51
|
Jennings J, Sang Y. Porcine Interferon Complex and Co-Evolution with Increasing Viral Pressure after Domestication. Viruses 2019; 11:v11060555. [PMID: 31208045 PMCID: PMC6631851 DOI: 10.3390/v11060555] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/16/2022] Open
Abstract
Consisting of nearly 60 functional genes, porcine interferon (IFN)-complex represents an evolutionary surge of IFN evolution in domestic ungulate species. To compare with humans and mice, each of these species contains about 20 IFN functional genes, which are better characterized using the conventional IFN-α/β subtypes as examples. Porcine IFN-complex thus represents an optimal model for studying IFN evolution that resulted from increasing viral pressure during domestication and industrialization. We hypothesize and justify that porcine IFN-complex may extend its functionality in antiviral and immunomodulatory activity due to its superior molecular diversity. Furthermore, these unconventional IFNs could even confer some functional and signaling novelty beyond that of the well-studied IFN-α/β subtypes. Investigations into porcine IFN-complex will further our understanding of IFN biology and promote IFN-based therapeutic designs to confront swine viral diseases.
Collapse
Affiliation(s)
- Jordan Jennings
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| |
Collapse
|
52
|
Grahofer A, Letko A, Häfliger IM, Jagannathan V, Ducos A, Richard O, Peter V, Nathues H, Drögemüller C. Chromosomal imbalance in pigs showing a syndromic form of cleft palate. BMC Genomics 2019; 20:349. [PMID: 31068123 PMCID: PMC6505205 DOI: 10.1186/s12864-019-5711-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/17/2019] [Indexed: 11/23/2022] Open
Abstract
Background Palatoschisis or cleft palate is a known anomaly in pigs resulting in their death. However, little is known about its aetiology. A detailed description of the phenotype was derived from necropsy and by computed tomography revealing that all 20 cases also exhibited hypodontia and renal cysts. Furthermore, a genetic origin was assumed due to dominant inheritance as all 20 recorded cases were confirmed offspring of a single boar. Results Single nucleotide variant (SNV) genotyping data were used to map the defect in the porcine genome and led to the detection of a chromosomal imbalance in the affected offspring. Whole genome sequencing of an affected piglet and a normal full sib was used to identify a chromosomal translocation and to fine map the breakpoints in the genome. Finally, we proved that the boar, which sired the malformed piglets, carried a balanced translocation. The detected translocation of Mb-sized segments of chromosome 8 and 14 had not been previously observed during karyotyping. All affected offspring were shown to be carriers of a partial trisomy of chromosome 14 including the FGFR2 gene, which is associated with various dominant inherited craniofacial dysostosis syndromes in man, and partial monosomy of chromosome 8 containing MSX1 known to be associated with tooth agenesis and orofacial clefts in other species. Conclusions This study illustrates the usefulness of recently established genomic resources in pigs. In this study, the application of genome-wide genotyping and sequencing methods allowed the identification of the responsible boar and the genetic cause of the observed defect. By implementing systematic surveillance, it is possible to identify genetic defects at an early stage and avoid further distribution of congenital disorders. Electronic supplementary material The online version of this article (10.1186/s12864-019-5711-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander Grahofer
- Clinic for Swine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3012, Bern, Switzerland
| | - Anna Letko
- Institute of Genetics, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3012, Bern, Switzerland
| | - Irene Monika Häfliger
- Institute of Genetics, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3012, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3012, Bern, Switzerland
| | - Alain Ducos
- GenPhyse, INRA, INPT, ENVT, Université de Toulouse, 31320, Castanet-Tolosan, France
| | - Olivia Richard
- Institute of Animal Pathology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, CH-3012, Bern, Switzerland
| | - Vanessa Peter
- Division of Clinical Radiology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Länggassstrasse 128, 3012 CH-, Bern, Switzerland
| | - Heiko Nathues
- Clinic for Swine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3012, Bern, Switzerland
| | - Cord Drögemüller
- Institute of Genetics, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3012, Bern, Switzerland.
| |
Collapse
|
53
|
Liang Z, Bu L, Qin Y, Peng Y, Yang R, Zhao Y. Selection of Optimal Ancestry Informative Markers for Classification and Ancestry Proportion Estimation in Pigs. Front Genet 2019; 10:183. [PMID: 30915106 PMCID: PMC6421339 DOI: 10.3389/fgene.2019.00183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/19/2019] [Indexed: 12/26/2022] Open
Abstract
Using small sets of ancestry informative markers (AIMs) constitutes a cost-effective method to accurately estimate the ancestry proportions of individuals. This study aimed to generate a small and effective number of AIMs from ∼60 K single nucleotide polymorphism (SNP) data of porcine and estimate three ancestry proportions [East China pig (ECHP), South China pig (SCHP), and European commercial pig (EUCP)] from Asian breeds and European domestic breeds. A total of 186 samples of 10 pure breeds were divided into three groups: ECHP, SCHP, and EUCP. Using these samples and a one-vs.-rest SVM classifier, we found that using only seven AIMs could completely separate the three groups. Subsequently, we utilized supervised ADMIXTURE to calculate ancestry proportions and found that the 129 AIMs performed well on ancestry estimates when pseudo admixed individuals were used. Furthermore, another 969 samples of 61 populations were applied to evaluate the performance of the 129 AIMs. We also observed that the 129 AIMs were highly correlated with estimates using ∼60 K SNP data for three ancestry components: ECHP (Pearson correlation coefficient (r) = 0.94), SCHP (r = 0.94), and EUCP (r = 0.99). Our results provided an example of using a small number of pig AIMs for classifications and estimating ancestry proportions with high accuracy and in a cost-effective manner.
Collapse
Affiliation(s)
- Zuoxiang Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lina Bu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yidi Qin
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yebo Peng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ruifei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yiqiang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
54
|
Bunning H, Wall E, Chagunda MGG, Banos G, Simm G. Heterosis in cattle crossbreeding schemes in tropical regions: meta-analysis of effects of breed combination, trait type, and climate on level of heterosis. J Anim Sci 2019; 97:29-34. [PMID: 30346552 PMCID: PMC6313114 DOI: 10.1093/jas/sky406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/15/2018] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to investigate the effects of animal trait, breed combination, and climate on the expressed levels of heterosis in crossbreeding schemes using tropical cattle. A meta-analysis of 42 studies was carried out with 518 heterosis estimates. In total, 62.5% of estimates were found to be significantly different from zero, the majority of which (89.8%) were beneficial for the studied trait. Trait and breed combination were shown to have a significant effect on the size of heterosis (P < 0.001 and P = 0.044, respectively). However, climate did not have a significant effect. Health, longevity, and milk production traits showed the highest heterosis (31.84 ± 10.73%, 35.13 ± 14.35%, and 35.15 ± 3.29%, respectively), whereas fertility, growth, and maternal traits showed moderate heterosis (12.02 ± 4.10%, 12.25 ± 2.69%, and 15.69 ± 3.26%, respectively). Crosses between breeds from different types showed moderate to high heterosis ranging from 9.95 ± 4.53% to 19.53 ± 3.62%, whereas crosses between breeds from the same type did not express heterosis that was significantly different from zero. These results show that heterosis has significant and favorable impact on productivity of cattle farming in tropical production systems, particularly in terms of fitness but also milk production traits.
Collapse
Affiliation(s)
- Harriet Bunning
- Animal & Veterinary Sciences, Scotland's Rural College, King's Buildings, West Mains Road, Edinburgh, UK.,Global Academy of Agriculture and Food Security, University of Edinburgh, Edinburgh, UK
| | - Eileen Wall
- Animal & Veterinary Sciences, Scotland's Rural College, King's Buildings, West Mains Road, Edinburgh, UK
| | - Mizeck G G Chagunda
- Department of Animal Breeding and Husbandry in the Tropics and Subtropics, University of Hohenheim, Stuttgart, Germany
| | - Georgios Banos
- Animal & Veterinary Sciences, Scotland's Rural College, King's Buildings, West Mains Road, Edinburgh, UK.,The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Geoff Simm
- Global Academy of Agriculture and Food Security, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
55
|
Pena RN, Noguera JL, García-Santana MJ, González E, Tejeda JF, Ros-Freixedes R, Ibáñez-Escriche N. Five genomic regions have a major impact on fat composition in Iberian pigs. Sci Rep 2019; 9:2031. [PMID: 30765794 PMCID: PMC6375979 DOI: 10.1038/s41598-019-38622-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
The adipogenic nature of the Iberian pig defines many quality attributes of its fresh meat and dry-cured products. The distinct varieties of Iberian pig exhibit great variability in the genetic parameters for fat deposition and composition in muscle. The aim of this work is to identify common and distinct genomic regions related to fatty acid composition in Retinto, Torbiscal, and Entrepelado Iberian varieties and their reciprocal crosses through a diallelic experiment. In this study, we performed GWAS using a high density SNP array on 382 pigs with the multimarker regression Bayes B method implemented in GenSel. A number of genomic regions showed strong associations with the percentage of saturated and unsaturated fatty acid in intramuscular fat. In particular, five regions with Bayes Factor >100 (SSC2 and SSC7) or >50 (SSC2 and SSC12) explained an important fraction of the genetic variance for miristic, palmitoleic, monounsaturated (>14%), oleic (>10%) and polyunsaturated (>5%) fatty acids. Six genes (RXRB, PSMB8, CHGA, ACACA, PLIN4, PLIN5) located in these regions have been investigated in relation to intramuscular composition variability in Iberian pigs, with two SNPs at the RXRB gene giving the most consistent results on oleic and monounsaturated fatty acid content.
Collapse
Affiliation(s)
- R N Pena
- Departament de Ciència Animal, Universitat de Lleida-Agrotecnio Center, 25198, Lleida, Spain
| | - J L Noguera
- IRTA, Genètica i Millora Animal, 25198, Lleida, Spain
| | | | - E González
- Tecnología de los alimentos, Universidad de Extremadura, 06006, Badajoz, Spain
| | - J F Tejeda
- Tecnología de los alimentos, Universidad de Extremadura, 06006, Badajoz, Spain
| | - R Ros-Freixedes
- Departament de Ciència Animal, Universitat de Lleida-Agrotecnio Center, 25198, Lleida, Spain.,The Roslin Institute, Edinburgh University, Easter Bush, EH25 9RG, UK
| | - N Ibáñez-Escriche
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
56
|
Song B, Di S, Cui S, Chen N, Wang H, Wang X, Gao Q, Tong G, Wang H, Huang X, Ding L, Gao Y, Liu J, Wang X. Distinct Patterns of PPARγ Promoter Usage, Lipid Degradation Activity, and Gene Expression in Subcutaneous Adipose Tissue of Lean and Obese Swine. Int J Mol Sci 2018; 19:ijms19123892. [PMID: 30563100 PMCID: PMC6321263 DOI: 10.3390/ijms19123892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022] Open
Abstract
Subcutaneous adipose tissue is a loose connective tissue specializing in the regulation of energy storage and metabolization. In domesticated pigs (Sus scrofa), the temporal development of subcutaneous adipose tissue is critical for meat production. However, the regulation of adipose tissue development remains unclear. Here, the subcutaneous adipose tissue development was characterized and compared in lean (Danish-Landrace) and obese (Min) pigs at juvenile and the juvenile-to-adult growth stages. Using RNA sequencing, we profiled the transcriptome of subcutaneous adipose tissue isolated from 4- and 16-week-old pigs and identified 24,718 expressed transcription units. Of them, 6327 genes were differentially expressed between the breeds and/or developmental stages. Compared with obese pigs, upregulated genes in lean pigs showed significant function and pathway enrichment in fatty acid degradation and mitochondrial functions. Further analysis uncovered the distinct usage preferences of the three alternative peroxisomeproliferator-activatedreceptorγ (PPARγ) promoters associated with the development of subcutaneous adipose tissue in both breeds. Transcriptome analysis of subcutaneous adipose tissue in lean and obese pigs suggested that marker-assisted selection of fatty acid degradation and PPARγ signaling pathways could be important directions for future pork quality improvement and modern breeding.
Collapse
Affiliation(s)
- Bin Song
- The Northeast Agricultural University, 59 Mucai St, Xiangfang District, Harbin 150030, China.
- Animal Science Institute of Heilongjiang Province, 2 Heyi St, Longsha District, Qiqihaer 161005, China.
| | - Shengwei Di
- The Northeast Agricultural University, 59 Mucai St, Xiangfang District, Harbin 150030, China.
| | - Shiquan Cui
- The Northeast Agricultural University, 59 Mucai St, Xiangfang District, Harbin 150030, China.
| | - Na Chen
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xuan Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Department of Biological Sciences, Xian Jiaotong-Liverpool University, Suzhou 215123, China.
| | - Qian Gao
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Guizhi Tong
- Animal Science Institute of Heilongjiang Province, 2 Heyi St, Longsha District, Qiqihaer 161005, China.
| | - Hongbao Wang
- Animal Science Institute of Heilongjiang Province, 2 Heyi St, Longsha District, Qiqihaer 161005, China.
| | - Xuankai Huang
- The Northeast Agricultural University, 59 Mucai St, Xiangfang District, Harbin 150030, China.
- Animal Science Institute of Heilongjiang Province, 2 Heyi St, Longsha District, Qiqihaer 161005, China.
| | - Liyan Ding
- Animal Science Institute of Heilongjiang Province, 2 Heyi St, Longsha District, Qiqihaer 161005, China.
| | - Ying Gao
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jun Liu
- The Northeast Agricultural University, 59 Mucai St, Xiangfang District, Harbin 150030, China.
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xibiao Wang
- The Northeast Agricultural University, 59 Mucai St, Xiangfang District, Harbin 150030, China.
| |
Collapse
|
57
|
Lowe JWE. Sequencing through thick and thin: Historiographical and philosophical implications. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2018; 72:10-27. [PMID: 30337139 DOI: 10.1016/j.shpsc.2018.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 07/11/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
DNA sequencing has been characterised by scholars and life scientists as an example of 'big', 'fast' and 'automated' science in biology. This paper argues, however, that these characterisations are a product of a particular interpretation of what sequencing is, what I call 'thin sequencing'. The 'thin sequencing' perspective focuses on the determination of the order of bases in a particular stretch of DNA. Based upon my research on the pig genome mapping and sequencing projects, I provide an alternative 'thick sequencing' perspective, which also includes a number of practices that enable the sequence to travel across and be used in wider communities. If we take sequencing in the thin manner to be an event demarcated by the determination of sequences in automated sequencing machines and computers, this has consequences for the historical analysis of sequencing projects, as it focuses attention on those parts of the work of sequencing that are more centralised, fast (and accelerating) and automated. I argue instead that sequencing can be interpreted as a more open-ended process including activities such as the generation of a minimum tile path or annotation, and detail the historiographical and philosophical consequences of this move.
Collapse
Affiliation(s)
- James W E Lowe
- Science, Technology and Innovation Studies, University of Edinburgh, Old Surgeons' Hall, High School Yards, Edinburgh, EH1 1LZ, UK.
| |
Collapse
|
58
|
Iacolina L, Pertoldi C, Amills M, Kusza S, Megens HJ, Bâlteanu VA, Bakan J, Cubric-Curik V, Oja R, Saarma U, Scandura M, Šprem N, Stronen AV. Hotspots of recent hybridization between pigs and wild boars in Europe. Sci Rep 2018; 8:17372. [PMID: 30478374 PMCID: PMC6255867 DOI: 10.1038/s41598-018-35865-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/09/2018] [Indexed: 01/06/2023] Open
Abstract
After a strong demographic decline before World War II, wild boar populations are expanding and the species is now the second-most abundant ungulate in Europe. This increase raises concerns due to wild boar impact on crops and natural ecosystems and as potential vector of diseases. Additionally, wild boar can hybridize with domestic pigs, which could increase health risks and alter wild boar adaptive potential. We analysed 47,148 Single Nucleotide Polymorphisms in wild boar from Europe (292) and the Near East (16), and commercial (44) and local (255) pig breeds, to discern patterns of hybridization across Europe. We identified 33 wild boars with more than 10% domestic ancestry in their genome, mostly concentrated in Austria, Bosnia and Herzegovina, Bulgaria and Serbia. This difference is probably due to contrasting practices, with free-ranging vs. industrial farming but more samples would be needed to investigate larger geographic patterns. Our results suggest hybridization has occurred over a long period and is still ongoing, as we observed recent hybrids. Although wild and domestic populations have maintained their genetic distinctiveness, potential health threats raise concerns and require implementation of management actions and farming practices aimed at reducing contact between wild and domestic pigs.
Collapse
Affiliation(s)
- Laura Iacolina
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, 9220, Aalborg, Denmark. .,Aalborg Zoo, Mølleparkvej 63, 9000, Aalborg, Denmark.
| | - Cino Pertoldi
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, 9220, Aalborg, Denmark.,Aalborg Zoo, Mølleparkvej 63, 9000, Aalborg, Denmark
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.,Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Szilvia Kusza
- Animal Genetics Laboratory, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi 138, 4032, Debrecen, Hungary
| | - Hendrik-Jan Megens
- Wageningen University & Research, Animal Breeding and Genomics, Droevendaalsesteeg 1, Wageningen, 6708PD, The Netherlands
| | - Valentin Adrian Bâlteanu
- Institute of Life Sciences, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372, Cluj-Napoca, Romania
| | - Jana Bakan
- Technical University of Zvolen, Department of Phytology, Ul. T. G. Masaryka 24, 96053, Zvolen, Slovakia
| | - Vlatka Cubric-Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000, Zagreb, Croatia
| | - Ragne Oja
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51003, Tartu, Estonia
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51003, Tartu, Estonia
| | - Massimo Scandura
- Department of Veterinary Medicine, University of Sassari, via Muroni 25, I-07100, Sassari, Italy
| | - Nikica Šprem
- Department of Fisheries, Beekeeping, Game Management and Special Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000, Zagreb, Croatia
| | - Astrid Vik Stronen
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, 9220, Aalborg, Denmark.,Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia
| |
Collapse
|
59
|
Zhao P, Yu Y, Feng W, Du H, Yu J, Kang H, Zheng X, Wang Z, Liu GE, Ernst CW, Ran X, Wang J, Liu JF. Evidence of evolutionary history and selective sweeps in the genome of Meishan pig reveals its genetic and phenotypic characterization. Gigascience 2018; 7:5001425. [PMID: 29790964 PMCID: PMC6007440 DOI: 10.1093/gigascience/giy058] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/11/2018] [Indexed: 12/18/2022] Open
Abstract
Background Meishan is a pig breed indigenous to China and famous for its high fecundity. The traits of Meishan are strongly associated with its distinct evolutionary history and domestication. However, the genomic evidence linking the domestication of Meishan pigs with its unique features is still poorly understood. The goal of this study is to investigate the genomic signatures and evolutionary evidence related to the phenotypic traits of Meishan via large-scale sequencing. Results We found that the unique domestication of Meishan pigs occurred in the Taihu Basin area between the Majiabang and Liangzhu Cultures, during which 300 protein-coding genes have underwent positive selection. Notably, enrichment of the FoxO signaling pathway with significant enrichment signal and the harbored gene IGF1R were likely associated with the high fertility of Meishan pigs. Moreover, NFKB1 exhibited strong selective sweep signals and positively participated in hyaluronan biosynthesis as the key gene of NF-kB signaling, which may have resulted in the wrinkled skin and face of Meishan pigs. Particularly, three population-specific synonymous single-nucleotide variants occurred in PYROXD1, MC1R, and FAM83G genes; the T305C substitution in the MCIR gene explained the black coat of the Meishan pigs well. In addition, the shared haplotypes between Meishan and Duroc breeds confirmed the previous Asian-derived introgression and demonstrated the specific contribution of Meishan pigs. Conclusions These findings will help us explain the unique genetic and phenotypic characteristics of Meishan pigs and offer a plausible method for their utilization of Meishan pigs as valuable genetic resources in pig breeding and as an animal model for human wrinkled skin disease research.
Collapse
Affiliation(s)
- Pengju Zhao
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wen Feng
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Heng Du
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jian Yu
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Huimin Kang
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xianrui Zheng
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhiquan Wang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, T6G 2C8, Canada
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD 20705-2350, USA
| | | | - Xueqin Ran
- School of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jiafu Wang
- School of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
60
|
Zhang N, Li W, Fu B. Vaccines against Trichinella spiralis: Progress, challenges and future prospects. Transbound Emerg Dis 2018; 65:1447-1458. [PMID: 29873198 DOI: 10.1111/tbed.12917] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 01/14/2023]
Abstract
Trichinella spiralis, the causative agent of trichinellosis, is able to infect a wide range of carnivores and omnivores including human beings. In the past 30 years, a mass of vaccination efforts has been performed to control T. spiralis infection with the purpose of reduction in worm fecundity or decrease in muscle larval and adult burdens. Here, we summarize the development of veterinary vaccines against T. spiralis infection. During recent years, increasing numbers of new vaccine candidates have been developed on the protective immunity against T. spiralis infection in murine model. The vaccine candidates were not only selected from excretory-secretory (ES) antigens, but also from the recombinant functional proteins, such as proteases and some other antigens participated in T. spiralis intracellular processes. However, immunization with a single antigen generally revealed lower protective effects against T. spiralis infection in mice compared to that with the inactivated whole worms or crude extraction and ES productions. Future study of T. spiralis vaccines should focus on evaluation of the protective efficacy of antigens and/or ligands delivered by nanoparticles that could elicit Th2-type immune response on experimental pigs.
Collapse
Affiliation(s)
- Nianzhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenhui Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Baoquan Fu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, China
| |
Collapse
|
61
|
Ghosh M, Sharma N, Singh AK, Gera M, Pulicherla KK, Jeong DK. Transformation of animal genomics by next-generation sequencing technologies: a decade of challenges and their impact on genetic architecture. Crit Rev Biotechnol 2018; 38:1157-1175. [PMID: 29631431 DOI: 10.1080/07388551.2018.1451819] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
For more than a quarter of a century, sequencing technologies from Sanger's method to next-generation high-throughput techniques have provided fascinating opportunities in the life sciences. The continuing upward trajectory of sequencing technologies will improve livestock research and expedite the development of various new genomic and technological studies with farm animals. The use of high-throughput technologies in livestock research has increased interest in metagenomics, epigenetics, genome-wide association studies, and identification of single nucleotide polymorphisms and copy number variations. Such studies are beginning to provide revolutionary insights into biological and evolutionary processes. Farm animals, such as cattle, swine, and horses, have played a dual role as economically and agriculturally important animals as well as biomedical research models. The first part of this study explores the current state of sequencing methods, many of which are already used in animal genomic studies, and the second part summarizes the state of cattle, swine, horse, and chicken genome sequencing and illustrates its achievements during the last few years. Finally, we describe several high-throughput sequencing approaches for the improved detection of known, unknown, and emerging infectious agents, leading to better diagnosis of infectious diseases. The insights from viral metagenomics and the advancement of next-generation sequencing will strongly support specific and efficient vaccine development and provide strategies for controlling infectious disease transmission among animal populations and/or between animals and humans. However, prospective sequencing technologies will require further research and in-field testing before reaching the marketplace.
Collapse
Affiliation(s)
- Mrinmoy Ghosh
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| | - Neelesh Sharma
- b Department of Veterinary Science and Animal Husbandry , Sher-e-Kashmir University of Agricultural Sciences and Technology , R.S. Pura , India
| | - Amit Kumar Singh
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| | - Meeta Gera
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| | | | - Dong Kee Jeong
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| |
Collapse
|
62
|
Käser T, Renois F, Wilson HL, Cnudde T, Gerdts V, Dillon JAR, Jungersen G, Agerholm JS, Meurens F. Contribution of the swine model in the study of human sexually transmitted infections. INFECTION GENETICS AND EVOLUTION 2017; 66:346-360. [PMID: 29175001 DOI: 10.1016/j.meegid.2017.11.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022]
Abstract
The pig has garnered more and more interest as a model animal to study various conditions in humans. The growing success of the pig as an experimental animal model is explained by its similarities with humans in terms of anatomy, genetics, immunology, and physiology, by their manageable behavior and size, and by the general public acceptance of using pigs for experimental purposes. In addition, the immunological toolbox of pigs has grown substantially in the last decade. This development led to a boost in the use of pigs as a preclinical model for various human infections including sexually transmitted diseases (STIs) like Chlamydia trachomatis. In the current review, we discuss the use of animal models for biomedical research on the major human STIs. We summarize results obtained in the most common animal models and focus on the contributions of the pig model towards the understanding of pathogenesis and the host immune response. In addition, we present the main features of the porcine model that are particularly relevant for the study of pathogens affecting human female and male genital tracts. We also inform on the technological advancements in the porcine toolbox to facilitate new discoveries in this biologically important animal model. There is a continued need for improvements in animal modeling for biomedical research inclusive STI research. With all its advantages and the highly improved toolbox, the porcine model can play a crucial role in STI research and open the door to new exciting discoveries.
Collapse
Affiliation(s)
- Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, 27607 Raleigh, NC, USA
| | - Fanny Renois
- LUNAM Université, Oniris, Laboratoire d'Étude des Résidus et Contaminants dans les Aliments (LABERCA), UMR INRA 1329, 44307 Nantes, France
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - Thomas Cnudde
- BIOMAP, Laboratoire Biomédicaments Anti-Parasitaires, ISP, UMR INRA 1282, Université Tours, 37380 Nouzilly, France
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - Jo-Anne R Dillon
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada; Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Canada
| | - Gregers Jungersen
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Jørgen S Agerholm
- Section for Veterinary Reproduction and Obstetrics, Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
63
|
Guirao-Rico S, Ramirez O, Ojeda A, Amills M, Ramos-Onsins SE. Porcine Y-chromosome variation is consistent with the occurrence of paternal gene flow from non-Asian to Asian populations. Heredity (Edinb) 2017; 120:63-76. [PMID: 29234173 DOI: 10.1038/s41437-017-0002-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/21/2017] [Indexed: 11/09/2022] Open
Abstract
Pigs (Sus scrofa) originated in Southeast Asia and expanded to Europe and North Africa approximately 1 MYA. Analyses of porcine Y-chromosome variation have shown the existence of two main haplogroups that are highly divergent, a result that is consistent with previous mitochondrial and autosomal data showing that the Asian and non-Asian pig populations remained geographically isolated until recently. Paradoxically, one of these Y-chromosome haplogroups is extensively shared by pigs and wild boars from Asia and Europe, an observation that is difficult to reconcile with a scenario of prolonged geographic isolation. To shed light on this issue, we genotyped 33 Y-linked SNPs and one indel in a worldwide sample of pigs and wild boars and sequenced a total of 9903 nucleotide sites from seven loci distributed along the Y-chromosome. Notably, the nucleotide diversity per site at the Y-linked loci (0.0015 in Asian pigs) displayed the same order of magnitude as that described for autosomal loci (~0.0023), a finding compatible with a process of sustained and intense isolation. We performed an approximate Bayesian computation analysis focused on the paternal diversity of wild boars and local pig breeds in which we compared three demographic models: two isolation models (I models) differing in the time of isolation and a model of isolation with recent unidirectional migration (IM model). Our results suggest that the most likely explanation for the extensive sharing of one Y-chromosome haplogroup between non-Asian and Asian populations is a recent and unidirectional (non-Asian > Asian) paternal migration event.
Collapse
Affiliation(s)
- Sara Guirao-Rico
- Plant and Animal Genomics Program, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Oscar Ramirez
- Facultat de Veterinària, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Vetgenomics, Edifici Eureka, Campus Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Ana Ojeda
- Facultat de Veterinària, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marcel Amills
- Plant and Animal Genomics Program, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus Universitat Autònoma Barcelona, Bellaterra, Spain. .,Facultat de Veterinària, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Sebastian E Ramos-Onsins
- Plant and Animal Genomics Program, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus Universitat Autònoma Barcelona, Bellaterra, Spain.
| |
Collapse
|
64
|
Li X, Su R, Wan W, Zhang W, Jiang H, Qiao X, Fan Y, Zhang Y, Wang R, Liu Z, Wang Z, Liu B, Ma Y, Zhang H, Zhao Q, Zhong T, Di R, Jiang Y, Chen W, Wang W, Dong Y, Li J. Identification of selection signals by large-scale whole-genome resequencing of cashmere goats. Sci Rep 2017; 7:15142. [PMID: 29123196 PMCID: PMC5680388 DOI: 10.1038/s41598-017-15516-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/27/2017] [Indexed: 01/14/2023] Open
Abstract
Inner Mongolia and Liaoning cashmere goats are two outstanding Chinese multipurpose breeds that adapt well to the semi-arid temperate grassland. These two breeds are characterized by their soft cashmere fibers, thus making them great models to identify genomic regions that are associated with cashmere fiber traits. Whole-genome sequencing of 70 cashmere goats produced more than 5.52 million single-nucleotide polymorphisms and 710,600 short insertions and deletions. Further analysis of these genetic variants showed some population-specific molecular markers for the two cashmere goat breeds that are otherwise phenotypically similar. By analyzing FST and θπ outlier values, we identified 135 genomic regions that were associated with cashmere fiber traits within the cashmere goat populations. These selected genomic regions contained genes, which are potential involved in the production of cashmere fiber, such as FGF5, SGK3, IGFBP7, OXTR, and ROCK1. Gene ontology enrichment analysis of identified short insertions and deletions also showed enrichment in keratinocyte differentiation and epidermal cell differentiation. These findings demonstrate that this genomic resource will facilitate the breeding of cashmere goat and other Capra species in future.
Collapse
Affiliation(s)
- Xiaokai Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Engineering Research Center for Goat Genetics and Breeding - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Wenting Wan
- Center for Ecological and Environmental Sciences, Key Laboratory for Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Huaizhi Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Xian Qiao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Yixing Fan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Engineering Research Center for Goat Genetics and Breeding - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Engineering Research Center for Goat Genetics and Breeding - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Engineering Research Center for Goat Genetics and Breeding - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Engineering Research Center for Goat Genetics and Breeding - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Bin Liu
- Institute of Animal Husbandry, Academy of Agriculture and Stockbreeding Sciences, Hohhot, Inner Mongolia, 010030, China
| | - Yuehui Ma
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qianjun Zhao
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ran Di
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Wei Chen
- College of Biological Big Data, Yunnan Agriculture University, Kunming, Yunnan, 650504, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, Yunnan, 650201, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Yang Dong
- College of Biological Big Data, Yunnan Agriculture University, Kunming, Yunnan, 650504, China. .,BGI-Shenzhen, Shenzhen, Guangdong, 518083, China. .,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, Yunnan, 650201, China.
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China. .,Key Laboratory of Animal Genetics, Breeding and Reproduction - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China. .,Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China. .,Engineering Research Center for Goat Genetics and Breeding - Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.
| |
Collapse
|
65
|
Yang R, Fang S, Wang J, Zhang C, Zhang R, Liu D, Zhao Y, Hu X, Li N. Genome-wide analysis of structural variants reveals genetic differences in Chinese pigs. PLoS One 2017; 12:e0186721. [PMID: 29065176 PMCID: PMC5655481 DOI: 10.1371/journal.pone.0186721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/08/2017] [Indexed: 11/19/2022] Open
Abstract
Pigs have experienced long-term selections, resulting in dramatic phenotypic changes. Structural variants (SVs) are reported to exert extensive impacts on phenotypic changes. We built a high resolution and informative SV map based on high-depth sequencing data from 66 Chinese domestic and wild pigs. We inferred the SV formation mechanisms in the pig genome and used SVs as materials to perform a population-level analysis. We detected the selection signals on chromosome X for northern Chinese domestic pigs, as well as the differentiated loci across the whole genome. Analysis showed that these loci differ between southern and northern Chinese domestic pigs. Our results based on SVs provide new insights into genetic differences in Chinese pigs.
Collapse
Affiliation(s)
- Ruifei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, P. R. China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Suyun Fang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, P. R. China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Chunyuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, P. R. China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Ran Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Di Liu
- Institute of Animal Industry, Heilongjiang Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yiqiang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, P. R. China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
- * E-mail: (XH); (YZ)
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
- * E-mail: (XH); (YZ)
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
66
|
Abstract
One of the challenges in evaluating arguments for extending the conceptual framework of evolutionary biology involves the identification of a tractable model system that allows for an assessment of the core assumptions of the extended evolutionary synthesis (EES). The domestication of plants and animals by humans provides one such case study opportunity. Here, I consider domestication as a model system for exploring major tenets of the EES. First I discuss the novel insights that niche construction theory (NCT, one of the pillars of the EES) provides into the domestication processes, particularly as they relate to five key areas: coevolution, evolvability, ecological inheritance, cooperation and the pace of evolutionary change. This discussion is next used to frame testable predictions about initial domestication of plants and animals that contrast with those grounded in standard evolutionary theory, demonstrating how these predictions might be tested in multiple regions where initial domestication took place. I then turn to a broader consideration of how domestication provides a model case study consideration of the different ways in which the core assumptions of the EES strengthen and expand our understanding of evolution, including reciprocal causation, developmental processes as drivers of evolutionary change, inclusive inheritance, and the tempo and rate of evolutionary change.
Collapse
Affiliation(s)
- Melinda A. Zeder
- Program in Human Ecology and Archaeobiology, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution, Washington, DC 20560, USA
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
67
|
Convergent and divergent genetic changes in the genome of Chinese and European pigs. Sci Rep 2017; 7:8662. [PMID: 28819228 PMCID: PMC5561219 DOI: 10.1038/s41598-017-09061-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/20/2017] [Indexed: 01/17/2023] Open
Abstract
Since 10,000 BC, continuous human selection has led to intense genetic and phenotypic changes in pig (Sus scrofa) domestication. Through whole genome analysis of 257 individuals, we demonstrated artificial unidirectional and bidirectional selection as the primary force to shape the convergent and divergent changes between Chinese domestic pigs (CHD) and European domestic pigs (EUD). We identified 31 genes in unidirectional selection regions that might be related to fundamental domestication requirements in pigs. And these genes belong predominantly to categories related to the nervous system, muscle development, and especially to metabolic diseases. In addition, 35 genes, representing different breeding preference, were found under bidirectional selection for the distinct leanness and reproduction traits between CHD and EUD. The convergent genetic changes, contributing physical and morphological adaption, represent the common concerns on pig domestication. And the divergent genetic changes reflect distinct breeding goals between Chinese and European pigs. Using ITPR3, AHR and NMU as examples, we explored and validated how the genetic variations contribute to the phenotype changes.
Collapse
|
68
|
Le TM, Le QVC, Truong DM, Lee HJ, Choi MK, Cho H, Chung HJ, Kim JH, Do JT, Song H, Park C. β2-microglobulin gene duplication in cetartiodactyla remains intact only in pigs and possibly confers selective advantage to the species. PLoS One 2017; 12:e0182322. [PMID: 28813459 PMCID: PMC5558954 DOI: 10.1371/journal.pone.0182322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/17/2017] [Indexed: 02/03/2023] Open
Abstract
Several β2-microglobulin (B2M) -bound protein complexes undertake key roles in various immune system pathways, including the neonatal Fc receptor (FcRn), cluster of differentiation 1 (CD1) protein, non-classical major histocompatibility complex (MHC), and well-known MHC class I molecules. Therefore, the duplication of B2M may lead to an increase in the biological competence of organisms to the environment. Based on the pig genome assembly SSC10.2, a segmental duplication of ~45.5 kb, encoding the entire B2M protein, was identified in pig chromosome 1. Through experimental validation, we confirmed the functional duplication of the B2M gene with a completely identical coding sequence between two copies in pigs. Considering the importance of B2M in the immune system, we performed the phylogenetic analysis of B2M duplication in ten mammalian species, confirming the presence of B2M duplication in cetartioldactyls, like cattle, sheep, goats, pigs and whales, but non-cetartiodactyl species, like mice, cats, dogs, horses, and humans. The density of long interspersed nuclear element (LINE) at the edges of duplicated blocks (39 to 66%) was found to be 2 to 3-fold higher than the average (20.12%) of the pig genome, suggesting its role in the duplication event. The B2M mRNA expression level in pigs was 12.71 and 7.57 times (2-ΔΔCt values) higher than humans and mice, respectively. However, we were unable to experimentally demonstrate the difference in the level of B2M protein because species specific anti-B2M antibodies are not available. We reported, for the first time, the functional duplication of the B2M gene in animals. The identification of partially remaining duplicated B2M sequences in the genomes of only cetartiodactyls indicates that the event was lineage specific. B2M duplication could be beneficial to the immune system of pigs by increasing the availability of MHC class I light chain protein, B2M, to complex with the proteins encoded by the relatively large number of MHC class I heavy chain genes in pigs. Further studies are necessary to address the biological meaning of increased expression of B2M.
Collapse
Affiliation(s)
- Thong Minh Le
- Department of Stem Cell and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul, Republic of Korea
| | - Quy Van Chanh Le
- Department of Stem Cell and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul, Republic of Korea
| | - Dung Minh Truong
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Hye-Jeong Lee
- Department of Stem Cell and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul, Republic of Korea
| | - Min-Kyeung Choi
- Department of Stem Cell and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul, Republic of Korea
| | - Hyesun Cho
- Department of Stem Cell and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul, Republic of Korea
| | - Hak-Jae Chung
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul, Republic of Korea
| | - Jeong-Tae Do
- Department of Stem Cell and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul, Republic of Korea
| |
Collapse
|
69
|
Chen C, Steibel JP, Tempelman RJ. Genome-Wide Association Analyses Based on Broadly Different Specifications for Prior Distributions, Genomic Windows, and Estimation Methods. Genetics 2017; 206:1791-1806. [PMID: 28637709 PMCID: PMC5560788 DOI: 10.1534/genetics.117.202259] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/19/2017] [Indexed: 11/18/2022] Open
Abstract
A currently popular strategy (EMMAX) for genome-wide association (GWA) analysis infers association for the specific marker of interest by treating its effect as fixed while treating all other marker effects as classical Gaussian random effects. It may be more statistically coherent to specify all markers as sharing the same prior distribution, whether that distribution is Gaussian, heavy-tailed (BayesA), or has variable selection specifications based on a mixture of, say, two Gaussian distributions [stochastic search and variable selection (SSVS)]. Furthermore, all such GWA inference should be formally based on posterior probabilities or test statistics as we present here, rather than merely being based on point estimates. We compared these three broad categories of priors within a simulation study to investigate the effects of different degrees of skewness for quantitative trait loci (QTL) effects and numbers of QTL using 43,266 SNP marker genotypes from 922 Duroc-Pietrain F2-cross pigs. Genomic regions were based either on single SNP associations, on nonoverlapping windows of various fixed sizes (0.5-3 Mb), or on adaptively determined windows that cluster the genome into blocks based on linkage disequilibrium. We found that SSVS and BayesA lead to the best receiver operating curve properties in almost all cases. We also evaluated approximate maximum a posteriori (MAP) approaches to BayesA and SSVS as potential computationally feasible alternatives; however, MAP inferences were not promising, particularly due to their sensitivity to starting values. We determined that it is advantageous to use variable selection specifications based on adaptively constructed genomic window lengths for GWA studies.
Collapse
Affiliation(s)
- Chunyu Chen
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Juan P Steibel
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Robert J Tempelman
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
70
|
Abstract
Ascertaining the molecular and physiological basis of domestication and breeding is an active area of research. Due to the current wide distribution of its wild ancestor, the wild boar, the pig (Sus scrofa) is an excellent model to study these processes, which occurred independently in East Asia and Europe ca. 9000 yr ago. Analyzing genome variability patterns in terms of metabolic pathways is attractive since it considers the impact of interrelated functions of genes, in contrast to genome-wide scans that treat genes or genome windows in isolation. To that end, we studied 40 wild boars and 123 domestic pig genomes from Asia and Europe when metabolic pathway was the unit of analysis. We computed statistical significance for differentiation (Fst) and linkage disequilibrium (nSL) statistics at the pathway level. In terms of Fst, we found 21 and 12 pathways significantly differentiated at a q-value < 0.05 in Asia and Europe, respectively; five were shared across continents. In Asia, we found six significant pathways related to behavior, which involved essential neurotransmitters like dopamine and serotonin. Several significant pathways were interrelated and shared a variable percentage of genes. There were 12 genes present in >10 significant pathways (in terms of Fst), comprising genes involved in the transduction of a large number of signals, like phospholipase PCLB1, which is expressed in the brain, or ITPR3, which has an important role in taste transduction. In terms of nSL, significant pathways were mainly related to reproductive performance (ovarian steroidogenesis), a similarly important target trait during domestication and modern animal breeding. Different levels of recombination cannot explain these results, since we found no correlation between Fst and recombination rate. However, we did find an increased ratio of deleterious mutations in domestic vs. wild populations, suggesting a relaxed functional constraint associated with the domestication and breeding processes. Purifying selection was, nevertheless, stronger in significantly differentiated pathways than in random pathways, mainly in Europe. We conclude that pathway analysis facilitates the biological interpretation of genome-wide studies. Notably, in the case of pig, behavior played an important role, among other physiological and developmental processes.
Collapse
|
71
|
Frederiksen SD, Karlskov-Mortensen P, Pant SD, Guerin M, Lesnik P, Jørgensen CB, Cirera S, Bruun CS, Mark T, Fredholm M. Haplotypes on pig chromosome 3 distinguish metabolically healthy from unhealthy obese individuals. PLoS One 2017; 12:e0178828. [PMID: 28570654 PMCID: PMC5453593 DOI: 10.1371/journal.pone.0178828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/19/2017] [Indexed: 01/29/2023] Open
Abstract
We have established a pig resource population specifically designed to elucidate the genetics involved in development of obesity and obesity related co-morbidities by crossing the obesity prone Göttingen Minipig breed with two lean production pig breeds. In this study we have performed genome wide association (GWA) to identify loci with effect on blood lipid levels. The most significantly associated single nucleotide polymorphisms (SNPs) were used for linkage disequilibrium (LD) and haplotype analyses. Three separate haploblocks which influence the ratio between high density lipoprotein cholesterol and total cholesterol (HDL-C/CT), triglycerides (TG) and low density lipoprotein cholesterol (LDL-C) levels respectively were identified on Sus Scrofa chromosome 3 (SSC3). Large additive genetic effects were found for the HDL-C/CT and LDL-C haplotypes. Haplotypes segregating from Göttingen Minipigs were shown to impose a positive effect on blood lipid levels. Thus, the genetic profile of the Göttingen Minipig breed seems to support a phenotype comparable to the metabolic healthy obese (MHO) phenotype in humans.
Collapse
Affiliation(s)
- Simona D. Frederiksen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Karlskov-Mortensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sameer D. Pant
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Maryse Guerin
- INSERM UMR_S1166, Integrative Biology of Atherosclerosis Team, Paris, France
| | - Philippe Lesnik
- INSERM UMR_S1166, Integrative Biology of Atherosclerosis Team, Paris, France
| | - Claus B. Jørgensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susanna Cirera
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla S. Bruun
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Mark
- Novo Nordisk, Scandinavia AB, Region Denmark, Maaloev, Denmark
| | - Merete Fredholm
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
72
|
Ajmone-Marsan P, Stella A. Commentary on the 6th International Symposium of Animal Functional Genomics. Genet Sel Evol 2016; 48:97. [PMID: 27938327 PMCID: PMC5146836 DOI: 10.1186/s12711-016-0276-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/13/2016] [Indexed: 11/23/2022] Open
Affiliation(s)
- Paolo Ajmone-Marsan
- Institute of Zootechnics, Università Cattolica del Sacro Cuore, Piacenza, Italy. .,Nutrigenomics and Proteomics Research Center, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Alessandra Stella
- National Research Council, Lodi, Italy.,Parco Tecnologico Padano, Lodi, Italy
| |
Collapse
|
73
|
Rębała K, Rabtsava AA, Kotova SA, Kipen VN, Zhurina NV, Gandzha AI, Tsybovsky IS. STR Profiling for Discrimination between Wild and Domestic Swine Specimens and between Main Breeds of Domestic Pigs Reared in Belarus. PLoS One 2016; 11:e0166563. [PMID: 27851802 PMCID: PMC5112791 DOI: 10.1371/journal.pone.0166563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/30/2016] [Indexed: 12/04/2022] Open
Abstract
A panel comprising 16 short tandem repeats (STRs) and a gender-specific amelogenin marker was worked out and tested for robustness in discrimination between wild and domestic swine subspecies encountered in Europe, between regional populations of wild boars and between main breeds of domestic pigs reared in Belarus. The STR dataset comprised 310 wild boars, inhabiting all administrative regions of Belarus, and 313 domestic pigs, representing three local and three cosmopolitan lines. Additionally, a total of 835 wild boars were genotyped for the presence of melanocortin 1 receptor (MC1R) alleles specific for domestic pigs. Correctness of assignment of STR profiles to appropriate populations was measured by log-likelihood ratios (log-LRs). All samples were correctly identified as wild boars or domestic pigs with average log-LR of 42.4 (LR = 2.6×1018). On the other hand, as many as 50 out of 835 (6.0%) genotyped wild boars from Belarus possessed MC1R alleles specific to domestic pigs, demonstrating supremacy of our STR profiling system over traditional differentiation between wild boars and domestic pigs, based on single binary markers. Mean log-LRs for allocation of wild boars to their regions of origin and of domestic pigs to appropriate breeds were 2.3 (LR = 9.7) and 13.4 (LR = 6.6×105), respectively. Our results demonstrate the developed STR profiling system to be a highly efficient tool for differentiation between wild and domestic swine subspecies and between diverse breeds of domestic pigs as well as for verification of genetic identity of porcine specimens for the purpose of forensic investigations of wildlife crimes, assurance of veterinary public health, parentage control in animal husbandry, food safety management and traceability of livestock products.
Collapse
Affiliation(s)
- Krzysztof Rębała
- Department of Forensic Medicine, Medical University of Gdansk, Gdansk, Poland
- * E-mail:
| | - Alina A. Rabtsava
- Scientific and Practical Centre of the State Committee of Forensic Expertises, Minsk, Belarus
| | - Svetlana A. Kotova
- Scientific and Practical Centre of the State Committee of Forensic Expertises, Minsk, Belarus
| | - Viachaslau N. Kipen
- Scientific and Practical Centre of the State Committee of Forensic Expertises, Minsk, Belarus
| | - Natalja V. Zhurina
- Scientific and Practical Centre of the National Academy of Sciences on Animal Husbandry, Zhodino, Belarus
| | - Alla I. Gandzha
- Scientific and Practical Centre of the National Academy of Sciences on Animal Husbandry, Zhodino, Belarus
| | - Iosif S. Tsybovsky
- Scientific and Practical Centre of the State Committee of Forensic Expertises, Minsk, Belarus
| |
Collapse
|
74
|
Genetics of Interactive Behavior in Silver Foxes (Vulpes vulpes). Behav Genet 2016; 47:88-101. [PMID: 27757730 DOI: 10.1007/s10519-016-9815-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 08/27/2016] [Indexed: 10/20/2022]
Abstract
Individuals involved in a social interaction exhibit different behavioral traits that, in combination, form the individual's behavioral responses. Selectively bred strains of silver foxes (Vulpes vulpes) demonstrate markedly different behaviors in their response to humans. To identify the genetic basis of these behavioral differences we constructed a large F2 population including 537 individuals by cross-breeding tame and aggressive fox strains. 98 fox behavioral traits were recorded during social interaction with a human experimenter in a standard four-step test. Patterns of fox behaviors during the test were evaluated using principal component (PC) analysis. Genetic mapping identified eight unique significant and suggestive QTL. Mapping results for the PC phenotypes from different test steps showed little overlap suggesting that different QTL are involved in regulation of behaviors exhibited in different behavioral contexts. Many individual behavioral traits mapped to the same genomic regions as PC phenotypes. This provides additional information about specific behaviors regulated by these loci. Further, three pairs of epistatic loci were also identified for PC phenotypes suggesting more complex genetic architecture of the behavioral differences between the two strains than what has previously been observed.
Collapse
|