51
|
Ranganathan R, Haque S, Coley K, Shepheard S, Cooper-Knock J, Kirby J. Multifaceted Genes in Amyotrophic Lateral Sclerosis-Frontotemporal Dementia. Front Neurosci 2020; 14:684. [PMID: 32733193 PMCID: PMC7358438 DOI: 10.3389/fnins.2020.00684] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are two progressive, adult onset neurodegenerative diseases, caused by the cell death of motor neurons in the motor cortex and spinal cord and cortical neurons in the frontal and temporal lobes, respectively. Whilst these have previously appeared to be quite distinct disorders, in terms of areas affected and clinical symptoms, identification of cognitive dysfunction as a component of amyotrophic lateral sclerosis (ALS), with some patients presenting with both ALS and FTD, overlapping features of neuropathology and the ongoing discoveries that a significant proportion of the genes underlying the familial forms of the disease are the same, has led to ALS and FTD being described as a disease spectrum. Many of these genes encode proteins in common biological pathways including RNA processing, autophagy, ubiquitin proteasome system, unfolded protein response and intracellular trafficking. This article provides an overview of the ALS-FTD genes before summarizing other known ALS and FTD causing genes where mutations have been found primarily in patients of one disease and rarely in the other. In discussing these genes, the review highlights the similarity of biological pathways in which the encoded proteins function and the interactions that occur between these proteins, whilst recognizing the distinctions of MAPT-related FTD and SOD1-related ALS. However, mutations in all of these genes result in similar pathology including protein aggregation and neuroinflammation, highlighting that multiple different mechanisms lead to common downstream effects and neuronal loss. Next generation sequencing has had a significant impact on the identification of genes associated with both diseases, and has also highlighted the widening clinical phenotypes associated with variants in these ALS and FTD genes. It is hoped that the large sequencing initiatives currently underway in ALS and FTD will begin to uncover why different diseases are associated with mutations within a single gene, especially as a personalized medicine approach to therapy, based on a patient's genetics, approaches the clinic.
Collapse
Affiliation(s)
- Ramya Ranganathan
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
| | - Shaila Haque
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
- Department of Biochemistry and Biotechnology, University of Barishal, Barishal, Bangladesh
| | - Kayesha Coley
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
| | - Stephanie Shepheard
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
52
|
Tang X, Toro A, T G S, Gao J, Chalk J, Oskarsson B, Zhang K. Divergence, Convergence, and Therapeutic Implications: A Cell Biology Perspective of C9ORF72-ALS/FTD. Mol Neurodegener 2020; 15:34. [PMID: 32513219 PMCID: PMC7282082 DOI: 10.1186/s13024-020-00383-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Ever since a GGGGCC hexanucleotide repeat expansion mutation in C9ORF72 was identified as the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), three competing but nonexclusive hypotheses to explain how this mutation causes diseases have been proposed and are still under debate. Recent studies in the field have tried to understand how the repeat expansion disrupts cellular physiology, which has suggested interesting convergence of these hypotheses on downstream, functional defects in cells, such as nucleocytoplasmic transport disruption, membrane-less organelle defects, and DNA damage. These studies have not only provided an integrated view of the disease mechanism but also revealed novel cell biology implicated in neurodegeneration. Furthermore, some of the discoveries have given rise to new ideas for therapeutic development. Here, we review the research progress on cellular pathophysiology of C9ORF72-mediated ALS and FTD and its therapeutic implication. We suggest that the repeat expansion drives pathogenesis through a combination of downstream defects, of which some can be therapeutic targets.
Collapse
Affiliation(s)
- Xiaoqiang Tang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Arturo Toro
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Sahana T G
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Junli Gao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Jessica Chalk
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Ke Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA. .,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA.
| |
Collapse
|
53
|
Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease. Nat Rev Neurol 2020; 15:272-286. [PMID: 30890779 DOI: 10.1038/s41582-019-0157-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomolecular condensation arising through phase transitions has emerged as an essential organizational strategy that governs many aspects of cell biology. In particular, the role of phase transitions in the assembly of large, complex ribonucleoprotein (RNP) granules has become appreciated as an important regulator of RNA metabolism. In parallel, genetic, histopathological and cell and molecular studies have provided evidence that disturbance of phase transitions is an important driver of neurological diseases, notably amyotrophic lateral sclerosis (ALS), but most likely also other diseases. Indeed, our growing knowledge of the biophysics underlying biological phase transitions suggests that this process offers a unifying mechanism to explain the numerous and diverse disturbances in RNA metabolism that have been observed in ALS and some related diseases - specifically, that these diseases are driven by disturbances in the material properties of RNP granules. Here, we review the evidence for this hypothesis, emphasizing the reciprocal roles in which disease-related protein and disease-related RNA can lead to disturbances in the material properties of RNP granules and consequent pathogenesis. Additionally, we review evidence that implicates aberrant phase transitions as a contributing factor to a larger set of neurodegenerative diseases, including frontotemporal dementia, certain repeat expansion diseases and Alzheimer disease.
Collapse
|
54
|
Foster AD, Rea SL. The role of sequestosome 1/p62 protein in amyotrophic lateral sclerosis and frontotemporal dementia pathogenesis. Neural Regen Res 2020; 15:2186-2194. [PMID: 32594029 PMCID: PMC7749485 DOI: 10.4103/1673-5374.284977] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal lobar degeneration are multifaceted diseases with genotypic, pathological and clinical overlap. One such overlap is the presence of SQSTM1/p62 mutations. While traditionally mutations manifesting in the ubiquitin-associated domain of p62 were associated with Paget’s disease of bone, mutations affecting all functional domains of p62 have now been identified in amyotrophic lateral sclerosis and frontotemporal lobar degeneration patients. p62 is a multifunctional protein that facilitates protein degradation through autophagy and the ubiquitin-proteasome system, and also regulates cell survival via the Nrf2 antioxidant response pathway, the nuclear factor-kappa B signaling pathway and apoptosis. Dysfunction in these signaling and protein degradation pathways have been observed in amyotrophic lateral sclerosis and frontotemporal lobar degeneration, and mutations that affect the role of p62 in these pathways may contribute to disease pathogenesis. In this review we discuss the role of p62 in these pathways, the effects of p62 mutations and the effect of mutations in the p62 modulator TANK-binding kinase 1, in relation to amyotrophic lateral sclerosis-frontotemporal lobar degeneration pathogenesis.
Collapse
Affiliation(s)
- Adriana Delice Foster
- Harry Perkins Institute of Medical Research, University of Western Australia; Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Western Australia, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Western Australia, Australia
| | - Sarah Lyn Rea
- Harry Perkins Institute of Medical Research, University of Western Australia; Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Western Australia, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
55
|
Subcortical TDP-43 pathology patterns validate cortical FTLD-TDP subtypes and demonstrate unique aspects of C9orf72 mutation cases. Acta Neuropathol 2020; 139:83-98. [PMID: 31501924 DOI: 10.1007/s00401-019-02070-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
Frontotemporal lobar degeneration with TDP-43 immunoreactive (TDP-ir) inclusions (FTLD-TDP) is sub-classified based on the pattern of neocortical pathology, with each subtype showing clinical and genetic correlations. Recent studies indicate that accurate subtyping of cases may be important to help identify genetic risk factors and develop biomarkers. Although most FTLD-TDP cases are easily classified, some do not match well to one of the existing subtypes. In particular, cases with the C9orf72 repeat expansion (C9+) have been reported to show FTLD-TDP type A, type B or a combination of A and B pathology (A + B). In our series of FTLD-TDP cases, we found that those lacking the C9orf72 mutation (non-C9) were all readily classified as type A (n = 29), B (n = 16) or C (n = 18), using current criteria and standard observational methods. This classification was validated using non-biased hierarchical cluster analysis (HCA) of neocortical pathology data. In contrast, only 14/28 (50%) of the C9+ cases were classified as either pure type A or pure type B, with the remainder showing A + B features. HCA confirmed separation of the C9+ cases into three groups. We then investigated whether patterns of subcortical TDP-ir pathology helped to classify the difficult cases. For the non-C9 cases, each subtype showed a consistent pattern of subcortical involvement with significant differences among the groups. The most distinguishing features included white matter threads, neuronal intranuclear inclusions in hippocampus and striatum, and delicate threads in CA1 in type A; glial cytoplasmic inclusions in white matter and neuronal cytoplasmic inclusions (NCI) in lower motor neurons in type B; compact NCI in striatum in type C. HCA of the C9+ cases based on subcortical features increased the number that clustered with the non-C9 type A (46%) or non-C9 type B (36%); however, there remained a C9+ group with A + B features (18%). These findings suggest that most FTLD-TDP cases can be classified using existing criteria and that each group also shows characteristic subcortical TDP-ir pathology. However, C9+ cases may be unique in the degree to which their pathology overlaps between FTLD-TDP types A and B.
Collapse
|
56
|
Nguyen L, Montrasio F, Pattamatta A, Tusi SK, Bardhi O, Meyer KD, Hayes L, Nakamura K, Banez-Coronel M, Coyne A, Guo S, Laboissonniere LA, Gu Y, Narayanan S, Smith B, Nitsch RM, Kankel MW, Rushe M, Rothstein J, Zu T, Grimm J, Ranum LPW. Antibody Therapy Targeting RAN Proteins Rescues C9 ALS/FTD Phenotypes in C9orf72 Mouse Model. Neuron 2019; 105:645-662.e11. [PMID: 31831332 DOI: 10.1016/j.neuron.2019.11.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/10/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
Abstract
The intronic C9orf72 G4C2 expansion, the most common genetic cause of ALS and FTD, produces sense- and antisense-expansion RNAs and six dipeptide repeat-associated, non-ATG (RAN) proteins, but their roles in disease are unclear. We generated high-affinity human antibodies targeting GA or GP RAN proteins. These antibodies cross the blood-brain barrier and co-localize with intracellular RAN aggregates in C9-ALS/FTD BAC mice. In cells, α-GA1 interacts with TRIM21, and α-GA1 treatment reduced GA levels, increased GA turnover, and decreased RAN toxicity and co-aggregation of proteasome and autophagy proteins to GA aggregates. In C9-BAC mice, α-GA1 reduced GA as well as GP and GR proteins, improved behavioral deficits, decreased neuroinflammation and neurodegeneration, and increased survival. Glycosylation of the Fc region of α-GA1 is important for cell entry and efficacy. These data demonstrate that RAN proteins drive C9-ALS/FTD in C9-BAC transgenic mice and establish a novel therapeutic approach for C9orf72 ALS/FTD and other RAN-protein diseases.
Collapse
Affiliation(s)
- Lien Nguyen
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | | | - Amrutha Pattamatta
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Solaleh Khoramian Tusi
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Olgert Bardhi
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Kevin D Meyer
- Neurimmune AG, 8952 Schlieren, Switzerland; Institute for Regenerative Medicine-IREM, University of Zurich, 8952 Schlieren, Switzerland
| | - Lindsey Hayes
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Katsuya Nakamura
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Monica Banez-Coronel
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Alyssa Coyne
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Shu Guo
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Lauren A Laboissonniere
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Yuanzheng Gu
- Neuromuscular and Movement Disorders, Biogen, Cambridge, MA 02142, USA
| | | | - Benjamin Smith
- Neuromuscular and Movement Disorders, Biogen, Cambridge, MA 02142, USA
| | - Roger M Nitsch
- Neurimmune AG, 8952 Schlieren, Switzerland; Institute for Regenerative Medicine-IREM, University of Zurich, 8952 Schlieren, Switzerland
| | - Mark W Kankel
- Neuromuscular and Movement Disorders, Biogen, Cambridge, MA 02142, USA
| | - Mia Rushe
- Neuromuscular and Movement Disorders, Biogen, Cambridge, MA 02142, USA
| | - Jeffrey Rothstein
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tao Zu
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Jan Grimm
- Neurimmune AG, 8952 Schlieren, Switzerland
| | - Laura P W Ranum
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
57
|
Yang Y, Halliday GM, Kiernan MC, Tan RH. TDP-43 levels in the brain tissue of ALS cases with and without C9ORF72 or ATXN2 gene expansions. Neurology 2019; 93:e1748-e1755. [PMID: 31619481 DOI: 10.1212/wnl.0000000000008439] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To assess the amount of phosphorylated and nonphosphorylated TAR DNA-binding protein 43 (TDP-43) in the motor brain regions of cases of amyotrophic lateral sclerosis (ALS) with and without repeat expansions in the ATXN2 or C9ORF72 genes. METHODS The 45-kDa phosphorylated form of TDP-43 and 43-kDa nonphosphorylated form of TDP-43 were quantified by immunoblot in postmortem brain tissue from the motor cortex, spinal cord, and cerebellar vermis of 23 cases with ALS with repeat expansions in the ATXN2 or C9ORF72 genes and sporadic disease and 10 controls. RESULTS Significantly greater levels of phosphorylated TDP-43 were identified in the motor cortex of cases with ALS with C9ORF72 expansions, and significantly greater amounts of phosphorylated TDP-43 were found in the spinal cord of cases with ALS with intermediate ATXN2 expansions. In contrast, however, similar levels of nonphosphorylated TDP-43 were found in all 3 regions between ALS groups. CONCLUSION Despite its central role in the pathogenesis of ALS and the emergence of potential targets to modify its aggregation, TDP-43 levels have not been quantified in pathologically confirmed cases with ALS. The present results demonstrating significant differences in phosphorylated but not nonphosphorylated TDP-43 levels suggest that different posttranslational modifications are involved in the generation of greater pathologic TDP-43 levels identified here in our cohort of cases with genetic expansions. These findings are consistent with emerging studies implicating distinct pathomechanisms in the generation of pathologic TDP-43 in cases with ALS with C9ORF72 or ATXN2 expansions and are of relevance to therapeutic research aimed at reducing pathologic TDP-43 in all or a subset of patients with ALS.
Collapse
Affiliation(s)
- Yue Yang
- From the University of Sydney (Y.Y., G.M.H., M.C.K., R.H.T.), Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health; School of Medical Sciences (G.M.H., R.H.T.), University of New South Wales; Neuroscience Research Australia (G.M.H., R.H.T.); and Department of Neurology (M.C.K.), Royal Prince Alfred Hospital, Sydney, Australia
| | - Glenda M Halliday
- From the University of Sydney (Y.Y., G.M.H., M.C.K., R.H.T.), Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health; School of Medical Sciences (G.M.H., R.H.T.), University of New South Wales; Neuroscience Research Australia (G.M.H., R.H.T.); and Department of Neurology (M.C.K.), Royal Prince Alfred Hospital, Sydney, Australia
| | - Matthew C Kiernan
- From the University of Sydney (Y.Y., G.M.H., M.C.K., R.H.T.), Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health; School of Medical Sciences (G.M.H., R.H.T.), University of New South Wales; Neuroscience Research Australia (G.M.H., R.H.T.); and Department of Neurology (M.C.K.), Royal Prince Alfred Hospital, Sydney, Australia
| | - Rachel H Tan
- From the University of Sydney (Y.Y., G.M.H., M.C.K., R.H.T.), Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health; School of Medical Sciences (G.M.H., R.H.T.), University of New South Wales; Neuroscience Research Australia (G.M.H., R.H.T.); and Department of Neurology (M.C.K.), Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|
58
|
Cheng W, Wang S, Zhang Z, Morgens DW, Hayes LR, Lee S, Portz B, Xie Y, Nguyen BV, Haney MS, Yan S, Dong D, Coyne AN, Yang J, Xian F, Cleveland DW, Qiu Z, Rothstein JD, Shorter J, Gao FB, Bassik MC, Sun S. CRISPR-Cas9 Screens Identify the RNA Helicase DDX3X as a Repressor of C9ORF72 (GGGGCC)n Repeat-Associated Non-AUG Translation. Neuron 2019; 104:885-898.e8. [PMID: 31587919 DOI: 10.1016/j.neuron.2019.09.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/16/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
Hexanucleotide GGGGCC repeat expansion in C9ORF72 is the most prevalent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). One pathogenic mechanism is the aberrant accumulation of dipeptide repeat (DPR) proteins produced by the unconventional translation of expanded RNA repeats. Here, we performed genome-wide CRISPR-Cas9 screens for modifiers of DPR protein production in human cells. We found that DDX3X, an RNA helicase, suppresses the repeat-associated non-AUG translation of GGGGCC repeats. DDX3X directly binds to (GGGGCC)n RNAs but not antisense (CCCCGG)n RNAs. Its helicase activity is essential for the translation repression. Reduction of DDX3X increases DPR levels in C9ORF72-ALS/FTD patient cells and enhances (GGGGCC)n-mediated toxicity in Drosophila. Elevating DDX3X expression is sufficient to decrease DPR levels, rescue nucleocytoplasmic transport abnormalities, and improve survival of patient iPSC-differentiated neurons. This work identifies genetic modifiers of DPR protein production and provides potential therapeutic targets for C9ORF72-ALS/FTD.
Collapse
Affiliation(s)
- Weiwei Cheng
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaopeng Wang
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhe Zhang
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David W Morgens
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lindsey R Hayes
- Brain Science Institute and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Soojin Lee
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Bede Portz
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yongzhi Xie
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Baotram V Nguyen
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael S Haney
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shirui Yan
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daoyuan Dong
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alyssa N Coyne
- Brain Science Institute and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Junhua Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fengfan Xian
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeffrey D Rothstein
- Brain Science Institute and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shuying Sun
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
59
|
Goodman LD, Bonini NM. Repeat-associated non-AUG (RAN) translation mechanisms are running into focus for GGGGCC-repeat associated ALS/FTD. Prog Neurobiol 2019; 183:101697. [PMID: 31550516 DOI: 10.1016/j.pneurobio.2019.101697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/31/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Many human diseases are associated with the expansion of repeat sequences within the genes. It has become clear that expressed disease transcripts bearing such long repeats can undergo translation, even in the absence of a canonical AUG start codon. Termed "RAN translation" for repeat associated non-AUG translation, this process is becoming increasingly prominent as a contributor to these disorders. Here we discuss mechanisms and variables that impact translation of the repeat sequences associated with the C9orf72 gene. Expansions of a G4C2 repeat within intron 1 of this gene are associated with the motor neuron disease ALS and dementia FTD, which comprise a clinical and pathological spectrum. RAN translation of G4C2 repeat expansions has been studied in cells in culture (ex vivo) and in the fly in vivo. Cellular states that lead to RAN translation, like stress, may be critical contributors to disease progression. Greater elucidation of the mechanisms that impact this process and the factors contributing will lead to greater understanding of the repeat expansion diseases, to the potential development of novel approaches to therapeutics, and to a greater understanding of how these players impact biological processes in the absence of disease.
Collapse
Affiliation(s)
- Lindsey D Goodman
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy M Bonini
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
60
|
Lee SM, Asress S, Hales CM, Gearing M, Vizcarra JC, Fournier CN, Gutman DA, Chin LS, Li L, Glass JD. TDP-43 cytoplasmic inclusion formation is disrupted in C9orf72-associated amyotrophic lateral sclerosis/frontotemporal lobar degeneration. Brain Commun 2019; 1:fcz014. [PMID: 31633109 PMCID: PMC6788139 DOI: 10.1093/braincomms/fcz014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/10/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
The G4C2 hexanucleotide repeat expansion mutation in the C9orf72 gene is the most common genetic cause underlying both amyotrophic lateral sclerosis and frontotemporal dementia. Pathologically, these two neurodegenerative disorders are linked by the common presence of abnormal phosphorylated TDP-43 neuronal cytoplasmic inclusions. We compared the number and size of phosphorylated TDP-43 inclusions and their morphology in hippocampi from patients dying with sporadic versus C9orf72-related amyotrophic lateral sclerosis with pathologically defined frontotemporal lobar degeneration with phosphorylated TDP-43 inclusions, the pathological substrate of clinical frontotemporal dementia in patients with amyotrophic lateral sclerosis. In sporadic cases, there were numerous consolidated phosphorylated TDP-43 inclusions that were variable in size, whereas inclusions in C9orf72 amyotrophic lateral sclerosis/frontotemporal lobar degeneration were quantitatively smaller than those in sporadic cases. Also, C9orf72 amyotrophic lateral sclerosis/frontotemporal lobar degeneration homogenized brain contained soluble cytoplasmic TDP-43 that was largely absent in sporadic cases. To better understand these pathological differences, we modelled TDP-43 inclusion formation in fibroblasts derived from sporadic or C9orf72-related amyotrophic lateral sclerosis/frontotemporal dementia patients. We found that both sporadic and C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia patient fibroblasts showed impairment in TDP-43 degradation by the proteasome, which may explain increased TDP-43 protein levels found in both sporadic and C9orf72 amyotrophic lateral sclerosis/frontotemporal lobar degeneration frontal cortex and hippocampus. Fibroblasts derived from sporadic patients, but not C9orf72 patients, demonstrated the ability to sequester cytoplasmic TDP-43 into aggresomes via microtubule-dependent mechanisms. TDP-43 aggresomes in vitro and TDP-43 neuronal inclusions in vivo were both tightly localized with autophagy markers and, therefore, were likely to function similarly as sites for autophagic degradation. The inability for C9orf72 fibroblasts to form TDP-43 aggresomes, together with the observations that TDP-43 protein was soluble in the cytoplasm and formed smaller inclusions in the C9orf72 brain compared with sporadic disease, suggests a loss of protein quality control response to sequester and degrade TDP-43 in C9orf72-related diseases.
Collapse
Affiliation(s)
- Samuel M Lee
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Seneshaw Asress
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Chadwick M Hales
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Marla Gearing
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Juan C Vizcarra
- Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, USA.,Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Christina N Fournier
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - David A Gutman
- Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, USA.,Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lih-Shen Chin
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lian Li
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan D Glass
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
61
|
Bauer PO, Dunmore JH, Sasaguri H, Matoska V. Neurons Induced From Fibroblasts of c9ALS/FTD Patients Reproduce the Pathology Seen in the Central Nervous System. Front Neurosci 2019; 13:935. [PMID: 31551693 PMCID: PMC6743368 DOI: 10.3389/fnins.2019.00935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are incurable neurodegenerative conditions. A non-coding hexanucleotide (GGGGCC) repeat expansion in the c9orf72 gene is the most common genetic cause of ALS/FTD. We present a cellular model of c9ALS/FTD where induced neurons (iNeurons) are generated within 2 weeks by direct conversion of patients‘ dermal fibroblasts through down-regulation of polypyrimidine-tract-binding protein 1 (PTB1). While sense (S) and anti-sense (AS) intranuclear RNA foci were observed in both fibroblasts and iNeurons, the accumulation of (S) and (AS) repeat-associated non-ATG translation (RANT) products were detected only in iNeurons. Importantly, anti-sense oligonucleotides (ASOs) against the (S) repeat transcript lead to decreased (S) RNA foci staining and a reduction of the corresponding RANT products without affecting its (AS) counterparts. ASOs treatment also rescued the cell viability upon stressful stimulus. The results indicate that iNeurons is an advantageous model that not only recapitulates c9ALS/FTD hallmark features but can also help uncover promising therapeutics.
Collapse
Affiliation(s)
- Peter O Bauer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States.,Bioinova, Ltd., Prague, Czechia.,Department of Clinical Biochemistry, Hematology and Immunology, Na Homolce Hospital, Prague, Czechia
| | - Judith H Dunmore
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Hiroki Sasaguri
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Vaclav Matoska
- Department of Clinical Biochemistry, Hematology and Immunology, Na Homolce Hospital, Prague, Czechia
| |
Collapse
|
62
|
Abstract
The discovery that repeat expansions in the C9orf72 gene are a frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) has revolutionized our understanding of these diseases. Substantial headway has been made in characterizing C9orf72-mediated disease and unravelling its underlying aetiopathogenesis. Three main disease mechanisms have been proposed: loss of function of the C9orf72 protein and toxic gain of function from C9orf72 repeat RNA or from dipeptide repeat proteins produced by repeat-associated non-ATG translation. Several downstream processes across a range of cellular functions have also been implicated. In this article, we review the pathological and mechanistic features of C9orf72-associated FTD and ALS (collectively termed C9FTD/ALS), the model systems used to study these conditions, and the probable initiators of downstream disease mechanisms. We suggest that a combination of upstream mechanisms involving both loss and gain of function and downstream cellular pathways involving both cell-autonomous and non-cell-autonomous effects contributes to disease progression.
Collapse
Affiliation(s)
- Rubika Balendra
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, UCL, London, UK
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK. .,UK Dementia Research Institute at UCL, UCL Institute of Neurology, London, UK.
| |
Collapse
|
63
|
Van Mossevelde S, Engelborghs S, van der Zee J, Van Broeckhoven C. Genotype-phenotype links in frontotemporal lobar degeneration. Nat Rev Neurol 2019; 14:363-378. [PMID: 29777184 DOI: 10.1038/s41582-018-0009-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) represents a group of neurodegenerative brain diseases with highly heterogeneous clinical, neuropathological and genetic characteristics. This high degree of heterogeneity results from the presence of several different underlying molecular disease processes; consequently, it is unlikely that all patients with FTLD will benefit from a single therapy. Therapeutic strategies for FTLD are currently being explored, and tools are urgently needed that enable the selection of patients who are the most likely to benefit from a particular therapy. Definition of the phenotypic characteristics in patients with different FTLD subtypes that share the same underlying disease processes would assist in the stratification of patients into homogeneous groups. The most common subtype of FTLD is characterized by TAR DNA-binding protein 43 (TDP43) pathology (FTLD-TDP). In this group, pathogenic mutations have been identified in four genes: C9orf72, GRN, TBK1 and VCP. Here, we provide a comprehensive overview of the phenotypic characteristics of patients with FTLD-TDP, highlighting shared features and differences among groups of patients who have a pathogenic mutation in one of these four genes.
Collapse
Affiliation(s)
- Sara Van Mossevelde
- Neurodegenerative Brain Diseases Group, VIB-UAntwerp Center for Molecular Neurology, Antwerp, Belgium.,Institute Born-Bunge, UAntwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp, Middelheim and Hoge Beuken, Antwerp, Belgium.,Department of Neurology and Memory Clinic, University Hospital Antwerp, Edegem, Belgium
| | - Sebastiaan Engelborghs
- Institute Born-Bunge, UAntwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp, Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, VIB-UAntwerp Center for Molecular Neurology, Antwerp, Belgium.,Institute Born-Bunge, UAntwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB-UAntwerp Center for Molecular Neurology, Antwerp, Belgium. .,Institute Born-Bunge, UAntwerp, Antwerp, Belgium.
| |
Collapse
|
64
|
DNA repair and neurological disease: From molecular understanding to the development of diagnostics and model organisms. DNA Repair (Amst) 2019; 81:102669. [PMID: 31331820 DOI: 10.1016/j.dnarep.2019.102669] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In both replicating and non-replicating cells, the maintenance of genomic stability is of utmost importance. Dividing cells can repair DNA damage during cell division, tolerate the damage by employing potentially mutagenic DNA polymerases or die via apoptosis. However, the options for accurate DNA repair are more limited in non-replicating neuronal cells. If DNA damage is left unresolved, neuronal cells die causing neurodegenerative disorders. A number of pathogenic variants of DNA repair proteins have been linked to multiple neurological diseases. The current challenge is to harness our knowledge of fundamental properties of DNA repair to improve diagnosis, prognosis and treatment of such debilitating disorders. In this perspective, we will focus on recent efforts in identifying novel DNA repair biomarkers for the diagnosis of neurological disorders and their use in monitoring the patient response to therapy. These efforts are greatly facilitated by the development of model organisms such as zebrafish, which will also be summarised.
Collapse
|
65
|
Solomon DA, Stepto A, Au WH, Adachi Y, Diaper DC, Hall R, Rekhi A, Boudi A, Tziortzouda P, Lee YB, Smith B, Bridi JC, Spinelli G, Dearlove J, Humphrey DM, Gallo JM, Troakes C, Fanto M, Soller M, Rogelj B, Parsons RB, Shaw CE, Hortobágyi T, Hirth F. A feedback loop between dipeptide-repeat protein, TDP-43 and karyopherin-α mediates C9orf72-related neurodegeneration. Brain 2019; 141:2908-2924. [PMID: 30239641 PMCID: PMC6158706 DOI: 10.1093/brain/awy241] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
Accumulation and aggregation of TDP-43 is a major pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. TDP-43 inclusions also characterize patients with GGGGCC (G4C2) hexanucleotide repeat expansion in C9orf72 that causes the most common genetic form of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Functional studies in cell and animal models have identified pathogenic mechanisms including repeat-induced RNA toxicity and accumulation of G4C2-derived dipeptide-repeat proteins. The role of TDP-43 dysfunction in C9ALS/FTD, however, remains elusive. We found G4C2-derived dipeptide-repeat protein but not G4C2-RNA accumulation caused TDP-43 proteinopathy that triggered onset and progression of disease in Drosophila models of C9ALS/FTD. Timing and extent of TDP-43 dysfunction was dependent on levels and identity of dipeptide-repeat proteins produced, with poly-GR causing early and poly-GA/poly-GP causing late onset of disease. Accumulating cytosolic, but not insoluble aggregated TDP-43 caused karyopherin-α2/4 (KPNA2/4) pathology, increased levels of dipeptide-repeat proteins and enhanced G4C2-related toxicity. Comparable KPNA4 pathology was observed in both sporadic frontotemporal dementia and C9ALS/FTD patient brains characterized by its nuclear depletion and cytosolic accumulation, irrespective of TDP-43 or dipeptide-repeat protein aggregates. These findings identify a vicious feedback cycle for dipeptide-repeat protein-mediated TDP-43 and subsequent KPNA pathology, which becomes self-sufficient of the initiating trigger and causes C9-related neurodegeneration.
Collapse
Affiliation(s)
- Daniel A Solomon
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Alan Stepto
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Wing Hei Au
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Yoshitsugu Adachi
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Danielle C Diaper
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Rachel Hall
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Anjeet Rekhi
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Adel Boudi
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Paraskevi Tziortzouda
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Youn-Bok Lee
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Bradley Smith
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Jessika C Bridi
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Greta Spinelli
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Jonah Dearlove
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Dickon M Humphrey
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Jean-Marc Gallo
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Claire Troakes
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Manolis Fanto
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Boris Rogelj
- Jozef Stefan Institute, Department of Biotechnology and Biomedical Research Institute BRIS and University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia
| | - Richard B Parsons
- King's College London, School of Cancer Studies and Pharmaceutical Sciences, London, UK
| | - Christopher E Shaw
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Tibor Hortobágyi
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Departments of Neurology and Neuropathology, University of Debrecen, Debrecen, Hungary.,King's College London, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Frank Hirth
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| |
Collapse
|
66
|
Rodriguez CM, Todd PK. New pathologic mechanisms in nucleotide repeat expansion disorders. Neurobiol Dis 2019; 130:104515. [PMID: 31229686 DOI: 10.1016/j.nbd.2019.104515] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
Tandem microsatellite repeats are common throughout the human genome and intrinsically unstable, exhibiting expansions and contractions both somatically and across generations. Instability in a small subset of these repeats are currently linked to human disease, although recent findings suggest more disease-causing repeats await discovery. These nucleotide repeat expansion disorders (NREDs) primarily affect the nervous system and commonly lead to neurodegeneration through toxic protein gain-of-function, protein loss-of-function, and toxic RNA gain-of-function mechanisms. However, the lines between these categories have blurred with recent findings of unconventional Repeat Associated Non-AUG (RAN) translation from putatively non-coding regions of the genome. Here we review two emerging topics in NREDs: 1) The mechanisms by which RAN translation occurs and its role in disease pathogenesis and 2) How nucleotide repeats as RNA and translated proteins influence liquid-liquid phase separation, membraneless organelle dynamics, and nucleocytoplasmic transport. We examine these topics with a particular eye on two repeats: the CGG repeat expansion responsible for Fragile X syndrome and Fragile X-associated Tremor Ataxia Syndrome (FXTAS) and the intronic GGGGCC repeat expansion in C9orf72, the most common inherited cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Our thesis is that these emerging disease mechanisms can inform a broader understanding of the native roles of microsatellites in cellular function and that aberrations in these native processes provide clues to novel therapeutic strategies for these currently untreatable disorders.
Collapse
Affiliation(s)
- C M Rodriguez
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - P K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
67
|
Berson A, Goodman LD, Sartoris AN, Otte CG, Aykit JA, Lee VMY, Trojanowski JQ, Bonini NM. Drosophila Ref1/ALYREF regulates transcription and toxicity associated with ALS/FTD disease etiologies. Acta Neuropathol Commun 2019; 7:65. [PMID: 31036086 PMCID: PMC6487524 DOI: 10.1186/s40478-019-0710-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
RNA-binding proteins (RBPs) are associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the underlying disease mechanisms remain unclear. In an unbiased screen in Drosophila for RBPs that genetically interact with TDP-43, we found that downregulation of the mRNA export factor Ref1 (fly orthologue to human ALYREF) mitigated TDP-43 induced toxicity. Further, Ref1 depletion also reduced toxicity caused by expression of the C9orf72 GGGGCC repeat expansion. Ref1 knockdown lowered the mRNA levels for these related disease genes and reduced the encoded proteins with no effect on a wild-type Tau disease transgene or a control transgene. Interestingly, expression of TDP-43 or the GGGGCC repeat expansion increased endogenous Ref1 mRNA levels in the fly brain. Further, the human orthologue ALYREF was upregulated by immunohistochemistry in ALS motor neurons, with the strongest upregulation occurring in ALS cases harboring the GGGGCC expansion in C9orf72. These data support ALYREF as a contributor to ALS/FTD and highlight its downregulation as a potential therapeutic target that may affect co-existing disease etiologies.
Collapse
Affiliation(s)
- Amit Berson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lindsey D Goodman
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ashley N Sartoris
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Charlton G Otte
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James A Aykit
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
68
|
Goodman LD, Prudencio M, Srinivasan AR, Rifai OM, Lee VMY, Petrucelli L, Bonini NM. eIF4B and eIF4H mediate GR production from expanded G4C2 in a Drosophila model for C9orf72-associated ALS. Acta Neuropathol Commun 2019; 7:62. [PMID: 31023341 PMCID: PMC6485101 DOI: 10.1186/s40478-019-0711-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/25/2019] [Indexed: 01/09/2023] Open
Abstract
The discovery of an expanded (GGGGCC)n repeat (termed G4C2) within the first intron of C9orf72 in familial ALS/FTD has led to a number of studies showing that the aberrant expression of G4C2 RNA can produce toxic dipeptides through repeat-associated non-AUG (RAN-) translation. To reveal canonical translation factors that impact this process, an unbiased loss-of-function screen was performed in a G4C2 fly model that maintained the upstream intronic sequence of the human gene and contained a GFP tag in the GR reading frame. 11 of 48 translation factors were identified that impact production of the GR-GFP protein. Further investigations into two of these, eIF4B and eIF4H, revealed that downregulation of these factors reduced toxicity caused by the expression of expanded G4C2 and reduced production of toxic GR dipeptides from G4C2 transcripts. In patient-derived cells and in post-mortem tissue from ALS/FTD patients, eIF4H was found to be downregulated in cases harboring the G4C2 mutation compared to patients lacking the mutation and healthy individuals. Overall, these data define eIF4B and eIF4H as disease modifiers whose activity is important for RAN-translation of the GR peptide from G4C2-transcripts.
Collapse
Affiliation(s)
- Lindsey D. Goodman
- 0000 0004 1936 8972grid.25879.31Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Mercedes Prudencio
- 0000 0004 0443 9942grid.417467.7Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Ananth R. Srinivasan
- 0000 0004 1936 8972grid.25879.31Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Olivia M. Rifai
- 0000 0004 1936 8972grid.25879.31Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Virginia M.-Y. Lee
- 0000 0004 1936 8972grid.25879.31Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Leonard Petrucelli
- 0000 0004 0443 9942grid.417467.7Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Nancy M. Bonini
- 0000 0004 1936 8972grid.25879.31Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,0000 0004 1936 8972grid.25879.31Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
69
|
Bain HDC, Davidson YS, Robinson AC, Ryan S, Rollinson S, Richardson A, Jones M, Snowden JS, Pickering‐Brown S, Mann DMA. The role of lysosomes and autophagosomes in frontotemporal lobar degeneration. Neuropathol Appl Neurobiol 2019; 45:244-261. [PMID: 29790198 PMCID: PMC6487817 DOI: 10.1111/nan.12500] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cell biological and genetic evidence implicate failures in degrading aggregating proteins, such as tau and TDP-43, through the autophagy or lysosomal pathways in the pathogenesis of frontotemporal lobar degeneration (FTLD). METHODS We investigated changes in the degradative pathways in 60 patients with different pathological or genetic forms of FTLD employing immunohistochemistry for marker proteins such as lysosomal-associated membrane proteins 1 (LAMP-1) and 2 (LAMP-2), cathepsin D (CTSD) and microtubule-associated protein 1 light chain 3 alpha (LC3A). Immunostained sections were qualitatively and semi-quantitatively assessed for the appearance, distribution and intensity of staining in neurones of the dentate gyrus (DG) and CA4 region of the hippocampus, and the temporal cortex (Tcx). RESULTS Lower levels of neuronal LAMP-1 immunostaining were present in the DG and Tcx in FTLD-tau compared to FTLD-TDP. There was less LAMP-1 immunostaining in FTLD-tau with MAPT mutations, and FTLD-tau with Pick bodies, compared to FTLD-TDP types A and B, and less LAMP-1 immunostaining in FTLD-TDP type C than in FTLD-TDP types A and B. There was greater LAMP-1 immunostaining in GRN mutation which may reflect the underlying type A histology rather than mutation. There were no differences in neuronal LAMP-2, CTSD, EEA-1 or LC3A immunostaining between any of the five FTLD histological or four genetic groups, nor between FTLD-TDP and FTLD-tau. CONCLUSIONS The underlying pathological mechanism in FTLD-tau may lie with a relative deficiency of lysosomes, or defective vesicular transport, whereas the failure to clear TDP-43 aggregates may lie with lysosomal dysfunction rather than a lack of available lysosomes or degradative enzymes.
Collapse
Affiliation(s)
- H. D. C. Bain
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterSalford Royal HospitalSalfordUK
| | - Y. S. Davidson
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterSalford Royal HospitalSalfordUK
| | - A. C. Robinson
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterSalford Royal HospitalSalfordUK
| | - S. Ryan
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - S. Rollinson
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - A. Richardson
- Cerebral Function UnitGreater Manchester Neurosciences CentreSalford Royal HospitalSalfordUK
| | - M. Jones
- Cerebral Function UnitGreater Manchester Neurosciences CentreSalford Royal HospitalSalfordUK
| | - J. S. Snowden
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterSalford Royal HospitalSalfordUK
- Cerebral Function UnitGreater Manchester Neurosciences CentreSalford Royal HospitalSalfordUK
| | - S. Pickering‐Brown
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - D. M. A. Mann
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterSalford Royal HospitalSalfordUK
| |
Collapse
|
70
|
Vatsavayai SC, Nana AL, Yokoyama JS, Seeley WW. C9orf72-FTD/ALS pathogenesis: evidence from human neuropathological studies. Acta Neuropathol 2019; 137:1-26. [PMID: 30368547 DOI: 10.1007/s00401-018-1921-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
What are the most important and treatable pathogenic mechanisms in C9orf72-FTD/ALS? Model-based efforts to address this question are forging ahead at a blistering pace, often with conflicting results. But what does the human neuropathological literature reveal? Here, we provide a critical review of the human studies to date, seeking to highlight key gaps or uncertainties in our knowledge. First, we engage the C9orf72-specific mechanisms, including C9orf72 haploinsufficiency, repeat RNA foci, and dipeptide repeat protein inclusions. We then turn to some of the most prominent C9orf72-associated features, such as TDP-43 loss-of-function, TDP-43 aggregation, and nuclear transport defects. Finally, we review potential disease-modifying epigenetic and genetic factors and the natural history of the disease across the lifespan. Throughout, we emphasize the importance of anatomical precision when studying how candidate mechanisms relate to neuronal, regional, and behavioral findings. We further highlight methodological approaches that may help address lingering knowledge gaps and uncertainties, as well as other logical next steps for the field. We conclude that anatomically oriented human neuropathological studies have a critical role to play in guiding this fast-moving field toward effective new therapies.
Collapse
Affiliation(s)
- Sarat C Vatsavayai
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Alissa L Nana
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA.
- Department of Pathology, University of California, San Francisco, Box 1207, San Francisco, CA, 94143-1207, USA.
| |
Collapse
|
71
|
Shaw MP, Higginbottom A, McGown A, Castelli LM, James E, Hautbergue GM, Shaw PJ, Ramesh TM. Stable transgenic C9orf72 zebrafish model key aspects of the ALS/FTD phenotype and reveal novel pathological features. Acta Neuropathol Commun 2018; 6:125. [PMID: 30454072 PMCID: PMC6240957 DOI: 10.1186/s40478-018-0629-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/14/2022] Open
Abstract
A hexanucleotide repeat expansion (HRE) within the chromosome 9 open reading frame 72 (C9orf72) gene is the most prevalent cause of amyotrophic lateral sclerosis/fronto-temporal dementia (ALS/FTD). Current evidence suggests HREs induce neurodegeneration through accumulation of RNA foci and/or dipeptide repeat proteins (DPR). C9orf72 patients are known to have transactive response DNA binding protein 43 kDa (TDP-43) proteinopathy, but whether there is further cross over between C9orf72 pathology and the pathology of other ALS sub-types has yet to be revealed. To address this, we generated and characterised two zebrafish lines expressing C9orf72 HREs. We also characterised pathology in human C9orf72-ALS cases. In addition, we utilised a reporter construct that expresses DsRed under the control of a heat shock promoter, to screen for potential therapeutic compounds. Both zebrafish lines showed accumulation of RNA foci and DPR. Our C9-ALS/FTD zebrafish model is the first to recapitulate the motor deficits, cognitive impairment, muscle atrophy, motor neuron loss and mortality in early adulthood observed in human C9orf72-ALS/FTD. Furthermore, we identified that in zebrafish, human cell lines and human post-mortem tissue, C9orf72 expansions activate the heat shock response (HSR). Additionally, HSR activation correlated with disease progression in our C9-ALS/FTD zebrafish model. Lastly, we identified that the compound ivermectin, as well as riluzole, reduced HSR activation in both C9-ALS/FTD and SOD1 zebrafish models. Thus, our C9-ALS/FTD zebrafish model is a stable transgenic model which recapitulates key features of human C9orf72-ALS/FTD, and represents a powerful drug-discovery tool.
Collapse
|
72
|
Bourinaris T, Houlden H. C9orf72 and its Relevance in Parkinsonism and Movement Disorders: A Comprehensive Review of the Literature. Mov Disord Clin Pract 2018; 5:575-585. [PMID: 30637277 DOI: 10.1002/mdc3.12677] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
Background The C9orf72 hexanucleotide expansion is one of the latest discovered repeat expansion disorders related to neurodegeneration. Its association with the FTD/ALS spectrum disorders is well established, and it is considered to be one of the leading related genes. It has also been reported as a possible cause of several other phenotypes, including parkinsonism and other movement disorders. Its significance, though outside the FTD/ALS spectrum, is not well defined. Methods A comprehensive search of the literature was performed. All relevant papers, including reviews and case series/reports on movement disorder phenotypes reported with the C9orf72 repeat expansion, were reviewed. Data on frequency, natural history, phenotype, genetics, and possible underlying mechanisms were assessed. Results and Discussion In a number of studies, C9orf72 accounts for a small fraction of typical PD. Atypical parkinsonian syndromes, including CBS, PSP, and MSA have also been reported. Features that increase the probability of positive testing include early cognitive and/or behavioral symptoms, positive family history of ALS or FTD, and the presence of UMN and LMN signs. Furthermore, several studies conclude that C9orf72 is the most common cause of HD-phenocopies. Interestingly, many cases with the parkinsonian phenotype that bear an intermediate range of repeats are also reported, questioning the direct causal role of C9orf72 and suggesting the possibility of being a susceptibility factor, while the presence of the expansion in normal controls questions its clinical significance. Finally, studies on pathology reveal a distinctive broad range of C9orf72-related neurodegeneration that could explain the wide phenotypic variation.
Collapse
Affiliation(s)
- Thomas Bourinaris
- Department of Molecular Neuroscience Institute of Neurology, University College London London, WC1N 3BG UK
| | - Henry Houlden
- Department of Molecular Neuroscience Institute of Neurology, University College London London, WC1N 3BG UK
| |
Collapse
|
73
|
Steinacker P, Barschke P, Otto M. Biomarkers for diseases with TDP-43 pathology. Mol Cell Neurosci 2018; 97:43-59. [PMID: 30399416 DOI: 10.1016/j.mcn.2018.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 01/01/2023] Open
Abstract
The discovery that aggregated transactive response DNA-binding protein 43 kDa (TDP-43) is the major component of pathological ubiquitinated inclusions in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) caused seminal progress in the unveiling of the genetic bases and molecular characteristics of these now so-called TDP-43 proteinopathies. Substantial increase in the knowledge of clinic-pathological coherencies, especially for FTLD variants, could be made in the last decade, but also revealed a considerable complexity of TDP-43 pathology and often a poor correlation of clinical and molecular disease characteristics. To date, an underlying TDP-43 pathology can be predicted only for patients with mutations in the genes C9orf72 and GRN, but is dependent on neuropathological verification in patients without family history, which represent the majority of cases. As etiology-specific therapies for neurodegenerative proteinopathies are emerging, methods to forecast TDP-43 pathology at patients' lifetime are highly required. Here, we review the current status of research pursued to identify specific indicators to predict or exclude TDP-43 pathology in the ALS-FTLD spectrum disorders and findings on candidates for prognosis and monitoring of disease progression in TDP-43 proteinopathies with a focus on TDP-43 with its pathological forms, neurochemical and imaging biomarkers.
Collapse
Affiliation(s)
| | - Peggy Barschke
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.
| |
Collapse
|
74
|
Abstract
Microsatellite expansions cause more than 40 neurological disorders, including Huntington's disease, myotonic dystrophy, and C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). These repeat expansion mutations can produce repeat-associated non-ATG (RAN) proteins in all three reading frames, which accumulate in disease-relevant tissues. There has been considerable interest in RAN protein products and their downstream consequences, particularly for the dipeptide proteins found in C9ORF72 ALS/FTD. Understanding how RAN translation occurs, what cellular factors contribute to RAN protein accumulation, and how these proteins contribute to disease should lead to a better understanding of the basic mechanisms of gene expression and human disease.
Collapse
Affiliation(s)
- John Douglas Cleary
- From the Center for NeuroGenetics
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
| | - Amrutha Pattamatta
- From the Center for NeuroGenetics
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
| | - Laura P W Ranum
- From the Center for NeuroGenetics,
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
- Neurology, College of Medicine
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
75
|
Nonaka T, Masuda-Suzukake M, Hosokawa M, Shimozawa A, Hirai S, Okado H, Hasegawa M. C9ORF72 dipeptide repeat poly-GA inclusions promote intracellular aggregation of phosphorylated TDP-43. Hum Mol Genet 2018; 27:2658-2670. [DOI: 10.1093/hmg/ddy174] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
| | | | | | | | - Shinobu Hirai
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Haruo Okado
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | | |
Collapse
|
76
|
Gendron TF, Petrucelli L. Disease Mechanisms of C9ORF72 Repeat Expansions. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a024224. [PMID: 28130314 DOI: 10.1101/cshperspect.a024224] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
G4C2 repeat expansions within the C9ORF72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These bidirectionally transcribed expansions lead to (1) the accumulation of sense G4C2 and antisense G2C4 repeat-containing RNA, (2) the production of proteins of repeating dipeptides through unconventional translation of these transcripts, and (3) decreased C9ORF72 mRNA and protein expression. Consequently, there is ample opportunity for the C9ORF72 mutation to give rise to a spectrum of clinical manifestations, ranging from muscle weakness and atrophy to changes in behavior and cognition. It is thus somewhat surprising that investigations of these three seemingly disparate events often converge on similar putative pathological mechanisms. This review aims to summarize the findings and questions emerging from the field's quest to decipher how C9ORF72 repeat expansions cause the devastating diseases collectively referred to as "c9ALS/FTD."
Collapse
Affiliation(s)
- Tania F Gendron
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224
| |
Collapse
|
77
|
Saberi S, Stauffer JE, Jiang J, Garcia SD, Taylor AE, Schulte D, Ohkubo T, Schloffman CL, Maldonado M, Baughn M, Rodriguez MJ, Pizzo D, Cleveland D, Ravits J. Sense-encoded poly-GR dipeptide repeat proteins correlate to neurodegeneration and uniquely co-localize with TDP-43 in dendrites of repeat-expanded C9orf72 amyotrophic lateral sclerosis. Acta Neuropathol 2018; 135:459-474. [PMID: 29196813 PMCID: PMC5935138 DOI: 10.1007/s00401-017-1793-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/25/2017] [Accepted: 11/26/2017] [Indexed: 12/12/2022]
Abstract
Hexanucleotide repeat expansions in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (C9 ALS). The main hypothesized pathogenic mechanisms are C9orf72 haploinsufficiency and/or toxicity from one or more of bi-directionally transcribed repeat RNAs and their dipeptide repeat proteins (DPRs) poly-GP, poly-GA, poly-GR, poly-PR and poly-PA. Recently, nuclear import and/or export defects especially caused by arginine-containing poly-GR or poly-PR have been proposed as significant contributors to pathogenesis based on disease models. We quantitatively studied and compared DPRs, nuclear pore proteins and C9orf72 protein in clinically related and clinically unrelated regions of the central nervous system, and compared them to phosphorylated TDP-43 (pTDP-43), the hallmark protein of ALS. Of the five DPRs, only poly-GR was significantly abundant in clinically related areas compared to unrelated areas (p < 0.001), and formed dendritic-like aggregates in the motor cortex that co-localized with pTDP-43 (p < 0.0001). While most poly-GR dendritic inclusions were pTDP-43 positive, only 4% of pTDP-43 dendritic inclusions were poly-GR positive. Staining for arginine-containing poly-GR and poly-PR in nuclei of neurons produced signals that were not specific to C9 ALS. We could not detect significant differences of nuclear markers RanGap, Lamin B1, and Importin β1 in C9 ALS, although we observed subtle nuclear changes in ALS, both C9 and non-C9, compared to control. The C9orf72 protein itself was diffusely expressed in cytoplasm of large neurons and glia, and nearly 50% reduced, in both clinically related frontal cortex and unrelated occipital cortex, but not in cerebellum. In summary, sense-encoded poly-GR DPR was unique, and localized to dendrites and pTDP43 in motor regions of C9 ALS CNS. This is consistent with new emerging ideas about TDP-43 functions in dendrites.
Collapse
Affiliation(s)
- Shahram Saberi
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy, Place Box 1194, New York, NY, 10029, USA
| | - Jennifer E Stauffer
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
- Jackson Laboratory, 600 Main St, Bar Harbor, ME, 04609, USA
| | - Jie Jiang
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
- Laboratory for Cell Biology, Ludwig Institute for Cancer Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0670, USA
| | - Sandra Diaz Garcia
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
| | - Amy E Taylor
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
| | - Derek Schulte
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
- NeuroPace, Inc, 455 N. Bernardo Ave, Mountain View, CA, 94043, USA
| | - Takuya Ohkubo
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
| | - Cheyenne L Schloffman
- Laboratory for Cell Biology, Ludwig Institute for Cancer Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0670, USA
| | - Marcus Maldonado
- Laboratory for Cell Biology, Ludwig Institute for Cancer Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0670, USA
| | - Michael Baughn
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Maria J Rodriguez
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
| | - Don Pizzo
- Department of Pathology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Don Cleveland
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Laboratory for Cell Biology, Ludwig Institute for Cancer Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0670, USA
| | - John Ravits
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0624, USA.
| |
Collapse
|
78
|
Cheng W, Wang S, Mestre AA, Fu C, Makarem A, Xian F, Hayes LR, Lopez-Gonzalez R, Drenner K, Jiang J, Cleveland DW, Sun S. C9ORF72 GGGGCC repeat-associated non-AUG translation is upregulated by stress through eIF2α phosphorylation. Nat Commun 2018; 9:51. [PMID: 29302060 PMCID: PMC5754368 DOI: 10.1038/s41467-017-02495-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/01/2017] [Indexed: 01/04/2023] Open
Abstract
Hexanucleotide repeat expansion in C9ORF72 is the most frequent cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we demonstrate that the repeat-associated non-AUG (RAN) translation of (GGGGCC) n -containing RNAs into poly-dipeptides can initiate in vivo without a 5'-cap. The primary RNA substrate for RAN translation of C9ORF72 sense repeats is shown to be the spliced first intron, following its excision from the initial pre-mRNA and transport to the cytoplasm. Cap-independent RAN translation is shown to be upregulated by various stress stimuli through phosphorylation of the α subunit of eukaryotic initiation factor-2 (eIF2α), the core event of an integrated stress response (ISR). Compounds inhibiting phospho-eIF2α-signaling pathways are shown to suppress RAN translation. Since the poly-dipeptides can themselves induce stress, these findings support a feedforward loop with initial repeat-mediated toxicity enhancing RAN translation and subsequent production of additional poly-dipeptides through ISR, thereby promoting progressive disease.
Collapse
Affiliation(s)
- Weiwei Cheng
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shaopeng Wang
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Alexander A Mestre
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Chenglai Fu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Andres Makarem
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Fengfan Xian
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lindsey R Hayes
- Brain Science Institute and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rodrigo Lopez-Gonzalez
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Kevin Drenner
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Jie Jiang
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Shuying Sun
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
79
|
Cristofani R, Crippa V, Vezzoli G, Rusmini P, Galbiati M, Cicardi ME, Meroni M, Ferrari V, Tedesco B, Piccolella M, Messi E, Carra S, Poletti A. The small heat shock protein B8 (HSPB8) efficiently removes aggregating species of dipeptides produced in C9ORF72-related neurodegenerative diseases. Cell Stress Chaperones 2018; 23:1-12. [PMID: 28608264 PMCID: PMC5741577 DOI: 10.1007/s12192-017-0806-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two neurodegenerative diseases in which similar pathogenic mechanisms are involved. Both diseases associate to the high propensity of specific misfolded proteins, like TDP-43 or FUS, to mislocalize and aggregate. This is partly due to their intrinsic biophysical properties and partly as a consequence of failure of the neuronal protein quality control (PQC) system. Several familial ALS/FTD cases are linked to an expansion of a repeated G4C2 hexanucleotide sequence present in the C9ORF72 gene. The G4C2, which localizes in an untranslated region of the C9ORF72 transcript, drives an unconventional repeat-associated ATG-independent translation. This leads to the synthesis of five different dipeptide repeat proteins (DPRs), which are not "classical" misfolded proteins, but generate aberrant aggregation-prone unfolded conformations poorly removed by the PQC system. The DPRs accumulate into p62/SQSTM1 and ubiquitin positive inclusions. Here, we analyzed the biochemical behavior of the five DPRs in immortalized motoneurons. Our data suggest that while the DPRs are mainly processed via autophagy, this system is unable to fully clear their aggregated forms, and thus they tend to accumulate in basal conditions. Overexpression of the small heat shock protein B8 (HSPB8), which facilitates the autophagy-mediated disposal of a large variety of classical misfolded aggregation-prone proteins, significantly decreased the accumulation of most DPR insoluble species. Thus, the induction of HSPB8 might represent a valid approach to decrease DPR-mediated toxicity and maintain motoneuron viability.
Collapse
Affiliation(s)
- Riccardo Cristofani
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Valeria Crippa
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
- C. Mondino National Neurological Institute, Pavia, Italy
| | - Giulia Vezzoli
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Paola Rusmini
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Mariarita Galbiati
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Maria Elena Cicardi
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Marco Meroni
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Veronica Ferrari
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Barbara Tedesco
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Margherita Piccolella
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Elio Messi
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Serena Carra
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| | - Angelo Poletti
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
- Centro Interuniversitario sulle Malattie Neurodegenerative, Università degli Studi di Firenze Roma Tor Vergata, Genova e Milano, Italy.
| |
Collapse
|
80
|
Goutman SA, Chen KS, Paez-Colasante X, Feldman EL. Emerging understanding of the genotype-phenotype relationship in amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2018; 148:603-623. [PMID: 29478603 DOI: 10.1016/b978-0-444-64076-5.00039-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, noncurable neurodegenerative disorder of the upper and lower motor neurons causing weakness and death within a few years of symptom onset. About 10% of patients with ALS have a family history of the disease; however, ALS-associated genetic mutations are also found in sporadic cases. There are over 100 ALS-associated mutations, and importantly, several genetic mutations, including C9ORF72, SOD1, and TARDBP, have led to mechanistic insight into this complex disease. In the clinical realm, knowledge of ALS genetics can also help explain phenotypic heterogeneity, aid in genetic counseling, and in the future may help direct treatment efforts.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| | - Kevin S Chen
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | | | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
81
|
Kapur M, Monaghan CE, Ackerman SL. Regulation of mRNA Translation in Neurons-A Matter of Life and Death. Neuron 2017; 96:616-637. [PMID: 29096076 DOI: 10.1016/j.neuron.2017.09.057] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022]
Abstract
Dynamic regulation of mRNA translation initiation and elongation is essential for the survival and function of neural cells. Global reductions in translation initiation resulting from mutations in the translational machinery or inappropriate activation of the integrated stress response may contribute to pathogenesis in a subset of neurodegenerative disorders. Aberrant proteins generated by non-canonical translation initiation may be a factor in the neuron death observed in the nucleotide repeat expansion diseases. Dysfunction of central components of the elongation machinery, such as the tRNAs and their associated enzymes, can cause translational infidelity and ribosome stalling, resulting in neurodegeneration. Taken together, dysregulation of mRNA translation is emerging as a unifying mechanism underlying the pathogenesis of many neurodegenerative disorders.
Collapse
Affiliation(s)
- Mridu Kapur
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Caitlin E Monaghan
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
82
|
Yousef A, Robinson JL, Irwin DJ, Byrne MD, Kwong LK, Lee EB, Xu Y, Xie SX, Rennert L, Suh E, Van Deerlin VM, Grossman M, Lee VMY, Trojanowski JQ. Neuron loss and degeneration in the progression of TDP-43 in frontotemporal lobar degeneration. Acta Neuropathol Commun 2017; 5:68. [PMID: 28877758 PMCID: PMC5586052 DOI: 10.1186/s40478-017-0471-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) is associated with the accumulation of pathological neuronal and glial intracytoplasmic inclusions as well as accompanying neuron loss. We explored if cortical neurons detected by NeuN decreased with increasing TDP-43 inclusion pathology in the postmortem brains of 63 patients with sporadic and familial FTLD-TDP. Semi-automated quantitative algorithms to quantify histology in tissue sections stained with antibodies specific for pathological or phosphorylated TDP-43 (pTDP-43) and NeuN were developed and validated in affected (cerebral cortex) and minimally affected (cerebellar cortex) brain regions of FTLD-TDP cases. Immunohistochemistry (IHC) for NeuN and other neuronal markers found numerous neurons lacking reactivity, suggesting NeuN may reflect neuron health rather than neuron loss in FTLD. We found three patterns of NeuN and pTDP-43 reactivity in our sample of cortical tissue representing three intracortical region-specific stages of FTLD-TDP progression: Group 1 showed low levels of pathological pTDP-43 and high levels NeuN, while Group 2 showed increased levels of pTDP-43, and Group 3 tissues were characterized by reduced staining for both pTDP-43 and NeuN. Comparison of non-C9orf72/GRN FTLD-TDP with cases linked to both GRN mutations and C9orf72 expansions showed a significantly increased frequency of Group 3 histopathology in the latter cases, suggesting more advanced cortical disease. Hence, we propose that IHC profiles of pTDP-43 and NeuN reflect the burden of pTDP-43 and its deleterious effects on neuron health.
Collapse
|
83
|
Walker C, Herranz-Martin S, Karyka E, Liao C, Lewis K, Elsayed W, Lukashchuk V, Chiang SC, Ray S, Mulcahy PJ, Jurga M, Tsagakis I, Iannitti T, Chandran J, Coldicott I, De Vos KJ, Hassan MK, Higginbottom A, Shaw PJ, Hautbergue GM, Azzouz M, El-Khamisy SF. C9orf72 expansion disrupts ATM-mediated chromosomal break repair. Nat Neurosci 2017; 20:1225-1235. [PMID: 28714954 PMCID: PMC5578434 DOI: 10.1038/nn.4604] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 06/12/2017] [Indexed: 12/14/2022]
Abstract
Hexanucleotide repeat expansions represent the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, though the mechanisms by which such expansions cause neurodegeneration are poorly understood. We report elevated levels of DNA-RNA hybrids (R-loops) and double strand breaks in rat neurons, human cells and C9orf72 ALS patient spinal cord tissues. Accumulation of endogenous DNA damage is concomitant with defective ATM-mediated DNA repair signaling and accumulation of protein-linked DNA breaks. We reveal that defective ATM-mediated DNA repair is a consequence of P62 accumulation, which impairs H2A ubiquitylation and perturbs ATM signaling. Virus-mediated expression of C9orf72-related RNA and dipeptide repeats in the mouse central nervous system increases double strand breaks and ATM defects and triggers neurodegeneration. These findings identify R-loops, double strand breaks and defective ATM-mediated repair as pathological consequences of C9orf72 expansions and suggest that C9orf72-linked neurodegeneration is driven at least partly by genomic instability.
Collapse
Affiliation(s)
- Callum Walker
- SITraN and Krebs Institutes, Neurodegeneration and Genome Stability Group, University of Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, S10 2HQ, Sheffield, UK
- Krebs and Sheffield Institutes for Nucleic Acids, Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, S10 2TN, Sheffield, UK
| | - Saul Herranz-Martin
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, S10 2HQ, Sheffield, UK
| | - Evangelia Karyka
- SITraN and Krebs Institutes, Neurodegeneration and Genome Stability Group, University of Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, S10 2HQ, Sheffield, UK
- Krebs and Sheffield Institutes for Nucleic Acids, Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, S10 2TN, Sheffield, UK
| | - Chunyan Liao
- Krebs and Sheffield Institutes for Nucleic Acids, Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, S10 2TN, Sheffield, UK
| | - Katherine Lewis
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, S10 2HQ, Sheffield, UK
| | - Waheba Elsayed
- Krebs and Sheffield Institutes for Nucleic Acids, Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, S10 2TN, Sheffield, UK
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Vera Lukashchuk
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, S10 2HQ, Sheffield, UK
| | - Shih-Chieh Chiang
- Krebs and Sheffield Institutes for Nucleic Acids, Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, S10 2TN, Sheffield, UK
| | - Swagat Ray
- Krebs and Sheffield Institutes for Nucleic Acids, Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, S10 2TN, Sheffield, UK
| | - Padraig J. Mulcahy
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, S10 2HQ, Sheffield, UK
| | - Mateusz Jurga
- Krebs and Sheffield Institutes for Nucleic Acids, Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, S10 2TN, Sheffield, UK
| | - Ioannis Tsagakis
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, S10 2HQ, Sheffield, UK
| | - Tommaso Iannitti
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, S10 2HQ, Sheffield, UK
| | - Jayanth Chandran
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, S10 2HQ, Sheffield, UK
| | - Ian Coldicott
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, S10 2HQ, Sheffield, UK
| | - Kurt J. De Vos
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, S10 2HQ, Sheffield, UK
| | - Mohamed K. Hassan
- Krebs and Sheffield Institutes for Nucleic Acids, Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, S10 2TN, Sheffield, UK
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, S10 2HQ, Sheffield, UK
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, S10 2HQ, Sheffield, UK
| | - Guillaume M. Hautbergue
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, S10 2HQ, Sheffield, UK
| | - Mimoun Azzouz
- SITraN and Krebs Institutes, Neurodegeneration and Genome Stability Group, University of Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, S10 2HQ, Sheffield, UK
| | - Sherif F. El-Khamisy
- SITraN and Krebs Institutes, Neurodegeneration and Genome Stability Group, University of Sheffield, UK
- Krebs and Sheffield Institutes for Nucleic Acids, Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, S10 2TN, Sheffield, UK
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
84
|
Nassif M, Woehlbier U, Manque PA. The Enigmatic Role of C9ORF72 in Autophagy. Front Neurosci 2017; 11:442. [PMID: 28824365 PMCID: PMC5541066 DOI: 10.3389/fnins.2017.00442] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the loss of motor neurons resulting in a progressive and irreversible muscular paralysis. Advances in large-scale genetics and genomics have revealed intronic hexanucleotide repeat expansions in the gene encoding C9ORF72 as a main genetic cause of ALS and frontotemporal dementia (FTD), the second most common cause of early-onset dementia after Alzheimer's disease. Novel insights regarding the underlying pathogenic mechanisms of C9ORF72 seem to suggest a synergy of loss and gain of toxic function during disease. C9ORF72, thus far, has been found to be involved in homeostatic cellular pathways, such as actin dynamics, regulation of membrane trafficking, and macroautophagy. All these pathways have been found compromised in the pathogenesis of ALS. In this review, we aim to summarize recent findings on the function of C9ORF72, particularly in the macroautophagy pathway, hinting at a requirement to maintain the fine balance of macroautophagy to prevent neurodegeneration.
Collapse
Affiliation(s)
- Melissa Nassif
- Faculty of Science, Center for Integrative Biology, Universidad MayorSantiago, Chile.,Faculty of Science, Center for Genomics and Bioinformatics, Universidad MayorSantiago, Chile
| | - Ute Woehlbier
- Faculty of Science, Center for Integrative Biology, Universidad MayorSantiago, Chile.,Faculty of Science, Center for Genomics and Bioinformatics, Universidad MayorSantiago, Chile
| | - Patricio A Manque
- Faculty of Science, Center for Integrative Biology, Universidad MayorSantiago, Chile.,Faculty of Science, Center for Genomics and Bioinformatics, Universidad MayorSantiago, Chile
| |
Collapse
|
85
|
Davidson YS, Robinson AC, Rollinson S, Pickering-Brown S, Xiao S, Robertson J, Mann DMA. Immunohistochemical detection of C9orf72 protein in frontotemporal lobar degeneration and motor neurone disease: patterns of immunostaining and an evaluation of commercial antibodies. Amyotroph Lateral Scler Frontotemporal Degener 2017; 19:102-111. [PMID: 28766957 PMCID: PMC5836993 DOI: 10.1080/21678421.2017.1359304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have employed as ‘gold standards’ two in-house, well-characterised and validated polyclonal antibodies, C9-L and C9-S, which detect the longer and shorter forms of C9orf72, and have compared seven other commercially available antibodies with these in order to evaluate the utility of the latter as credible tools for the demonstration of C9orf72. C9-L and C9-S antibodies immunostained cytoplasmic ‘speckles’, and the nuclear membrane, respectively, in cerebellar Purkinje cells of the cerebellum in patients with behavioural variant frontotemporal dementia (bvFTD) with amyotrophic lateral sclerosis (ALS), and in patients with ALS alone. Similar staining was seen in Purkinje cells in healthy control tissues and in other neurodegenerative disorders, and in pyramidal cells of CA4 and dentate gyrus of hippocampus. However, in the spinal cord there was little cytoplasmic staining with C9-L antibody. C9-S antibody immunostained the nuclear membrane of anterior horn cells in healthy neurons. In patients with bvFTD + ALS, or ALS alone, this C9-S nuclear staining was redistributed to the plasma membrane. In those patients with bvFTD + ALS or ALS bearing an expansion in C9orf72, none of the commercially available antibodies detected TDP-43 inclusions in anterior horn cells, nor were dipeptide repeat proteins demonstrated. Five of the commercial antibodies provided immunohistochemical staining patterns similar in morphological appearance to the in-house C9-L antibody, but distinct from C9-S antibody. However, only three showed sufficient specificity and intensity of staining for C9orf72 at acceptably low concentrations, to make them of practical value and sufficiently reliable for the detection of at least the longer form of C9orf72 protein.
Collapse
Affiliation(s)
- Yvonne S Davidson
- a Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester, Salford Royal Hospital , Salford , UK
| | - Andrew C Robinson
- a Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester, Salford Royal Hospital , Salford , UK
| | - Sara Rollinson
- b Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester, A V Hill Building, University of Manchester , Manchester , UK , and
| | - Stuart Pickering-Brown
- b Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester, A V Hill Building, University of Manchester , Manchester , UK , and
| | - Shangxi Xiao
- c Tanz Centre for Research into Neurodegenerative Diseases University of Toronto , Toronto , Ontario , Canada
| | - Janice Robertson
- c Tanz Centre for Research into Neurodegenerative Diseases University of Toronto , Toronto , Ontario , Canada
| | - David M A Mann
- a Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester, Salford Royal Hospital , Salford , UK
| |
Collapse
|
86
|
Bennion Callister J, Ryan S, Sim J, Rollinson S, Pickering-Brown SM. Modelling C9orf72 dipeptide repeat proteins of a physiologically relevant size. Hum Mol Genet 2017; 25:5069-5082. [PMID: 27798094 PMCID: PMC5886041 DOI: 10.1093/hmg/ddw327] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/21/2016] [Indexed: 12/13/2022] Open
Abstract
C9orf72 expansions are the most common genetic cause of FTLD and MND identified to date. Although being intronic, the expansion is translated into five different dipeptide repeat proteins (DPRs) that accumulate within patients' neurons. Attempts have been made to model DPRs in cell and animals. However, the majority of these use DPRs repeat numbers much shorter than those observed in patients. To address this we have generated a selection of DPR expression constructs with repeat numbers in excess of 1000 repeats, matching what is seen in patients. Small and larger DPRs produce inclusions with similar morphology but different cellular effects. We demonstrate a length dependent effect using electrophysiology with a phenotype only occurring with the longest DPRs. These data highlight the importance of using physiologically relevant repeat numbers when modelling DPRs.
Collapse
Affiliation(s)
- Janis Bennion Callister
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, UK
| | - Sarah Ryan
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, UK
| | - Joan Sim
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, UK
| | - Sara Rollinson
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, UK
| | - Stuart M Pickering-Brown
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, UK
| |
Collapse
|
87
|
Barker HV, Niblock M, Lee YB, Shaw CE, Gallo JM. RNA Misprocessing in C9orf72-Linked Neurodegeneration. Front Cell Neurosci 2017; 11:195. [PMID: 28744202 PMCID: PMC5504096 DOI: 10.3389/fncel.2017.00195] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022] Open
Abstract
A large GGGGCC hexanucleotide repeat expansion in the first intron or promoter region of the C9orf72 gene is the most common genetic cause of familial and sporadic Amyotrophic lateral sclerosis (ALS), a devastating degenerative disease of motor neurons, and of Frontotemporal Dementia (FTD), the second most common form of presenile dementia after Alzheimer's disease. C9orf72-associated ALS/FTD is a multifaceted disease both in terms of its clinical presentation and the misregulated cellular pathways contributing to disease progression. Among the numerous pathways misregulated in C9orf72-associated ALS/FTD, altered RNA processing has consistently appeared at the forefront of C9orf72 research. This includes bidirectional transcription of the repeat sequence, accumulation of repeat RNA into nuclear foci sequestering specific RNA-binding proteins (RBPs) and translation of RNA repeats into dipeptide repeat proteins (DPRs) by repeat-associated non-AUG (RAN)-initiated translation. Over the past few years the true extent of RNA misprocessing in C9orf72-associated ALS/FTD has begun to emerge and disruptions have been identified in almost all aspects of the life of an RNA molecule, including release from RNA polymerase II, translation in the cytoplasm and degradation. Furthermore, several alterations have been identified in the processing of the C9orf72 RNA itself, in terms of its transcription, splicing and localization. This review article aims to consolidate our current knowledge on the consequence of the C9orf72 repeat expansion on RNA processing and draws attention to the mechanisms by which several aspects of C9orf72 molecular pathology converge to perturb every stage of RNA metabolism.
Collapse
Affiliation(s)
- Holly V. Barker
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondon, United Kingdom
| | - Michael Niblock
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondon, United Kingdom
| | - Youn-Bok Lee
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondon, United Kingdom
| | - Christopher E. Shaw
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondon, United Kingdom
| | - Jean-Marc Gallo
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondon, United Kingdom
| |
Collapse
|
88
|
Reappraisal of TDP-43 pathology in FTLD-U subtypes. Acta Neuropathol 2017; 134:79-96. [PMID: 28466142 DOI: 10.1007/s00401-017-1716-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
Abstract
Frontotemporal lobar degeneration with tau-negative, ubiquitin-immunoreactive (-ir) pathology (FTLD-U) is subclassified based on the type and cortical laminar distribution of neuronal inclusions. Following the discovery of the transactive response DNA-binding protein Mr 43 kD (TDP-43) as the ubiquitinated protein in most FTLD-U, the same pathological criteria have been used to classify FTLD cases based on TDP-43-ir changes. However, the fact that immunohistochemistry (IHC) for ubiquitin and TDP-43 each recognizes slightly different pathological changes in these cases means that the original FTLD-U subtype criteria may not be directly applicable for use with TDP-43 IHC. We formally re-evaluated the TDP-43-ir pathological features that characterize the different FTLD-U subtypes to see if the current classification could be refined. In our series of 78 cases, 81% were classified as one of the common FTLD-U subtypes (29% A, 35% B, 17% C). With TDP-43 IHC, each subtype demonstrated consistent intra-group pathological features and clear inter-group differences. The TDP-43-ir changes that characterized type A and C cases were similar to those seen with ubiquitin IHC; specifically, compact neuronal cytoplasmic inclusions (NCI), short thick dystrophic neurites (DN), and lentiform neuronal intranuclear inclusions concentrated in cortical layer II in type A cases, and a predominance of long thick DN in type C. However, type B cases showed significant differences with TDP-43 compared with ubiquitin IHC; with many diffuse granular NCI and wispy thread and dots-like profiles in all cortical layers. The remaining 15 cases (12 with C9orf72 mutations) showed changes that were consistent with combined type A and type B pathology. These findings suggest that the pathological criteria for subtyping FTLD cases based on TDP-43 IHC might benefit from some refinement that recognizes differences in the morphologies of NCI and neurites. Furthermore, there is a significant subset of cases (most with the C9orf72 mutation) with the pathological features of multiple FTLD-TDP subtypes for which appropriate classification is difficult.
Collapse
|
89
|
Davidson YS, Robinson AC, Flood L, Rollinson S, Benson BC, Asi YT, Richardson A, Jones M, Snowden JS, Pickering-Brown S, Lashley T, Mann DMA. Heterogeneous ribonuclear protein E2 (hnRNP E2) is associated with TDP-43-immunoreactive neurites in Semantic Dementia but not with other TDP-43 pathological subtypes of Frontotemporal Lobar Degeneration. Acta Neuropathol Commun 2017; 5:54. [PMID: 28666471 PMCID: PMC5493127 DOI: 10.1186/s40478-017-0454-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/14/2017] [Indexed: 02/07/2023] Open
Abstract
Frontotemporal Lobar Degeneration (FTLD) encompasses certain related neurodegenerative disorders which alter personality and cognition. Heterogeneous ribonuclear proteins (hnRNPs) maintain RNA metabolism and changes in their function may underpin the pathogenesis of FTLD. Immunostaining for hnRNP E2 was performed on sections of frontal and temporal cortex with hippocampus from 80 patients with FTLD, stratified by pathology into FTLD-tau and FTLD-TDP type A, B and C subtypes, and by genetics into patients with C9orf72 expansions, MAPT or GRN mutations, or those with no known mutation, and on 10 healthy controls. Semi-quantitative analysis assessed hnRNP staining in frontal and temporal cortex, and in dentate gyrus (DG) of hippocampus, in the different pathology and genetic groups. We find that hnRNP E2 immunostaining detects the TDP-43 positive dystrophic neurites (DN) within frontal and temporal cortex, and the neuronal cytoplasmic inclusions (NCI) seen in DG granule cells, characteristic of patients with Semantic Dementia (SD) and type C TDP-43 pathology, but did not detect TDP-43 or tau inclusions in any of the other pathological or genetic variants of FTLD. Double immunofluorescence for hnRNP E2 and TDP-43 showed most TDP-43 immunopositive DN to contain hnRNP E2. Present findings indicate an association between TDP-43 and hnRNP E2 which might underlie the pathogenetic mechanism of this form of FTLD.
Collapse
Affiliation(s)
- Yvonne S Davidson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Salford Royal Hospital, M6 8HD, Salford, UK
| | - Andrew C Robinson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Salford Royal Hospital, M6 8HD, Salford, UK
| | - Louis Flood
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Salford Royal Hospital, M6 8HD, Salford, UK
| | - Sara Rollinson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, A V Hill Building, Manchester, M13 9PT, UK
| | - Bridget C Benson
- Institute of Neurology, Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, University College London, 1 Wakefield St, London, WC1N 1PJ, UK
| | - Yasmine T Asi
- Institute of Neurology, Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, University College London, 1 Wakefield St, London, WC1N 1PJ, UK
| | - Anna Richardson
- Cerebral Function Unit, Greater Manchester Neurosciences Centre, Salford Royal Hospital, Stott Lane, M6 8HD, Salford, UK
| | - Matthew Jones
- Cerebral Function Unit, Greater Manchester Neurosciences Centre, Salford Royal Hospital, Stott Lane, M6 8HD, Salford, UK
| | - Julie S Snowden
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Salford Royal Hospital, M6 8HD, Salford, UK
- Cerebral Function Unit, Greater Manchester Neurosciences Centre, Salford Royal Hospital, Stott Lane, M6 8HD, Salford, UK
| | - Stuart Pickering-Brown
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, A V Hill Building, Manchester, M13 9PT, UK
| | - Tammaryn Lashley
- Institute of Neurology, Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, University College London, 1 Wakefield St, London, WC1N 1PJ, UK
| | - David M A Mann
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Salford Royal Hospital, M6 8HD, Salford, UK.
| |
Collapse
|
90
|
Finch NA, Wang X, Baker MC, Heckman MG, Gendron TF, Bieniek KF, Wuu J, DeJesus-Hernandez M, Brown PH, Chew J, Jansen-West KR, Daughrity LM, Nicholson AM, Murray ME, Josephs KA, Parisi JE, Knopman DS, Petersen RC, Petrucelli L, Boeve BF, Graff-Radford NR, Asmann YW, Dickson DW, Benatar M, Bowser R, Boylan KB, Rademakers R, van Blitterswijk M. Abnormal expression of homeobox genes and transthyretin in C9ORF72 expansion carriers. NEUROLOGY-GENETICS 2017; 3:e161. [PMID: 28660252 PMCID: PMC5479438 DOI: 10.1212/nxg.0000000000000161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We performed a genome-wide brain expression study to reveal the underpinnings of diseases linked to a repeat expansion in chromosome 9 open reading frame 72 (C9ORF72). METHODS The genome-wide expression profile was investigated in brain tissue obtained from C9ORF72 expansion carriers (n = 32), patients without this expansion (n = 30), and controls (n = 20). Using quantitative real-time PCR, findings were confirmed in our entire pathologic cohort of expansion carriers (n = 56) as well as nonexpansion carriers (n = 31) and controls (n = 20). RESULTS Our findings were most profound in the cerebellum, where we identified 40 differentially expressed genes, when comparing expansion carriers to patients without this expansion, including 22 genes that have a homeobox (e.g., HOX genes) and/or are located within the HOX gene cluster (top hit: homeobox A5 [HOXA5]). In addition to the upregulation of multiple homeobox genes that play a vital role in neuronal development, we noticed an upregulation of transthyretin (TTR), an extracellular protein that is thought to be involved in neuroprotection. Pathway analysis aligned with these findings and revealed enrichment for gene ontology processes involved in (anatomic) development (e.g., organ morphogenesis). Additional analyses uncovered that HOXA5 and TTR levels are associated with C9ORF72 variant 2 levels as well as with intron-containing transcript levels, and thus, disease-related changes in those transcripts may have triggered the upregulation of HOXA5 and TTR. CONCLUSIONS In conclusion, our identification of genes involved in developmental processes and neuroprotection sheds light on potential compensatory mechanisms influencing the occurrence, presentation, and/or progression of C9ORF72-related diseases.
Collapse
Affiliation(s)
- NiCole A Finch
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Xue Wang
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Matthew C Baker
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Michael G Heckman
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Tania F Gendron
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Kevin F Bieniek
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Joanne Wuu
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Mariely DeJesus-Hernandez
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Patricia H Brown
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Jeannie Chew
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Karen R Jansen-West
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Lillian M Daughrity
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Alexandra M Nicholson
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Melissa E Murray
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Keith A Josephs
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Joseph E Parisi
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - David S Knopman
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Ronald C Petersen
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Leonard Petrucelli
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Bradley F Boeve
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Neill R Graff-Radford
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Yan W Asmann
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Dennis W Dickson
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Michael Benatar
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Robert Bowser
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Kevin B Boylan
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Rosa Rademakers
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Marka van Blitterswijk
- Department of Neuroscience (N.A.F., M.C.B., T.F.G., K.F.B., M.D.-H., P.H.B., J.C., K.R.J.-W., L.M.D., A.M.N., M.E.M., L.P., D.W.D., R.R., M.v.B.), Department of Health Sciences Research (X.W., Y.W.A.), Department of Neurology (N.R.G.-R., K.B.B.), Division of Biomedical Statistics and Informatics (M.G.H.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., M.B.), University of Miami, FL; Department of Neurology (K.A.J., J.E.P., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; and Divisions of Neurology and Neurobiology (R.B.), Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| |
Collapse
|
91
|
Agosta F, Ferraro PM, Riva N, Spinelli EG, Domi T, Carrera P, Copetti M, Falzone Y, Ferrari M, Lunetta C, Comi G, Falini A, Quattrini A, Filippi M. Structural and functional brain signatures of C9orf72 in motor neuron disease. Neurobiol Aging 2017; 57:206-219. [PMID: 28666709 DOI: 10.1016/j.neurobiolaging.2017.05.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 11/18/2022]
Abstract
This study investigated structural and functional magnetic resonance imaging abnormalities in hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72) motor neuron disease (MND) relative to disease severity-matched sporadic MND cases. We enrolled 19 C9orf72 and 67 disease severity-matched sporadic MND patients, and 22 controls. Sporadic cases were grouped in patients with: no cognitive/behavioral deficits (sporadic-motor); same patterns of cognitive/behavioral impairment as C9orf72 cases (sporadic-cognitive); shorter disease duration versus other sporadic groups (sporadic-early). C9orf72 patients showed cerebellar and thalamic atrophy versus all sporadic cases. All MND patients showed motor, frontal, and temporoparietal cortical thinning and motor and extramotor white matter damage versus controls, independent of genotype and presence of cognitive impairment. Compared with sporadic-early, C9orf72 patients revealed an occipital cortical thinning. C9orf72 patients had enhanced visual network functional connectivity versus sporadic-motor and sporadic-early cases. Structural cerebellar and thalamic damage and posterior cortical alterations are the brain magnetic resonance imaging signatures of C9orf72 MND. Frontotemporal cortical and widespread white matter involvement are likely to be an effect of the disease evolution rather than a C9orf72 marker.
Collapse
Affiliation(s)
- Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Pilar M Ferraro
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Teuta Domi
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Laboratory of Clinical Molecular Biology and Cytogenetics, San Raffaele Scientific Institute, Milan, Italy; Division of Genetics and Cell Biology, Unit of Genomics for Human Disease Diagnosis, San Raffaele Scientific Institute, Milan, Italy
| | - Massimiliano Copetti
- Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, Foggia, Italy
| | - Yuri Falzone
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Maurizio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Laboratory of Clinical Molecular Biology and Cytogenetics, San Raffaele Scientific Institute, Milan, Italy; Division of Genetics and Cell Biology, Unit of Genomics for Human Disease Diagnosis, San Raffaele Scientific Institute, Milan, Italy
| | | | - Giancarlo Comi
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Falini
- Vita-Salute San Raffaele University, Milan, Italy; Department of Neuroradiology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
92
|
Volkening K, Strong WL, Seaton S, Yang W, Strong MJ. C9orf72 mutations do not influence the tau signature of amyotrophic lateral sclerosis with cognitive impairment (ALSci). Amyotroph Lateral Scler Frontotemporal Degener 2017; 18:549-554. [PMID: 28562075 DOI: 10.1080/21678421.2017.1332075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE C9orf72 mutations are associated with amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD) and ALS-FTD. In addition to ALS-FTD, ALS patients may develop a spectrum of neuropsychological and neuropsychiatric deficits including ALS with cognitive impairment (ALSci). Here we examine the extent to which C9orf72 mutations are associated with ALSci and whether this alters the tau molecular signature. METHODS We identified 16 ALSci cases within a post-mortem archive of 94 fully genotyped ALS cases, eight of which harboured a C9orf72 mutation, in addition to three cognitively-intact ALS cases with a C9orf72 mutation. Tau was fractionated into soluble and insoluble fractions, with or without dephosphorylation, and immunoblots for tau phospho-isoforms performed. RESULTS Regardless of cognitive state or the presence of C9orf72 mutation, all ALS cases demonstrated six tau isoforms in both soluble and insoluble tau isolates. This pattern was unaffected by dephosphorylation. pThr175tau isoforms, a molecular signature of ALSci, were present regardless of C9orf72 genetic status. The pathognomic paired helical triplet in the insoluble tau fraction of Alzheimer's disease was not observed, regardless of cognitive or C9orf72 status. CONCLUSIONS These findings suggest that the presence of a C9orf72 mutation does not influence the tau signature of ALS or ALSci.
Collapse
Affiliation(s)
- Kathryn Volkening
- a Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine & Dentistry , University of Western Ontario , London , Ontario , Canada and.,b Clinical Neurological Sciences, Schulich School of Medicine & Dentistry , University of Western Ontario , London , Ontario , Canada
| | - Wendy L Strong
- a Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine & Dentistry , University of Western Ontario , London , Ontario , Canada and
| | - Shauntel Seaton
- a Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine & Dentistry , University of Western Ontario , London , Ontario , Canada and
| | - Wencheng Yang
- a Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine & Dentistry , University of Western Ontario , London , Ontario , Canada and
| | - Michael J Strong
- a Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine & Dentistry , University of Western Ontario , London , Ontario , Canada and.,b Clinical Neurological Sciences, Schulich School of Medicine & Dentistry , University of Western Ontario , London , Ontario , Canada
| |
Collapse
|
93
|
Cleary JD, Ranum LP. New developments in RAN translation: insights from multiple diseases. Curr Opin Genet Dev 2017; 44:125-134. [PMID: 28365506 PMCID: PMC5951168 DOI: 10.1016/j.gde.2017.03.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
Since the discovery of repeat-associated non-ATG (RAN) translation, and more recently its association with amyotrophic lateral sclerosis/frontotemporal dementia, there has been an intense focus to understand how this process works and the downstream effects of these novel proteins. RAN translation across several different types of repeat expansions mutations (CAG, CTG, CCG, GGGGCC, GGCCCC) results in the production of proteins in all three reading frames without an ATG initiation codon. The combination of bidirectional transcription and RAN translation has been shown to result in the accumulation of up to six mutant expansion proteins in a growing number of diseases. This process is complex mechanistically and also complex from the perspective of the downstream consequences in disease. Here we review recent developments in RAN translation and their implications on our basic understanding of neurodegenerative disease and gene expression.
Collapse
Affiliation(s)
- John Douglas Cleary
- Center for NeuroGenetics, University of Florida, Gainesville, FL, USA; Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA; Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Laura Pw Ranum
- Center for NeuroGenetics, University of Florida, Gainesville, FL, USA; Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA; Genetics Institute, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
94
|
Shahheydari H, Ragagnin A, Walker AK, Toth RP, Vidal M, Jagaraj CJ, Perri ER, Konopka A, Sultana JM, Atkin JD. Protein Quality Control and the Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Continuum. Front Mol Neurosci 2017; 10:119. [PMID: 28539871 PMCID: PMC5423993 DOI: 10.3389/fnmol.2017.00119] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, has an important regulatory role in cellular function. Protein quality control mechanisms, including protein folding and protein degradation processes, have a crucial function in post-mitotic neurons. Cellular protein quality control relies on multiple strategies, including molecular chaperones, autophagy, the ubiquitin proteasome system, endoplasmic reticulum (ER)-associated degradation (ERAD) and the formation of stress granules (SGs), to regulate proteostasis. Neurodegenerative diseases are characterized by the presence of misfolded protein aggregates, implying that protein quality control mechanisms are dysfunctional in these conditions. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that are now recognized to overlap clinically and pathologically, forming a continuous disease spectrum. In this review article, we detail the evidence for dysregulation of protein quality control mechanisms across the whole ALS-FTD continuum, by discussing the major proteins implicated in ALS and/or FTD. We also discuss possible ways in which protein quality mechanisms could be targeted therapeutically in these disorders and highlight promising protein quality control-based therapeutics for clinical trials.
Collapse
Affiliation(s)
- Hamideh Shahheydari
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Audrey Ragagnin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Adam K Walker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Reka P Toth
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Marta Vidal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Cyril J Jagaraj
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Emma R Perri
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Anna Konopka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Jessica M Sultana
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe UniversityMelbourne, VIC, Australia
| |
Collapse
|
95
|
Webster CP, Smith EF, Shaw PJ, De Vos KJ. Protein Homeostasis in Amyotrophic Lateral Sclerosis: Therapeutic Opportunities? Front Mol Neurosci 2017; 10:123. [PMID: 28512398 PMCID: PMC5411428 DOI: 10.3389/fnmol.2017.00123] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis), the correct balance between production and degradation of proteins, is essential for the health and survival of cells. Proteostasis requires an intricate network of protein quality control pathways (the proteostasis network) that work to prevent protein aggregation and maintain proteome health throughout the lifespan of the cell. Collapse of proteostasis has been implicated in the etiology of a number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), the most common adult onset motor neuron disorder. Here, we review the evidence linking dysfunctional proteostasis to the etiology of ALS and discuss how ALS-associated insults affect the proteostasis network. Finally, we discuss the potential therapeutic benefit of proteostasis network modulation in ALS.
Collapse
Affiliation(s)
- Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - Emma F Smith
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| |
Collapse
|
96
|
Davidson YS, Flood L, Robinson AC, Nihei Y, Mori K, Rollinson S, Richardson A, Benson BC, Jones M, Snowden JS, Pickering-Brown S, Haass C, Lashley T, Mann DMA. Heterogeneous ribonuclear protein A3 (hnRNP A3) is present in dipeptide repeat protein containing inclusions in Frontotemporal Lobar Degeneration and Motor Neurone disease associated with expansions in C9orf72 gene. Acta Neuropathol Commun 2017; 5:31. [PMID: 28431575 PMCID: PMC5399321 DOI: 10.1186/s40478-017-0437-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal Lobar Degeneration (FTLD) encompasses certain related neurodegenerative disorders which alter behaviour, personality and language. Heterogeneous ribonuclear proteins (hnRNPs) maintain RNA metabolism and changes in their function may underpin the pathogenesis of FTLD. Immunostaining for hnRNP A1, A2/B1 and A3 was performed on sections of temporal cortex with hippocampus from 61 patients with FTLD, stratified by pathological hallmarks into FTLD-tau and FTLD-TDP type A, B and C subtypes, and by genetics into patients with C9orf72 expansions, MAPT or GRN mutations, or those without known mutation. Four patients with Motor Neurone Disease (MND) with C9orf72 expansions and 10 healthy controls were also studied. Semi-quantitative analysis assessed hnRNP staining intensity in dentate gyrus (DG) and CA4 region of hippocampus, and temporal cortex (Tcx) in the different pathological and genetic groups. Immunostaining for hnRNP A1, A2/B1 and A3 revealed no consistent changes in pattern or amount of physiological staining across any of the pathological or genetic groups. No immunostaining of any inclusions resembling TDP-43 immunoreactive neuronal cytoplasmic inclusions or dystrophic neurites, was seen in either Tcx or DG of the hippocampus in any of the FTLD cases investigated for hnRNP A1, A2/B1 and A3. However, immunostaining for hnRNP A3 showed that inclusion bodies, resembling those TDP-43 negative, p62-immunopositive structures containing dipeptide repeat proteins (DPR) were variably observed in hippocampus and cerebellum. The proportion of cases showing hnRNP A3-immunoreactive DPR, and the number of hnRNP A3-positive inclusions within cases, was significantly greater in DG than in cells of CA4 region and cerebellum, but the latter was significantly less in all three regions compared to that detected by p62 immunostaining.
Collapse
|
97
|
Mann DMA, Snowden JS. Frontotemporal lobar degeneration: Pathogenesis, pathology and pathways to phenotype. Brain Pathol 2017; 27:723-736. [PMID: 28100023 DOI: 10.1111/bpa.12486] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal Lobar Degeneration (FTLD) is a clinically, pathologically and genetically heterogeneous group of disorders that affect principally the frontal and temporal lobes of the brain. There are three major associated clinical syndromes, behavioral variant frontotemporal dementia (bvFTD), semantic dementia (SD) and progressive non-fluent aphasia (PNFA); three principal histologies, involving tau, TDP-43 and FUS proteins; and mutations in three major genes, MAPT, GRN and C9orf72, along with several other less common gene mutations. All three clinical syndromes can exist separately or in combination with Amyotrophic Lateral Sclerosis (ALS). SD is exclusively a TDP-43 proteinopathy, and PNFA may be so, with both showing tight clinical, histological and genetic inter-relationships. bvFTD is more of a challenge with overlapping histological and genetic features, involvement of any of the three aggregating proteins, and changes in any of the three major genes. However, when ALS is present, all cases show a clear histological phenotype with TDP-43 aggregated proteins, and familial forms are associated with expansions in C9orf72. TDP-43 and FUS are nuclear carrier proteins involved in the regulation of RNA metabolism, whereas tau protein - the product of MAPT - is responsible for the assembly/disassembly of microtubules, which are vital for intracellular transport. Mutations in TDP-43 and FUS genes are linked to clinical ALS rather than FTLD (with or without ALS), suggesting that clinical ALS may be a disorder of RNA metabolism. Conversely, the protein products of GRN and C9orf72, along with those of the other minor genes, appear to form part of the cellular protein degradation machinery. It is possible therefore that FTLD is a reflection of dysfunction within lysosomal/proteasomal systems resulting in failure to remove potentially neurotoxic (TDP-43 and tau) aggregates, which ultimately overwhelm capacity to function. Spread of aggregates along distinct pathways may account for the different clinical phenotypes, and patterns of progression of disease.
Collapse
Affiliation(s)
- David M A Mann
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Medical and Human Sciences, University of Manchester, Salford Royal Hospital, Salford, M6 8HD, UK
| | - Julie S Snowden
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Medical and Human Sciences, University of Manchester, Salford Royal Hospital, Salford, M6 8HD, UK.,Cerebral Function Unit, Greater Manchester Neurosciences Centre, Salford Royal Hospital, Stott Lane, Salford, M6 8HD, UK
| |
Collapse
|
98
|
Freibaum BD, Taylor JP. The Role of Dipeptide Repeats in C9ORF72-Related ALS-FTD. Front Mol Neurosci 2017; 10:35. [PMID: 28243191 PMCID: PMC5303742 DOI: 10.3389/fnmol.2017.00035] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/30/2017] [Indexed: 12/13/2022] Open
Abstract
Expansion of a hexanucleotide (GGGGCC) repeat in the gene chromosome 9 open reading frame 72 (C9ORF72) is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (FTD). Three non-exclusive mechanisms have been proposed to contribute to the pathology initiated by this genetic insult. First, it was suggested that decreased expression of the C9orf72 protein product may contribute to disease. Second, the recognition that C9ORF72-related disease is associated with accumulation of GGGGCC repeat-containing RNA in nuclear foci led to the suggestion that toxic gain of RNA function, perhaps related to sequestration of RNA-binding proteins, might be an important driver of disease. Third, it was subsequently appreciated that GGGGCC repeat-containing RNA undergoes unconventional translation to produce unnatural dipeptide repeat (DPR) proteins that accumulate in patient brain early in disease. DPRs translated from all six reading frames in either the sense or antisense direction of the hexanucleotide repeat result in the expression of five DPRs: glycine–alanine (GA), glycine–arginine (GR), proline–alanine (PA), proline–arginine (PR) and glycine–proline (GP; GP is generated from both the sense and antisense reading frames). However, the relative contribution of each DPR to disease pathogenesis remains unclear. Here, we review evidence for the contribution of each specific DPR to pathogenesis and examine the probable mechanisms through which these DPRs induce neurodegeneration. We also consider the association of the toxic DPRs with impaired RNA metabolism and alterations to the liquid-like state of non-membrane-bound organelles.
Collapse
Affiliation(s)
- Brian D Freibaum
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital Memphis, TN, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research HospitalMemphis, TN, USA; Howard Hughes Medical InstituteChevy Chase, MD, USA
| |
Collapse
|
99
|
Hortobágyi T, Cairns NJ. Amyotrophic lateral sclerosis and non-tau frontotemporal lobar degeneration. HANDBOOK OF CLINICAL NEUROLOGY 2017; 145:369-381. [PMID: 28987183 DOI: 10.1016/b978-0-12-802395-2.00026-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is the major motor neuron disorder. The hallmark features are progressive, irreversible motor neuron loss leading to denervation atrophy of muscles and death, usually within 5 years of disease onset. The hallmark proteins of the pathognomonic inclusions are SOD-1, TDP-43, or FUS; rarely the disease is caused by mutation of the respective genes. Frontotemporal lobar degeneration (FTLD) is genetically, neuropathologically, and clinically heterogeneous and may present as a dementia with three major clinical syndromes dominated by behavioral, language, and motor disorders, respectively. The characteristic aggregate-forming protein in non-tau FTLD is either TDP-43 or FUS. It has been known for several years that frontotemporal dementia (or less severe forms of cognitive impairment) may coexist with ALS. Recent discoveries in genetics (e.g., C9orf72 mutation) and the subsequent neuropathologic characterization have revealed remarkable overlap between ALS and non-tau FTLD also at a molecular level, indicating common molecular pathways in pathogenesis. After a historic overview we demonstrate and compare the macroscopic and microscopic appearances and molecular characteristics with emphasis on genetic background, neuroanatomic distribution, and morphology of abnormal protein aggregates and their possible association with specific mutations. The clinicopathologic classifications and correlations are also discussed.
Collapse
Affiliation(s)
- Tibor Hortobágyi
- Department of Neuropathology, Institute of Pathology, University of Debrecen, Debrecen, Hungary
| | - Nigel J Cairns
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America.
| |
Collapse
|
100
|
Scotter EL, Smyth L, Bailey JAWT, Wong CH, de Majo M, Vance CA, Synek BJ, Turner C, Pereira J, Charleston A, Waldvogel HJ, Curtis MA, Dragunow M, Shaw CE, Smith BN, Faull RLM. C9ORF72 and UBQLN2 mutations are causes of amyotrophic lateral sclerosis in New Zealand: a genetic and pathologic study using banked human brain tissue. Neurobiol Aging 2017; 49:214.e1-214.e5. [PMID: 27480424 DOI: 10.1016/j.neurobiolaging.2016.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/07/2016] [Accepted: 06/25/2016] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, which causes progressive and eventually fatal loss of motor function. Here, we describe genetic and pathologic characterization of brain tissue banked from 19 ALS patients over nearly 20 years at the Department of Anatomy and the Centre for Brain Research, University of Auckland, New Zealand. We screened for mutations in SOD1, TARDBP, FUS, and C9ORF72 genes and for neuropathology caused by phosphorylated TDP-43, dipeptide repeats (DPRs), and ubiquilin. We identified 2 cases with C9ORF72 repeat expansions. Both harbored phosphorylated TDP-43 and DPR inclusions. We show that DPR inclusions can incorporate or occur independently of ubiquilin. We also identified 1 case with a UBQLN2 mutation, which showed phosphorylated TDP-43 and characteristic ubiquilin protein inclusions. This is the first study of ALS genetics in New Zealand, adding New Zealand to the growing list of countries in which C9ORF72 repeat expansion and UBQLN2 mutations are detected in ALS cases.
Collapse
Affiliation(s)
- Emma L Scotter
- Centre for Brain Research, University of Auckland, Auckland, New Zealand; Department of Pharmacology, University of Auckland, Auckland, New Zealand.
| | - Leon Smyth
- Centre for Brain Research, University of Auckland, Auckland, New Zealand; Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | - J Ames W T Bailey
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Chun-Hao Wong
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Martina de Majo
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Caroline A Vance
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Beth J Synek
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Clinton Turner
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Jennifer Pereira
- Centre for Brain Research, University of Auckland, Auckland, New Zealand; Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Alison Charleston
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research, University of Auckland, Auckland, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, University of Auckland, Auckland, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Mike Dragunow
- Centre for Brain Research, University of Auckland, Auckland, New Zealand; Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | - Christopher E Shaw
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Bradley N Smith
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, Auckland, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| |
Collapse
|