PI3Ks and PIPKs, and it is considered an evolutionary trait associated with metazoan diversification. Yet, there are limited comprehensive studies on the PIK repertoire of free living unicellular organisms. Methodology/Principal Findings We undertook a genome-wide analysis of putative PIK genes in two free living ciliated cells, Tetrahymena and Paramecium. The Tetrahymena thermophila and Paramecium tetraurelia genomes were probed with representative kinases from all families and types. Putative homologs were verified by EST, microarray and deep RNA sequencing database searches and further characterized for domain structure, catalytic efficiency, expression patterns and phylogenetic relationships. In total, we identified and characterized 22 genes in the Tetrahymena thermophila genome and 62 highly homologues genes in Paramecium tetraurelia suggesting a tight evolutionary conservation in the ciliate lineage. Comparison to the kinome of fungi reveals a significant expansion of PIK genes in ciliates. Conclusions/Significance Our study highlights four important aspects concerning ciliate and other unicellular PIKs. First, ciliate-specific expansion of PI4KIII-like genes. Second, presence of class I PI3Ks which, at least in Tetrahymena, are associated with a metazoan-type machinery for PIP3 signaling. Third, expansion of divergent PIPK enzymes such as the recently described type IV transmembrane PIPKs. Fourth, presence of possible type II PIPKs and presumably inactive PIKs (hence, pseudo-PIKs) not previously described. Taken together, our results provide a solid framework for future investigation of the roles of PIKs in ciliates and indicate that novel functions and novel regulatory pathways of phosphoinositides may be more widespread than previously thought in unicellular organisms.
Collapse
|
68
|
Torins are potent antimalarials that block replenishment of Plasmodium liver stage parasitophorous vacuole membrane proteins. Proc Natl Acad Sci U S A 2013; 110:E2838-47. [PMID: 23836641 DOI: 10.1073/pnas.1306097110] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Residence within a customized vacuole is a highly successful strategy used by diverse intracellular microorganisms. The parasitophorous vacuole membrane (PVM) is the critical interface between Plasmodium parasites and their possibly hostile, yet ultimately sustaining, host cell environment. We show that torins, developed as ATP-competitive mammalian target of rapamycin (mTOR) kinase inhibitors, are fast-acting antiplasmodial compounds that unexpectedly target the parasite directly, blocking the dynamic trafficking of the Plasmodium proteins exported protein 1 (EXP1) and upregulated in sporozoites 4 (UIS4) to the liver stage PVM and leading to efficient parasite elimination by the hepatocyte. Torin2 has single-digit, or lower, nanomolar potency in both liver and blood stages of infection in vitro and is likewise effective against both stages in vivo, with a single oral dose sufficient to clear liver stage infection. Parasite elimination and perturbed trafficking of liver stage PVM-resident proteins are both specific aspects of torin-mediated Plasmodium liver stage inhibition, indicating that torins have a distinct mode of action compared with currently used antimalarials.
Collapse
|
69
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
70
|
Lipid synthesis in protozoan parasites: a comparison between kinetoplastids and apicomplexans. Prog Lipid Res 2013; 52:488-512. [PMID: 23827884 DOI: 10.1016/j.plipres.2013.06.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 12/22/2022]
Abstract
Lipid metabolism is of crucial importance for pathogens. Lipids serve as cellular building blocks, signalling molecules, energy stores, posttranslational modifiers, and pathogenesis factors. Parasites rely on a complex system of uptake and synthesis mechanisms to satisfy their lipid needs. The parameters of this system change dramatically as the parasite transits through the various stages of its life cycle. Here we discuss the tremendous recent advances that have been made in the understanding of the synthesis and uptake pathways for fatty acids and phospholipids in apicomplexan and kinetoplastid parasites, including Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania. Lipid synthesis differs in significant ways between parasites from both phyla and the human host. Parasites have acquired novel pathways through endosymbiosis, as in the case of the apicoplast, have dramatically reshaped substrate and product profiles, and have evolved specialized lipids to interact with or manipulate the host. These differences potentially provide opportunities for drug development. We outline the lipid pathways for key species in detail as they progress through the developmental cycle and highlight those that are of particular importance to the biology of the pathogens and/or are the most promising targets for parasite-specific treatment.
Collapse
|
71
|
The discovery of Foxl2 paralogs in chondrichthyan, coelacanth and tetrapod genomes reveals an ancient duplication in vertebrates. Heredity (Edinb) 2013; 111:57-65. [PMID: 23549337 DOI: 10.1038/hdy.2013.19] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Foxl2 (forkhead box L2) gene is an important member of the forkhead domain family, primarily responsible for the development of ovaries during female sex differentiation. The evolutionary studies conducted previously considered the presence of paralog Foxl2 copies only in teleosts. However, to search for possible paralog copies in other groups of vertebrates and ensure that all predicted copies were homolog to the Foxl2 gene, a broad evolutionary analysis was performed, based on the forkhead domain family. A total of 2464 sequences for the forkhead domain were recovered, and subsequently, 64 representative sequences for Foxl2 were used in the evolutionary analysis of this gene. The most important contribution of this study was the discovery of a new subgroup of Foxl2 copies (ortholog to Foxl2B) present in the chondrichthyan Callorhinchus milii, in the coelacanth Latimeria chalumnae, in the avian Taeniopygia guttata and in the marsupial Monodelphis domestica. This new scenario indicates a gene duplication event in an ancestor of gnathostomes. Furthermore, based on the analysis of the syntenic regions of both Foxl2 copies, the duplication event was not exclusive to Foxl2. Moreover, the duplicated copy distribution was shown to be complex across vertebrates, especially in tetrapods, and the results strongly support a loss of this copy in eutherian species. Finally, the scenario observed in this study suggests an update for Foxl2 gene nomenclature, extending the actual suggested teleost naming of Foxl2A and Foxl2B to all vertebrate sequences and contributing to the establishment of a new evolutionary context for the Foxl2 gene.
Collapse
|
72
|
Lasonder E, Green JL, Camarda G, Talabani H, Holder AA, Langsley G, Alano P. The Plasmodium falciparum schizont phosphoproteome reveals extensive phosphatidylinositol and cAMP-protein kinase A signaling. J Proteome Res 2012; 11:5323-37. [PMID: 23025827 DOI: 10.1021/pr300557m] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The asexual blood stages of Plasmodium falciparum cause the most lethal form of human malaria. During growth within an infected red blood cell, parasite multiplication and formation of invasive merozoites is called schizogony. Here, we present a detailed analysis of the phosphoproteome of P. falciparum schizonts revealing 2541 unique phosphorylation sites, including 871 novel sites. Prominent roles for cAMP-dependent protein kinase A- and phosphatidylinositol-signaling were identified following analysis by functional enrichment, phosphoprotein interaction network clustering and phospho-motif identification tools. We observed that most key enzymes in the inositol pathway are phosphorylated, which strongly suggests additional levels of regulation and crosstalk with other protein kinases that coregulate different biological processes. A distinct pattern of phosphorylation of proteins involved in merozoite egress and red blood cell invasion was noted. The analyses also revealed that cAMP-PKA signaling is implicated in a wide variety of processes including motility. We verified this finding experimentally using an in vitro kinase assay and identified three novel PKA substrates associated with the glideosome motor complex: myosin A, GAP45 and CDPK1. Therefore, in addition to an established role for CDPK1 in the motor complex, this study reveals the coinvolvement of PKA, further implicating cAMP as an important regulator of host cell invasion.
Collapse
Affiliation(s)
- Edwin Lasonder
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
73
|
Burke JE, Williams RL. Dynamic steps in receptor tyrosine kinase mediated activation of class IA phosphoinositide 3-kinases (PI3K) captured by H/D exchange (HDX-MS). Adv Biol Regul 2012. [PMID: 23194976 PMCID: PMC3613897 DOI: 10.1016/j.jbior.2012.09.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The catalytic subunits of all class IA phosphoinositide 3-kinases (PI3Ks) associate with identical p85-related subunits and phosphorylate PIP2 yielding PIP3, but they can vary greatly in the signaling pathways in which they participate. The binding of the p85 subunit to the p110 catalytic subunits is constitutive, and this inhibits activity, but some of the inhibitory contacts are reversible and subject to regulation. Interaction with phosphotyrosine-containing peptides (RTK-pY) releases a subset of these inhibitory contacts. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) provides a map of the dynamic interactions unique to each of the isotypes. RTK-pY binding exposes the p110 helical domains for all class IA enzymes (due to release of the nSH2 contact) and exposes the C-lobe of the kinase domains of p110β and p110δ (resulting from release of the cSH2 contact). Consistent with this, our in vitro assays show that all class IA isoforms are inhibited by the nSH2, but only p110β and p110δ are inhibited by the cSH2. While a C2/iSH2 inhibitory contact exists in all isoforms, HDX indicates that p110β releases this contact most readily. The unique dynamic relationships of the different p110 isozymes to the p85 subunit may facilitate new strategies for specific inhibitors of the PI3Ks.
Collapse
Affiliation(s)
- John E Burke
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| | | |
Collapse
|
74
|
Cai H, Kuang R, Gu J, Wang Y. Proteases in malaria parasites - a phylogenomic perspective. Curr Genomics 2012; 12:417-27. [PMID: 22379395 PMCID: PMC3178910 DOI: 10.2174/138920211797248565] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/17/2011] [Accepted: 07/20/2011] [Indexed: 12/21/2022] Open
Abstract
Malaria continues to be one of the most devastating global health problems due to the high morbidity and mortality it causes in endemic regions. The search for new antimalarial targets is of high priority because of the increasing prevalence of drug resistance in malaria parasites. Malarial proteases constitute a class of promising therapeutic targets as they play important roles in the parasite life cycle and it is possible to design and screen for specific protease inhibitors. In this mini-review, we provide a phylogenomic overview of malarial proteases. An evolutionary perspective on the origin and divergence of these proteases will provide insights into the adaptive mechanisms of parasite growth, development, infection, and pathogenesis.B
Collapse
Affiliation(s)
- Hong Cai
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | |
Collapse
|
75
|
Abstract
The discovery of fibroblast growth factor 23 (FGF-23) has expanded our understanding of phosphate and vitamin D homeostasis and provided new insights into the pathogenesis of hereditary hypophosphatemic and hyperphosphatemic disorders, as well as acquired disorders of phosphate metabolism, such as chronic kidney disease. FGF-23 is secreted by osteoblasts and osteocytes in bone and principally targets the kidney to regulate the reabsorption of phosphate, the production and catabolism of 1,25-dihydroxyvitamin D and the expression of α-Klotho, an anti-ageing hormone. Secreted FGF-23 plays a central role in complex endocrine networks involving local bone-derived factors that regulate mineralization of extracellular matrix and systemic hormones involved in mineral metabolism. Inactivating mutations of PHEX, DMP1 and ENPP1, which cause hereditary hypophosphatemic disorders and primary defects in bone mineralization, stimulate FGF23 gene transcription in osteoblasts and osteocytes, at least in part, through canonical and intracrine FGF receptor pathways. These FGF-23 regulatory pathways may enable systemic phosphate and vitamin D homeostasis to be coordinated with bone mineralization. FGF-23 also functions as a counter-regulatory hormone for 1,25-dihydroxyvitamin D in a bone-kidney endocrine loop. FGF-23, through regulation of additional genes in the kidney and extrarenal tissues, probably has broader physiological functions beyond regulation of mineral metabolism that account for the association between FGF-23 and increased mortality and morbidity in chronic kidney disease.
Collapse
Affiliation(s)
- L Darryl Quarles
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, 19 South Manassas Street, Memphis, TN 38163, USA.
| |
Collapse
|
76
|
Abstract
Infectious diseases are an enormous burden to global health and ,since drug discovery is costly, those infectious diseases that affect the developing world are often not pursued by commercial drug-discovery efforts. Therefore, pragmatic means by which new therapeutics can be discovered are needed. One such approach is target repurposing, where pathogen targets are matched with homologous human targets that have been pursued for drug discovery for other indications. In many cases, the medicinal chemistry, structural biology and biochemistry knowledge around these human targets can be directly repurposed to launch and accelerate new drug-discovery efforts against the pathogen targets. This article describes the overarching strategy of target repurposing as a tool for initiating and prosecuting neglected disease drug-discovery programs, highlighting this approach with three case studies.
Collapse
|
77
|
Gene expression signatures and ex vivo drug sensitivity profiles in children with acute lymphoblastic leukemia. J Appl Genet 2011; 53:83-91. [PMID: 22038456 DOI: 10.1007/s13353-011-0073-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/01/2011] [Accepted: 10/03/2011] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Causes of treatment failure in acute lymphoblastic leukemia (ALL) are still poorly understood. Microarray technology gives new possibilities for the analysis of the biology of leukemias. We hypothesize that drug sensitivity in pediatric ALL is driven by specific molecular mechanisms that correlate with gene expression profiles assessed by microarray analysis. OBJECTIVE The aim of the study was to determine the ex vivo resistance profiles of 20 antileukemic drugs and gene expression profiles, with relation to response to initial therapy. PATIENTS AND METHODS Lymphoblasts were analyzed after bone marrow biopsy was obtained from 56 patients. The profile of in vitro resistance to drugs was determined in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) cytotoxicity assay. High-quality total RNA was prepared and hybridized to oligonucleotide arrays HG-U133A 2.0 Chip (Affymetrix). The expression of selected genes was tested by qualitative reverse transcription polymerase chain reaction (qRT-PCR). RESULTS AND CONCLUSIONS The exposure of leukemic blasts to drugs initiates a complex cellular response, which reflects global changes in gene expression. Changes in the expression of several genes are highly correlated with drug resistance.
Collapse
|
78
|
Diaz-Gonzalez R, Kuhlmann FM, Galan-Rodriguez C, da Silva LM, Saldivia M, Karver CE, Rodriguez A, Beverley SM, Navarro M, Pollastri MP. The susceptibility of trypanosomatid pathogens to PI3/mTOR kinase inhibitors affords a new opportunity for drug repurposing. PLoS Negl Trop Dis 2011; 5:e1297. [PMID: 21886855 PMCID: PMC3160303 DOI: 10.1371/journal.pntd.0001297] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 07/19/2011] [Indexed: 12/20/2022] Open
Abstract
Background Target repurposing utilizes knowledge of “druggable” targets obtained in one organism and exploits this information to pursue new potential drug targets in other organisms. Here we describe such studies to evaluate whether inhibitors targeting the kinase domain of the mammalian Target of Rapamycin (mTOR) and human phosphoinositide-3-kinases (PI3Ks) show promise against the kinetoplastid parasites Trypanosoma brucei, T. cruzi, Leishmania major, and L. donovani. The genomes of trypanosomatids encode at least 12 proteins belonging to the PI3K protein superfamily, some of which are unique to parasites. Moreover, the shared PI3Ks differ greatly in sequence from those of the human host, thereby providing opportunities for selective inhibition. Methodology/Principal Findings We focused on 8 inhibitors targeting mTOR and/or PI3Ks selected from various stages of pre-clinical and clinical development, and tested them against in vitro parasite cultures and in vivo models of infection. Several inhibitors showed micromolar or better efficacy against these organisms in culture. One compound, NVP-BEZ235, displayed sub-nanomolar potency, efficacy against cultured parasites, and an ability to clear parasitemia in an animal model of T. brucei rhodesiense infection. Conclusions/Significance These studies strongly suggest that mammalian PI3/TOR kinase inhibitors are a productive starting point for anti-trypanosomal drug discovery. Our data suggest that NVP-BEZ235, an advanced clinical candidate against solid tumors, merits further investigation as an agent for treating African sleeping sickness. In our study we describe the potency of established phosphoinositide-3-kinase (PI3K) and mammalian Target of Rapamycin (mTOR) kinase inhibitors against three trypanosomatid parasites: Trypanosoma brucei, T. cruzi, and Leishmania sp., which are the causative agents for African sleeping sickness, Chagas disease, and leishmaniases, respectively. We noted that these parasites and humans express similar kinase enzymes. Since these similar human targets have been pursued by the drug industry for many years in the discovery of cellular growth and proliferation inhibitors, compounds developed as human anti-cancer agents should also have effect on inhibiting growth and proliferation of the parasites. With that in mind, we selected eight established PI3K and mTOR inhibitors for profiling against these pathogens. Among these inhibitors is an advanced clinical candidate against cancer, NVP-BEZ235, which we demonstrate to be a highly potent trypanocide in parasite cultures, and in a mouse model of T. brucei infection. Additionally, we describe observations of these inhibitors' effects on parasite growth and other cellular characteristics.
Collapse
Affiliation(s)
- Rosario Diaz-Gonzalez
- Instituto de Parasitología y Biomedicina “López-Neyra” Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - F. Matthew Kuhlmann
- Department of Medicine-Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Cristina Galan-Rodriguez
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Luciana Madeira da Silva
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Manuel Saldivia
- Instituto de Parasitología y Biomedicina “López-Neyra” Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Caitlin E. Karver
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Ana Rodriguez
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina “López-Neyra” Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Michael P. Pollastri
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|