51
|
Santos HJ, Makiuchi T, Nozaki T. Reinventing an Organelle: The Reduced Mitochondrion in Parasitic Protists. Trends Parasitol 2018; 34:1038-1055. [PMID: 30201278 DOI: 10.1016/j.pt.2018.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria originated from the endosymbiotic event commencing from the engulfment of an ancestral α-proteobacterium by the first eukaryotic ancestor. Establishment of niches has led to various adaptations among eukaryotes. In anaerobic parasitic protists, the mitochondria have undergone modifications by combining features shared from the aerobic mitochondria with lineage-specific components and mechanisms; a diversified class of organelles emerged and are generally called mitochondrion-related organelles (MROs). In this review we summarize and discuss the recent advances in the knowledge of MROs from parasitic protists, particularly the themes such as metabolic functions, contribution to parasitism, dynamics, protein targeting, and novel lineage- specific proteins, with emphasis on the diversity among these organelles.
Collapse
Affiliation(s)
- Herbert J Santos
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
52
|
Miller CN, Jossé L, Tsaousis AD. Localization of Fe-S Biosynthesis Machinery in Cryptosporidium parvum Mitosome. J Eukaryot Microbiol 2018; 65:913-922. [PMID: 29932290 PMCID: PMC6282951 DOI: 10.1111/jeu.12663] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/11/2018] [Accepted: 06/17/2018] [Indexed: 12/17/2022]
Abstract
Cryptosporidium is a protozoan, apicomplexan, parasite that poses significant risk to humans and animals, as a common cause of potentially fatal diarrhea in immunodeficient hosts. The parasites have evolved a number of unique biological features that allow them to thrive in a highly specialized parasitic lifestyle. For example, the genome of Cryptosporidium parvum is highly reduced, encoding only 3,805 proteins, which is also reflected in its reduced cellular and organellar content and functions. As such, its remnant mitochondrion, dubbed a mitosome, is one of the smallest mitochondria yet found. While numerous studies have attempted to discover the function(s) of the C. parvum mitosome, most of them have been focused on in silico predictions. Here, we have localized components of a biochemical pathway in the C. parvum mitosome, in our investigations into the functions of this peculiar mitochondrial organelle. We have shown that three proteins involved in the mitochondrial iron-sulfur cluster biosynthetic pathway are localized in the organelle, and one of them can functionally replace its yeast homolog. Thus, it seems that the C. parvum mitosome is involved in iron-sulfur cluster biosynthesis, supporting the organellar and cytosolic apoproteins. These results spearhead further research on elucidating the functions of the mitosome and broaden our understanding in the minimalistic adaptations of these organelles.
Collapse
Affiliation(s)
- Christopher N Miller
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK
| | - Lyne Jossé
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK
| | - Anastasios D Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK
| |
Collapse
|
53
|
Fei J, Wu H, Su J, Jin C, Li N, Guo Y, Feng Y, Xiao L. Characterization of MEDLE-1, a protein in early development of Cryptosporidium parvum. Parasit Vectors 2018; 11:312. [PMID: 29792229 PMCID: PMC5966890 DOI: 10.1186/s13071-018-2889-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background Cryptosporidium spp. are important diarrhea-causing pathogens in humans and animals. Comparative genomic analysis indicated that Cryptosporidium-specific MEDLE family proteins may contribute to host adaptation of Cryptosporidium spp., and a recent study of one member of this family, CpMEDLE-2 encoded by cgd5_4590, has provided evidence supporting this hypothesis. In this study, another member of the protein family, CpMEDLE-1 of Cryptosporidium parvum encoded by cgd5_4580, which is distinct from CpMEDLE-2 and has no signature motif MEDLE, was cloned, expressed and characterized to understand its function. Methods CpMEDLE-1 was expressed in Escherichia coli and polyclonal antibodies against the recombinant CpMEDLE-1 protein were prepared in rabbits. Quantitative PCR was used to analyze the expression profile of cgd5_4580 in C. parvum culture. Immunofluorescence staining was used to locate CpMEDLE-1 expression in life-cycle stages, and in vitro neutralization assay with antibodies was adopted to assess the role of the protein in C. parvum invasion. Results The results indicated that cgd5_4580 had a peak expression at 2 h of C. parvum culture. CpMEDLE-1 was located in the mid-anterior region of sporozoites, probably within the dense granules. The neutralization efficiency of anti-CpMEDLE-1 antibodies was approximately 40%. Conclusions The differences in protein and gene expression profiles between CpMEDLE-1 and CpMEDLE-2 suggest that MEDLE proteins have different subcellular locations, are developmentally regulated, could be potentially involved in the transcriptional regulation of the expression of parasite or host proteins and may exert their functions in different stages of the invasion and development process.
Collapse
Affiliation(s)
- Jilan Fei
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haizhen Wu
- School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiayuan Su
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chanchan Jin
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Na Li
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yaqiong Guo
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China. .,Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
54
|
Feng Y, Xiao L. Molecular Epidemiology of Cryptosporidiosis in China. Front Microbiol 2017; 8:1701. [PMID: 28932217 PMCID: PMC5592218 DOI: 10.3389/fmicb.2017.01701] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022] Open
Abstract
Molecular epidemiology of cryptosporidiosis is an active research area in China. The use of genotyping and subtyping tools in prevalence studies has led to the identification of unique characteristics of Cryptosporidium infections in humans and animals. Human cryptosporidiosis in China is exemplified by the high diversity of Cryptosporidium spp. at species and subtype levels, with dominant C. hominis and C. parvum subtypes being rarely detected in other countries. Similarly, preweaned dairy calves, lambs, and goat kids are mostly infected with non-pathogenic Cryptosporidium species (C. bovis in calves and C. xiaoi in lambs and goat kids), with C. parvum starting to appear in dairy calves as a consequence of concentrated animal feeding operations. The latter Cryptosporidium species is dominated by IId subtypes, with IIa subtypes largely absent from the country. Unlike elsewhere, rodents in China appear to be commonly infected with C. parvum IId subtypes, with identical subtypes being found in these animals, calves, other livestock, and humans. In addition to cattle, pigs and chickens appear to be significant contributors to Cryptosporidium contamination in drinking water sources, as reflected by the frequent detection of C. suis, C. baileyi, and C. meleagridis in water samples. Chinese scientists have also made significant contributions to the development of new molecular epidemiological tools for Cryptosporidium spp. and improvements in our understanding of the mechanism involved in the emergence of hyper-transmissible and virulent C. hominis and C. parvum subtypes. Despite this progress, coordinated research efforts should be made to address changes in Cryptosporidium transmission because of rapid economic development in China and to prevent the introduction and spread of virulent and zoonotic Cryptosporidium species and subtypes in farm animals.
Collapse
Affiliation(s)
- Yaoyu Feng
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Lihua Xiao
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and PreventionAtlanta, GA, United States
| |
Collapse
|
55
|
Xiao L, Feng Y. Molecular epidemiologic tools for waterborne pathogens Cryptosporidium spp. and Giardia duodenalis. Food Waterborne Parasitol 2017; 8-9:14-32. [PMID: 32095639 PMCID: PMC7034008 DOI: 10.1016/j.fawpar.2017.09.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 01/26/2023] Open
Abstract
Molecular diagnostic tools have played an important role in improving our understanding of the transmission of Cryptosporidium spp. and Giardia duodenalis, which are two of the most important waterborne parasites in industrialized nations. Genotyping tools are frequently used in the identification of host-adapted Cryptosporidium species and G. duodenalis assemblages, allowing the assessment of infection sources in humans and public health potential of parasites found in animals and the environment. In contrast, subtyping tools are more often used in case linkages, advanced tracking of infections sources, and assessment of disease burdens attributable to anthroponotic and zoonotic transmission. More recently, multilocus typing tools have been developed for population genetic characterizations of transmission dynamics and delineation of mechanisms for the emergence of virulent subtypes. With the recent development in next generation sequencing techniques, whole genome sequencing and comparative genomic analysis are increasingly used in characterizing Cryptosporidium spp. and G. duodenalis. The use of these tools in epidemiologic studies has identified significant differences in the transmission of Cryptosporidium spp. in humans between developing countries and industrialized nations, especially the role of zoonotic transmission in human infection. Geographic differences are also present in the distribution of G. duodenalis assemblages A and B in humans. In contrast, there is little evidence for widespread zoonotic transmission of giardiasis in both developing and industrialized countries. Differences in virulence have been identified among Cryptosporidium species and subtypes, and possibly between G. duodenalis assemblages A and B, and genetic recombination has been identified as one mechanism for the emergence of virulent C. hominis subtypes. These recent advances are providing insight into the epidemiology of waterborne protozoan parasites in both developing and developed countries.
Collapse
Affiliation(s)
- Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Yaoyu Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
56
|
Li B, Wu H, Li N, Su J, Jia R, Jiang J, Feng Y, Xiao L. Preliminary Characterization of MEDLE-2, a Protein Potentially Involved in the Invasion of Cryptosporidium parvum. Front Microbiol 2017; 8:1647. [PMID: 28912761 PMCID: PMC5583231 DOI: 10.3389/fmicb.2017.01647] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/15/2017] [Indexed: 11/13/2022] Open
Abstract
Cryptosporidium spp. are important causes of diarrhea in humans, ruminants, and other mammals. Comparative genomic analysis indicated that genetically related and host-adapted Cryptosporidium species have different numbers of subtelomeric genes encoding the Cryptosporidium-specific MEDLE family of secreted proteins, which could contribute to differences in host specificity. In this study, a Cryptosporidium parvum-specific member of the protein family MEDLE-2 encoded by cgd5_4590 was cloned and expressed in Escherichia coli. Immunofluorescent staining with antibodies generated from the recombinant protein showed the expression of the protein in sporozoites and development stages. In vitro neutralization assay with the antibodies partially blocked the invasion of sporozoites. These results support the potential involvement of MEDLE-2 in the invasion of host cells.
Collapse
Affiliation(s)
- Baoling Li
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and TechnologyShanghai, China
| | - Haizhen Wu
- School of Biotechnology, East China University of Science and TechnologyShanghai, China
| | - Na Li
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Jiayuan Su
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and TechnologyShanghai, China
| | - Ruilian Jia
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and TechnologyShanghai, China
| | - Jianlin Jiang
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, AtlantaGA, United States
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and TechnologyShanghai, China.,College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, AtlantaGA, United States
| |
Collapse
|
57
|
Gagat P, Mackiewicz D, Mackiewicz P. Peculiarities within peculiarities - dinoflagellates and their mitochondrial genomes. MITOCHONDRIAL DNA PART B-RESOURCES 2017; 2:191-195. [PMID: 33473765 PMCID: PMC7800619 DOI: 10.1080/23802359.2017.1307699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
After the establishment of an endosymbiotic relationship between a proto-mitochondrion and its probable archaeal host, mitochondrial genomes underwent a spectacular reductive evolution. An interesting pathway was chosen by mitogenomes of unicellular protists called dinoflagellates, which experienced an additional wave of reduction followed by amplification and rearrangement leading to their secondary complexity. The former resulted in a mitogenome consisting of only three protein-coding genes, the latter in their multiple copies being scattered across numerous chromosomes and the evolution of complex processes for their expression. These stunning features raise a question about the future of the dinoflagellate mitochondrial genome.
Collapse
Affiliation(s)
- Przemysław Gagat
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Dorota Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|