51
|
Johannson KA, Balmes JR, Collard HR. Air pollution exposure: a novel environmental risk factor for interstitial lung disease? Chest 2015; 147:1161-1167. [PMID: 25846532 PMCID: PMC4388120 DOI: 10.1378/chest.14-1299] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/22/2014] [Indexed: 11/01/2022] Open
Abstract
Air pollution exposure is a well-established risk factor for several adverse respiratory outcomes, including airways diseases and lung cancer. Few studies have investigated the relationship between air pollution and interstitial lung disease (ILD) despite many forms of ILD arising from environmental exposures. There are potential mechanisms by which air pollution could cause, exacerbate, or accelerate the progression of certain forms of ILD via pulmonary and systemic inflammation as well as oxidative stress. This article will review the current epidemiologic and translational data supporting the plausibility of this relationship and propose a new conceptual framework for characterizing novel environmental risk factors for these forms of lung disease.
Collapse
Affiliation(s)
- Kerri A Johannson
- Department of Medicine, University of California, San Francisco, CA; Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - John R Balmes
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA
| | - Harold R Collard
- Department of Medicine, University of California, San Francisco, CA.
| |
Collapse
|
52
|
Mordukhovich I, Lepeule J, Coull BA, Sparrow D, Vokonas P, Schwartz J. The effect of oxidative stress polymorphisms on the association between long-term black carbon exposure and lung function among elderly men. Thorax 2014; 70:133-7. [PMID: 25414198 DOI: 10.1136/thoraxjnl-2014-206179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Black carbon (BC) is a pro-oxidant, traffic-related pollutant linked with lung function decline. We evaluated the influence of genetic variation in the oxidative stress pathway on the association between long-term BC exposure and lung function decline. METHODS Lung function parameters (FVC and FEV1) were measured during one or more study visits between 1995 and 2011 (n=651 participants) among an elderly cohort: the Normative Aging Study. Residential BC exposure levels were estimated using a spatiotemporal land use regression model. We evaluated whether oxidative stress variants, combined into a genetic score, modify the association between 1-year and 5-year moving averages of BC exposure and lung function levels and rates of decline, using linear mixed models. RESULTS We report stronger associations between long-term BC exposure and increased rate of lung function decline, but not baseline lung function level, among participants with higher oxidative stress allelic risk profiles compared with participants with lower risk profiles. Associations were strongest when evaluating 5-year moving averages of BC exposure. A 0.5 µg/m(3) increase in 5-year BC exposure was associated with a 0.1% yearly increase in FVC (95% CI -0.5 to 0.7) among participants with low genetic risk scores and a 1.3% yearly decrease (95% CI -1.8 to -0.8) among those with high scores (p-interaction=0.0003). DISCUSSION Our results suggest that elderly men with high oxidative stress genetic scores may be more susceptible to the effects of BC on lung function decline. The results, if confirmed, should inform air-quality recommendations in light of a potentially susceptible subgroup.
Collapse
Affiliation(s)
- Irina Mordukhovich
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Johanna Lepeule
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA INSERM, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France University of Grenoble Alpes, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France CHU de Grenoble, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Brent A Coull
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - David Sparrow
- VA Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Pantel Vokonas
- VA Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Joel Schwartz
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
53
|
Campbell A, Daher N, Solaimani P, Mendoza K, Sioutas C. Human brain derived cells respond in a type-specific manner after exposure to urban particulate matter (PM). Toxicol In Vitro 2014; 28:1290-5. [DOI: 10.1016/j.tiv.2014.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 01/27/2023]
|
54
|
Neophytou AM, Hart JE, Chang Y, Zhang JJ, Smith TJ, Garshick E, Laden F. Short-term traffic related exposures and biomarkers of nitro-PAH exposure and oxidative DNA damage. TOXICS 2014; 2:377-390. [PMID: 25254201 DOI: 10.3390/toxics2030377] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exposure to vehicle exhaust has been associated with cardiac and respiratory disease, lung cancer, and greater overall mortality. We investigated whether amino- polycyclic aromatic hydrocarbon (amino-PAH) metabolites of nitro-PAHs could be used as biomarkers of these exposures. Pre- and post-shift urine samples were collected at the beginning and end of a work week from 82 male U.S trucking industry workers. We used repeated-measures analysis to examine associations of total 1- and 2-aminonaphthalene (1 & 2-AN) and 1-aminopyrene (1-AP) urinary concentrations with microenvironment exposures to particulate matter (PM2.5), elemental and organic carbon, and between 1&2-AN and 1-AP with urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG). There was an association between work week mean PM2.5 levels and post-shift 1 & 2-AN, [141.8 pg/ml increase (95% CI:53.3, 230.2) for each IQR increase (5.54 µg/m3) in PM2.5,] but no associations with other exposure measures. There was a statistically significant increase in 8-OHdG concentrations with 1 & 2-AN (2.38 µg/mg creatinine (95%CI: 0.19, 4.58) per 242.85 pg/mg creatinine increase in 1 & 2-AN), and suggestive associations with all other exposure measures. Our findings suggest associations between urinary amino-PAHs with vehicle exhaust related PM2.5 as well as with a biomarker of oxidative DNA damage.
Collapse
Affiliation(s)
- Andreas M Neophytou
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA ; Division of Environmental Health Sciences, UC Berkeley School of Public Health, Berkeley, CA, USA
| | - Jaime E Hart
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA ; Channing Division of Network Medicine, Brigham and Women's and Hospital Harvard Medical School, Boston, MA, USA
| | - Yan Chang
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Junfeng Jim Zhang
- Nicholas School of the Environment, & Duke Global Health Institute, Duke University Durham, NC, USA
| | - Thomas J Smith
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Eric Garshick
- Pulmonary and Critical Care Medicine Section, VA Boston Healthcare System, Boston, MA, USA ; Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Francine Laden
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA ; Channing Division of Network Medicine, Brigham and Women's and Hospital Harvard Medical School, Boston, MA, USA
| |
Collapse
|
55
|
Abstract
Traffic and power generation are the main sources of urban air pollution. The idea that outdoor air pollution can cause exacerbations of pre-existing asthma is supported by an evidence base that has been accumulating for several decades, with several studies suggesting a contribution to new-onset asthma as well. In this Series paper, we discuss the effects of particulate matter (PM), gaseous pollutants (ozone, nitrogen dioxide, and sulphur dioxide), and mixed traffic-related air pollution. We focus on clinical studies, both epidemiological and experimental, published in the previous 5 years. From a mechanistic perspective, air pollutants probably cause oxidative injury to the airways, leading to inflammation, remodelling, and increased risk of sensitisation. Although several pollutants have been linked to new-onset asthma, the strength of the evidence is variable. We also discuss clinical implications, policy issues, and research gaps relevant to air pollution and asthma.
Collapse
Affiliation(s)
- Michael Guarnieri
- Department of Medicine, University of California, San Francisco, CA, USA; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - John R Balmes
- Department of Medicine, University of California, San Francisco, CA, USA; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA.
| |
Collapse
|