51
|
Ghattargi VC, Gaikwad MA, Meti BS, Nimonkar YS, Dixit K, Prakash O, Shouche YS, Pawar SP, Dhotre DP. Comparative genome analysis reveals key genetic factors associated with probiotic property in Enterococcus faecium strains. BMC Genomics 2018; 19:652. [PMID: 30180794 PMCID: PMC6122445 DOI: 10.1186/s12864-018-5043-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Enterococcus faecium though commensal in the human gut, few strains provide a beneficial effect to humans as probiotics while few are responsible for the nosocomial infection. Comparative genomics of E. faecium can decipher the genomic differences responsible for probiotic, pathogenic and non-pathogenic properties. In this study, we compared E. faecium strain 17OM39 with a marketed probiotic, non-pathogenic non-probiotic (NPNP) and pathogenic strains. RESULTS E. faecium 17OM39 was found to be closely related with marketed probiotic strain T110 based on core genome analysis. Strain 17OM39 was devoid of known vancomycin, tetracycline resistance and functional virulence genes. Moreover, E. faecium 17OM39 genome was found to be more stable due to the absence of frequently found transposable elements. Genes imparting beneficial functional properties were observed to be present in marketed probiotic T110 and 17OM39 strains. Genes associated with colonization and survival within gastrointestinal tract was also detected across all the strains. CONCLUSIONS Beyond shared genetic features; this study particularly identified genes that are responsible for imparting probiotic, non-pathogenic and pathogenic features to the strains of E. faecium. Higher genomic stability, absence of known virulence factors and antibiotic resistance genes and close genomic relatedness with marketed probiotics makes E. faecium 17OM39 a potential probiotic candidate. The work presented here demonstrates that comparative genome analyses can be applied to large numbers of genomes, to find potential probiotic candidates.
Collapse
Affiliation(s)
- Vikas C. Ghattargi
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
- Department of Biotechnology, Basaveshwar Engineering College, Bagalkot, Karnataka 587102 India
| | - Meghana A. Gaikwad
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Bharati S. Meti
- Department of Biotechnology, Basaveshwar Engineering College, Bagalkot, Karnataka 587102 India
| | - Yogesh S. Nimonkar
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Kunal Dixit
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Om Prakash
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Yogesh S. Shouche
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Shrikant P. Pawar
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Dhiraj P. Dhotre
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| |
Collapse
|
52
|
In Vivo and In Vitro Effects of a ClpP-Activating Antibiotic against Vancomycin-Resistant Enterococci. Antimicrob Agents Chemother 2018; 62:AAC.00424-18. [PMID: 29784838 DOI: 10.1128/aac.00424-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/06/2018] [Indexed: 01/14/2023] Open
Abstract
Antibiotics with novel bactericidal mechanisms of action are urgently needed. The antibiotic acyldepsipeptide 4 (ADEP4) activates the ClpP protease and causes cells to self-digest. The effects of ADEP4 and ClpP activation have not been characterized sufficiently for the enterococci, which are important pathogens known for high levels of acquired and intrinsic antibiotic resistance. In the present study, ADEP4 was found to be potently active against both Enterococcus faecalis and Enterococcus faecium, with MIC90s of 0.016 μg/ml and 0.031 μg/ml, respectively. ClpP purified from E. faecium was found to bind ADEP4 in a surface plasmon resonance analysis, and ClpP activation by ADEP4 was demonstrated biochemically with a β-casein digestion assay. In addition, E. faecium ClpP was crystallized in the presence of ADEP4, revealing ADEP4 binding to ClpP in the activated state. These results confirm that the anti-enterococcal activity of ADEP4 occurs through ClpP activation. In killing curve assays, ADEP4 was found to be bactericidal against stationary-phase vancomycin-resistant E. faecalis (VRE) strain V583, and resistance development was prevented when ADEP4 was combined with multiple classes of approved antibiotics. ADEP4 in combination with partnering antibiotics also eradicated mature VRE biofilms within 72 h of treatment. Biofilm killing with ADEP4 antibiotic combinations was superior to that with the clinically used combinations ampicillin-gentamicin and ampicillin-daptomycin. In a murine peritoneal septicemia model, ADEP4 alone was as effective as ampicillin. ADEP4 coadministered with ampicillin was significantly more effective than either drug alone. These data suggest that ClpP-activating antibiotics may be useful for treating enterococcal infections.
Collapse
|
53
|
Draft Genome Sequence of New Vancomycin-Resistant Enterococcus faecium Sequence Type 1421. GENOME ANNOUNCEMENTS 2018; 6:6/20/e00438-18. [PMID: 29773638 PMCID: PMC5958267 DOI: 10.1128/genomea.00438-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The spread of vancomycin-resistant Enterococcus faecium (VREfm) has become a challenge to health care infection control worldwide. In 2015, a marked increase in VREfm isolation was detected in acute public hospitals in Tasmania. We report here the draft whole-genome sequence of a newly designated VREfm sequence type, sequence type 1421 (ST1421).
Collapse
|
54
|
Di Sante L, Morroni G, Brenciani A, Vignaroli C, Antonelli A, D'Andrea MM, Di Cesare A, Giovanetti E, Varaldo PE, Rossolini GM, Biavasco F. pHTβ-promoted mobilization of non-conjugative resistance plasmids from Enterococcus faecium to Enterococcus faecalis. J Antimicrob Chemother 2018. [PMID: 28645197 DOI: 10.1093/jac/dkx197] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objectives To analyse the recombination events associated with conjugal mobilization of two multiresistance plasmids, pRUM17i48 and pLAG (formerly named pDO1-like), from Enterococcus faecium 17i48 to Enterococcus faecalis JH2-2. Methods The plasmids from two E. faecalis transconjugants (JH-4T, tetracycline resistant, and JH-8E, erythromycin resistant) and from the E. faecium donor (also carrying a pHTβ-like conjugative plasmid, named pHTβ17i48) were investigated by several methods, including PCR mapping and sequencing, S1-PFGE followed by Southern blotting and hybridization, and WGS. Results Two locations of repApHTβ were detected in both transconjugants, one on a ∼50 kb plasmid (as in the donor) and the other on plasmids of larger sizes. In JH-4T, WGS disclosed an 88.6 kb plasmid resulting from the recombination of pHTβ17i48 (∼50 kb) and a new plasmid, named pLAG (35.3 kb), carrying the tet(M), tet(L), lsa(E), lnu(B), spw and aadE resistance genes. In JH-8E, a 75 kb plasmid resulting from the recombination of pHTβ17i48 and pRUM17i48 was observed. In both cases, the cointegrates were apparently derived from replicative transposition of an IS1216 present in each of the multiresistance plasmids into pHTβ17i48. The cointegrates could resolve to yield the multiresistance plasmids and a pHTβ17i48 derivative carrying an IS1216 (unlike the pHTβ17i48 of the donor). Conclusions Our results completed the characterization of the multiresistance plasmids carried by the E. faecium 17i48, confirming the role of pHT plasmids in the mobilization of non-conjugative antibiotic resistance elements among enterococci. Results also revealed that mobilization to E. faecalis was associated with the generation of cointegrate plasmids promoted by IS1216-mediated transposition.
Collapse
Affiliation(s)
- Laura Di Sante
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Gianluca Morroni
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Carla Vignaroli
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marco Maria D'Andrea
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Andrea Di Cesare
- Microbial Ecology Group, CNR - Institute of Ecosystem Study, Verbania, Italy
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Pietro E Varaldo
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Francesca Biavasco
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
55
|
Leong KWC, Cooley LA, Anderson TL, Gautam SS, McEwan B, Wells A, Wilson F, Hughson L, O'Toole RF. Emergence of Vancomycin-Resistant Enterococcus faecium at an Australian Hospital: A Whole Genome Sequencing Analysis. Sci Rep 2018; 8:6274. [PMID: 29674657 PMCID: PMC5908837 DOI: 10.1038/s41598-018-24614-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/06/2018] [Indexed: 11/09/2022] Open
Abstract
In 2015, a marked increase in vancomycin-resistant Enterococcus faecium (VREfm) isolation was detected at the Royal Hobart Hospital, Australia. The primary objective of this work was to examine the dynamics of VREfm transmission using whole genome data mapped to public health surveillance information. Screening and clinical isolates of VREfm from patients were typed for the specific vancomycin-resistance locus present. Of total isolates collected from 2014-2016 (n = 222), 15.3% and 84.7% harboured either the vanA or the vanB vancomycin-resistance locus, respectively. Whole-genome sequencing of 80 isolates was performed in conjunction with single-nucleotide polymorphic (SNP) analysis and in silico multi-locus sequence typing (MLST). Among the isolates sequenced, 5 phylogenetic clades were identified. The largest vanB clade belonged to MLST sequence type ST796 and contained clinical isolates from VREfm infections that clustered closely with isolates from colonised patients. Correlation of VREfm genotypes with spatio-temporal patient movements detected potential points of transmission within the hospital. ST80 emerged as the major vanA sequence type for which the most likely index case of a patient cluster was ascertained from SNP analyses. This work has identified the dominant clones associated with increased VREfm prevalence in a healthcare setting, and their likely direction of transmission.
Collapse
Affiliation(s)
- Kelvin W C Leong
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Louise A Cooley
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
- Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Tara L Anderson
- Royal Hobart Hospital, Hobart, Tasmania, Australia
- Tasmanian Infection Prevention and Control Unit, Department of Health and Human Services, Hobart, Tasmania, Australia
| | - Sanjay S Gautam
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Anne Wells
- Tasmanian Infection Prevention and Control Unit, Department of Health and Human Services, Hobart, Tasmania, Australia
| | - Fiona Wilson
- Tasmanian Infection Prevention and Control Unit, Department of Health and Human Services, Hobart, Tasmania, Australia
| | - Lucy Hughson
- Tasmanian Infection Prevention and Control Unit, Department of Health and Human Services, Hobart, Tasmania, Australia
| | - Ronan F O'Toole
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia.
- Trinity College Dublin, Department of Clinical Microbiology, Dublin, Ireland.
| |
Collapse
|
56
|
Shaw TD, Fairley DJ, Schneiders T, Pathiraja M, Hill RLR, Werner G, Elborn JS, McMullan R. The use of high-throughput sequencing to investigate an outbreak of glycopeptide-resistant Enterococcus faecium with a novel quinupristin-dalfopristin resistance mechanism. Eur J Clin Microbiol Infect Dis 2018; 37:959-967. [PMID: 29478197 PMCID: PMC5916979 DOI: 10.1007/s10096-018-3214-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/13/2018] [Indexed: 12/01/2022]
Abstract
High-throughput sequencing (HTS) has successfully identified novel resistance genes in enterococci and determined clonal relatedness in outbreak analysis. We report the use of HTS to investigate two concurrent outbreaks of glycopeptide-resistant Enterococcus faecium (GRE) with an uncharacterised resistance mechanism to quinupristin-dalfopristin (QD). Seven QD-resistant and five QD-susceptible GRE isolates from a two-centre outbreak were studied. HTS was performed to identify genes or predicted proteins that were associated with the QD-resistant phenotype. MLST and SNP typing on HTS data was used to determine clonal relatedness. Comparative genomic analysis confirmed this GRE outbreak involved two distinct clones (ST80 and ST192). HTS confirmed the absence of known QD resistance genes, suggesting a novel mechanism was conferring resistance. Genomic analysis identified two significant genetic determinants with explanatory power for the high level of QD resistance in the ST80 QD-resistant clone: an additional 56aa leader sequence at the N-terminus of the lsaE gene and a transposon containing seven genes encoding proteins with possible drug or drug-target modification activities. However, HTS was unable to conclusively determine the QD resistance mechanism and did not reveal any genetic basis for QD resistance in the ST192 clone. This study highlights the usefulness of HTS in deciphering the degree of relatedness in two concurrent GRE outbreaks. Although HTS was able to reveal some genetic candidates for uncharacterised QD resistance, this study demonstrates the limitations of HTS as a tool for identifying putative determinants of resistance to QD.
Collapse
Affiliation(s)
- Timothy D Shaw
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK. .,Department of Medical Microbiology, Kelvin Laboratory, Royal Victoria Hospital, Belfast, Northern Ireland, UK.
| | - D J Fairley
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK.,Department of Medical Microbiology, Kelvin Laboratory, Royal Victoria Hospital, Belfast, Northern Ireland, UK
| | - T Schneiders
- Division of Infection and Pathway Medicine, University of Edinburgh Medical School, Edinburgh, Scotland, UK
| | - M Pathiraja
- Department of Medical Microbiology, Kelvin Laboratory, Royal Victoria Hospital, Belfast, Northern Ireland, UK
| | - R L R Hill
- Antimicrobial Resistance & Healthcare-Associated Infection, Public Health England, London, UK
| | - G Werner
- National Reference Centre for Staphylococci and Enterococci, Robert Koch-Institute, Wernigerode Branch, Berlin, Germany
| | - J S Elborn
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - R McMullan
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK.,Department of Medical Microbiology, Kelvin Laboratory, Royal Victoria Hospital, Belfast, Northern Ireland, UK
| |
Collapse
|
57
|
Olvera-García M, Sanchez-Flores A, Quirasco Baruch M. Genomic and functional characterisation of two Enterococcus strains isolated from Cotija cheese and their potential role in ripening. Appl Microbiol Biotechnol 2018; 102:2251-2267. [PMID: 29372297 DOI: 10.1007/s00253-018-8765-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/18/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022]
Abstract
Enterococcus spp. are present in the native microbiota of many traditional fermented foods. Their ability to produce antibacterial compounds, mainly against Listeria monocytogenes, has raised interest recently. However, there is scarce information about their proteolytic and lipolytic potential, and their biotechnological application is currently limited because enterococcal strains have been related to nosocomial infections. In this work, next-generation sequencing and optimised bioinformatic pipelines were used to annotate the genomes of two Enterococcus strains-one E. faecium and one E. faecalis-isolated from the Mexican artisanal ripened Cotija cheese. A battery of genes involved in their proteolytic system was annotated. Genes coding for lipases, esterases and other enzymes whose final products contribute to cheese aroma and flavour were identified as well. As for the production of antibacterial compounds, several peptidoglycan hydrolase- and bacteriocin-coding genes were identified in both genomes experimentally and by bioinformatic analyses. E. faecalis showed resistance to aminoglycosides and E. faecium to aminoglycosides and macrolides, as predicted by the genome functional annotation. No pathogenicity islands were found in any of the strains, although traits such as the ability of biofilm formation and cell aggregation were observed. Finally, a comparative genomic analysis was able to discriminate between the food strains isolated and nosocomial strains. In summary, pathogenic strains are resistant to a wide range of antibiotics and contain virulence factors that cause host damage; in contrast, food strains display less antibiotic resistance, include genes that encode class II bacteriocins and express virulence factors associated with host colonisation rather than invasion.
Collapse
Affiliation(s)
- Myrna Olvera-García
- Fac. de Química, Departamento de Alimentos y Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 3000, C. U, 04510, Ciudad de México, Mexico
| | - Alejandro Sanchez-Flores
- Instituto de Biotecnología, Unidad de Secuenciación Masiva y Bioinformática, Av. Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Maricarmen Quirasco Baruch
- Fac. de Química, Departamento de Alimentos y Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 3000, C. U, 04510, Ciudad de México, Mexico.
| |
Collapse
|
58
|
Patrnogic J, Leclerc V. The serine protease homolog spheroide is involved in sensing of pathogenic Gram-positive bacteria. PLoS One 2017; 12:e0188339. [PMID: 29211760 PMCID: PMC5718610 DOI: 10.1371/journal.pone.0188339] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023] Open
Abstract
In Drosophila, recognition of pathogens such as Gram-positive bacteria and fungi triggers the activation of proteolytic cascades and the subsequent activation of the Toll pathway. This response can be achieved by either detection of pathogen associated molecular patterns or by sensing microbial proteolytic activities (“danger signals”). Previous data suggested that certain serine protease homologs (serine protease folds that lack an active catalytic triad) could be involved in the pathway. We generated a null mutant of the serine protease homolog spheroide (sphe). These mutant flies are susceptible to Enterococcus faecalis infection and unable to fully activate the Toll pathway. Sphe is required to activate the Toll pathway after challenge with pathogenic Gram-Positive bacteria. Sphe functions in the danger signal pathway, downstream or at the level of Persephone.
Collapse
Affiliation(s)
- Jelena Patrnogic
- UPR9022 du CNRS, Institut de Biologie Moleculaire et Cellulaire, Universite de Strasbourg, Strasbourg, France
| | - Vincent Leclerc
- UPR9022 du CNRS, Institut de Biologie Moleculaire et Cellulaire, Universite de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
59
|
Fuzi M, Szabo D, Csercsik R. Double-Serine Fluoroquinolone Resistance Mutations Advance Major International Clones and Lineages of Various Multi-Drug Resistant Bacteria. Front Microbiol 2017; 8:2261. [PMID: 29250038 PMCID: PMC5715326 DOI: 10.3389/fmicb.2017.02261] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/02/2017] [Indexed: 01/06/2023] Open
Abstract
The major international sequence types/lineages of methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae and ESBL-producing E. coli were demonstrated to have been advanced by favorable fitness balance associated with high-level resistance to fluoroquinolones. The paper shows that favorable fitness in the major STs/lineages of these pathogens was principally attained by the capacity of evolving mutations in the fluoroquinolone-binding serine residues of both the DNA gyrase and topoisomerase IV enzymes. The available information on fitness balance incurred by individual and various combinations of mutations in the enzymes is reviewed in multiple species. Moreover, strong circumstantial evidence is presented that major STs/lineages of other multi-drug resistant bacteria, primarily vancomycin-resistant Enterococcus faecium (VRE), emerged by a similar mechanism. The reason(s) why the major ST/lineage strains of various pathogens proved more adept at evolving favorable mutations than most isolates of the same species remains to be elucidated.
Collapse
Affiliation(s)
- Miklos Fuzi
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Dora Szabo
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Rita Csercsik
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
60
|
Freitas AR, Tedim AP, Novais C, Coque TM, Peixe L. Distribution of putative virulence markers in Enterococcus faecium: towards a safety profile review. J Antimicrob Chemother 2017; 73:306-319. [DOI: 10.1093/jac/dkx387] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/22/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ana R Freitas
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ana P Tedim
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana (RYC-CSIC), Madrid, Spain
- CIBER en Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain
| | - Carla Novais
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Teresa M Coque
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana (RYC-CSIC), Madrid, Spain
- CIBER en Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
61
|
Peng Z, Li M, Wang W, Liu H, Fanning S, Hu Y, Zhang J, Li F. Genomic insights into the pathogenicity and environmental adaptability of Enterococcus hirae R17 isolated from pork offered for retail sale. Microbiologyopen 2017; 6. [PMID: 28799224 PMCID: PMC5727370 DOI: 10.1002/mbo3.514] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 02/06/2023] Open
Abstract
Genetic information about Enterococcus hirae is limited, a feature that has compromised our understanding of these clinically challenging bacteria. In this study, comparative analysis was performed of E. hirae R17, a daptomycin‐resistant strain isolated from pork purchased from a retail market in Beijing, China, and three other enterococcal genomes (Enterococcus faecium DO, Enterococcus faecalis V583, and E. hirae ATCC™9790). Some 1,412 genes were identified that represented the core genome together with an additional 139 genes that were specific to E. hirae R17. The functions of these R17 strain‐specific coding sequences relate to the COGs categories of carbohydrate transport and metabolism and transcription, a finding that suggests the carbohydrate utilization capacity of E. hirae R17 may be more extensive when compared with the other three bacterial species (spp.). Analysis of genomic islands and virulence genes highlighted the potential that horizontal gene transfer played as a contributor of variations in pathogenicity in this isolate. Drug‐resistance gene prediction and antibiotic susceptibility testing indicated E. hirae R17 was resistant to several antimicrobial compounds, including bacitracin, ciprofloxacin, daptomycin, erythromycin, and tetracycline, thereby limiting chemotherapeutic treatment options. Further, tolerance to biocides and metals may confer a phenotype that facilitates the survival and adaptation of this isolate against food preservatives, disinfectants, and antibacterial coatings. The genomic plasticity, mediated by IS elements, transposases, and tandem repeats, identified in the E. hirae R17 genome may support adaptation to new environmental niches, such as those that are found in hospitalized patients. A predicted transmissible plasmid, pRZ1, was found to carry several antimicrobial determinants, along with some predicted pathogenic genes. These data supported the previously determined phenotype confirming that the foodborne E. hirae R17 is a multidrug‐resistant pathogenic bacterium with evident genome plasticity and environmental adaptability.
Collapse
Affiliation(s)
- Zixin Peng
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease and Prevention, Beijing, China
| | - Menghan Li
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Wei Wang
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Hongtao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Séamus Fanning
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin, Ireland
| | - Yujie Hu
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jianzhong Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease and Prevention, Beijing, China
| | - Fengqin Li
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
62
|
Requirement of the CroRS Two-Component System for Resistance to Cell Wall-Targeting Antimicrobials in Enterococcus faecium. Antimicrob Agents Chemother 2017; 61:AAC.02461-16. [PMID: 28223383 DOI: 10.1128/aac.02461-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/13/2017] [Indexed: 11/20/2022] Open
Abstract
Enterococci are serious opportunistic pathogens that are resistant to many cell wall-targeting antibiotics. The CroRS two-component signaling system responds to antibiotic-mediated cell wall stress and is critical for resistance to cell wall-targeting antibiotics in Enterococcus faecalis Here, we identify and characterize an orthologous two-component system found in Enterococcus faecium that is functionally equivalent to the CroRS system of E. faecalis Deletion of croRS in E. faecium resulted in marked susceptibility to cell wall-targeting agents including cephalosporins and bacitracin, as well as moderate susceptibility to ampicillin and vancomycin. As in E. faecalis, exposure to bacitracin and vancomycin stimulates signaling through the CroRS system in E. faecium Moreover, the CroRS system is critical in E. faecium for enhanced beta-lactam resistance mediated by overexpression of Pbp5. Expression of a Pbp5 variant that confers enhanced beta-lactam resistance cannot overcome the requirement for CroRS function. Thus, the CroRS system is a conserved signaling system that responds to cell wall stress to promote intrinsic resistance to important cell wall-targeting antibiotics in clinically relevant enterococci.
Collapse
|
63
|
Beukers AG, Zaheer R, Goji N, Amoako KK, Chaves AV, Ward MP, McAllister TA. Comparative genomics of Enterococcus spp. isolated from bovine feces. BMC Microbiol 2017; 17:52. [PMID: 28270110 PMCID: PMC5341189 DOI: 10.1186/s12866-017-0962-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/21/2017] [Indexed: 01/18/2023] Open
Abstract
Background Enterococcus is ubiquitous in nature and is a commensal of both the bovine and human gastrointestinal (GI) tract. It is also associated with clinical infections in humans. Subtherapeutic administration of antibiotics to cattle selects for antibiotic resistant enterococci in the bovine GI tract. Antibiotic resistance genes (ARGs) may be present in enterococci following antibiotic use in cattle. If located on mobile genetic elements (MGEs) their dissemination between Enterococcus species and to pathogenic bacteria may be promoted, reducing the efficacy of antibiotics. Results We present a comparative genomic analysis of twenty-one Enterococcus spp. isolated from bovine feces including Enterococcus hirae (n = 10), Enterococcus faecium (n = 3), Enterococcus villorum (n = 2), Enterococcus casseliflavus (n = 2), Enterococcus faecalis (n = 1), Enterococcus durans (n = 1), Enterococcus gallinarum (n = 1) and Enterococcus thailandicus (n = 1). The analysis revealed E. faecium and E. faecalis from bovine feces share features with human clinical isolates, including virulence factors. The Tn917 transposon conferring macrolide-lincosamide-streptogramin B resistance was identified in both E. faecium and E. hirae, suggesting dissemination of ARGs on MGEs may occur in the bovine GI tract. An E. faecium isolate was also identified with two integrative conjugative elements (ICEs) belonging to the Tn916 family of ICE, Tn916 and Tn5801, both conferring tetracycline resistance. Conclusions This study confirms the presence of enterococci in the bovine GI tract possessing ARGs on MGEs, but the predominant species in cattle, E. hirae is not commonly associated with infections in humans. Analysis using additional complete genomes of E. faecium from the NCBI database demonstrated differential clustering of commensal and clinical isolates, suggesting that these strains may be specifically adapted to their respective environments. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-0962-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alicia G Beukers
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Rahat Zaheer
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Noriko Goji
- Canadian Food Inspection Agency, National Center for Animal Disease, Lethbridge Laboratory, Lethbridge, AB, Canada
| | - Kingsley K Amoako
- Canadian Food Inspection Agency, National Center for Animal Disease, Lethbridge Laboratory, Lethbridge, AB, Canada
| | - Alexandre V Chaves
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Michael P Ward
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Tim A McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
| |
Collapse
|
64
|
Amylolytic Enzymes Acquired from L-Lactic Acid Producing Enterococcus faecium K-1 and Improvement of Direct Lactic Acid Production from Cassava Starch. Appl Biochem Biotechnol 2017; 183:155-170. [PMID: 28236189 DOI: 10.1007/s12010-017-2436-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/10/2017] [Indexed: 01/30/2023]
Abstract
An amylolytic lactic acid bacterium isolate K-1 was isolated from the wastewater of a cassava starch manufacturing factory and identified as Entercoccus faecium based on 16S rRNA gene sequence analysis. An extracellular α-amylase was purified to homogeneity and the molecular weight of the purified enzyme was approximately 112 kDa with optimal pH value and temperature measured of 7.0 and 40 °C, respectively. It was stable at a pH range of 6.0-7.0, but was markedly sensitive to high temperatures and low pH conditions, even at a pH value of 5. Ba2+, Al3+, and Co2+ activated enzyme activity. This bacterium was capable of producing 99.2% high optically pure L-lactic acid of 4.3 and 8.2 g/L under uncontrolled and controlled pH at 6.5 conditions, respectively, in the MRS broth containing 10 g/L cassava starch as the sole carbon source when cultivated at 37 °C for 48 h. A control pH condition of 6.5 improved and stabilized the yield of L-lactic acid production directly from starch even at a high concentration of starch at up to 150 g/L. This paper is the first report describing the properties of purified α-amylase from E. faecium. Additionally, pullulanase and cyclodextrinase activities were also firstly recorded from E. faecium K-1.
Collapse
|
65
|
Zhong Z, Zhang W, Song Y, Liu W, Xu H, Xi X, Menghe B, Zhang H, Sun Z. Comparative genomic analysis of the genus Enterococcus. Microbiol Res 2017; 196:95-105. [PMID: 28164795 DOI: 10.1016/j.micres.2016.12.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023]
Abstract
As important lactic acid bacteria, Enterococcus species are widely used in the production of fermented food. However, as some strains of Enterococcus are opportunistic pathogens, their safety has not been generally accepted. In recent years, a large number of new species have been described and classified within the genus Enterococcus, so a better understanding of the genetic relationships and evolution of Enterococcus species is needed. In this study, the genomes of 29 type strains of Enterococcus species were sequenced. In combination with eight complete genome sequences from the Genbank database, the whole genomes of 37 strains of Enterococcus were comparatively analyzed. The average length of Enterococcus genomes was 3.20Mb and the average GC content was 37.99%. The core- and pan- genomes were defined based on the genomes of the 37 strains of Enterococcus. The core-genome contained 605 genes, a large proportion of which were associated with carbohydrate metabolism, protein metabolism, DNA and RNA metabolism. The phylogenetic tree showed that habitat is very important in the evolution of Enterococcus. The genetic relationships were closer in strains that come from similar habitats. According to the topology of the time tree, we found that humans and mammals may be the original hosts of Enterococcus, and then species from humans and mammals made a host-shift to plants, birds, food and other environments. However, it was just an evolutionary scenario, and more data and efforts were needed to prove this postulation. The comparative genomic analysis provided a snapshot of the evolution and genetic diversity of the genus Enterococcus, which paves the way for follow-up studies on its taxonomy and functional genomics.
Collapse
Affiliation(s)
- Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| | - Yuqin Song
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| | - Haiyan Xu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| | - Xiaoxia Xi
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| | - Bilige Menghe
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, PR China.
| |
Collapse
|
66
|
Lim SY, Yap KP, Teh CSJ, Jabar KA, Thong KL. Comparative genome analysis of multiple vancomycin-resistant Enterococcus faecium isolated from two fatal cases. INFECTION GENETICS AND EVOLUTION 2017; 49:55-65. [PMID: 28039075 DOI: 10.1016/j.meegid.2016.12.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/22/2016] [Accepted: 12/25/2016] [Indexed: 12/31/2022]
Abstract
Enterococcus faecium is both a commensal of the human intestinal tract and an opportunistic pathogen. The increasing incidence of enterococcal infections is mainly due to the ability of this organism to develop resistance to multiple antibiotics, including vancomycin. The aim of this study was to perform comparative genome analyses on four vancomycin-resistant Enterococcus faecium (VREfm) strains isolated from two fatal cases in a tertiary hospital in Malaysia. Two sequence types, ST80 and ST203, were identified which belong to the clinically important clonal complex (CC) 17. This is the first report on the emergence of ST80 strains in Malaysia. Three of the studied strains (VREr5, VREr6, VREr7) were each isolated from different body sites of a single patient (patient Y) and had different PFGE patterns. While VREr6 and VREr7 were phenotypically and genotypically similar, the initial isolate, VREr5, was found to be more similar to VRE2 isolated from another patient (patient X), in terms of the genome contents, sequence types and phylogenomic relationship. Both the clinical records and genome sequence data suggested that patient Y was infected by multiple strains from different clones and the strain that infected patient Y could have derived from the same clone from patient X. These multidrug resistant strains harbored a number of virulence genes such as the epa locus and pilus-associated genes which could enhance their persistence. Apart from that, a homolog of E. faecalis bee locus was identified in VREr5 which might be involved in biofilm formation. Overall, our comparative genomic analyses had provided insight into the genetic relatedness, as well as the virulence potential, of the four clinical strains.
Collapse
Affiliation(s)
- Shu Yong Lim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien-Pong Yap
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kartini Abdul Jabar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
67
|
Zeng MY, Inohara N, Nuñez G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol 2017; 10:18-26. [PMID: 27554295 PMCID: PMC5788567 DOI: 10.1038/mi.2016.75] [Citation(s) in RCA: 522] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/15/2016] [Indexed: 02/07/2023]
Abstract
The gut microbiota has diverse and essential roles in host metabolism, development of the immune system and as resistance to pathogen colonization. Perturbations of the gut microbiota, termed gut dysbiosis, are commonly observed in diseases involving inflammation in the gut, including inflammatory bowel disease, infection, colorectal cancer and food allergies. Importantly, the inflamed microenvironment in the gut is particularly conducive to blooms of Enterobacteriaceae, which acquire fitness benefits while other families of symbiotic bacteria succumb to environmental changes inflicted by inflammation. Here we summarize studies that examined factors in the inflamed gut that contribute to blooms of Enterobacterieaceae, and highlight potential approaches to restrict Enterobacterial blooms in treating diseases that are otherwise complicated by overgrowth of virulent Enterobacterial species in the gut.
Collapse
Affiliation(s)
- MY Zeng
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - N Inohara
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - G Nuñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
68
|
Lactobacillus rhamnosus GG Outcompetes Enterococcus faecium via Mucus-Binding Pili: Evidence for a Novel and Heterospecific Probiotic Mechanism. Appl Environ Microbiol 2016; 82:5756-62. [PMID: 27422834 PMCID: PMC5038030 DOI: 10.1128/aem.01243-16] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) have become a major nosocomial threat. Enterococcus faecium is of special concern, as it can easily acquire new antibiotic resistances and is an excellent colonizer of the human intestinal tract. Several clinical studies have explored the potential use of beneficial bacteria to weed out opportunistic pathogens. Specifically, the widely studied Lactobacillus rhamnosus strain GG has been applied successfully in the context of VRE infections. Here, we provide new insight into the molecular mechanism underlying the effects of this model probiotic on VRE decolonization. Both clinical VRE isolates and L. rhamnosus GG express pili on their cell walls, which are the key modulators of their highly efficient colonization of the intestinal mucosa. We found that one of the VRE pilus clusters shares considerable sequence similarity with the SpaCBA-SrtC1 pilus cluster of L. rhamnosus GG. Remarkable immunological and functional similarities were discovered between the mucus-binding pili of L. rhamnosus GG and those of the clinical E. faecium strain E1165, which was characterized at the genome level. Moreover, E. faecium strain E1165 bound efficiently to mucus, which may be prevented by the presence of the mucus-binding SpaC protein or antibodies against L. rhamnosus GG or SpaC. These results present experimental support for a novel probiotic mechanism, in which the mucus-binding pili of L. rhamnosus GG prevent the binding of a potential pathogen to the host. Hence, we provide a molecular basis for the further exploitation of L. rhamnosus GG and its pilins for prophylaxis and treatment of VRE infections. IMPORTANCE Concern about vancomycin-resistant Enterococcus faecium causing nosocomial infections is rising globally. The arsenal of antibiotic strategies to treat these infections is nearly exhausted, and hence, new treatment strategies are urgently needed. Here, we provide molecular evidence to underpin reports of the successful clinical application of Lactobacillus rhamnosus GG in VRE decolonization strategies. Our results provide support for a new molecular mechanism, in which probiotics can perform competitive exclusion and possibly immune interaction. Moreover, we spur further exploration of the potential of intact L. rhamnosus GG and purified SpaC pilin as prophylactic and curative agents of the VRE carrier state.
Collapse
|
69
|
Freitas AR, Tedim AP, Francia MV, Jensen LB, Novais C, Peixe L, Sánchez-Valenzuela A, Sundsfjord A, Hegstad K, Werner G, Sadowy E, Hammerum AM, Garcia-Migura L, Willems RJ, Baquero F, Coque TM. Multilevel population genetic analysis ofvanAandvanB Enterococcus faeciumcausing nosocomial outbreaks in 27 countries (1986–2012). J Antimicrob Chemother 2016; 71:3351-3366. [DOI: 10.1093/jac/dkw312] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 06/11/2016] [Accepted: 07/05/2016] [Indexed: 01/17/2023] Open
|
70
|
Premasiri WR, Lee JC, Sauer-Budge A, Théberge R, Costello CE, Ziegler LD. The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Anal Bioanal Chem 2016; 408:4631-47. [PMID: 27100230 PMCID: PMC4911336 DOI: 10.1007/s00216-016-9540-x] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/22/2016] [Accepted: 04/01/2016] [Indexed: 10/21/2022]
Abstract
The dominant molecular species contributing to the surface-enhanced Raman spectroscopy (SERS) spectra of bacteria excited at 785 nm are the metabolites of purine degradation: adenine, hypoxanthine, xanthine, guanine, uric acid, and adenosine monophosphate. These molecules result from the starvation response of the bacterial cells in pure water washes following enrichment from nutrient-rich environments. Vibrational shifts due to isotopic labeling, bacterial SERS spectral fitting, SERS and mass spectrometry analysis of bacterial supernatant, SERS spectra of defined bacterial mutants, and the enzymatic substrate dependence of SERS spectra are used to identify these molecular components. The absence or presence of different degradation/salvage enzymes in the known purine metabolism pathways of these organisms plays a central role in determining the bacterial specificity of these purine-base SERS signatures. These results provide the biochemical basis for the development of SERS as a rapid bacterial diagnostic and illustrate how SERS can be applied more generally for metabolic profiling as a probe of cellular activity. Graphical Abstract Bacterial typing by metabolites released under stress.
Collapse
Affiliation(s)
- W Ranjith Premasiri
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA, 02215, USA.
- The Photonics Center, Boston University, 8 Saint Mary's St., Boston, MA, 02215, USA.
| | - Jean C Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Ave., Boston, MA, 02115, USA
| | - Alexis Sauer-Budge
- The Photonics Center, Boston University, 8 Saint Mary's St., Boston, MA, 02215, USA
- Fraunhofer Center for Manufacturing Innovation, 15 Saint Mary's St., Brookline, MA, 02446, USA
- Department of Biomedical Engineering, Boston University, 44 Cummington St., Boston, MA, 02215, USA
| | - Roger Théberge
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Lawrence D Ziegler
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA, 02215, USA.
- The Photonics Center, Boston University, 8 Saint Mary's St., Boston, MA, 02215, USA.
| |
Collapse
|
71
|
Montealegre MC, Singh KV, Murray BE. Gastrointestinal Tract Colonization Dynamics by Different Enterococcus faecium Clades. J Infect Dis 2016; 213:1914-22. [PMID: 26671890 PMCID: PMC4878718 DOI: 10.1093/infdis/jiv597] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022] Open
Abstract
Colonization of the gastrointestinal tract (GIT) generally precedes infection with antibiotic-resistant Enterococcus faecium We used a mouse GIT colonization model to test differences in the colonization levels by strains from different E. faecium lineages: clade B, part of the healthy human microbiota; subclade A1, associated with infections; and subclade A2, primarily associated with animals. After mono-inoculation, there was no significant difference in colonization (measured as the geometric mean number of colony-forming units per gram) by the E. faecium clades at any time point (P > .05). However, in competition assays, with 6 of the 7 pairs, clade B strains outcompeted clade A strains in their ability to persist in the GIT; this difference was significant in some pairs by day 2 and in all pairs by day 14 (P < .0008-.0283). This observation may explain the predominance of clade B in the community and why antibiotic-resistant hospital-associated E. faecium are often replaced by clade B strains once patients leave the hospital.
Collapse
Affiliation(s)
- Maria Camila Montealegre
- Department of Internal Medicine, Division of Infectious Diseases Center for the Study of Emerging and Re-emerging Pathogens Department of Microbiology and Molecular Genetics, University of Texas Graduate School of Biomedical Sciences at Houston, University of Texas Health Science Center at Houston
| | - Kavindra V Singh
- Department of Internal Medicine, Division of Infectious Diseases Center for the Study of Emerging and Re-emerging Pathogens
| | - Barbara E Murray
- Department of Internal Medicine, Division of Infectious Diseases Center for the Study of Emerging and Re-emerging Pathogens Department of Microbiology and Molecular Genetics, University of Texas Graduate School of Biomedical Sciences at Houston, University of Texas Health Science Center at Houston
| |
Collapse
|
72
|
Role of the Emp Pilus Subunits of Enterococcus faecium in Biofilm Formation, Adherence to Host Extracellular Matrix Components, and Experimental Infection. Infect Immun 2016; 84:1491-1500. [PMID: 26930703 DOI: 10.1128/iai.01396-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/20/2016] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecium is an important cause of hospital-associated infections, including urinary tract infections (UTIs), bacteremia, and infective endocarditis. Pili have been shown to play a role in the pathogenesis of Gram-positive bacteria, including E. faecium We previously demonstrated that a nonpiliated ΔempABC::cat derivative of E. faecium TX82 was attenuated in biofilm formation and in a UTI model. Here, we studied the contributions of the individual pilus subunits EmpA, EmpB, and EmpC to pilus architecture, biofilm formation, adherence to extracellular matrix (ECM) proteins, and infection. We identified EmpA as the tip of the pili and found that deletion of empA reduced biofilm formation to the same level as deletion of the empABC operon, a phenotype that was restored by reconstituting in situ the empA gene. Deletion of empB also caused a reduction in biofilm, while EmpC was found to be dispensable. Significant reductions in adherence to fibrinogen and collagen type I were observed with deletion of empA and empB, while deletion of empC had no adherence defect. Furthermore, we showed that each deletion mutant was significantly attenuated in comparison to the isogenic parental strain, TX82, in a mixed-inoculum UTI model (P < 0.001 to 0.048), that reconstitution of empA restored virulence in the UTI model, and that deletion of empA also resulted in attenuation in an infective endocarditis model (P = 0.0088). Our results indicate that EmpA and EmpB, but not EmpC, contribute to biofilm and adherence to ECM proteins; however, all the Emp pilins are important for E. faecium to cause infection in the urinary tract.
Collapse
|
73
|
The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection. Microbiol Spectr 2016; 3. [PMID: 26185088 DOI: 10.1128/microbiolspec.mbp-0008-2014] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The healthy human intestine is colonized by as many as 1014 bacteria belonging to more than 500 different species forming a microbial ecosystem of unsurpassed diversity, termed the microbiota. The microbiota's various bacterial members engage in a physiological network of cooperation and competition within several layers of complexity. Within the last 10 years, technological progress in the field of next-generation sequencing technologies has tremendously advanced our understanding of the wide variety of physiological and pathological processes that are influenced by the commensal microbiota (1, 2). An increasing number of human disease conditions, such as inflammatory bowel diseases (IBD), type 2 diabetes, obesity, allergies and colorectal cancer are linked with altered microbiota composition (3). Moreover, a clearer picture is emerging of the composition of the human microbiota in healthy individuals, its variability over time and between different persons and how the microbiota is shaped by environmental factors (i.e., diet) and the host's genetic background (4). A general feature of a normal, healthy gut microbiota can generate conditions in the gut that disfavor colonization of enteric pathogens. This is termed colonization-resistance (CR). Upon disturbance of the microbiota, CR can be transiently disrupted, and pathogens can gain the opportunity to grow to high levels. This disruption can be caused by exposure to antibiotics (5, 6), changes in diet (7, 8), application of probiotics and drugs (9), and a variety of diseases (3). Breakdown of CR can boost colonization by intrinsic pathogens or increase susceptibility to infections (10). One consequence of pathogen expansion is the triggering of inflammatory host responses and pathogen-mediated disease. Interestingly, human enteric pathogens are part of a small group of bacterial families that belong to the Proteobacteria: the Enterobacteriaceae (E. coli, Yersinia spp., Salmonella spp., Shigella spp.), the Vibrionaceae (Vibrio cholerae) and the Campylobacteriaceae (Campylobacter spp.). In general, members of these families (be it commensals or pathogens) only constitute a minority of the intestinal microbiota. However, proteobacterial "blooms" are a characteristic trait of an abnormal microbiota such as in the course of antibiotic therapy, dietary changes or inflammation (11). It has become clear that the gut microbiota not only plays a major role in priming and regulating mucosal and systemic immunity, but that the immune system also contributes to host control over microbiota composition. These two ways of mutual communication between the microbiota and the immune system were coined as "outside-in" and "inside-out," respectively (12). The significance of those interactions for human health is particularly evident in Crohn's disease (CD) and Ulcerative Colitis (UC). The symptoms of these recurrent, chronic types of gut inflammation are caused by an excessive immune response against one's own commensal microbiota (13). It is assumed that deregulated immune responses can be caused by a genetic predisposition, leading to, for example, the impairment of intestinal barrier function or disruption of mucosal T-cell homeostasis. In CD or UC patients, an abnormally composed microbiota, referred to as "dysbiosis," is commonly observed (discussed later). This is often characterized by an increased relative abundance of facultative anaerobic bacteria (e.g., Enterobacteriaeceae, Bacilli) and, at the same time, depletion of obligate anaerobic bacteria of the classes Bacteroidia and Clostridia. So far, it is unclear whether dysbiosis is a cause or a consequence of inflammatory bowel disease (IBD). In fact, both scenarios are equally conceivable. Recent work suggests that inflammatory immune responses in the gut (both IBD and pathogen-induced) can alter the gut luminal milieu in a way that favors dysbiosis (14). In this chapter, I present a survey on our current state of understanding of the characteristics and mechanisms underlying gut inflammation-associated dysbiosis. The role of dysbiosis in enteric infections and human IBD is discussed. In addition, I will focus on competition of enteric pathogens and the gut microbiota in the inflamed gut and the role of dysbiotic microbiota alterations (e.g., "Enterobacterial blooms" (11)) for the evolution of pathogenicity.
Collapse
|
74
|
Douillard FP, Rasinkangas P, Bhattacharjee A, Palva A, de Vos WM. The N-Terminal GYPSY Motif Is Required for Pilin-Specific Sortase SrtC1 Functionality in Lactobacillus rhamnosus Strain GG. PLoS One 2016; 11:e0153373. [PMID: 27070897 PMCID: PMC4829219 DOI: 10.1371/journal.pone.0153373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/29/2016] [Indexed: 12/31/2022] Open
Abstract
Predominantly identified in pathogenic Gram-positive bacteria, sortase-dependent pili are also found in commensal species, such as the probiotic-marketed strain Lactobacillus rhamnosus strain GG. Pili are typically associated with host colonization, immune signalling and biofilm formation. Comparative analysis of the N-terminal domains of pilin-specific sortases from various piliated Gram-positive bacteria identified a conserved motif, called GYPSY, within the signal sequence. We investigated the function and role of the GYPSY residues by directed mutagenesis in homologous (rod-shaped) and heterologous (coccoid-shaped) expression systems for pilus formation. Substitutions of some of the GYPSY residues, and more specifically the proline residue, were found to have a direct impact on the degree of piliation of Lb. rhamnosus GG. The present findings uncover a new signalling element involved in the functionality of pilin-specific sortases controlling the pilus biogenesis of Lb. rhamnosus GG and related piliated Gram-positive species.
Collapse
Affiliation(s)
- François P. Douillard
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- * E-mail: (FPD); (WMdV)
| | - Pia Rasinkangas
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Arnab Bhattacharjee
- Research Programs Unit Immunobiology, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Willem M. de Vos
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit Immunobiology, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- * E-mail: (FPD); (WMdV)
| |
Collapse
|
75
|
Complete Genome Sequence of Enterococcus faecium Commensal Isolate E1002. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00113-16. [PMID: 26988041 PMCID: PMC4796120 DOI: 10.1128/genomea.00113-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of vancomycin-resistant enterococci (VRE) has been associated with an increase in multidrug-resistant nosocomial infections. Here, we report the 2.614-Mb genome sequence of the Enterococcus faecium commensal isolate E1002, which will be instrumental in further understanding the determinants of the commensal and pathogenic lifestyle of E. faecium.
Collapse
|
76
|
Morroni G, Di Cesare A, Di Sante L, Brenciani A, Vignaroli C, Pasquaroli S, Giovanetti E, Sabatino R, Rossi L, Magnani M, Biavasco F. Enterococcus faecium ST17 from Coastal Marine Sediment Carrying Transferable Multidrug Resistance Plasmids. Microb Drug Resist 2016; 22:523-530. [PMID: 26982016 DOI: 10.1089/mdr.2015.0222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The multidrug-resistant Enterococcus faecium 17i48, sequence type 17, from marine sediment, carrying erm(B), tet(M), and tet(L) genes, was analyzed for the presence of antibiotic resistance plasmids and for the ability to transfer resistance genes. The strain was found to harbor the replicon type (repA) of pRE25, pRUM, pHTβ, and the axe-txe toxin-antitoxin (TA) system. In mating experiments, tet(M) and tet(L) were cotransferred with the repApRE25, whereas erm(B) was consistently cotransferred with the axe-txe and repApRUM, suggesting that tetracycline and erythromycin resistance genes were carried on different elements both transferable by conjugation, likely via pHTβ-mediated mobilization. Hybridization and PCR mapping demonstrated that tet(M) and tet(L) were located in tandem on a pDO1-like plasmid that also carried the repApRE25, whereas erm(B) was carried by a pRUM-like plasmid. Sequencing of the latter plasmid showed a high nucleotide identity with pRUM and the presence of cat, aadE, sat4, and a complete aphA resistance genes. These findings show that the genetic features of E. faecium 17i48 are consistent with a hospital-adapted clone and suggest that antibiotic resistance may spread in the environment, also in the absence of antibiotic pressure, due to TA system plasmid maintenance.
Collapse
Affiliation(s)
- Gianluca Morroni
- 1 Department of Biomedical Sciences and Public Health, Polytechnic University of Marche , Ancona, Italy
| | - Andrea Di Cesare
- 2 Department of Life and Environmental Sciences, Polytechnic University of Marche , Ancona, Italy
| | - Laura Di Sante
- 2 Department of Life and Environmental Sciences, Polytechnic University of Marche , Ancona, Italy
| | - Andrea Brenciani
- 1 Department of Biomedical Sciences and Public Health, Polytechnic University of Marche , Ancona, Italy
| | - Carla Vignaroli
- 2 Department of Life and Environmental Sciences, Polytechnic University of Marche , Ancona, Italy
| | - Sonia Pasquaroli
- 2 Department of Life and Environmental Sciences, Polytechnic University of Marche , Ancona, Italy
| | - Eleonora Giovanetti
- 2 Department of Life and Environmental Sciences, Polytechnic University of Marche , Ancona, Italy
| | - Raffaella Sabatino
- 3 Biochemistry and Molecular Biology Section, Department of Biomolecular Sciences, University of Urbino "Carlo Bo," Urbino, Italy
| | - Luigia Rossi
- 3 Biochemistry and Molecular Biology Section, Department of Biomolecular Sciences, University of Urbino "Carlo Bo," Urbino, Italy
| | - Mauro Magnani
- 3 Biochemistry and Molecular Biology Section, Department of Biomolecular Sciences, University of Urbino "Carlo Bo," Urbino, Italy
| | - Francesca Biavasco
- 2 Department of Life and Environmental Sciences, Polytechnic University of Marche , Ancona, Italy
| |
Collapse
|
77
|
Bender JK, Kalmbach A, Fleige C, Klare I, Fuchs S, Werner G. Population structure and acquisition of the vanB resistance determinant in German clinical isolates of Enterococcus faecium ST192. Sci Rep 2016; 6:21847. [PMID: 26902259 PMCID: PMC4763178 DOI: 10.1038/srep21847] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/29/2016] [Indexed: 12/28/2022] Open
Abstract
In the context of the global action plan to reduce the dissemination of antibiotic resistances it is of utmost importance to understand the population structure of resistant endemic bacterial lineages and to elucidate how bacteria acquire certain resistance determinants. Vancomycin resistant enterococci represent one such example of a prominent nosocomial pathogen on which nation-wide population analyses on prevalent lineages are scarce and data on how the bacteria acquire resistance, especially of the vanB genotype, are still under debate. With respect to Germany, an increased prevalence of VRE was noted in recent years. Here, invasive infections caused by sequence type ST192 VRE are often associated with the vanB-type resistance determinant. Hence, we analyzed 49 vanB-positive and vanB-negative E. faecium isolates by means of whole genome sequencing. Our studies revealed a distinct population structure and that spread of the Tn1549-vanB-type resistance involves exchange of large chromosomal fragments between vanB-positive and vanB-negative enterococci rather than independent acquisition events. In vitro filter-mating experiments support the hypothesis and suggest the presence of certain target sequences as a limiting factor for dissemination of the vanB element. Thus, the present study provides a better understanding of how enterococci emerge into successful multidrug-resistant nosocomial pathogens.
Collapse
Affiliation(s)
- Jennifer K Bender
- National Reference Centre for Staphylococci and Enterococci, Robert Koch Institute, Department of Infectious Diseases, Wernigerode, 38855, Germany
| | - Alexander Kalmbach
- National Reference Centre for Staphylococci and Enterococci, Robert Koch Institute, Department of Infectious Diseases, Wernigerode, 38855, Germany
| | - Carola Fleige
- National Reference Centre for Staphylococci and Enterococci, Robert Koch Institute, Department of Infectious Diseases, Wernigerode, 38855, Germany
| | - Ingo Klare
- National Reference Centre for Staphylococci and Enterococci, Robert Koch Institute, Department of Infectious Diseases, Wernigerode, 38855, Germany
| | - Stephan Fuchs
- National Reference Centre for Staphylococci and Enterococci, Robert Koch Institute, Department of Infectious Diseases, Wernigerode, 38855, Germany
| | - Guido Werner
- National Reference Centre for Staphylococci and Enterococci, Robert Koch Institute, Department of Infectious Diseases, Wernigerode, 38855, Germany
| |
Collapse
|
78
|
Brodrick HJ, Raven KE, Harrison EM, Blane B, Reuter S, Török ME, Parkhill J, Peacock SJ. Whole-genome sequencing reveals transmission of vancomycin-resistant Enterococcus faecium in a healthcare network. Genome Med 2016; 8:4. [PMID: 26759031 PMCID: PMC4709893 DOI: 10.1186/s13073-015-0259-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/29/2015] [Indexed: 08/30/2023] Open
Abstract
Background Bacterial whole-genome sequencing (WGS) has the potential to identify reservoirs of multidrug-resistant organisms and transmission of these pathogens across healthcare networks. We used WGS to define transmission of vancomycin-resistant enterococci (VRE) within a long-term care facility (LTCF), and between this and an acute hospital in the United Kingdom (UK). Methods A longitudinal prospective observational study of faecal VRE carriage was conducted in a LTCF in Cambridge, UK. Stool samples were collected at recruitment, and then repeatedly until the end of the study period, discharge or death. Selective culture media were used to isolate VRE, which were subsequently sequenced and analysed. We also analysed the genomes of 45 Enterococcus faecium bloodstream isolates collected at Cambridge University Hospitals NHS Foundation Trust (CUH). Results Forty-five residents were recruited during a 6-month period in 2014, and 693 stools were collected at a frequency of at least 1 week apart. Fifty-one stool samples from 3/45 participants (7 %) were positive for vancomycin-resistant E. faecium. Two residents carried multiple VRE lineages, and one carried a single VRE lineage. Genome analyses based on single nucleotide polymorphisms (SNPs) in the core genome indicated that VRE carried by each of the three residents were unrelated. Participants had extensive contact with the local healthcare network. We found that VRE genomes from LTCF residents and hospital-associated bloodstream infection were interspersed throughout the phylogenetic tree, with several instances of closely related VRE strains from the two settings. Conclusions A proportion of LTCF residents are long-term carriers of VRE. Evidence for genetic relatedness between these and VRE associated with bloodstream infection in a nearby acute NHS Trust indicate a shared bacterial population. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0259-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hayley J Brodrick
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Box 157, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Kathy E Raven
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Box 157, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Ewan M Harrison
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Box 157, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Beth Blane
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Box 157, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Sandra Reuter
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Box 157, Hills Road, Cambridge, CB2 0QQ, UK.
| | - M Estée Török
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Box 157, Hills Road, Cambridge, CB2 0QQ, UK. .,Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK. .,Cambridge Public Health England Microbiology and Public Health Laboratory, Box 157, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Box 157, Hills Road, Cambridge, CB2 0QQ, UK. .,Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK. .,Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. .,London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
79
|
Fiedler S, Bender JK, Klare I, Halbedel S, Grohmann E, Szewzyk U, Werner G. Tigecycline resistance in clinical isolates of Enterococcus faecium is mediated by an upregulation of plasmid-encoded tetracycline determinants tet(L) and tet(M). J Antimicrob Chemother 2015; 71:871-81. [PMID: 26682961 DOI: 10.1093/jac/dkv420] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/05/2015] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Tigecycline represents one of the last-line therapeutics to combat multidrug-resistant bacterial pathogens, including VRE and MRSA. The German National Reference Centre for Staphylococci and Enterococci has received 73 tigecycline-resistant Enterococcus faecium and Enterococcus faecalis isolates in recent years. The precise mechanism of how enterococci become resistant to tigecycline remains undetermined. This study documents an analysis of the role of efflux pumps in tigecycline resistance in clinical isolates of Enterococcus spp. METHODS Various tigecycline MICs were found for the different isolates analysed. Tigecycline-resistant strains were analysed with respect to genome and transcriptome differences by means of WGS and RT-qPCR. Genes of interest were cloned and expressed in Listeria monocytogenes for verification of their functionality. RESULTS Detailed comparative whole-genome analyses of three isogenic strains, showing different levels of tigecycline resistance, revealed the major facilitator superfamily (MFS) efflux pump TetL and the ribosomal protection protein TetM as possible drug resistance proteins. Subsequent RT-qPCR confirmed up-regulation of the respective genes. A correlation of gene copy number and level of MIC was inferred from further qPCR analyses. Expression of both tet(L) and tet(M) in L. monocytogenes unequivocally demonstrated the potential to increase tigecycline MICs upon acquisition of either locus. CONCLUSIONS Our results indicate that increased expression of two tetracycline resistance determinants, a tet(L)-encoded MFS pump and a tet(M)-encoded ribosomal protection protein, is capable of conferring tigecycline resistance in enterococcal clinical isolates.
Collapse
Affiliation(s)
- S Fiedler
- Division of Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| | - J K Bender
- Division of Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| | - I Klare
- Division of Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| | - S Halbedel
- Division of Enteropathogenic Bacteria and Legionella, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| | - E Grohmann
- Department of Life Sciences and Technology, Beuth University of Applied Sciences, Berlin, Germany Division of Infectious Diseases, University Medical Centre Freiburg, Freiburg, Germany
| | - U Szewzyk
- Environmental Microbiology, Technical University Berlin, Berlin, Germany
| | - G Werner
- Division of Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| |
Collapse
|
80
|
Core Genome Multilocus Sequence Typing Scheme for High-Resolution Typing of Enterococcus faecium. J Clin Microbiol 2015; 53:3788-97. [DOI: 10.1128/jcm.01946-15] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ABSTRACT
Enterococcus faecium
, a common inhabitant of the human gut, has emerged in the last 2 decades as an important multidrug-resistant nosocomial pathogen. Since the start of the 21st century, multilocus sequence typing (MLST) has been used to study the molecular epidemiology of
E. faecium
. However, due to the use of a small number of genes, the resolution of MLST is limited. Whole-genome sequencing (WGS) now allows for high-resolution tracing of outbreaks, but current WGS-based approaches lack standardization, rendering them less suitable for interlaboratory prospective surveillance. To overcome this limitation, we developed a core genome MLST (cgMLST) scheme for
E. faecium
. cgMLST transfers genome-wide single nucleotide polymorphism (SNP) diversity into a standardized and portable allele numbering system that is far less computationally intensive than SNP-based analysis of WGS data. The
E. faecium
cgMLST scheme was built using 40 genome sequences that represented the diversity of the species. The scheme consists of 1,423 cgMLST target genes. To test the performance of the scheme, we performed WGS analysis of 103 outbreak isolates from five different hospitals in the Netherlands, Denmark, and Germany. The cgMLST scheme performed well in distinguishing between epidemiologically related and unrelated isolates, even between those that had the same sequence type (ST), which denotes the higher discriminatory power of this cgMLST scheme over that of conventional MLST. We also show that in terms of resolution, the performance of the
E. faecium
cgMLST scheme is equivalent to that of an SNP-based approach. In conclusion, the cgMLST scheme developed in this study facilitates rapid, standardized, and high-resolution tracing of
E. faecium
outbreaks.
Collapse
|
81
|
Ali L, Spiess M, Wobser D, Rodriguez M, Blum HE, Sakιnç T. Identification and functional characterization of the putative polysaccharide biosynthesis protein (CapD) of Enterococcus faecium U0317. INFECTION GENETICS AND EVOLUTION 2015; 37:215-24. [PMID: 26611826 DOI: 10.1016/j.meegid.2015.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 11/11/2015] [Accepted: 11/19/2015] [Indexed: 11/16/2022]
Abstract
Most bacterial species produce capsular polysaccharides that contribute to disease pathogenesis through evasion of the host innate immune system and are also involved in inhibiting leukocyte killing. In the present study, we identified a gene in Enterococcus faecium U0317 with homologies to the polysaccharide biosynthesis protein CapD that is made up of 336 amino acids and putatively catalyzes N-linked glycosylation. A capD deletion mutant was constructed and complemented by homologous recombination that was confirmed by PCR and sequencing. The mutant revealed different growth behavior and morphological changes compared to wild-type by scanning electron microscopy, also the capD mutant showed a strong hydrophobicity and that was reversed in the reconstituted mutant. For further characterization and functional analyses, in-vitro cell culture and in-vivo a mouse infection models were used. Antibodies directed against alpha lipotechoic acid (αLTA) and the peptidyl-prolyl cis-trans isomerase (αPpiC), effectively mediated the opsonophagocytic killing in the capD knock-out mutant, while this activity was not observed in the wild-type and reconstituted mutant. By comparison more than 2-fold decrease was seen in mutant colonization and adherence to both T24 and Caco2 cells. However, a significant higher bacterial colonization was observed in capD mutant during bacteremia in the animal model, while virulence in a mouse UTI (urinary tract infection) model, there were no obvious differences. Further studies are needed to elucidate the function of capsular polysaccharide synthesis gene clusters and its involvement in the disease pathogenesis with the aim to develop targeted therapies to treat multidrug-resistant E. faecium infections.
Collapse
Affiliation(s)
- Liaqat Ali
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Meike Spiess
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Dominique Wobser
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Marta Rodriguez
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Hubert E Blum
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Türkân Sakιnç
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
| |
Collapse
|
82
|
Lyons C, Raustad N, Bustos MA, Shiaris M. Incidence of Type II CRISPR1-Cas Systems in Enterococcus Is Species-Dependent. PLoS One 2015; 10:e0143544. [PMID: 26600384 PMCID: PMC4658022 DOI: 10.1371/journal.pone.0143544] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/05/2015] [Indexed: 12/19/2022] Open
Abstract
CRISPR-Cas systems, which obstruct both viral infection and incorporation of mobile genetic elements by horizontal transfer, are a specific immune response common to prokaryotes. Antiviral protection by CRISPR-Cas comes at a cost, as horizontally-acquired genes may increase fitness and provide rapid adaptation to habitat change. To date, investigations into the prevalence of CRISPR have primarily focused on pathogenic and clinical bacteria, while less is known about CRISPR dynamics in commensal and environmental species. We designed PCR primers and coupled these with DNA sequencing of products to detect and characterize the presence of cas1, a universal CRISPR-associated gene and proxy for the Type II CRISPR1-Cas system, in environmental and non-clinical Enterococcus isolates. CRISPR1-cas1 was detected in approximately 33% of the 275 strains examined, and differences in CRISPR1 carriage between species was significant. Incidence of cas1 in E. hirae was 73%, nearly three times that of E. faecalis (23.6%) and 10 times more frequent than in E. durans (7.1%). Also, this is the first report of CRISPR1 presence in E. durans, as well as in the plant-associated species E. casseliflavus and E. sulfureus. Significant differences in CRISPR1-cas1 incidence among Enterococcus species support the hypothesis that there is a tradeoff between protection and adaptability. The differences in the habitats of enterococcal species may exert varying selective pressure that results in a species-dependent distribution of CRISPR-Cas systems.
Collapse
Affiliation(s)
- Casandra Lyons
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Nicole Raustad
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Mario A. Bustos
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Michael Shiaris
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
83
|
Kodali S, Vinogradov E, Lin F, Khoury N, Hao L, Pavliak V, Jones CH, Laverde D, Huebner J, Jansen KU, Anderson AS, Donald RGK. A Vaccine Approach for the Prevention of Infections by Multidrug-resistant Enterococcus faecium. J Biol Chem 2015; 290:19512-26. [PMID: 26109072 DOI: 10.1074/jbc.m115.655852] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 12/19/2022] Open
Abstract
The incidence of multidrug-resistant Enterococcus faecium hospital infections has been steadily increasing. With the goal of discovering new vaccine antigens, we systematically fractionated and purified four distinct surface carbohydrates from E. faecium endocarditis isolate Tx16, shown previously to be resistant to phagocytosis in the presence of human serum. The two most abundant polysaccharides consist of novel branched heteroglycan repeating units that include signature sugars altruronic acid and legionaminic acid, respectively. A minor high molecular weight polysaccharide component was recognized as the fructose homopolymer levan, and a glucosylated lipoteichoic acid (LTA) was identified in a micellar fraction. The polysaccharides were conjugated to the CRM197 carrier protein, and the resulting glycoconjugates were used to immunize rabbits. Rabbit immune sera were evaluated for their ability to kill Tx16 in opsonophagocytic assays and in a mouse passive protection infection model. Although antibodies raised against levan failed to mediate opsonophagocytic killing, the other glycoconjugates induced effective opsonic antibodies, with the altruronic acid-containing polysaccharide antisera showing the greatest opsonophagocytic assay activity. Antibodies directed against either novel heteroglycan or the LTA reduced bacterial load in mouse liver or kidney tissue. To assess antigen prevalence, we screened a diverse collection of blood isolates (n = 101) with antibodies to the polysaccharides. LTA was detected on the surface of 80% of the strains, and antigens recognized by antibodies to the two major heteroglycans were co-expressed on 63% of these clinical isolates. Collectively, these results represent the first steps toward identifying components of a glycoconjugate vaccine to prevent E. faecium infection.
Collapse
Affiliation(s)
- Srinivas Kodali
- From Pfizer Vaccine Research and Early Development, Pearl River, New York 10654
| | | | - Fiona Lin
- From Pfizer Vaccine Research and Early Development, Pearl River, New York 10654
| | - Nancy Khoury
- From Pfizer Vaccine Research and Early Development, Pearl River, New York 10654
| | - Li Hao
- From Pfizer Vaccine Research and Early Development, Pearl River, New York 10654
| | - Vilo Pavliak
- From Pfizer Vaccine Research and Early Development, Pearl River, New York 10654
| | - C Hal Jones
- From Pfizer Vaccine Research and Early Development, Pearl River, New York 10654
| | - Diana Laverde
- the Division of Infectious Diseases, Department of Medicine, University Hospital, Hugstetter Strasse 55, 79106 Freiburg, Germany, and
| | - Johannes Huebner
- the Division of Infectious Diseases, Department of Medicine, University Hospital, Hugstetter Strasse 55, 79106 Freiburg, Germany, and the Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstrasse 4, 80338 Munich, Germany
| | - Kathrin U Jansen
- From Pfizer Vaccine Research and Early Development, Pearl River, New York 10654
| | | | - Robert G K Donald
- From Pfizer Vaccine Research and Early Development, Pearl River, New York 10654,
| |
Collapse
|
84
|
Cui Y, Hu T, Qu X, Zhang L, Ding Z, Dong A. Plasmids from Food Lactic Acid Bacteria: Diversity, Similarity, and New Developments. Int J Mol Sci 2015; 16:13172-202. [PMID: 26068451 PMCID: PMC4490491 DOI: 10.3390/ijms160613172] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/09/2015] [Accepted: 05/22/2015] [Indexed: 12/24/2022] Open
Abstract
Plasmids are widely distributed in different sources of lactic acid bacteria (LAB) as self-replicating extrachromosomal genetic materials, and have received considerable attention due to their close relationship with many important functions as well as some industrially relevant characteristics of the LAB species. They are interesting with regard to the development of food-grade cloning vectors. This review summarizes new developments in the area of lactic acid bacteria plasmids and aims to provide up to date information that can be used in related future research.
Collapse
Affiliation(s)
- Yanhua Cui
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Tong Hu
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China.
| | - Lanwei Zhang
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhongqing Ding
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Aijun Dong
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
85
|
Mutations associated with reduced surotomycin susceptibility in Clostridium difficile and Enterococcus species. Antimicrob Agents Chemother 2015; 59:4139-47. [PMID: 25941217 DOI: 10.1128/aac.00526-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/24/2015] [Indexed: 12/12/2022] Open
Abstract
Clostridium difficile infection (CDI) is an urgent public health concern causing considerable clinical and economic burdens. CDI can be treated with antibiotics, but recurrence of the disease following successful treatment of the initial episode often occurs. Surotomycin is a rapidly bactericidal cyclic lipopeptide antibiotic that is in clinical trials for CDI treatment and that has demonstrated superiority over vancomycin in preventing CDI relapse. Surotomycin is a structural analogue of the membrane-active antibiotic daptomycin. Previously, we utilized in vitro serial passage experiments to derive C. difficile strains with reduced surotomycin susceptibilities. The parent strains used included ATCC 700057 and clinical isolates from the restriction endonuclease analysis (REA) groups BI and K. Serial passage experiments were also performed with vancomycin-resistant and vancomycin-susceptible Enterococcus faecium and Enterococcus faecalis. The goal of this study is to identify mutations associated with reduced surotomycin susceptibility in C. difficile and enterococci. Illumina sequence data generated for the parent strains and serial passage isolates were compared. We identified nonsynonymous mutations in genes coding for cardiolipin synthase in C. difficile ATCC 700057, enoyl-(acyl carrier protein) reductase II (FabK) and cell division protein FtsH2 in C. difficile REA type BI, and a PadR family transcriptional regulator in C. difficile REA type K. Among the 4 enterococcal strain pairs, 20 mutations were identified, and those mutations overlap those associated with daptomycin resistance. These data give insight into the mechanism of action of surotomycin against C. difficile, possible mechanisms for resistance emergence during clinical use, and the potential impacts of surotomycin therapy on intestinal enterococci.
Collapse
|
86
|
Borst LB, Suyemoto MM, Scholl EH, Fuller FJ, Barnes HJ. Comparative genomic analysis identifies divergent genomic features of pathogenic Enterococcus cecorum including a type IC CRISPR-Cas system, a capsule locus, an epa-like locus, and putative host tissue binding proteins. PLoS One 2015; 10:e0121294. [PMID: 25860249 PMCID: PMC4393107 DOI: 10.1371/journal.pone.0121294] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/29/2015] [Indexed: 12/21/2022] Open
Abstract
Enterococcus cecorum (EC) is the dominant enteric commensal of adult chickens and contributes to the gut consortia of many avian and mammalian species. While EC infection is an uncommon zoonosis, like other enterococcal species it can cause life-threating nosocomial infection in people. In contrast to other enterococci which are considered opportunistic pathogens, emerging pathogenic strains of EC cause outbreaks of musculoskeletal disease in broiler chickens. Typical morbidity and mortality is comparable to other important infectious diseases of poultry. In molecular epidemiologic studies, pathogenic EC strains were found to be genetically clonal. These findings suggested acquisition of specific virulence determinants by pathogenic EC. To identify divergent genomic features and acquired virulence determinants in pathogenic EC; comparative genomic analysis was performed on genomes of 3 pathogenic and 3 commensal strains of EC. Pathogenic isolates had smaller genomes with a higher GC content, and they demonstrated large regions of synteny compared to commensal isolates. A molecular phylogenetic analysis demonstrated sequence divergence in pathogenic EC genomes. At a threshold of 98% identity, 414 predicted proteins were identified that were highly conserved in pathogenic EC but not in commensal EC. Among these, divergent CRISPR-cas defense loci were observed. In commensal EC, the type IIA arrangement typical for enterococci was present; however, pathogenic EC had a type IC locus, which is novel in enterococci but commonly observed in streptococci. Potential mediators of virulence identified in this analysis included a polysaccharide capsular locus similar to that recently described for E. faecium, an epa-like locus, and cell wall associated proteins which may bind host extracellular matrix. This analysis identified specific genomic regions, coding sequences, and predicted proteins which may be related to the divergent evolution and increased virulence of emerging pathogenic strains of EC.
Collapse
Affiliation(s)
- Luke B. Borst
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| | - M. Mitsu Suyemoto
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Elizabeth H. Scholl
- Bioinformatics Consulting and Service Core, Bioinformatics Research Center, College of Agriculture and Life Sciences, College of Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Fredrick J. Fuller
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - H. John Barnes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
87
|
Galloway-Peña JR, Liang X, Singh KV, Yadav P, Chang C, La Rosa SL, Shelburne S, Ton-That H, Höök M, Murray BE. The identification and functional characterization of WxL proteins from Enterococcus faecium reveal surface proteins involved in extracellular matrix interactions. J Bacteriol 2015; 197:882-92. [PMID: 25512313 PMCID: PMC4325096 DOI: 10.1128/jb.02288-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/10/2014] [Indexed: 11/20/2022] Open
Abstract
The WxL domain recently has been identified as a novel cell wall binding domain found in numerous predicted proteins within multiple Gram-positive bacterial species. However, little is known about the function of proteins containing this novel domain. Here, we identify and characterize 6 Enterococcus faecium proteins containing the WxL domain which, by reverse transcription-PCR (RT-PCR) and genomic analyses, are located in three similarly organized operons, deemed WxL loci A, B, and C. Western blotting, electron microscopy, and enzyme-linked immunosorbent assays (ELISAs) determined that genes of WxL loci A and C encode antigenic, cell surface proteins exposed at higher levels in clinical isolates than in commensal isolates. Secondary structural analyses of locus A recombinant WxL domain-containing proteins found they are rich in β-sheet structure and disordered segments. Using Biacore analyses, we discovered that recombinant WxL proteins from locus A bind human extracellular matrix proteins, specifically type I collagen and fibronectin. Proteins encoded by locus A also were found to bind to each other, suggesting a novel cell surface complex. Furthermore, bile salt survival assays and animal models using a mutant from which all three WxL loci were deleted revealed the involvement of WxL operons in bile salt stress and endocarditis pathogenesis. In summary, these studies extend our understanding of proteins containing the WxL domain and their potential impact on colonization and virulence in E. faecium and possibly other Gram-positive bacterial species.
Collapse
Affiliation(s)
- Jessica R Galloway-Peña
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA Center for the Study of Emerging and Re-emerging Pathogens, University of Texas Health Science Center, Houston, Texas, USA
| | - Xiaowen Liang
- Center for Infectious and Inflammatory Diseases, Institute for Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Kavindra V Singh
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA Center for the Study of Emerging and Re-emerging Pathogens, University of Texas Health Science Center, Houston, Texas, USA
| | - Puja Yadav
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA Center for the Study of Emerging and Re-emerging Pathogens, University of Texas Health Science Center, Houston, Texas, USA
| | - Chungyu Chang
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| | - Sabina Leanti La Rosa
- Department of Chemistry, Biotechnology and Food Science, Laboratory of Microbial Gene Technology and Food Microbiology, The Norwegian University of Life Sciences, Aas, Norway
| | - Samuel Shelburne
- Department of Infectious Diseases, Infection Control and Employee Health, M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Hung Ton-That
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Institute for Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Barbara E Murray
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA Center for the Study of Emerging and Re-emerging Pathogens, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
88
|
Furmanek-Blaszk B, Sektas M. The SfaNI restriction-modification system from Enterococcus faecalis NEB215 is located on a putative mobile genetic element. FEMS Microbiol Lett 2015; 362:fnv028. [PMID: 25724535 DOI: 10.1093/femsle/fnv028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2015] [Indexed: 01/21/2023] Open
Abstract
A type IIS restriction-modification (R-M) system SfaNI from Enterococcus faecalis NEB215 has been characterized. The sfaNIM gene was cloned by the methylase selection method. Methyltransferase SfaNI, a protein of 695 amino acids, consists of two domains responsible for different DNA-strand recognition and modification, and a putative DNA-binding HTH domain located in the N-terminal part of the protein. The sfaNIR gene, located adjacent to the gene of the cognate modification methyltransferases, encodes a protein of 648 amino acids. The enzyme has been purified to apparent homogeneity and its biochemical characteristics have been described. The R-M system SfaNI is flanked by a transposase gene at its 5(') end, and a cassette chromosome recombinase (ccr) gene complex, encoding serine recombinases CcrA and CcrB, at the 3(') end. Both proteins are specifically involved in genome rearrangement and are widely distributed among staphylococcal species. These results suggested that the R-M system SfaNI is present on the putative mobile element.
Collapse
Affiliation(s)
- Beata Furmanek-Blaszk
- Department of Microbiology, University of Gdansk, 80-308 Gdansk, Wita Stwosza 59, Poland
| | - Marian Sektas
- Department of Microbiology, University of Gdansk, 80-308 Gdansk, Wita Stwosza 59, Poland
| |
Collapse
|
89
|
Tran TT, Palmer HR, Weimar MR, Arias CA, Cook GM, Murray BE. Oral Bacitracin: A Consideration for Suppression of Intestinal Vancomycin-Resistant Enterococci (VRE) and for VRE Bacteremia From an Apparent Gastrointestinal Tract Source. Clin Infect Dis 2015; 60:1726-8. [PMID: 25697741 DOI: 10.1093/cid/civ130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Truc T Tran
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston University of Houston College of Pharmacy
| | - Hannah R Palmer
- Department of Pharmacy, Baylor St Luke's Medical Center, Houston, Texas
| | - Marion R Weimar
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Cesar A Arias
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston Universidad El Bosque, Bogotá, Colombia
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Barbara E Murray
- University of Houston College of Pharmacy Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston
| |
Collapse
|
90
|
First Complete Genome Sequence of a Probiotic Enterococcus faecium Strain T-110 and Its Comparative Genome Analysis with Pathogenic and Non-pathogenic Enterococcus faecium Genomes. J Genet Genomics 2015; 42:43-6. [DOI: 10.1016/j.jgg.2014.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 11/21/2022]
|
91
|
Population biology of intestinal enterococcus isolates from hospitalized and nonhospitalized individuals in different age groups. Appl Environ Microbiol 2014; 81:1820-31. [PMID: 25548052 DOI: 10.1128/aem.03661-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The diversity of enterococcal populations from fecal samples from hospitalized (n = 133) and nonhospitalized individuals (n = 173) of different age groups (group I, ages 0 to 19 years; group II, ages 20 to 59 years; group III, ages ≥60 years) was analyzed. Enterococci were recovered at similar rates from hospitalized and nonhospitalized persons (77.44% to 79.77%) of all age groups (75.0% to 82.61%). Enterococcus faecalis and Enterococcus faecium were predominant, although seven other Enterococcus species were identified. E. faecalis and E. faecium (including ampicillin-resistant E. faecium) colonization rates in nonhospitalized persons were age independent. For inpatients, E. faecalis colonization rates were age independent, but E. faecium colonization rates (particularly the rates of ampicillin-resistant E. faecium colonization) significantly increased with age. The population structure of E. faecium and E. faecalis was determined by superimposing goeBURST and Bayesian analysis of the population structure (BAPS). Most E. faecium sequence types (STs; 150 isolates belonging to 75 STs) were linked to BAPS groups 1 (22.0%), 2 (31.3%), and 3 (36.7%). A positive association between hospital isolates and BAPS subgroups 2.1a and 3.3a (which included major ampicillin-resistant E. faecium human lineages) and between community-based ampicillin-resistant E. faecium isolates and BAPS subgroups 1.2 and 3.3b was found. Most E. faecalis isolates (130 isolates belonging to 58 STs) were grouped into 3 BAPS groups, BAPS groups 1 (36.9%), 2 (40.0%), and 3 (23.1%), with each one comprising widespread lineages. No positive associations with age or hospitalization were established. The diversity and dynamics of enterococcal populations in the fecal microbiota of healthy humans are largely unexplored, with the available knowledge being fragmented and contradictory. The study offers a novel and comprehensive analysis of enterococcal population landscapes and suggests that E. faecium populations from hospitalized patients and from community-based individuals differ, with a predominance of certain clonal lineages, often in association with elderly individuals, occurring in the hospital setting.
Collapse
|
92
|
Dubin K, Pamer EG. Enterococci and Their Interactions with the Intestinal Microbiome. Microbiol Spectr 2014; 5:10.1128/microbiolspec.bad-0014-2016. [PMID: 29125098 PMCID: PMC5691600 DOI: 10.1128/microbiolspec.bad-0014-2016] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 12/15/2022] Open
Abstract
The Enterococcus genus comprises over 50 species that live as commensal bacteria in the gastrointestinal (GI) tracts of insects, birds, reptiles, and mammals. Named "entero" to emphasize their intestinal habitat, Enterococcus faecalis and Enterococcus faecium were first isolated in the early 1900s and are the most abundant species of this genus found in the human fecal microbiota. In the past 3 decades, enterococci have developed increased resistance to several classes of antibiotics and emerged as a prevalent causative agent of health care-related infections. In U.S. hospitals, antibiotic use has increased the transmission of multidrug-resistant enterococci. Antibiotic treatment depletes broad communities of commensal microbes from the GI tract, allowing resistant enterococci to densely colonize the gut. The reestablishment of a diverse intestinal microbiota is an emerging approach to combat infections caused by antibiotic-resistant bacteria in the GI tract. Because enterococci exist as commensals, modifying the intestinal microbiome to eliminate enterococcal clinical pathogens poses a challenge. To better understand how enterococci exist as both commensals and pathogens, in this article we discuss their clinical importance, antibiotic resistance, diversity in genomic composition and habitats, and interaction with the intestinal microbiome that may be used to prevent clinical infection.
Collapse
Affiliation(s)
- Krista Dubin
- Immunology Program and Infectious Disease Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
| | - Eric G Pamer
- Immunology Program and Infectious Disease Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
- Lucille Castori Center for Microbes, Inflammation, and Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
93
|
Abstract
The Enterococcus genus comprises over 50 species that live as commensal bacteria in the gastrointestinal (GI) tracts of insects, birds, reptiles, and mammals. Named "entero" to emphasize their intestinal habitat, Enterococcus faecalis and Enterococcus faecium were first isolated in the early 1900s and are the most abundant species of this genus found in the human fecal microbiota. In the past 3 decades, enterococci have developed increased resistance to several classes of antibiotics and emerged as a prevalent causative agent of health care-related infections. In U.S. hospitals, antibiotic use has increased the transmission of multidrug-resistant enterococci. Antibiotic treatment depletes broad communities of commensal microbes from the GI tract, allowing resistant enterococci to densely colonize the gut. The reestablishment of a diverse intestinal microbiota is an emerging approach to combat infections caused by antibiotic-resistant bacteria in the GI tract. Because enterococci exist as commensals, modifying the intestinal microbiome to eliminate enterococcal clinical pathogens poses a challenge. To better understand how enterococci exist as both commensals and pathogens, in this article we discuss their clinical importance, antibiotic resistance, diversity in genomic composition and habitats, and interaction with the intestinal microbiome that may be used to prevent clinical infection.
Collapse
|
94
|
Enterococcus faecium PBP5-S/R, the missing link between PBP5-S and PBP5-R. Antimicrob Agents Chemother 2014; 58:6978-81. [PMID: 25182648 DOI: 10.1128/aac.03648-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During a study to investigate the evolution of ampicillin resistance in Enterococcus faecium, we observed that a number of E. faecium strains, mainly from the recently described subclade A2, showed PBP5 sequences in between PBP5-S and PBP5-R. These hybrid PBP5-S/R patterns reveal a progression of amino acid changes from the S form to the R form of this protein; however, these changes do not strictly correlate with changes in ampicillin MICs.
Collapse
|
95
|
Abstract
Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health.
Collapse
|
96
|
Gomes LVP, Morey AT, Santos JP, Cardoso JD, Oliveira CF, Perugini MRE, Yamauchi LM, Ogatta SFY. Commensal and environmental vancomycin-resistant Enterococcus faecium isolated in hospital settings: genotypic diversity, antimicrobial resistance and virulence traits. Indian J Med Microbiol 2014; 32:345-7. [PMID: 25008838 DOI: 10.4103/0255-0857.136603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | | | | | | | | | | | | | - S F Y Ogatta
- Departamento de Microbiologia, Laboratório de Biologia Molecular de Microrganismos, Universidade Estadual de Londrina, PR, Brazil
| |
Collapse
|
97
|
Defining daptomycin resistance prevention exposures in vancomycin-resistant Enterococcus faecium and E. faecalis. Antimicrob Agents Chemother 2014; 58:5253-61. [PMID: 24957825 DOI: 10.1128/aac.00098-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Daptomycin is used off-label for enterococcal infections; however, dosing targets for resistance prevention remain undefined. Doses of 4 to 6 mg/kg of body weight/day approved for staphylococci are likely inadequate against enterococci due to reduced susceptibility. We modeled daptomycin regimens in vitro to determine the minimum exposure to prevent daptomycin resistance (Dapr) in enterococci. Daptomycin simulations of 4 to 12 mg/kg/day (maximum concentration of drug in serum [Cmax] of 57.8, 93.9, 123.3, 141.1, and 183.7 mg/liter; half-life [t1/2] of 8 h) were tested against one Enterococcus faecium strain (S447) and one Enterococcus faecalis strain (S613) in a simulated endocardial vegetation pharmacokinetic/pharmacodynamic model over 14 days. Samples were plated on media containing 3× the MIC of daptomycin to detect Dapr. Mutations in genes encoding proteins associated with cell envelope homeostasis (yycFG and liaFSR) and phospholipid metabolism (cardiolipin synthase [cls] and cyclopropane fatty acid synthetase [cfa]) were investigated in Dapr derivatives. Dapr derivatives were assessed for changes in susceptibility, surface charge, membrane depolarization, cell wall thickness (CWT), and growth rate. Strains S447 and S613 developed Dapr after simulations of 4 to 8 mg/kg/day but not 10 to 12 mg/kg/day. MICs for Dapr strains ranged from 8 to 256 mg/liter. Some S613 derivatives developed mutations in liaF or cls. S447 derivatives lacked mutations in these genes. Dapr derivatives from both strains exhibited lowered growth rates, up to a 72% reduction in daptomycin-induced depolarization and up to 6-nm increases in CWT (P<0.01). Peak/MIC and AUC0-24/MIC ratios (AUC0-24 is the area under the concentration-time curve from 0 to 24 h) associated with Dapr prevention were 72.1 and 780 for S447 and 144 and 1561 for S613, respectively. Daptomycin doses of 10 mg/kg/day may be required to prevent Dapr in serious enterococcal infections.
Collapse
|
98
|
Repizo GD, Espariz M, Blancato VS, Suárez CA, Esteban L, Magni C. Genomic comparative analysis of the environmental Enterococcus mundtii against enterococcal representative species. BMC Genomics 2014; 15:489. [PMID: 24942651 PMCID: PMC4076982 DOI: 10.1186/1471-2164-15-489] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 06/02/2014] [Indexed: 11/30/2022] Open
Abstract
Background Enterococcus mundtii is a yellow-pigmented microorganism rarely found in human infections. The draft genome sequence of E. mundtii was recently announced. Its genome encodes at least 2,589 genes and 57 RNAs, and 4 putative genomic islands have been detected. The objective of this study was to compare the genetic content of E. mundtii with respect to other enterococcal species and, more specifically, to identify genes coding for putative virulence traits present in enterococcal opportunistic pathogens. Results An in-depth mining of the annotated genome was performed in order to uncover the unique properties of this microorganism, which allowed us to detect a gene encoding the antimicrobial peptide mundticin among other relevant features. Moreover, in this study a comparative genomic analysis against commensal and pathogenic enterococcal species, for which genomic sequences have been released, was conducted for the first time. Furthermore, our study reveals significant similarities in gene content between this environmental isolate and the selected enterococci strains (sharing an “enterococcal gene core” of 805 CDS), which contributes to understand the persistence of this genus in different niches and also improves our knowledge about the genetics of this diverse group of microorganisms that includes environmental, commensal and opportunistic pathogens. Conclusion Although E. mundtii CRL1656 is phylogenetically closer to E. faecium, frequently responsible of nosocomial infections, this strain does not encode the most relevant relevant virulence factors found in the enterococcal clinical isolates and bioinformatic predictions indicate that it possesses the lowest number of putative pathogenic genes among the most representative enterococcal species. Accordingly, infection assays using the Galleria mellonella model confirmed its low virulence. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-489) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Christian Magni
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Argentina.
| |
Collapse
|
99
|
Whole-genome analyses of Enterococcus faecium isolates with diverse daptomycin MICs. Antimicrob Agents Chemother 2014; 58:4527-34. [PMID: 24867964 DOI: 10.1128/aac.02686-14] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Daptomycin (DAP) is a lipopeptide antibiotic frequently used as a "last-resort" antibiotic against vancomycin-resistant Enterococcus faecium (VRE). However, an important limitation for DAP therapy against VRE is the emergence of resistance during therapy. Mutations in regulatory systems involved in cell envelope homeostasis are postulated to be important mediators of DAP resistance in E. faecium. Thus, in order to gain insights into the genetic bases of DAP resistance in E. faecium, we investigated the presence of changes in 43 predicted proteins previously associated with DAP resistance in enterococci and staphylococci using the genomes of 19 E. faecium with different DAP MICs (range, 3 to 48 μg/ml). Bodipy-DAP (BDP-DAP) binding to the cell membrane assays and time-kill curves (DAP alone and with ampicillin) were performed. Genetic changes involving two major pathways were identified: (i) LiaFSR, a regulatory system associated with the cell envelope stress response, and (ii) YycFGHIJ, a system involved in the regulation of cell wall homeostasis. Thr120 → Ala and Trp73 → Cys substitutions in LiaS and LiaR, respectively, were the most common changes identified. DAP bactericidal activity was abolished in the presence of liaFSR or yycFGHIJ mutations regardless of the DAP MIC and was restored in the presence of ampicillin, but only in representatives of the LiaFSR pathway. Reduced binding of BDP-DAP to the cell surface was the predominant finding correlating with resistance in isolates with DAP MICs above the susceptibility breakpoint. Our findings suggest that genotypic information may be crucial to predict response to DAP plus β-lactam combinations and continue to question the DAP breakpoint of 4 μg/ml.
Collapse
|
100
|
Douillard FP, Rasinkangas P, von Ossowski I, Reunanen J, Palva A, de Vos WM. Functional identification of conserved residues involved in Lactobacillus rhamnosus strain GG sortase specificity and pilus biogenesis. J Biol Chem 2014; 289:15764-75. [PMID: 24753244 DOI: 10.1074/jbc.m113.542332] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In Gram-positive bacteria, sortase-dependent pili mediate the adhesion of bacteria to host epithelial cells and play a pivotal role in colonization, host signaling, and biofilm formation. Lactobacillus rhamnosus strain GG, a well known probiotic bacterium, also displays on its cell surface mucus-binding pilus structures, along with other LPXTG surface proteins, which are processed by sortases upon specific recognition of a highly conserved LPXTG motif. Bioinformatic analysis of all predicted LPXTG proteins encoded by the L. rhamnosus GG genome revealed a remarkable conservation of glycine residues juxtaposed to the canonical LPXTG motif. Here, we investigated and defined the role of this so-called triple glycine (TG) motif in determining sortase specificity during the pilus assembly and anchoring. Mutagenesis of the TG motif resulted in a lack or an alteration of the L. rhamnosus GG pilus structures, indicating that the TG motif is critical in pilus assembly and that they govern the pilin-specific and housekeeping sortase specificity. This allowed us to propose a regulatory model of the L. rhamnosus GG pilus biogenesis. Remarkably, the TG motif was identified in multiple pilus gene clusters of other Gram-positive bacteria, suggesting that similar signaling mechanisms occur in other, mainly pathogenic, species.
Collapse
Affiliation(s)
- François P Douillard
- From the Department of Veterinary Biosciences, University of Helsinki, Helsinki 00790, Finland and
| | - Pia Rasinkangas
- From the Department of Veterinary Biosciences, University of Helsinki, Helsinki 00790, Finland and
| | - Ingemar von Ossowski
- From the Department of Veterinary Biosciences, University of Helsinki, Helsinki 00790, Finland and
| | - Justus Reunanen
- From the Department of Veterinary Biosciences, University of Helsinki, Helsinki 00790, Finland and
| | - Airi Palva
- From the Department of Veterinary Biosciences, University of Helsinki, Helsinki 00790, Finland and
| | - Willem M de Vos
- From the Department of Veterinary Biosciences, University of Helsinki, Helsinki 00790, Finland and the Laboratory of Microbiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|