51
|
Carreto L, Eiriz MF, Domingues I, Schuller D, Moura GR, Santos MAS. Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains. BMC Genomics 2011; 12:201. [PMID: 21507216 PMCID: PMC3094312 DOI: 10.1186/1471-2164-12-201] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 04/20/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Saccharomyces cerevisiae (Baker's yeast) is found in diverse ecological niches and is characterized by high adaptive potential under challenging environments. In spite of recent advances on the study of yeast genome diversity, little is known about the underlying gene expression plasticity. In order to shed new light onto this biological question, we have compared transcriptome profiles of five environmental isolates, clinical and laboratorial strains at different time points of fermentation in synthetic must medium, during exponential and stationary growth phases. RESULTS Our data unveiled diversity in both intensity and timing of gene expression. Genes involved in glucose metabolism and in the stress response elicited during fermentation were among the most variable. This gene expression diversity increased at the onset of stationary phase (diauxic shift). Environmental isolates showed lower average transcript abundance of genes involved in the stress response, assimilation of nitrogen and vitamins, and sulphur metabolism, than other strains. Nitrogen metabolism genes showed significant variation in expression among the environmental isolates. CONCLUSIONS Wild type yeast strains respond differentially to the stress imposed by nutrient depletion, ethanol accumulation and cell density increase, during fermentation of glucose in synthetic must medium. Our results support previous data showing that gene expression variability is a source of phenotypic diversity among closely related organisms.
Collapse
Affiliation(s)
- Laura Carreto
- RNA Biology Laboratory, CESAM & Department of Biology, Universidade de Aveiro, Portugal
| | | | | | | | | | | |
Collapse
|
52
|
Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ. Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet 2011; 7:e1001287. [PMID: 21304888 PMCID: PMC3033381 DOI: 10.1371/journal.pgen.1001287] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 12/30/2010] [Indexed: 11/19/2022] Open
Abstract
Human intervention has subjected the yeast Saccharomyces cerevisiae to multiple rounds of independent domestication and thousands of generations of artificial selection. As a result, this species comprises a genetically diverse collection of natural isolates as well as domesticated strains that are used in specific industrial applications. However the scope of genetic diversity that was captured during the domesticated evolution of the industrial representatives of this important organism remains to be determined. To begin to address this, we have produced whole-genome assemblies of six commercial strains of S. cerevisiae (four wine and two brewing strains). These represent the first genome assemblies produced from S. cerevisiae strains in their industrially-used forms and the first high-quality assemblies for S. cerevisiae strains used in brewing. By comparing these sequences to six existing high-coverage S. cerevisiae genome assemblies, clear signatures were found that defined each industrial class of yeast. This genetic variation was comprised of both single nucleotide polymorphisms and large-scale insertions and deletions, with the latter often being associated with ORF heterogeneity between strains. This included the discovery of more than twenty probable genes that had not been identified previously in the S. cerevisiae genome. Comparison of this large number of S. cerevisiae strains also enabled the characterization of a cluster of five ORFs that have integrated into the genomes of the wine and bioethanol strains on multiple occasions and at diverse genomic locations via what appears to involve the resolution of a circular DNA intermediate. This work suggests that, despite the scrutiny that has been directed at the yeast genome, there remains a significant reservoir of ORFs and novel modes of genetic transmission that may have significant phenotypic impact in this important model and industrial species. The yeast S. cerevisiae has been associated with human activity for thousands of years in industries such as baking, brewing, and winemaking. During this time, humans have effectively domesticated this microorganism, with different industries selecting for specific desirable phenotypic traits. This has resulted in the species S. cerevisiae comprising a genetically diverse collection of individual strains that are often suited to very specific roles (e.g. wine strains produce wine but not beer and vice versa). In order to understand the genetic differences that underpin these diverse industrial characteristics, we have sequenced the genomes of six industrial strains of S. cerevisiae that comprise four strains used in commercial wine production and two strains used in beer brewing. By comparing these genome sequences to existing S. cerevisiae genome sequences from laboratory, pathogenic, bioethanol, and “natural” isolates, we were able to identify numerous genetic differences among these strains including the presence of novel open reading frames and genomic rearrangements, which may provide the basis for the phenotypic differences observed among these strains.
Collapse
|
53
|
Louis E. Saccharomyces cerevisiae: gene annotation and genome variability, state of the art through comparative genomics. Methods Mol Biol 2011; 759:31-40. [PMID: 21863479 DOI: 10.1007/978-1-61779-173-4_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In the early days of the yeast genome sequencing project, gene annotation was in its infancy and suffered the problem of many false positive annotations as well as missed genes. The lack of other sequences for comparison also prevented the annotation of conserved, functional sequences that were not coding. We are now in an era of comparative genomics where many closely related as well as more distantly related genomes are available for direct sequence and synteny comparisons allowing for more probable predictions of genes and other functional sequences due to conservation. We also have a plethora of functional genomics data which helps inform gene annotation for previously uncharacterised open reading frames (ORFs)/genes. For Saccharomyces cerevisiae this has resulted in a continuous updating of the gene and functional sequence annotations in the reference genome helping it retain its position as the best characterized eukaryotic organism's genome. A single reference genome for a species does not accurately describe the species and this is quite clear in the case of S. cerevisiae where the reference strain is not ideal for brewing or baking due to missing genes. Recent surveys of numerous isolates, from a variety of sources, using a variety of technologies have revealed a great deal of variation amongst isolates with genome sequence surveys providing information on novel genes, undetectable by other means. We now have a better understanding of the extant variation in S. cerevisiae as a species as well as some idea of how much we are missing from this understanding. As with gene annotation, comparative genomics enhances the discovery and description of genome variation and is providing us with the tools for understanding genome evolution, adaptation and selection, and underlying genetics of complex traits.
Collapse
Affiliation(s)
- Ed Louis
- Institute of Genetics, Queens Medical Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
54
|
Diversity, variability and fast adaptive evolution of the wine yeast (Saccharomyces cerevisiae) genome—a review. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0086-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
55
|
Lelandais G, Devaux F. Comparative Functional Genomics of Stress Responses in Yeasts. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:501-15. [DOI: 10.1089/omi.2010.0029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Gaëlle Lelandais
- Dynamique des Structures et Interactions des Macromolécules Biologiques (DSIMB), INSERM UMR-S 665, Université Paris Diderot, Paris France
| | - Frédéric Devaux
- Laboratoire de génomique des microorganismes, CNRS FRE3214, Université Pierre et Marie Curie, Institut des Cordeliers, Paris, France
| |
Collapse
|
56
|
Abstract
Interactions among genes and the environment are a common source of phenotypic variation. To characterize the interplay between genetics and the environment at single nucleotide resolution, we quantified the genetic and environmental interactions of four quantitative trait nucleotides (QTN) that govern yeast sporulation efficiency. We first constructed a panel of strains that together carry all 32 possible combinations of the 4 QTN genotypes in 2 distinct genetic backgrounds. We then measured the sporulation efficiencies of these 32 strains across 8 controlled environments. This dataset shows that variation in sporulation efficiency is shaped largely by genetic and environmental interactions. We find clear examples of QTN:environment, QTN: background, and environment:background interactions. However, we find no QTN:QTN interactions that occur consistently across the entire dataset. Instead, interactions between QTN only occur under specific combinations of environment and genetic background. Thus, what might appear to be a QTN:QTN interaction in one background and environment becomes a more complex QTN:QTN:environment:background interaction when we consider the entire dataset as a whole. As a result, the phenotypic impact of a set of QTN alleles cannot be predicted from genotype alone. Our results instead demonstrate that the effects of QTN and their interactions are inextricably linked both to genetic background and to environmental variation. Phenotypic variation among individuals is caused by naturally occurring genetic differences, or alleles. The relationship between an allele and the phenotype is extremely complex; for example, the effect of an allele often depends upon both the environment and the individual's genetic background. To better understand these complex relationships, we examined the effects of four quantitative trait nucleotides (QTN) in three genes that cause variation in sporulation efficiency between vineyard and oak tree strains of yeast. We measured the effects of the QTN while varying both the genetic makeup of the strains and their growth environments. We found that the effects of each of the four QTN alleles depended upon the genotypes at the other QTN, the growth environment, and whether the strain carried the oak or vineyard parent genome. There were no simple rules that describe the effects of the alleles across all environments; instead, detailed models were needed to account for environmental and genetic variation in order to predict the effects of alleles in specific individuals.
Collapse
|
57
|
Activation of two different resistance mechanisms in Saccharomyces cerevisiae upon exposure to octanoic and decanoic acids. Appl Environ Microbiol 2010; 76:7526-35. [PMID: 20851956 DOI: 10.1128/aem.01280-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Medium-chain fatty acids (octanoic and decanoic acids) are well known as fermentation inhibitors. During must fermentation, the toxicity of these fatty acids is enhanced by ethanol and low pH, which favors their entrance in the cell, resulting in a decrease of internal pH. We present here the characterization of the mechanisms involved in the establishment of the resistance to these fatty acids. The analysis of the transcriptome response to the exposure to octanoic and decanoic acids revealed that two partially overlapping mechanisms are activated; both responses share many genes with an oxidative stress response, but some key genes were activated differentially. The transcriptome response to octanoic acid stress can be described mainly as a weak acid response, and it involves Pdr12p as the main transporter. The phenotypic analysis of knocked-out strains confirmed the role of the Pdr12p transporter under the control of WAR1 but also revealed the involvement of the Tpo1p major facilitator superfamily proteins (MFS) transporter in octanoic acid expulsion. In contrast, the resistance to decanoic acid is composite. It also involves the transporter Tpo1p and includes the activation of several genes of the beta-oxidation pathway and ethyl ester synthesis. Indeed, the induction of FAA1 and EEB1, coding for a long-chain fatty acyl coenzyme A synthetase and an alcohol acyltransferase, respectively, suggests a detoxification pathway through the production of decanoate ethyl ester. These results are confirmed by the sensitivity of strains bearing deletions for the transcription factors encoded by PDR1, STB5, OAF1, and PIP2 genes.
Collapse
|
58
|
de Melo Pereira GV, Ramos CL, Galvão C, Souza Dias E, Schwan RF. Use of specific PCR primers to identify three important industrial species of Saccharomyces genus: Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces pastorianus. Lett Appl Microbiol 2010; 51:131-7. [PMID: 20536703 DOI: 10.1111/j.1472-765x.2010.02868.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To develop species-specific primers capable of distinguishing between three important yeast species in alcoholic fermentation: Saccharomyces bayanus, Saccharomyces cerevisiae and Saccharomyces pastorianus. METHODS AND RESULTS Two sets of primers with sequences complementary to the HO genes from Saccharomyces sensu stricto species were used. The use of the ScHO primers produced a single amplificon of c. 400 or 300 bp with species S. cerevisiae and S. pastorianus, respectively. The second pair of primers (LgHO) was also constructed, within the HO gene, composed of perfectly conserved sequences common for S. bayanus species, which generate amplicon with 700 bp. No amplification product was observed in the DNA samples from non-Saccharomyces yeasts. Saccharomyces species have also been characterized via electrophoretic karyotyping using pulsed-field gel electrophoresis to demonstrate chromosomal polymorphisms and to determine the evolutionary distances between these species. CONCLUSIONS We conclude that our novel species-specific primers could be used to rapidly and accurately identify of the Saccharomyces species most commonly involved in fermentation processes using a PCR-based assay. SIGNIFICANCE AND IMPACT OF THE STUDY The method may be used for routine identification of the most common Saccharomyces sensu stricto yeasts involved in industrial fermentation processes in less than 3 h.
Collapse
|
59
|
Wenger JW, Schwartz K, Sherlock G. Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet 2010; 6:e1000942. [PMID: 20485559 PMCID: PMC2869308 DOI: 10.1371/journal.pgen.1000942] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 04/08/2010] [Indexed: 12/30/2022] Open
Abstract
Fermentation of xylose is a fundamental requirement for the efficient production of ethanol from lignocellulosic biomass sources. Although they aggressively ferment hexoses, it has long been thought that native Saccharomyces cerevisiae strains cannot grow fermentatively or non-fermentatively on xylose. Population surveys have uncovered a few naturally occurring strains that are weakly xylose-positive, and some S. cerevisiae have been genetically engineered to ferment xylose, but no strain, either natural or engineered, has yet been reported to ferment xylose as efficiently as glucose. Here, we used a medium-throughput screen to identify Saccharomyces strains that can increase in optical density when xylose is presented as the sole carbon source. We identified 38 strains that have this xylose utilization phenotype, including strains of S. cerevisiae, other sensu stricto members, and hybrids between them. All the S. cerevisiae xylose-utilizing strains we identified are wine yeasts, and for those that could produce meiotic progeny, the xylose phenotype segregates as a single gene trait. We mapped this gene by Bulk Segregant Analysis (BSA) using tiling microarrays and high-throughput sequencing. The gene is a putative xylitol dehydrogenase, which we name XDH1, and is located in the subtelomeric region of the right end of chromosome XV in a region not present in the S288c reference genome. We further characterized the xylose phenotype by performing gene expression microarrays and by genetically dissecting the endogenous Saccharomyces xylose pathway. We have demonstrated that natural S. cerevisiae yeasts are capable of utilizing xylose as the sole carbon source, characterized the genetic basis for this trait as well as the endogenous xylose utilization pathway, and demonstrated the feasibility of BSA using high-throughput sequencing.
Collapse
Affiliation(s)
- Jared W. Wenger
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Katja Schwartz
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, California, United States of America
| |
Collapse
|
60
|
Cadez N, Zupan J, Raspor P. The effect of fungicides on yeast communities associated with grape berries. FEMS Yeast Res 2010; 10:619-30. [PMID: 20491940 DOI: 10.1111/j.1567-1364.2010.00635.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The influence of three commonly used fungicides (iprodione, pyrimethanil and fludioxonil plus cyprodinil) on the density and diversity of yeast populations present on grape berries was evaluated. At the time of harvest, the fungicide residues on grapes were below the maximum permitted levels. In general, larger yeast counts were found on the treated grapes than on the control samples. Among 23 species identified, Cryptococcus magnus, Rhodotorula glutinis and Sporidiobolus pararoseus dominated on sound grape berries. The results showed that the tested fungicides had only a minor impact on the composition of grape berry communities in comparison with the effect of weather conditions and the mode of grape berry sampling. Halo assays using filter discs loaded with fungicides were used as in vitro tests of the sensitivity of grape berry isolates. The fungicide containing pyrimethanil suppressed the growth of all basidiomycetous yeast species, while the sporadically occurring fermentative yeasts were unaffected. Fungicides with fludioxonil plus cyprodinil and iprodione as active substances showed specificity for certain species. Our results suggest that after the safety interval, the presence of fungicides has a minor impact on the composition of grape berry communities, although at the time of fungicide applications, the yeast species composition changes.
Collapse
Affiliation(s)
- Neza Cadez
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | | | | |
Collapse
|
61
|
Duval EH, Alves SL, Dunn B, Sherlock G, Stambuk BU. Microarray karyotyping of maltose-fermenting Saccharomyces yeasts with differing maltotriose utilization profiles reveals copy number variation in genes involved in maltose and maltotriose utilization. J Appl Microbiol 2009; 109:248-59. [PMID: 20070441 DOI: 10.1111/j.1365-2672.2009.04656.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS We performed an analysis of maltotriose utilization by 52 Saccharomyces yeast strains able to ferment maltose efficiently and correlated the observed phenotypes with differences in the copy number of genes possibly involved in maltotriose utilization by yeast cells. METHODS AND RESULTS The analysis of maltose and maltotriose utilization by laboratory and industrial strains of the species Saccharomyces cerevisiae and Saccharomyces pastorianus (a natural S. cerevisiae/Saccharomyces bayanus hybrid) was carried out using microscale liquid cultivation, as well as in aerobic batch cultures. All strains utilize maltose efficiently as a carbon source, but three different phenotypes were observed for maltotriose utilization: efficient growth, slow/delayed growth and no growth. Through microarray karyotyping and pulsed-field gel electrophoresis blots, we analysed the copy number and localization of several maltose-related genes in selected S. cerevisiae strains. While most strains lacked the MPH2 and MPH3 transporter genes, almost all strains analysed had the AGT1 gene and increased copy number of MALx1 permeases. CONCLUSIONS Our results showed that S. pastorianus yeast strains utilized maltotriose more efficiently than S. cerevisiae strains and highlighted the importance of the AGT1 gene for efficient maltotriose utilization by S. cerevisiae yeasts. SIGNIFICANCE AND IMPACT OF THE STUDY Our results revealed new maltotriose utilization phenotypes, contributing to a better understanding of the metabolism of this carbon source for improved fermentation by Saccharomyces yeasts.
Collapse
Affiliation(s)
- E H Duval
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | | |
Collapse
|
62
|
Bartra E, Casado M, Carro D, Campamà C, Piña B. Differential expression of thiamine biosynthetic genes in yeast strains with high and low production of hydrogen sulfide during wine fermentation. J Appl Microbiol 2009; 109:272-81. [PMID: 20059614 DOI: 10.1111/j.1365-2672.2009.04652.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS Release of hydrogen sulfide by fermenting yeast is a potential problem in wine production, because of its strong organoleptic impact. To identify the genetic determinants of sulfide production, we compared the transcriptomes of two wine yeast strains with similar oenological properties, but with very different levels of sulfide production, UDC522 (high sulfide producer) and P29 (low producer). METHODS AND RESULTS Oenological microfermentations were sampled at the peak production of sulfide. Transcription profiles of the two strains were analysed by three methods, a cDNA-based array, an oligonucleotide-based array and qRT-PCR analysis of selected transcripts. Less than 10% of yeast genes showed significant differences between the two strains. High sulfide production correlated with a general overexpression of thiamine biosynthesis genes, whereas genes linked to the catabolism of sulfur-containing compounds (like amino acids) showed no significant expression differences between both strains. CONCLUSIONS Our data suggest a relationship between the thiamine biosynthetic pathway and sulfide production during wine fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides a first hint which indicates that for some yeast strains, biosynthesis of thiamine (and perhaps of other sulfur-containing compounds) may be more relevant than the general nitrogen metabolism in explaining sulfide production by some yeast strains during vinification, defining new targets for genetic improvement of wine yeast strains.
Collapse
Affiliation(s)
- E Bartra
- Institut Català de Vinya i el Vi, Plaça Àgora, Pol. Ind. Domenys II, Vilafranca del Penedès, Spain
| | | | | | | | | |
Collapse
|
63
|
Stambuk BU, Dunn B, Alves SL, Duval EH, Sherlock G. Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Res 2009; 19:2271-8. [PMID: 19897511 DOI: 10.1101/gr.094276.109] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fuel ethanol is now a global energy commodity that is competitive with gasoline. Using microarray-based comparative genome hybridization (aCGH), we have determined gene copy number variations (CNVs) common to five industrially important fuel ethanol Saccharomyces cerevisiae strains responsible for the production of billions of gallons of fuel ethanol per year from sugarcane. These strains have significant amplifications of the telomeric SNO and SNZ genes, which are involved in the biosynthesis of vitamins B6 (pyridoxine) and B1 (thiamin). We show that increased copy number of these genes confers the ability to grow more efficiently under the repressing effects of thiamin, especially in medium lacking pyridoxine and with high sugar concentrations. These genetic changes have likely been adaptive and selected for in the industrial environment, and may be required for the efficient utilization of biomass-derived sugars from other renewable feedstocks.
Collapse
Affiliation(s)
- Boris U Stambuk
- Department of Genetics, Stanford University, Stanford, California 94305-5120, USA.
| | | | | | | | | |
Collapse
|
64
|
Hedh J, Johansson T, Tunlid A. Variation in host specificity and gene content in strains from genetically isolated lineages of the ectomycorrhizal fungus Paxillus involutus s. lat. MYCORRHIZA 2009; 19:549-558. [PMID: 19452174 DOI: 10.1007/s00572-009-0252-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 04/22/2009] [Indexed: 05/27/2023]
Abstract
Ectomycorrhizal fungi are known to vary in host range. Some fungi can enter into symbiosis with multiple plant species, while others have restricted host ranges. The aim of this study was to examine variation in host specificity among strains from the basidiomycete Paxillus involutus s. lat. Recent studies have shown that this fungus consists of at least four genetically isolated lineages, phylogenetic species (PS) I (which corresponds to the morphological species Paxillus obscurosporus), PS II (P. involutus s. str.), PS III (Paxillus validus), and PS IV (not yet supported by any reference material). Thirty-five Paxillus strains of PS I to IV were examined in microcosms for their capacity to infect birch (Betula pendula) and spruce (Picea abies). Seventeen strains were compatible and formed mycorrhizae with both tree species. Seven strains were incompatible with both birch and spruce. The gene content in three pairs of incompatible and compatible strains PS I, II, and III were compared using microarray-based comparative genomic hybridizations. Of 4,113 P. involutus gene representatives analyzed, 390 varied in copy numbers in at least one of the three pairwise comparisons. Only three reporters showed significant changes in all three pairwise comparisons, and none of these were changed in a similar way in three comparisons. Our data indicate that changes in host range have occurred frequently and independently among strains in P. obscurosporus, P. involutus s. str., and P. validus. No evidence was obtained demonstrating that these changes have been associated with the gain or loss of similar genes in these three species.
Collapse
Affiliation(s)
- Jenny Hedh
- Department of Microbial Ecology, Lund University, Ecology Building, 223 62, Lund, Sweden
| | - Tomas Johansson
- Department of Microbial Ecology, Lund University, Ecology Building, 223 62, Lund, Sweden
| | - Anders Tunlid
- Department of Microbial Ecology, Lund University, Ecology Building, 223 62, Lund, Sweden.
| |
Collapse
|
65
|
Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci U S A 2009; 106:16333-8. [PMID: 19805302 DOI: 10.1073/pnas.0904673106] [Citation(s) in RCA: 315] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae has been used for millennia in winemaking, but little is known about the selective forces acting on the wine yeast genome. We sequenced the complete genome of the diploid commercial wine yeast EC1118, resulting in an assembly of 31 scaffolds covering 97% of the S288c reference genome. The wine yeast differed strikingly from the other S. cerevisiae isolates in possessing 3 unique large regions, 2 of which were subtelomeric, the other being inserted within an EC1118 chromosome. These regions encompass 34 genes involved in key wine fermentation functions. Phylogeny and synteny analyses showed that 1 of these regions originated from a species closely related to the Saccharomyces genus, whereas the 2 other regions were of non-Saccharomyces origin. We identified Zygosaccharomyces bailii, a major contaminant of wine fermentations, as the donor species for 1 of these 2 regions. Although natural hybridization between Saccharomyces strains has been described, this report provides evidence that gene transfer may occur between Saccharomyces and non-Saccharomyces species. We show that the regions identified are frequent and differentially distributed among S. cerevisiae clades, being found almost exclusively in wine strains, suggesting acquisition through recent transfer events. Overall, these data show that the wine yeast genome is subject to constant remodeling through the contribution of exogenous genes. Our results suggest that these processes are favored by ecologic proximity and are involved in the molecular adaptation of wine yeasts to conditions of high sugar, low nitrogen, and high ethanol concentrations.
Collapse
|
66
|
Gilbert A, Sangurdekar DP, Srienc F. Rapid strain improvement through optimized evolution in the cytostat. Biotechnol Bioeng 2009; 103:500-12. [DOI: 10.1002/bit.22272] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
67
|
Ogata T, Izumikawa M, Tadami H. Chimeric types of chromosome X in bottom-fermenting yeasts. J Appl Microbiol 2009; 107:1098-107. [DOI: 10.1111/j.1365-2672.2009.04289.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
68
|
Chimeric genomes of natural hybrids of Saccharomyces cerevisiae and Saccharomyces kudriavzevii. Appl Environ Microbiol 2009; 75:2534-44. [PMID: 19251887 DOI: 10.1128/aem.02282-08] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, a new type of hybrid resulting from the hybridization between Saccharomyces cerevisiae and Saccharomyces kudriavzevii was described. These strains exhibit physiological properties of potential biotechnological interest. A preliminary characterization of these hybrids showed a trend to reduce the S. kudriavzevii fraction of the hybrid genome. We characterized the genomic constitution of several wine S. cerevisiae x S. kudriavzevii strains by using a combined approach based on the restriction fragment length polymorphism analysis of gene regions, comparative genome hybridizations with S. cerevisiae DNA arrays, ploidy analysis, and gene dose determination by quantitative real-time PCR. The high similarity in the genome structures of the S. cerevisiae x S. kudriavzevii hybrids under study indicates that they originated from a single hybridization event. After hybridization, the hybrid genome underwent extensive chromosomal rearrangements, including chromosome losses and the generation of chimeric chromosomes by the nonreciprocal recombination between homeologous chromosomes. These nonreciprocal recombinations between homeologous chromosomes occurred in highly conserved regions, such as Ty long terminal repeats (LTRs), rRNA regions, and conserved protein-coding genes. This study supports the hypothesis that chimeric chromosomes may have been generated by a mechanism similar to the recombination-mediated chromosome loss acting during meiosis in Saccharomyces hybrids. As a result of the selective processes acting during fermentation, hybrid genomes maintained the S. cerevisiae genome but reduced the S. kudriavzevii fraction.
Collapse
|
69
|
Diogo D, Bouchier C, d'Enfert C, Bougnoux ME. Loss of heterozygosity in commensal isolates of the asexual diploid yeast Candida albicans. Fungal Genet Biol 2008; 46:159-68. [PMID: 19059493 DOI: 10.1016/j.fgb.2008.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/06/2008] [Accepted: 11/10/2008] [Indexed: 12/21/2022]
Abstract
Candida albicans is a commensal and the most frequent fungal pathogen of humans. One mechanism of genetic variation in this diploid asexual yeast involves loss of heterozygosity (LOH). LOH events occur upon infection and contribute to the acquisition of antifungal resistance in patients. In contrast, little is known about the nature and extent of LOH events during commensalism. Using a combination of single nucleotide polymorphism typing, positional transcript profiling and karyotyping, we have characterized related C. albicans commensal isolates that differ by LOH events. Most of these LOH events encompassed the entirety of the chromosome or a large region extending to the telomere, suggesting chromosome loss or mitotic recombination/break-induced replication events, respectively. They were frequently accompanied by karyotype alterations such as chromosome length polymorphism and copy number variations at other chromosomes. These results demonstrate the high plasticity of the C. albicans genome during commensalism.
Collapse
Affiliation(s)
- Dorothée Diogo
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, INRA USC2019, Département Génomes et Génétique, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
70
|
Carreto L, Eiriz MF, Gomes AC, Pereira PM, Schuller D, Santos MAS. Comparative genomics of wild type yeast strains unveils important genome diversity. BMC Genomics 2008; 9:524. [PMID: 18983662 PMCID: PMC2588607 DOI: 10.1186/1471-2164-9-524] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 11/04/2008] [Indexed: 11/16/2022] Open
Abstract
Background Genome variability generates phenotypic heterogeneity and is of relevance for adaptation to environmental change, but the extent of such variability in natural populations is still poorly understood. For example, selected Saccharomyces cerevisiae strains are variable at the ploidy level, have gene amplifications, changes in chromosome copy number, and gross chromosomal rearrangements. This suggests that genome plasticity provides important genetic diversity upon which natural selection mechanisms can operate. Results In this study, we have used wild-type S. cerevisiae (yeast) strains to investigate genome variation in natural and artificial environments. We have used comparative genome hybridization on array (aCGH) to characterize the genome variability of 16 yeast strains, of laboratory and commercial origin, isolated from vineyards and wine cellars, and from opportunistic human infections. Interestingly, sub-telomeric instability was associated with the clinical phenotype, while Ty element insertion regions determined genomic differences of natural wine fermentation strains. Copy number depletion of ASP3 and YRF1 genes was found in all wild-type strains. Other gene families involved in transmembrane transport, sugar and alcohol metabolism or drug resistance had copy number changes, which also distinguished wine from clinical isolates. Conclusion We have isolated and genotyped more than 1000 yeast strains from natural environments and carried out an aCGH analysis of 16 strains representative of distinct genotype clusters. Important genomic variability was identified between these strains, in particular in sub-telomeric regions and in Ty-element insertion sites, suggesting that this type of genome variability is the main source of genetic diversity in natural populations of yeast. The data highlights the usefulness of yeast as a model system to unravel intraspecific natural genome diversity and to elucidate how natural selection shapes the yeast genome.
Collapse
Affiliation(s)
- Laura Carreto
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | |
Collapse
|
71
|
Lopandic K, Tiefenbrunner W, Gangl H, Mandl K, Berger S, Leitner G, Abd-Ellah GA, Querol A, Gardner RC, Sterflinger K, Prillinger H. Molecular profiling of yeasts isolated during spontaneous fermentations of Austrian wines. FEMS Yeast Res 2008; 8:1063-75. [DOI: 10.1111/j.1567-1364.2008.00385.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
72
|
Kvitek DJ, Will JL, Gasch AP. Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLoS Genet 2008; 4:e1000223. [PMID: 18927628 PMCID: PMC2562515 DOI: 10.1371/journal.pgen.1000223] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 09/12/2008] [Indexed: 12/17/2022] Open
Abstract
Interactions between an organism and its environment can significantly influence
phenotypic evolution. A first step toward understanding this process is to
characterize phenotypic diversity within and between populations. We explored
the phenotypic variation in stress sensitivity and genomic expression in a large
panel of Saccharomyces strains collected from diverse
environments. We measured the sensitivity of 52 strains to 14 environmental
conditions, compared genomic expression in 18 strains, and identified gene
copy-number variations in six of these isolates. Our results demonstrate a large
degree of phenotypic variation in stress sensitivity and gene expression.
Analysis of these datasets reveals relationships between strains from similar
niches, suggests common and unique features of yeast habitats, and implicates
genes whose variable expression is linked to stress resistance. Using a simple
metric to suggest cases of selection, we found that strains collected from oak
exudates are phenotypically more similar than expected based on their genetic
diversity, while sake and vineyard isolates display more diverse phenotypes than
expected under a neutral model. We also show that the laboratory strain S288c is
phenotypically distinct from all of the other strains studied here, in terms of
stress sensitivity, gene expression, Ty copy number, mitochondrial content, and
gene-dosage control. These results highlight the value of understanding the
genetic basis of phenotypic variation and raise caution about using laboratory
strains for comparative genomics. Much attention has been given to the ways in which organisms evolve new
phenotypes and the influence of the environment on this process. A major focus
of study is defining the genetic basis for phenotypes important for organismal
fitness. As a first step toward this goal, we surveyed phenotypic variation in
diverse yeast strains collected from different environments by characterizing
variations in stress resistance and genomic expression. We uncovered many
phenotypic differences across yeast strains, both in stress tolerance and gene
expression. The similarities and differences of the strains analyzed uncovered
phenotypes shared by strains that live in similar environments, suggesting
common features of yeast niches as well as mechanisms that different strains use
to thrive in those conditions. We provide evidence that some characteristics of
strains isolated from oak tree soil have been selected for, perhaps because of
the shared selective pressures imposed by their environment. One theme emerging
from our studies is that the laboratory strain of yeast, long used as a model
for yeast physiology and basic biology, is aberrant compared to all other
strains. This result raises caution about making general conclusions about yeast
biology based on a single strain with a specific genetic makeup.
Collapse
Affiliation(s)
- Daniel J. Kvitek
- Laboratory of Genetics, University of Wisconsin–Madison,
Madison, Wisconsin, United States of America
| | - Jessica L. Will
- Laboratory of Genetics, University of Wisconsin–Madison,
Madison, Wisconsin, United States of America
| | - Audrey P. Gasch
- Laboratory of Genetics, University of Wisconsin–Madison,
Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin–Madison,
Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
73
|
Biswas S, Storey JD, Akey JM. Mapping gene expression quantitative trait loci by singular value decomposition and independent component analysis. BMC Bioinformatics 2008; 9:244. [PMID: 18492285 PMCID: PMC2424053 DOI: 10.1186/1471-2105-9-244] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 05/20/2008] [Indexed: 11/10/2022] Open
Abstract
Background The combination of gene expression profiling with linkage analysis has become a powerful paradigm for mapping gene expression quantitative trait loci (eQTL). To date, most studies have searched for eQTL by analyzing gene expression traits one at a time. As thousands of expression traits are typically analyzed, this can reduce power because of the need to correct for the number of hypothesis tests performed. In addition, gene expression traits exhibit a complex correlation structure, which is ignored when analyzing traits individually. Results To address these issues, we applied two different multivariate dimension reduction techniques, the Singular Value Decomposition (SVD) and Independent Component Analysis (ICA) to gene expression traits derived from a cross between two strains of Saccharomyces cerevisiae. Both methods decompose the data into a set of meta-traits, which are linear combinations of all the expression traits. The meta-traits were enriched for several Gene Ontology categories including metabolic pathways, stress response, RNA processing, ion transport, retro-transposition and telomeric maintenance. Genome-wide linkage analysis was performed on the top 20 meta-traits from both techniques. In total, 21 eQTL were found, of which 11 are novel. Interestingly, both cis and trans-linkages to the meta-traits were observed. Conclusion These results demonstrate that dimension reduction methods are a useful and complementary approach for probing the genetic architecture of gene expression variation.
Collapse
Affiliation(s)
- Shameek Biswas
- Department of Genome Sciences, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
74
|
Abstract
The yeast Saccharomyces cerevisiae is an important industrial microorganism. Nowadays, it is being used as a cell factory for the production of pharmaceuticals such as insulin, although this yeast has long been utilized in the bakery to raise dough, and in the production of alcoholic beverages, fermenting the sugars derived from rice, wheat, barley, corn and grape juice. S. cerevisiae has also been extensively used as a model eukaryotic system. In the last decade, genomic techniques have revealed important features of its molecular biology. For example, DNA array technologies are routinely used for determining gene expression levels in cells under different physiological conditions or environmental stimuli. Laboratory strains of S. cerevisiae are different from wine strains. For instance, laboratory yeasts are unable to completely transform all the sugar in the grape must into ethanol under winemaking conditions. In fact, standard culture conditions are usually very different from winemaking conditions, where multiple stresses occur simultaneously and sequentially throughout the fermentation. The response of wine yeasts to these stimuli differs in some aspects from laboratory strains, as suggested by the increasing number of studies in functional genomics being conducted on wine strains. In this paper we review the most recent applications of post-genomic techniques to understand yeast physiology in the wine industry. We also report recent advances in wine yeast strain improvement and propose a reference framework for integration of genomic information, bioinformatic tools and molecular biology techniques for cellular and metabolic engineering. Finally, we discuss the current state and future perspectives for using 'modern' biotechnology in the wine industry.
Collapse
Affiliation(s)
- Francisco Pizarro
- Department of Chemical and Bioprocess Engineering, College of Engineering, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile
| | | | | |
Collapse
|
75
|
Hu G, Liu I, Sham A, Stajich JE, Dietrich FS, Kronstad JW. Comparative hybridization reveals extensive genome variation in the AIDS-associated pathogen Cryptococcus neoformans. Genome Biol 2008; 9:R41. [PMID: 18294377 PMCID: PMC2374700 DOI: 10.1186/gb-2008-9-2-r41] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 12/23/2007] [Accepted: 02/22/2008] [Indexed: 11/20/2022] Open
Abstract
Extensive genome variation in the AIDS-associated pathogen Cryptococcus neoformans is revealed through comparative genome hybridization between strains of different mating type, molecular subtype and ploidy. Background Genome variability can have a profound influence on the virulence of pathogenic microbes. The availability of genome sequences for two strains of the AIDS-associated fungal pathogen Cryptococcus neoformans presented an opportunity to use comparative genome hybridization (CGH) to examine genome variability between strains of different mating type, molecular subtype, and ploidy. Results Initially, CGH was used to compare the approximately 100 kilobase MATa and MATα mating-type regions in serotype A and D strains to establish the relationship between the Log2 ratios of hybridization signals and sequence identity. Subsequently, we compared the genomes of the environmental isolate NIH433 (MATa) and the clinical isolate NIH12 (MATα) with a tiling array of the genome of the laboratory strain JEC21 derived from these strains. In this case, CGH identified putative recombination sites and the origins of specific segments of the JEC21 genome. Similarly, CGH analysis revealed marked variability in the genomes of strains representing the VNI, VNII, and VNB molecular subtypes of the A serotype, including disomy for chromosome 13 in two strains. Additionally, CGH identified differences in chromosome content between three strains with the hybrid AD serotype and revealed that chromosome 1 from the serotype A genome is preferentially retained in all three strains. Conclusion The genomes of serotypes A, D, and AD strains exhibit extensive variation that spans the range from small differences (such as regions of divergence, deletion, or amplification) to the unexpected disomy for chromosome 13 in haploid strains and preferential retention of specific chromosomes in naturally occurring diploids.
Collapse
Affiliation(s)
- Guanggan Hu
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada .
| | | | | | | | | | | |
Collapse
|
76
|
Oliveira VA, Vicente MA, Fietto LG, Castro IDM, Coutrim MX, Schüller D, Alves H, Casal M, Santos JDO, Araújo LD, da Silva PHA, Brandão RL. Biochemical and molecular characterization of Saccharomyces cerevisiae strains obtained from sugar-cane juice fermentations and their impact in cachaça production. Appl Environ Microbiol 2008; 74:693-701. [PMID: 18065624 PMCID: PMC2227721 DOI: 10.1128/aem.01729-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 11/18/2007] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae strains from different regions of Minas Gerais, Brazil, were isolated and characterized aiming at the selection of starter yeasts to be used in the production of cachaça, the Brazilian sugar cane spirit. The methodology established took into account the screening for biochemical traits desirable in a yeast cachaça producer, such as no H2S production, high tolerance to ethanol and high temperatures, high fermentative capacity, and the abilities to flocculate and to produce mycocins. Furthermore, the yeasts were exposed to drugs such as 5,5',5"-trifluor-D,L-leucine and cerulenin to isolate those that potentially overproduce higher alcohols and esters. The utilization of a random amplified polymorphic DNA-PCR method with primers based on intron splicing sites flanking regions of the COX1 gene, as well as microsatellite analysis, was not sufficient to achieve good differentiation among selected strains. In contrast, karyotype analysis allowed a clear distinction among all strains. Two selected strains were experimentally evaluated as cachaça producers. The results suggest that the selection of strains as fermentation starters requires the combined use of biochemical and molecular criteria to ensure the isolation and identification of strains with potential characteristics to produce cachaça with a higher quality standard.
Collapse
Affiliation(s)
- Valdinéia Aparecida Oliveira
- Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Pizarro F, Varela C, Martabit C, Bruno C, Pérez-Correa JR, Agosin E. Coupling kinetic expressions and metabolic networks for predicting wine fermentations. Biotechnol Bioeng 2008; 98:986-98. [PMID: 17497743 DOI: 10.1002/bit.21494] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Problematic fermentations are commonplace and cause wine industry producers substantial economic losses through wasted tank capacity and low value final products. Being able to predict such fermentations would enable enologists to take preventive actions. In this study we modeled sugar uptake kinetics and coupled them to a previously developed stoichiometric model, which describes the anaerobic metabolism of Saccharomyces cerevisiae. The resulting model was used to predict normal and slow fermentations under winemaking conditions. The effects of fermentation temperature and initial nitrogen concentration were modeled through an efficiency factor incorporated into the sugar uptake expressions. The model required few initial parameters to successfully reproduce glucose, fructose, and ethanol profiles of laboratory and industrial fermentations. Glycerol and biomass profiles were successfully predicted in nitrogen rich cultures. The time normal or slow wine fermentations needed to complete the process was predicted accurately, at different temperatures. Simulations with a model representing a genetically modified yeast fermentation, reproduced qualitatively well literature results regarding the formation of minor compounds involved in wine complexity and aroma. Therefore, the model also proves useful to explore the effects of genetic modifications on fermentation profiles.
Collapse
Affiliation(s)
- Francisco Pizarro
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
78
|
Marullo P, Yvert G, Bely M, Aigle M, Dubourdieu D. Efficient use of DNA molecular markers to construct industrial yeast strains. FEMS Yeast Res 2007; 7:1295-306. [PMID: 17888000 DOI: 10.1111/j.1567-1364.2007.00281.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Saccharomyces cerevisiae yeast strains exhibit a huge genotypic and phenotypic diversity. Breeding strategies taking advantage of these characteristics would contribute greatly to improving industrial yeasts. Here we mapped and introgressed chromosomal regions controlling industrial yeast properties, such as hydrogen sulphide production, phenolic off-flavor and a kinetic trait (lag phase duration). Two parent strains derived from industrial isolates used in winemaking and which exhibited significant quantitative differences in these traits were crossed and their progeny (50-170 clones) was analyzed for the segregation of these traits. Forty-eight segregants were genotyped at 2212 marker positions using DNA microarrays and one significant locus was mapped for each trait. To exploit these loci, an introgression approach was supervised by molecular markers monitoring using PCR/RFLP. Five successive backcrosses between an elite strain and appropriate segregants were sufficient to improve three trait values. Microarray-based genotyping confirmed that over 95% of the elite strain genome was recovered by this methodology. Moreover, karyotype patterns, mtDNA and tetrad analysis showed some genomic rearrangements during the introgression procedure.
Collapse
Affiliation(s)
- Philippe Marullo
- UMR1219 Enologie, Université Victor Ségalen Bordeaux 2, INRA, ISVV, Talence, France.
| | | | | | | | | |
Collapse
|
79
|
Caridi A. New perspectives in safety and quality enhancement of wine through selection of yeasts based on the parietal adsorption activity. Int J Food Microbiol 2007; 120:167-72. [PMID: 17888539 DOI: 10.1016/j.ijfoodmicro.2007.08.032] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 07/24/2007] [Accepted: 08/28/2007] [Indexed: 11/20/2022]
Abstract
The present article aims to review research papers that focus on the parietal adsorption activity of wine yeast and on its contribution to the enhancement of wine safety and quality. There is a great diversity among yeasts for their parietal adsorption activity: the outermost layer of the cell wall has a chemical composition that notably varies from yeast to yeast. Parietal mannoproteins can contain phosphate, pyruvate, or glucuronic acid, which impart negative charges, modifying the electrostatic and ionic interactions with wine components. The following could give a good reason to propose a specific selection of wine yeasts based on their parietal adsorption activity to improve wine safety and quality: (a) ochratoxin A content of wines is greatly reduced by expressly selected yeasts, sequestering the toxin during winemaking; (b) yeast influences concentration and composition of phenolic compounds in wine, above all by adsorbing them on cell wall; (c) among grape pigments, anthocyanins, in particular, may be adsorbed by yeast cell wall; and (d) yeast can also interact with wine colour producing anthocyanin-beta-d-glucosidase, pyruvic acid, and acetaldehyde or releasing mannoproteins and different polysaccharides. Genomic strategies could also be used to obtain a further enhancement of the adsorption/non-adsorption activity of wine yeasts. Based on winemaking requirements and on parietal adsorption activity, a specific selection of yeasts might be performed: (a) to protect wine colour during red winemaking, (b) to remove residual wine colour during white winemaking, (c) to selectively remove ochratoxin A, and (d) to protect phenolic compounds responsible for antioxidant activity.
Collapse
Affiliation(s)
- Andrea Caridi
- Dipartimento di Scienze e Tecnologie Agro-Forestali e Ambientali, Facoltà di Agraria, Università degli Studi Mediterranea di Reggio Calabria, Via Feo di Vito, I-89124 Reggio Calabria, Italy.
| |
Collapse
|
80
|
Lopandic K, Gangl H, Wallner E, Tscheik G, Leitner G, Querol A, Borth N, Breitenbach M, Prillinger H, Tiefenbrunner W. Genetically different wine yeasts isolated from Austrian vine-growing regions influence wine aroma differently and contain putative hybrids betweenSaccharomyces cerevisiaeandSaccharomyces kudriavzevii. FEMS Yeast Res 2007; 7:953-65. [PMID: 17484739 DOI: 10.1111/j.1567-1364.2007.00240.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To evaluate the influence of the genomic properties of yeasts on the formation of wine flavour, genotypic diversity among natural Saccharomyces cerevisiae strains originating from grapes collected in four localities of three Austrian vine-growing areas (Thermenregion: locations Perchtoldsdorf and Pfaffstätten, Neusiedlersee-Hügelland: location Eisenstadt, Neusiedlersee: location Halbturn) was investigated and the aroma compounds produced during fermentation of the grape must of 'Grüner Veltliner' were identified. Amplified fragment length polymorphism analysis (AFLP) showed that the yeast strains cluster in four groups corresponding to their geographical origin. The genotypic analysis and sequencing of the D1/D2 domain of 26S rRNA encoding gene and ITS1/ITS2 regions indicated that the Perchtoldsdorf strains were putative interspecies hybrids between S. cerevisiae and Saccharomyces kudriavzevii. Analysis of the aroma compounds by GS/MS indicated a region-specific influence of the yeasts on the chemical composition of the wines. The aroma compound profiles generated by the Perchtoldsdorf strains were more related to those produced by the Pfaffstätten strains than by the Eisenstadt and Halbturn strains. Similar to the Pfaffstätten yeasts, the putative hybrid strains were good ester producers, suggesting that they may influence the wine quality favourably.
Collapse
Affiliation(s)
- Ksenija Lopandic
- Austrian Center of Biological Resources and Applied Mycology, Institute of Applied Microbiology, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Borneman AR, Chambers PJ, Pretorius IS. Yeast systems biology: modelling the winemaker's art. Trends Biotechnol 2007; 25:349-55. [PMID: 17590464 DOI: 10.1016/j.tibtech.2007.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 04/11/2007] [Accepted: 05/31/2007] [Indexed: 11/24/2022]
Abstract
Yeast research represents an important nexus between fundamental and applied research. Just as fundamental yeast research transitioned from classical, reductionist strategies to whole-genome techniques, whole-genome studies are advancing to the next level of biological research, referred to as systems biology. Industries that rely on high-performing yeast, such as the wine industry, are therefore poised to reap the many benefits that systems biology can provide. This includes the promise of strain development at speeds and costs which are unobtainable using current techniques. This article reviews the current state of whole-genome techniques available to yeast researchers and outlines how these processes can be used to obtain 'systems-level' information to provide insights into winemaking.
Collapse
Affiliation(s)
- Anthony R Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia
| | | | | |
Collapse
|
82
|
Autocorrelation analysis reveals widespread spatial biases in microarray experiments. BMC Genomics 2007; 8:164. [PMID: 17565680 PMCID: PMC1913520 DOI: 10.1186/1471-2164-8-164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 06/12/2007] [Indexed: 01/26/2023] Open
Abstract
Background DNA microarrays provide the ability to interrogate multiple genes in a single experiment and have revolutionized genomic research. However, the microarray technology suffers from various forms of biases and relatively low reproducibility. A particular source of false data has been described, in which non-random placement of gene probes on the microarray surface is associated with spurious correlations between genes. Results In order to assess the prevalence of this effect and better understand its origins, we applied an autocorrelation analysis of the relationship between chromosomal position and expression level to a database of over 2000 individual yeast microarray experiments. We show that at least 60% of these experiments exhibit spurious chromosomal position-dependent gene correlations, which nonetheless appear in a stochastic manner within each experimental dataset. Using computer simulations, we show that large spatial biases caused in the microarray hybridization step and independently of printing procedures can exclusively account for the observed spurious correlations, in contrast to previous suggestions. Our data suggest that such biases may generate more than 15% false data per experiment. Importantly, spatial biases are expected to occur regardless of microarray design and over a wide range of microarray platforms, organisms and experimental procedures. Conclusions Spatial biases comprise a major source of noise in microarray studies; revision of routine experimental practices and normalizations to account for these biases may significantly and comprehensively improve the quality of new as well as existing DNA microarray data.
Collapse
|
83
|
Marullo P, Aigle M, Bely M, Masneuf-Pomarède I, Durrens P, Dubourdieu D, Yvert G. Single QTL mapping and nucleotide-level resolution of a physiologic trait in wine Saccharomyces cerevisiae strains. FEMS Yeast Res 2007; 7:941-52. [PMID: 17537182 DOI: 10.1111/j.1567-1364.2007.00252.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Natural Saccharomyces cerevisiae yeast strains exhibit very large genotypic and phenotypic diversity. However, the link between phenotype variation and genetic determinism is still difficult to identify, especially in wild populations. Using genome hybridization on DNA microarrays, it is now possible to identify single-feature polymorphisms among divergent yeast strains. This tool offers the possibility of applying quantitative genetics to wild yeast strains. In this instance, we studied the genetic basis for variations in acetic acid production using progeny derived from two strains from grape must isolates. The trait was quantified during alcoholic fermentation of the two strains and 108 segregants derived from their crossing. A genetic map of 2212 markers was generated using oligonucleotide microarrays, and a major quantitative trait locus (QTL) was mapped with high significance. Further investigations showed that this QTL was due to a nonsynonymous single-nucleotide polymorphism that targeted the catalytic core of asparaginase type I (ASP1) and abolished its activity. This QTL was only effective when asparagine was used as a major nitrogen source. Our results link nitrogen assimilation and CO(2) production rate to acetic acid production, as well as, on a broader scale, illustrating the specific problem of quantitative genetics when working with nonlaboratory microorganisms.
Collapse
Affiliation(s)
- Philippe Marullo
- UMR1219 Oenologie, Université Victor Ségalen Bordeaux 2, Talence, France.
| | | | | | | | | | | | | |
Collapse
|
84
|
Yu H, Nguyen K, Royce T, Qian J, Nelson K, Snyder M, Gerstein M. Positional artifacts in microarrays: experimental verification and construction of COP, an automated detection tool. Nucleic Acids Res 2006; 35:e8. [PMID: 17158151 PMCID: PMC1802630 DOI: 10.1093/nar/gkl871] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microarray technology is currently one of the most widely-used technologies in biology. Many studies focus on inferring the function of an unknown gene from its co-expressed genes. Here, we are able to show that there are two types of positional artifacts in microarray data introducing spurious correlations between genes. First, we find that genes that are close on the microarray chips tend to have higher correlations between their expression profiles. We call this the ‘chip artifact’. Our calculations suggest that the carry-over during the printing process is one of the major sources of this type of artifact, which is later confirmed by our experiments. Based on our experiments, the measured intensity of a microarray spot contains 0.1% (for fully-hybridized spots) to 93% (for un-hybridized ones) of noise resulting from this artifact. Secondly, we, for the first time, show that genes that are close on the microtiter plates in microarray experiments also tend to have higher correlations. We call this the ‘plate artifact’. Both types of artifacts exist with different severity in all cDNA microarray experiments that we analyzed. Therefore, we develop an automated web tool—COP (COrrelations by Positional artifacts) to detect these artifacts in microarray experiments. COP has been integrated with the microarray data normalization tool, ExpressYourself, which is available at . Together, the two can eliminate most of the common noises in microarray data.
Collapse
Affiliation(s)
- Haiyuan Yu
- Department of Molecular Biophysics and Biochemistry, Cellular and Developmental Biology, Yale UniversityCT 06520, USA
| | - Katherine Nguyen
- Department of Molecular Biophysics and Biochemistry, Cellular and Developmental Biology, Yale UniversityCT 06520, USA
| | - Tom Royce
- Department of Molecular Biophysics and Biochemistry, Cellular and Developmental Biology, Yale UniversityCT 06520, USA
| | - Jiang Qian
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityCT 06520, USA
| | - Kenneth Nelson
- Department of Molecular Biophysics and Biochemistry, Cellular and Developmental Biology, Yale UniversityCT 06520, USA
| | - Michael Snyder
- Department of Molecular Biophysics and Biochemistry, Cellular and Developmental Biology, Yale UniversityCT 06520, USA
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Cellular and Developmental Biology, Yale UniversityCT 06520, USA
- Department of Computer Science266 Whitney Avenue, Yale University, PO Box 208114, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics266 Whitney Avenue, Yale University, PO Box 208114, New Haven, CT 06520, USA
- To whom correspondence should be addressed. Tel: + 203 4325405; Fax: + 413 4102140;
| |
Collapse
|
85
|
Cebollero E, Gonzalez-Ramos D, Tabera L, Gonzalez R. Transgenic wine yeast technology comes of age: is it time for transgenic wine? Biotechnol Lett 2006; 29:191-200. [PMID: 17120088 DOI: 10.1007/s10529-006-9236-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 10/13/2006] [Accepted: 10/16/2006] [Indexed: 10/23/2022]
Abstract
Saccharomyces cerevisiae is the main yeast responsible for alcoholic fermentation of grape juice during wine making. This makes wine strains of this species perfect targets for the improvement of wine technology and quality. Progress in winemaking has been achieved through the use of selected yeast strains, as well as genetic improvement of wine yeast strains through the sexual and pararexual cycles, random mutagenesis and genetic engineering. Development of genetically engineered wine yeasts, their potential application, and factors affecting their commercial viability will be discussed in this review.
Collapse
Affiliation(s)
- Eduardo Cebollero
- Department of Microbiology, Instituto de Fermentaciones Industriales, Madrid, Spain
| | | | | | | |
Collapse
|
86
|
Abstract
As wild organisms adapt to the laboratory environment, they become less relevant as biological models. It has been suggested that a commonly used S. cerevisiae strain has rapidly accumulated mutations in the lab. We report a low-to-intermediate rate of protein evolution in this strain relative to wild isolates.
Collapse
Affiliation(s)
- James Ronald
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
87
|
Landry CR, Townsend JP, Hartl DL, Cavalieri D. Ecological and evolutionary genomics of Saccharomyces cerevisiae. Mol Ecol 2006; 15:575-91. [PMID: 16499686 DOI: 10.1111/j.1365-294x.2006.02778.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Saccharomyces cerevisiae, the budding yeast, is the most thoroughly studied eukaryote at the cellular, molecular, and genetic levels. Yet, until recently, we knew very little about its ecology or population and evolutionary genetics. In recent years, it has been recognized that S. cerevisiae occupies numerous habitats and that populations harbour important genetic variation. There is therefore an increasing interest in understanding the evolutionary forces acting on the yeast genome. Several researchers have used the tools of functional genomics to study natural isolates of this unicellular fungus. Here, we review some of these studies, and show not only that budding yeast is a prime model system to address fundamental molecular and cellular biology questions, but also that it is becoming a powerful model species for ecological and evolutionary genomics studies as well.
Collapse
Affiliation(s)
- Christian R Landry
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
88
|
Bradbury JE, Richards KD, Niederer HA, Lee SA, Rod Dunbar P, Gardner RC. A homozygous diploid subset of commercial wine yeast strains. Antonie van Leeuwenhoek 2005; 89:27-37. [PMID: 16328862 DOI: 10.1007/s10482-005-9006-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 08/04/2005] [Indexed: 11/26/2022]
Abstract
Genetic analysis was performed on 45 commercial yeasts which are used in winemaking because of their superior fermentation properties. Genome sizes were estimated by propidium iodide fluorescence and flow cytometry. Forty strains had genome sizes consistent with their being diploid, while five had a range of aneuploid genome sizes that ranged from 1.2 to 1.8 times larger. The diploid strains are all Saccharomyces cerevisiae, based on genetic analysis of microsatellite and minisatellite markers and on DNA sequence analysis of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA of four strains. Four of the five aneuploid strains appeared to be interspecific hybrids between Saccharomyces kudriavzevii and Saccharomyces cerevisiae, with the fifth a hybrid between two S. cerevisiae strains. An identification fingerprint was constructed for the commercial yeast strains using 17 molecular markers. These included six published trinucleotide microsatellites, seven new dinucleotide microsatellites, and four published minisatellite markers. The markers provided unambiguous identification of the majority of strains; however, several had identical or similar patterns, and likely represent the same strain or mutants derived from it. The combined use of all 17 polymorphic loci allowed us to identify a set of eleven commercial wine yeast strains that appear to be genetically homozygous. These strains are presumed to have undergone inbreeding to maintain their homozygosity, a process referred to previously as 'genome renewal'.
Collapse
Affiliation(s)
- John E Bradbury
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|