Levenstien MA, Ott J, Gordon D. Are molecular haplotypes worth the time and expense? A cost-effective method for applying molecular haplotypes.
PLoS Genet 2006;
2:e127. [PMID:
16933998 PMCID:
PMC1550282 DOI:
10.1371/journal.pgen.0020127]
[Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 06/27/2006] [Indexed: 11/19/2022] Open
Abstract
Because current molecular haplotyping methods are expensive and not amenable to automation, many researchers rely on statistical methods to infer haplotype pairs from multilocus genotypes, and subsequently treat these inferred haplotype pairs as observations. These procedures are prone to haplotype misclassification. We examine the effect of these misclassification errors on the false-positive rate and power for two association tests. These tests include the standard likelihood ratio test (LRTstd) and a likelihood ratio test that employs a double-sampling approach to allow for the misclassification inherent in the haplotype inference procedure (LRTae). We aim to determine the cost–benefit relationship of increasing the proportion of individuals with molecular haplotype measurements in addition to genotypes to raise the power gain of the LRTae over the LRTstd. This analysis should provide a guideline for determining the minimum number of molecular haplotypes required for desired power. Our simulations under the null hypothesis of equal haplotype frequencies in cases and controls indicate that (1) for each statistic, permutation methods maintain the correct type I error; (2) specific multilocus genotypes that are misclassified as the incorrect haplotype pair are consistently misclassified throughout each entire dataset; and (3) our simulations under the alternative hypothesis showed a significant power gain for the LRTae over the LRTstd for a subset of the parameter settings. Permutation methods should be used exclusively to determine significance for each statistic. For fixed cost, the power gain of the LRTae over the LRTstd varied depending on the relative costs of genotyping, molecular haplotyping, and phenotyping. The LRTae showed the greatest benefit over the LRTstd when the cost of phenotyping was very high relative to the cost of genotyping. This situation is likely to occur in a replication study as opposed to a whole-genome association study.
Localizing genes for complex genetic diseases presents a major challenge. Recent technological advances such as genotyping arrays containing hundreds of thousands of genomic “landmarks,” and databases cataloging these “landmarks” and the levels of correlation between them, have aided in these endeavors. To utilize these resources most effectively, many researchers employ a gene-mapping technique called haplotype-based association in order to examine the variation present at multiple genomic sites jointly for a role in and/or an association with the disease state. Although methods that determine haplotype pairs directly by biological assays are currently available, they rarely are used due to their expense and incongruity to automation. Statistical methods provide an inexpensive, relatively accurate means to determine haplotype pairs. However, these statistical methods can provide erroneous results. In this article, the authors compare a standard statistical method for performing a haplotype-based association test with a method that accounts for the misclassification of haplotype pairs as part of the test. Under a number of feasible scenarios, the performance of the new test exceeded that of the standard test.
Collapse