51
|
Development of simple sequence repeat (SSR) markers of sesame (Sesamum indicum) from a genome survey. Molecules 2014; 19:5150-62. [PMID: 24759074 PMCID: PMC6270694 DOI: 10.3390/molecules19045150] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/31/2014] [Accepted: 04/14/2014] [Indexed: 11/17/2022] Open
Abstract
Sesame (Sesamum indicum), an important oil crop, is widely grown in tropical and subtropical regions. It provides part of the daily edible oil allowance for almost half of the world's population. A limited number of co-dominant markers has been developed and applied in sesame genetic diversity and germplasm identity studies. Here we report for the first time a whole genome survey used to develop simple sequence repeat (SSR) markers and to detect the genetic diversity of sesame germplasm. From the initial assembled sesame genome, 23,438 SSRs (≥5 repeats) were identified. The most common repeat motif was dinucleotide with a frequency of 84.24%, followed by 13.53% trinucleotide, 1.65% tetranucleotide, 0.3% pentanucleotide and 0.28% hexanucleotide motifs. From 1500 designed and synthesised primer pairs, 218 polymorphic SSRs were developed and used to screen 31 sesame accessions that from 12 countries. STRUCTURE and phylogenetic analyses indicated that all sesame accessions could be divided into two groups: one mainly from China and another from other countries. Cluster analysis classified Chinese major sesame varieties into three groups. These novel SSR markers are a useful tool for genetic linkage map construction, genetic diversity detection, and marker-assisted selective sesame breeding.
Collapse
|
52
|
Wu K, Yang M, Liu H, Tao Y, Mei J, Zhao Y. Genetic analysis and molecular characterization of Chinese sesame (Sesamum indicum L.) cultivars using insertion-deletion (InDel) and simple sequence repeat (SSR) markers. BMC Genet 2014; 15:35. [PMID: 24641723 PMCID: PMC4234512 DOI: 10.1186/1471-2156-15-35] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/10/2014] [Indexed: 11/10/2022] Open
Abstract
Background Sesame is an important and ancient oil crop in tropical and subtropical areas. China is one of the most important sesame producing countries with many germplasm accessions and excellent cultivars. Domestication and modern plant breeding have presumably narrowed the genetic basis of cultivated sesame. Several modern sesame cultivars were bred with a limited number of landrace cultivars in their pedigree. The genetic variation was subsequently reduced by genetic drift and selection. Characterization of genetic diversity of these cultivars by molecular markers is of great value to assist parental line selection and breeding strategy design. Results Three hundred and forty nine simple sequence repeat (SSR) and 79 insertion-deletion (InDel) markers were developed from cDNA library and reduced-representation sequencing of a sesame cultivar Zhongzhi 14, respectively. Combined with previously published SSR markers, 88 polymorphic markers were used to assess the genetic diversity, phylogenetic relationships, population structure, and allele distribution among 130 Chinese sesame accessions including 82 cultivars, 44 landraces and 4 wild germplasm accessions. A total of 325 alleles were detected, with the average gene diversity of 0.432. Model-based structure analysis revealed the presence of five subgroups belonging to two main groups, which were consistent with the results from principal coordinate analysis (PCA), phylogenetic clustering and analysis of molecular variance (AMOVA). Several missing or unique alleles were identified from particular types, subgroups or families, even though they share one or both parental/progenitor lines. Conclusions This report presented a by far most comprehensive characterization of the molecular and genetic diversity of sesame cultivars in China. InDels are more polymorphic than SSRs, but their ability for deciphering genetic diversity compared to the later. Improved sesame cultivars have narrower genetic basis than landraces, reflecting the effect of genetic drift or selection during breeding processes. Comparative analysis of allele distribution revealed genetic divergence between improved cultivars and landraces, as well as between cultivars released in different years. These results will be useful for assessing cultivars and for marker-assisted breeding in sesame.
Collapse
Affiliation(s)
| | | | | | | | | | - Yingzhong Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Sesame Genetic Improvement Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (OCRI-CAAS), Wuhan, Hubei 430062, China.
| |
Collapse
|
53
|
Wang Z, Yu G, Shi B, Wang X, Qiang H, Gao H. Development and characterization of simple sequence repeat (SSR) markers based on RNA-sequencing of Medicago sativa and in silico mapping onto the M. truncatula genome. PLoS One 2014; 9:e92029. [PMID: 24642969 PMCID: PMC3958398 DOI: 10.1371/journal.pone.0092029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/17/2014] [Indexed: 11/18/2022] Open
Abstract
Sufficient codominant genetic markers are needed for various genetic investigations in alfalfa since the species is an outcrossing autotetraploid. With the newly developed next generation sequencing technology, a large amount of transcribed sequences of alfalfa have been generated and are available for identifying SSR markers by data mining. A total of 54,278 alfalfa non-redundant unigenes were assembled through the Illumina HiSeqTM 2000 sequencing technology. Based on 3,903 unigene sequences, 4,493 SSRs were identified. Tri-nucleotide repeats (56.71%) were the most abundant motif class while AG/CT (21.7%), AGG/CCT (19.8%), AAC/GTT (10.3%), ATC/ATG (8.8%), and ACC/GGT (6.3%) were the subsequent top five nucleotide repeat motifs. Eight hundred and thirty- seven EST-SSR primer pairs were successfully designed. Of these, 527 (63%) primer pairs yielded clear and scored PCR products and 372 (70.6%) exhibited polymorphisms. High transferability was observed for ssp falcata at 99.2% (523) and 71.7% (378) in M. truncatula. In addition, 313 of 527 SSR marker sequences were in silico mapped onto the eight M. truncatula chromosomes. Thirty-six polymorphic SSR primer pairs were used in the genetic relatedness analysis of 30 Chinese alfalfa cultivated accessions generating a total of 199 scored alleles. The mean observed heterozygosity and polymorphic information content were 0.767 and 0.635, respectively. The codominant markers not only enriched the current resources of molecular markers in alfalfa, but also would facilitate targeted investigations in marker-trait association, QTL mapping, and genetic diversity analysis in alfalfa.
Collapse
Affiliation(s)
- Zan Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (ZW); (HG)
| | - Guohui Yu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Binbin Shi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuemin Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiping Qiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongwen Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (ZW); (HG)
| |
Collapse
|
54
|
Wang L, Yu S, Tong C, Zhao Y, Liu Y, Song C, Zhang Y, Zhang X, Wang Y, Hua W, Li D, Li D, Li F, Yu J, Xu C, Han X, Huang S, Tai S, Wang J, Xu X, Li Y, Liu S, Varshney RK, Wang J, Zhang X. Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 2014; 15:R39. [PMID: 24576357 PMCID: PMC4053841 DOI: 10.1186/gb-2014-15-2-r39] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 02/27/2014] [Indexed: 11/16/2022] Open
Abstract
Background Sesame, Sesamum indicum L., is considered the queen of oilseeds for its high oil content and quality, and is grown widely in tropical and subtropical areas as an important source of oil and protein. However, the molecular biology of sesame is largely unexplored. Results Here, we report a high-quality genome sequence of sesame assembled de novo with a contig N50 of 52.2 kb and a scaffold N50 of 2.1 Mb, containing an estimated 27,148 genes. The results reveal novel, independent whole genome duplication and the absence of the Toll/interleukin-1 receptor domain in resistance genes. Candidate genes and oil biosynthetic pathways contributing to high oil content were discovered by comparative genomic and transcriptomic analyses. These revealed the expansion of type 1 lipid transfer genes by tandem duplication, the contraction of lipid degradation genes, and the differential expression of essential genes in the triacylglycerol biosynthesis pathway, particularly in the early stage of seed development. Resequencing data in 29 sesame accessions from 12 countries suggested that the high genetic diversity of lipid-related genes might be associated with the wide variation in oil content. Additionally, the results shed light on the pivotal stage of seed development, oil accumulation and potential key genes for sesamin production, an important pharmacological constituent of sesame. Conclusions As an important species from the order Lamiales and a high oil crop, the sesame genome will facilitate future research on the evolution of eudicots, as well as the study of lipid biosynthesis and potential genetic improvement of sesame.
Collapse
|
55
|
Li X, Luo J, Yan T, Xiang L, Jin F, Qin D, Sun C, Xie M. Deep sequencing-based analysis of the Cymbidium ensifolium floral transcriptome. PLoS One 2013; 8:e85480. [PMID: 24392013 PMCID: PMC3877369 DOI: 10.1371/journal.pone.0085480] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/27/2013] [Indexed: 12/13/2022] Open
Abstract
Cymbidium ensifolium is a Chinese Cymbidium with an elegant shape, beautiful appearance, and a fragrant aroma. C. ensifolium has a long history of cultivation in China and it has excellent commercial value as a potted plant and cut flower. The development of C. ensifolium genomic resources has been delayed because of its large genome size. Taking advantage of technical and cost improvement of RNA-Seq, we extracted total mRNA from flower buds and mature flowers and obtained a total of 9.52 Gb of filtered nucleotides comprising 98,819,349 filtered reads. The filtered reads were assembled into 101,423 isotigs, representing 51,696 genes. Of the 101,423 isotigs, 41,873 were putative homologs of annotated sequences in the public databases, of which 158 were associated with floral development and 119 were associated with flowering. The isotigs were categorized according to their putative functions. In total, 10,212 of the isotigs were assigned into 25 eukaryotic orthologous groups (KOGs), 41,690 into 58 gene ontology (GO) terms, and 9,830 into 126 Arabidopsis Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and 9,539 isotigs into 123 rice pathways. Comparison of the isotigs with those of the two related orchid species P. equestris and C. sinense showed that 17,906 isotigs are unique to C. ensifolium. In addition, a total of 7,936 SSRs and 16,676 putative SNPs were identified. To our knowledge, this transcriptome database is the first major genomic resource for C. ensifolium and the most comprehensive transcriptomic resource for genus Cymbidium. These sequences provide valuable information for understanding the molecular mechanisms of floral development and flowering. Sequences predicted to be unique to C. ensifolium would provide more insights into C. ensifolium gene diversity. The numerous SNPs and SSRs identified in the present study will contribute to marker development for C. ensifolium.
Collapse
Affiliation(s)
- Xiaobai Li
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, People’s Republic of China
| | - Jie Luo
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, People’s Republic of China
| | - Tianlian Yan
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Lin Xiang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, People’s Republic of China
| | - Feng Jin
- College of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Dehui Qin
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, People’s Republic of China
| | - Chongbo Sun
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, People’s Republic of China
| | - Ming Xie
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, People’s Republic of China
| |
Collapse
|
56
|
Valdés A, Ibáñez C, Simó C, García-Cañas V. Recent transcriptomics advances and emerging applications in food science. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
57
|
Zhang H, Li C, Miao H, Xiong S. Insights from the complete chloroplast genome into the evolution of Sesamum indicum L. PLoS One 2013; 8:e80508. [PMID: 24303020 PMCID: PMC3841184 DOI: 10.1371/journal.pone.0080508] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022] Open
Abstract
Sesame (Sesamum indicum L.) is one of the oldest oilseed crops. In order to investigate the evolutionary characters according to the Sesame Genome Project, apart from sequencing its nuclear genome, we sequenced the complete chloroplast genome of S. indicum cv. Yuzhi 11 (white seeded) using Illumina and 454 sequencing. Comparisons of chloroplast genomes between S. indicum and the 18 other higher plants were then analyzed. The chloroplast genome of cv. Yuzhi 11 contains 153,338 bp and a total of 114 unique genes (KC569603). The number of chloroplast genes in sesame is the same as that in Nicotiana tabacum, Vitis vinifera and Platanus occidentalis. The variation in the length of the large single-copy (LSC) regions and inverted repeats (IR) in sesame compared to 18 other higher plant species was the main contributor to size variation in the cp genome in these species. The 77 functional chloroplast genes, except for ycf1 and ycf2, were highly conserved. The deletion of the cp ycf1 gene sequence in cp genomes may be due either to its transfer to the nuclear genome, as has occurred in sesame, or direct deletion, as has occurred in Panax ginseng and Cucumis sativus. The sesame ycf2 gene is only 5,721 bp in length and has lost about 1,179 bp. Nucleotides 1–585 of ycf2 when queried in BLAST had hits in the sesame draft genome. Five repeats (R10, R12, R13, R14 and R17) were unique to the sesame chloroplast genome. We also found that IR contraction/expansion in the cp genome alters its rate of evolution. Chloroplast genes and repeats display the signature of convergent evolution in sesame and other species. These findings provide a foundation for further investigation of cp genome evolution in Sesamum and other higher plants.
Collapse
Affiliation(s)
- Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
- * E-mail:
| | - Chun Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Songjin Xiong
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
58
|
Zhang Y, Wang L, Xin H, Li D, Ma C, Ding X, Hong W, Zhang X. Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC PLANT BIOLOGY 2013; 13:141. [PMID: 24060091 PMCID: PMC3852768 DOI: 10.1186/1471-2229-13-141] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/20/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND The genetics and molecular biology of sesame has only recently begun to be studied even though sesame is an important oil seed crop. A high-density genetic map for sesame has not been published yet due to a lack of sufficient molecular markers. Specific length amplified fragment sequencing (SLAF-seq) is a recently developed high-resolution strategy for large-scale de novo SNP discovery and genotyping. SLAF-seq was employed in this study to obtain sufficient markers to construct a high-density genetic map for sesame. RESULTS In total, 28.21 Gb of data containing 201,488,285 pair-end reads was obtained after sequencing. The average coverage for each SLAF marker was 23.48-fold in the male parent, 23.38-fold in the female parent, and 14.46-fold average in each F2 individual. In total, 71,793 high-quality SLAFs were detected of which 3,673 SLAFs were polymorphic and 1,272 of the polymorphic markers met the requirements for use in the construction of a genetic map. The final map included 1,233 markers on the 15 linkage groups (LGs) and was 1,474.87 cM in length with an average distance of 1.20 cM between adjacent markers. To our knowledge, this map is the densest genetic linkage map to date for sesame. 'SNP_only' markers accounted for 87.51% of the markers on the map. A total of 205 markers on the map showed significant (P < 0.05) segregation distortion. CONCLUSIONS We report here the first high-density genetic map for sesame. The map was constructed using an F2 population and the SLAF-seq approach, which allowed the efficient development of a large number of polymorphic markers in a short time. Results of this study will not only provide a platform for gene/QTL fine mapping, map-based gene isolation, and molecular breeding for sesame, but will also serve as a reference for positioning sequence scaffolds on a physical map, to assist in the process of assembling the sesame genome sequence.
Collapse
Affiliation(s)
- Yanxin Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Rd, 430062 Wuhan, China
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Rd, 430062 Wuhan, China
| | - Huaigen Xin
- Biomarker Technologies Corporation, 101300 Beijing, China
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Rd, 430062 Wuhan, China
| | - Chouxian Ma
- Biomarker Technologies Corporation, 101300 Beijing, China
| | - Xia Ding
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Rd, 430062 Wuhan, China
| | - Weiguo Hong
- Biomarker Technologies Corporation, 101300 Beijing, China
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Rd, 430062 Wuhan, China
| |
Collapse
|
59
|
Kumari K, Muthamilarasan M, Misra G, Gupta S, Subramanian A, Parida SK, Chattopadhyay D, Prasad M. Development of eSSR-Markers in Setaria italica and Their Applicability in Studying Genetic Diversity, Cross-Transferability and Comparative Mapping in Millet and Non-Millet Species. PLoS One 2013; 8:e67742. [PMID: 23805325 PMCID: PMC3689721 DOI: 10.1371/journal.pone.0067742] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/22/2013] [Indexed: 11/25/2022] Open
Abstract
Foxtail millet (Setariaitalica L.) is a tractable experimental model crop for studying functional genomics of millets and bioenergy grasses. But the limited availability of genomic resources, particularly expressed sequence-based genic markers is significantly impeding its genetic improvement. Considering this, we attempted to develop EST-derived-SSR (eSSR) markers and utilize them in germplasm characterization, cross-genera transferability and in silico comparative mapping. From 66,027 foxtail millet EST sequences 24,828 non-redundant ESTs were deduced, representing ~16 Mb, which revealed 534 (~2%) eSSRs in 495 SSR containing ESTs at a frequency of 1/30 kb. A total of 447 pp were successfully designed, of which 327 were mapped physically onto nine chromosomes. About 106 selected primer pairs representing the foxtail millet genome showed high-level of cross-genera amplification at an average of ~88% in eight millets and four non-millet species. Broad range of genetic diversity (0.02–0.65) obtained in constructed phylogenetic tree using 40 eSSR markers demonstrated its utility in germplasm characterizations and phylogenetics. Comparative mapping of physically mapped eSSR markers showed considerable proportion of sequence-based orthology and syntenic relationship between foxtail millet chromosomes and sorghum (~68%), maize (~61%) and rice (~42%) chromosomes. Synteny analysis of eSSRs of foxtail millet, rice, maize and sorghum suggested the nested chromosome fusion frequently observed in grass genomes. Thus, for the first time we had generated large-scale eSSR markers in foxtail millet and demonstrated their utility in germplasm characterization, transferability, phylogenetics and comparative mapping studies in millets and bioenergy grass species.
Collapse
Affiliation(s)
- Kajal Kumari
- National Institute of Plant Genome Research, New Delhi, India
| | | | - Gopal Misra
- National Institute of Plant Genome Research, New Delhi, India
| | - Sarika Gupta
- National Institute of Plant Genome Research, New Delhi, India
| | | | | | | | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
- * E-mail:
| |
Collapse
|
60
|
Zhang H, Miao H, Wei L, Li C, Zhao R, Wang C. Genetic analysis and QTL mapping of seed coat color in sesame (Sesamum indicum L.). PLoS One 2013; 8:e63898. [PMID: 23704951 PMCID: PMC3660586 DOI: 10.1371/journal.pone.0063898] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 04/09/2013] [Indexed: 11/19/2022] Open
Abstract
Seed coat color is an important agronomic trait in sesame, as it is associated with seed biochemical properties, antioxidant content and activity and even disease resistance of sesame. Here, using a high-density linkage map, we analyzed genetic segregation and quantitative trait loci (QTL) for sesame seed coat color in six generations (P1, P2, F1, BC1, BC2 and F2). Results showed that two major genes with additive-dominant-epistatic effects and polygenes with additive-dominant-epistatic effects were responsible for controlling the seed coat color trait. Average heritability of the major genes in the BC1, BC2 and F2 populations was 89.30%, 24.00%, and 91.11% respectively, while the heritability of polygenes was low in the BC1 (5.43%), in BC2 (0.00%) and in F2 (0.89%) populations. A high-density map was constructed using 724 polymorphic markers. 653 SSR, AFLP and RSAMPL loci were anchored in 14 linkage groups (LG) spanning a total of 1,216.00 cM. The average length of each LG was 86.86 cM and the marker density was 1.86 cM per marker interval. Four QTLs for seed coat color, QTL1-1, QTL11-1, QTL11-2 and QTL13-1, whose heritability ranged from 59.33%-69.89%, were detected in F3 populations using CIM and MCIM methods. Alleles at all QTLs from the black-seeded parent tended to increase the seed coat color. Results from QTLs mapping and classical genetic analysis among the P1, P2, F1, BC1, BC2 and F2 populations were comparatively consistent. This first QTL analysis and high-density genetic linkage map for sesame provided a good foundation for further research on sesame genetics and molecular marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China.
| | | | | | | | | | | |
Collapse
|
61
|
Martin LBB, Fei Z, Giovannoni JJ, Rose JKC. Catalyzing plant science research with RNA-seq. FRONTIERS IN PLANT SCIENCE 2013; 4:66. [PMID: 23554602 PMCID: PMC3612697 DOI: 10.3389/fpls.2013.00066] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/10/2013] [Indexed: 05/18/2023]
Abstract
Next generation DNA sequencing technologies are driving increasingly rapid, affordable and high resolution analyses of plant transcriptomes through sequencing of their associated cDNA (complementary DNA) populations; an analytical platform commonly referred to as RNA-sequencing (RNA-seq). Since entering the arena of whole genome profiling technologies only a few years ago, RNA-seq has proven itself to be a powerful tool with a remarkably diverse range of applications, from detailed studies of biological processes at the cell type-specific level, to providing insights into fundamental questions in plant biology on an evolutionary time scale. Applications include generating genomic data for heretofore unsequenced species, thus expanding the boundaries of what had been considered "model organisms," elucidating structural and regulatory gene networks, revealing how plants respond to developmental cues and their environment, allowing a better understanding of the relationships between genes and their products, and uniting the "omics" fields of transcriptomics, proteomics, and metabolomics into a now common systems biology paradigm. We provide an overview of the breadth of such studies and summarize the range of RNA-seq protocols that have been developed to address questions spanning cell type-specific-based transcriptomics, transcript secondary structure and gene mapping.
Collapse
Affiliation(s)
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant ResearchIthaca, NY, USA
- Robert W. Holly Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research ServiceIthaca, NY, USA
| | - James J. Giovannoni
- Boyce Thompson Institute for Plant ResearchIthaca, NY, USA
- Robert W. Holly Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research ServiceIthaca, NY, USA
| | | |
Collapse
|
62
|
Wei L, Miao H, Zhao R, Han X, Zhang T, Zhang H. Identification and testing of reference genes for Sesame gene expression analysis by quantitative real-time PCR. PLANTA 2013; 237:873-89. [PMID: 23229061 PMCID: PMC3579469 DOI: 10.1007/s00425-012-1805-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/30/2012] [Indexed: 05/07/2023]
Abstract
Sesame (Sesamum indicum L.) is an ancient and important oilseed crop. However, few sesame reference genes have been selected for quantitative real-time PCR until now. Screening and validating reference genes is a requisite for gene expression normalization in sesame functional genomics research. In this study, ten candidate reference genes, i.e., SiACT, SiUBQ6, SiTUB, Si18S rRNA, SiEF1α, SiCYP, SiHistone, SiDNAJ, SiAPT and SiGAPDH, were chosen and examined systematically in 32 sesame samples. Three qRT-PCR analysis methods, i.e., geNorm, NormFinder and BestKeeper, were evaluated systematically. Results indicated that all ten candidate reference genes could be used as reference genes in sesame. SiUBQ6 and SiAPT were the optimal reference genes for sesame plant development; SiTUB was suitable for sesame vegetative tissue development, SiDNAJ for pathogen treatment, SiHistone for abiotic stress, SiUBQ6 for bud development and SiACT for seed germination. As for hormone treatment and seed development, SiHistone, SiCYP, SiDNAJ or SiUBQ6, as well as SiACT, SiDNAJ, SiTUB or SiAPT, could be used as reference gene, respectively. To illustrate the suitability of these reference genes, we analyzed the expression variation of three functional sesame genes of SiSS, SiLEA and SiGH in different organs using the optimal qRT-PCR system for the first time. The stability levels of optimal and worst reference genes screened for seed development, anther sterility and plant development were validated in the qRT-PCR normalization. Our results provided a reference gene application guideline for sesame gene expression characterization using qRT-PCR system.
Collapse
Affiliation(s)
- Libin Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| | - Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| | - Ruihong Zhao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| | - Xiuhua Han
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| | - Tide Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| |
Collapse
|
63
|
Zhang H, Miao H, Wang L, Qu L, Liu H, Wang Q, Yue M. Genome sequencing of the important oilseed crop Sesamum indicum L. Genome Biol 2013; 14:401. [PMID: 23369264 PMCID: PMC3663098 DOI: 10.1186/gb-2013-14-1-401] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Sesame Genome Working Group (SGWG) has been formed to sequence and assemble the sesame (Sesamum indicum L.) genome. The status of this project and our planned analyses are described.
Collapse
Affiliation(s)
- Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China
| | - Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, People's Republic of China
| | - Lingbo Qu
- Department of Bioengineering, Henan Technology University, Zhengzhou 450001, People's Republic of China
| | - Hongyan Liu
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China
| | - Qiang Wang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, People's Republic of China
| | - Meiwang Yue
- Crops Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, People's Republic of China
| |
Collapse
|